I II VMS Software

VSI OpenVMS

VSI ACMS for OpenVMS
Remote Systems Management Guide

Document Number: DO-DACMMG-01A
Publication Date: April 2024

Operating System and Version: VS| OpenVMS IA-64 Version 8.4-1H1 or higher
VSI OpenVMS Alpha Version 8.4-2L1 or higher

Software Version: ACMS for OpenVMS Version 5.3-3

VMS Software, Inc. (VSI)
Boston, Massachusetts, USA

VSI ACMS for OpenVMS Remote Systems Management Guide

I II VMS Software

Copyright © 2024 VMS Software, Inc. (VSI), Boston, Massachusetts, USA

Legal Notice

Confidential computer software. Valid license from VSI required for possession, use or copying. Consistent with FAR 12.211 and 12.212,
Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

The information contained herein is subject to change without notice. The only warranties for VSI products and services are set forth in the
express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional
warranty. VSI shall not be liable for technical or editorial errors or omissions contained herein.

HPE, HPE Integrity, HPE Alpha, and HPE Proliant are trademarks or registered trademarks of Hewlett Packard Enterprise.

ii

VSI ACMS for OpenVMS Remote Systems Management Guide

Preface ix
L. ADOUL VST ettt e ettt e e e e e e st eeeaeeeeanes ix
2. About thisS ManUAleiiiiiiiiiiiiiiiiiiiiiiiiiie ittt ix
3. DOocUMENt SHUCKHUIEeeeiiiiiiiiiiieieieie e ix
4. Related DOCUMENLSccoeiiiiiiiiiiiiiiiiiiii e X
5. OpenVMS DOCUMENTALIONuuuuiiiiiiiii s xi
6. VSI Encourages Your COMMENESceeeveieiiiiiiiiiiiieieeeee e xi
7. CONMVENLIONS ...ttt s xi

Part 1. Introduction

Chapter 1. Overview of Remote Management 3
1.1. Architecture and IMpPIEMENTAIONcceeviiiiiiiireereeiiiiiiieieeeeeeeeeiiiieeeeeeeeeeeareanaeeeeaeanes 3
1.2. Remote Management Capabilitiesuueereerriiiiiiiiiiineeeeeeeiiiiieeeeeeeeeeereniaeeeeeeeeeeenenns 4

Chapter 2. Getting Started with the ACMS Remote Manager 5
2.1. Running the ACMS Remote ManA@EIcceeeieiviviuniieeeeeeeeeiiiiiiieeeeeeeeetiiinneeeeeeeeeeannnnnnnnss 5

2.1.1. Server NOAE SELUPceeeiiiiiiiiiiiie e et eee et e e e e et ettteee e e e e eeeerabtesseseeeeeerenannneeeaaaans 5
2.1.1.1. Verify Portmapper (RPC) SEtUPceeevviiiiiiiiieeeiiiieeiiciee e 6
2.1.1.2. Run the ACMS Postinstallation Procedurecccoeeevreiiiiiniinenneeneeeinennnnn. 7
2.1.1.3. Define Process Logicals and Symbolsccceeeeviiiiiiiiiiiiieeiiiiiiiiiiineeeeenes 7
2.1.1.4. Prepare the ACMS EnVirOnmentceeeeeeeeeiiiuiniieeeeeeeeeiiiiineeeeeeeeeeenennnnns 7
2.1.1.5. Start the ACMS Remote Managercceeeeeeeeeeviiniieneeeeeeeriiiniieeeeeeeeeeeennenns 7

2.1.2. Client NOGE SELUP ...ceeiiiiiiiiiiieieeeeee et e e e e e ettt e e e e e e eeeeaaa e e e eeeeeeessannnaeeeaaaaes 8
2.1.2.1. Run ACMS_POST_INSTALL.COMcttttiiiiiiiiiiiieeeeeeeiiiieeeee e e e 8
2.1.2.2. Copy Files and Define SymboOIScouuuiiiereriiiiiiiiiiieeeeeeeeeeiiiee e e eeeeees 9

2.1.3. Communicate with the Remote Managerccceevveeiiiiiiiiiiieneeeeeeiiiiiieeeeeeeeennns 9

2.2, TCP/IP SEIUP ...vevteeteeeeeieiiiieteee e e e e ettt e e e e e ettt et e e e e e saaenbte ittt eeeeesannbbeteeeeaeeeeannseeeees 10

2.2.1. Set Up the Portmapper (RPC)ccovviiiiiiiiiiiiiieeeeeeeeceee e 11
2.2.1.1. Determine the Current Portmapper Configurationcccceeeeveevvvvnnnnnnn.. 11
2.2.1.2. Remove the Existing Portmapper Configurationcccceeeeeeeveeeinennnnnnn.. 11
2.2.1.3. Configure the POrtmappercccoeviiiuiiiireeeiiiiiiiiiiee e eeeeeviiiee e e eeeeeeees 12

2.2.2.Set UP SNMP ..ottt e e e e et e e e e e e e 13
2.2.2.1. Determine the Current SNMP Configurationccoevvvvuienereeereennnnnnn. 13
2.2.2.2. Remove the Existing SNMP Configurationccceeeeeveviiviiieneeeeneenennnn. 14
2.2.2.3. Configure SNMPooviiiiiiiiiiiiiiiiceee e e e 14
2.2.2.4. Test SNMP ..ottt 16

2.3. Remote Manager SETUDvuuuiieeeeeiriiiiiiieeeeeeeeeeeiiiieeeeeeeeeeeatannaeeeeeeeereesnnnnaaeeeesenesnnnns 16

2.3.1. Run the Postinstallation Procedurecccoeeeiiiiiiiiiiiiiineieeiiiiiiceeee e 16

2.3.2. Define Process Logicals and Symbolsccceeveiiiiiiiiiiiiineiiiieiiiiiiee e, 18

2.3.3. Review and Update the Configuration Fileoooviiiiiiiininiiiiiiiiiiiciee e 19

2.3.4. Start the Remote MaNaerccevvuiuiiieeeeeriiiiiiiiieeeeeeeeeiiiiiaeeeeeeeereaeennnaeeeeaaees 19

2.3.5. Communicate with the Remote Managerccuuueiiiereeiiiiiiiiiineeeeeeeeeeiiinnn. 20
2.3.5.1. Using ACMSMGR and Logging In EXplicitlyccccuuiieiriiiiiiiiiiiiennnnnn. 20
2.3.5.2. Using ACMSMGR and a Proxy AcCOUNtuueerereriiiiiiiiiieneeeeeeeerinnnnn. 20

2.4. Troubleshooting the ACMS Remote Manager Startupeeceeeereereeeriiniineeeeeeeeeeeennnnnnss 21

2.4.1. Problems Starting ACMSiiiiiiiiiiiiiiceee et e e e e e e 21

2.4.2. Problems Starting the ACMS Remote Managercceeeereeeeeeiiiniieneeeeeeeeenennnns 22
2.4.2.1. ACMSSMGMT_SERVER.OUT MESSAZES ...evvvvrrrreeeeeiierrrrerreeeeeeereerrenenss 22
2.4.2.2. Remote Manager L.og ENtriescuuuivieiriiiiiiiiiiiiieeeeeeeeeiiiiieeeeeeeeeeennens 23

2.4.3. Problems with the ACMSMGR ULtyccccoiiiiiiiiiiiiiiiiiiiiiceee e 25
2.4.3.1. ACMSMGMT-W-NOCLNT_ATTACH MeSSagESevvreeerrraiurriiieeeaaanannns 25

iii

VSI ACMS for OpenVMS Remote Systems Management Guide

2.4.3.2. ACMSMGR HaNGSccovviiiiiiiiiiiiieeeeeeeieiiiiiie e e e e eeeeviee e e eeeeeees

Chapter 3. Using the Remote Manager to Manage ACMS

3.1. Overview of the Remote Manager Web AZentccceeveeeeiiiiiinieneeeeeeeeiiinnnnnnn.
3.2. Remote Manager Web AEnt SELUPceveevriiiiiiiiiiieeeeeeeeeiiiieee e e e eeeeaiiieee e
3.2.1. Install the Remote Manager Web Agent Softwareccccceeeveeerennnnnn.
3.2.2. Install the VSI Management Agents for OpenVMS Software
3.2.3. Assign Additional Rights Identifiersccoeeeeeeeieiiiiiiiiiiineeeeereeeenees
3.2.4. Start the Remote Manager Web Agent Processcccoeeeevviiviiiiiinenennnens
3.2.5. Enable Access to Remote Manager HOStSceveeeeriiiiiiiiiiineeeeeeeiiinnnn,
3.2.6. Stop the Remote Manager Web Agentccoeuvveeeeeeeiiiiiiiiiiiineeeeennns
3.3. Using the Remote Manager Web AEntceveeeeiiiiiiiiiieneeeeeeiiiiiieeeeeeeeneens
3.3.1. Accessing the ACMS Remote Management Web Page
3.3.2. CONVENLIONS ...ttt s
3.3.3. Customizing the DISPlaycceuvruuiiereeeriiiiiiiiiieeeeeeeeeiiiieeeeeeeeeeeeeannens
3.3.4. Selecting the Remote Manager HOStc.uvuieiiieiiiiiiiiiiiiiineeeeeeeeeieen,
3.4. Issuing Remote Manager COommandsccuuuuuiieeeeereeiiiiinieeeeerereeiiniieeeeeens
3.4.1. Using Show Commandscceeuuruueeerereieriiiiiinieeeeeeeeiiiiinneeeeeeeeennns
3.4.2. Using Set COmMMANAScocuvuuierreerriiiiiiiiieeeeeeeeeeiiiieeeeeeeeereeannnaeeeeas
3.4.3. Using Start and Stop Commandsccceeeeerriiiiiiiieeeeerriiiiiiiineeeeeeeenns
3.4.4. Using Add and Delete Commandscceuuvuuieerreereeeriiiiiinneeeerennnens
3.5. Troubleshooting the Remote Manager Web Agentccoeeveveriiiiiiiiiinneeennnnns
3.5.1. Reporting Problemscccooeeiiiiiiiiiiieieeeiiieiiiieeee e e

Chapter 4. Managing the Remote Manager

4.1, OVETVIEW .ttt eeeenene
4.2. Configuring Remote Manager Startupueeeeeeeeeeeiiiiiiiiinneeeeereeiiiicnneeeeeeens
4.2.1. How to Run the ACMSCFG ULtycovvvviiiieeiiiiiiiiiiicieeeeeeeeeeiiinen
4.2.2. Displaying Current ValUescccovuruuieeereeiieiiiiiiieneeeeeeeiiiinieeeaeeeennns
4.2.3. Changing ValUeSccceeeeeriiiiuiuiiieeeereeiiiiiiiaeeeeeeeeeeiieseeeeereenannnneaeens

4.3. Starting and Stopping the Remote Managercccoeeeveviiiiiiiiineeereeeiiiiiineennn.
4.3.1. Remote Manager Startipccceeeeereevirinineeeeereeriiiiniaeeeeeererernnnnanaeeeeeeens
4.3.2. Remote Manager ShutdOWNcouuuuiiiiereiiiiiiiiiieeeeeeeeeeiiieee e e eeeeeeens

4.4. Logging In to the Remote Manageruueerereriieiiiiiiiiieneeeeeeeiiiiieeeeeeeeneens
4.4.1. AUthentiCationccceeeieeeeeeeeeeee e
4.4.1.1. LoggING IN coovviiieiiiiiiiicie e

4.4.1.2. ProXy ACCOUNLS ...uuuuiereeeieiiiiiieeeeeeeeeetiinnnaeeeeeeeerennennaseeeeseeesnens

4.4.2. AUthOTIZAtION ...ooooiiiiiiiiiiiiiiiii
4.4.2.1. REAA ACCESS ..oeeeeeeeeeeeeeeieeeeeee e

A.4.2.2. WIIE ACCESS eeeeeeeeeeeeeeeeeeee ae s

4.4.2.3. OPCIALE ACCESS ..eeeeereirirriiieeeeeereeriiiiaaeeeeeeeeeertnnaaaeeeeeeensnnnaanss

4.5. Starting and Stopping INterfaceseeeeriiiiiiiiiiiiir e
4.5.1. Using ACMSCEFG to Enable or Disable Interfacescccceevvrerernnnnen.
4.5.2. Using ACMSMGR to Start or Stop Interfacescccoeeeeevviiiiiiiiennnennnns

4.6. Modifying Management Parameterscoevuuuuiieeeereeeiiiiiinneeeeeeeeeinineeeenns
4.6.1. Using ACMSCFG to Modify Management Parameters
4.6.2. Using ACMSMGR to Modify Management Parameters

4.7. Managing Log Filescouuuiiiiiiiiiiiiiiiiie et e e
4.7.1. Setting Audit Levelsccoeveiiiiiiiiiiiiiie e
4.7.2. Displaying Audit MESSAZESeeeeeererririiiieeeeeeereiiiiiaaeeeeeeeerriennaaeaeeaaees
4.7.3. Resetting the Audit LOgccooviuiiineiiiiiiiiiiie e

Chapter 5. Using the Remote Manager to Manage ACMS

5.1. Managing Data COlIECONuuuiirreeeiiiiiiiiiiieeeeeeeeiiiieeeeeeeeeeeeiiieeeeeeeeaeeens

27

27
27
28
30
30
31
31
31
31
32
33
33
34
34
34
35
36
36
37
37

39

39
39
40
40
41
42
42
43
43
43
44
44
45
45
45
45
46
46
46
47
47
48
48
48
50
50

51

iv

VSI ACMS for OpenVMS Remote Systems Management Guide

5.1.1. Entities, Classes, Names, and CollECHONSovvuiiniiiniieniiniiniinennnens
5.1.2. Starting and Stopping COIECONScceverrirrunieeereerreriiiiieeeeeeeeereainnnnns
5.1.2.1. Using ACMSCEFG to Start or Stop Collectionsccceeeeeeernnns

5.1.2.2. Using ACMSMGR to Start or Stop Collectionsc.cceeeeeeeenne

5.1.2.3. Using SNMP to Start or Stop Collectionscceeeereeerrrvrennnnn.

5.2. Displaying Collected Dataccoeeeeeeiiiiiiiiiieeeeeeiieiiieeee e e e e eeeaeaenes
5.2.1. Using ACMSMGR to Display Collected Datacceeeeeevieiviiniineneennns

5.3. Managing ACMS Using the Remote Manageruceeeereeeieiiiiiiiieneeenennnnn.
5.3.1. Types Of Variablescuuuiiiereiiiiiiiiiiiiieeeeeeeeeiiiiiee e e e e e eeeeeiien e e eeaees
5.3.1.1. Stored Variablescccccvviiiiiiiiiiiiiiiieeeee

5.3.1.2. Active Variablescoooieiiiiiiiiieieiee e

5.3.2. How the Remote Manager Makes Changescceevvvuecerereeeeeennnnnnn.
5.3.3. Using ACMSMGR to Modify the ACMS Run-Time System
5.3.4. Using SNMP to Modify the ACMS Run-Time Systemcccceeeveeeeens
5.3.4.1. Starting and Stopping Processes Using SNMPcccceeeeeieees

5.3.4.2. Adding and Deleting Rows Using SNMPcccccceevvriivrinnnnnnn.

5.3.4.3. Replacing Application Procedure Servers Using SNMP

5.3.5. Using ONC RPC to Modify the ACMS Run-Time System

Chapter 6. Management Programming Using ONC RPC

6.1. ONC RPC OVEIVIEW ..eevvvuiiieeeeiiiiiiiiiiaeeeeeeeetiiiiiaaeeeeeeeeteiannnaeeeeeeerersnnnaaaeaaaeees
N od 0 1S s (S TR
6.3. Initialization and SECUIILYcceeeiiiiiiuiiiieeeeeieiiiiiere e e e eeeeeiiee e e e e e e eeeeraeeeeeas
6.3.1. Initialization EXamplecccoeeeiiiiiiiiiiiiinneeeiiiiiicie e e e
0.4, GEt ProCEAUIESieiiiiiiiiiiiiie e e e et e e e e e e e eeeaaan s
6.4.1. Gt EXAMPLE oevvvriiiieieiiiiiiiiiiiie e eeeeeeeiiee e e e e e ettt e e e e e e e eeeaabea e e e eeaaes
0.5. LiSt PrOCEAUIESceeviiiiiiieeeeeeiiiiiiieie e e e e ee ettt e e e e e e e ee et e e e e e eeeetasannaeeeeeaeees
6.5.1. Linked List EXamPIEcuuiiiiiiiiiiiiiiiiiiee et eeeeeeeiiiee e eeeeeens
0.0, SEt PrOCEAUIESuiiiiiiiiiiiiiieie e e et e e e e e et e s e e e e e eaebaaeeeeas
6.6.1. Set EXAMPIE ..ovvvuiiiieiiiiiiiiiiiieee ettt e et e e e eeeees
6.7. Delete ProCEAUIEScceeieiiiiiiiiieeeeeiiiiiiieeee e e e e eeeeiiieee e e e eeeeeeeatneeeseeeeeennannnnes
6.7.1. Delete EXAMPIEcccoviiiiiiiiiieeeeiiiiiiicie e e e e e e e e eeaees
6.8. Add ProCedUIesccceeeiiiiiiiiiiiiee e e e e e e et e e e e e e e e e eaaaaaes
6.8.1. Add EXAMPLE .eevveinieieiiiiiiiiiiee ettt e e e e e et e e e e e eenees
6.9. Start, Stop, and Replace Proceduresuuueireereiiiiiiiiiiiiine e
6.9.1. Start EXamPIeuuoieiiiiiiiiiiiiiiee e

Chapter 7. Management Programming Using SNMP

T.1. SNMP OVETVIEWvvvviiviiiiiiiiiiiiiiiiitiiiiiee e
7.2, SNMP SECUIILY tevvtvuuieeeeeieiiiiiieie e e e e ettt e e e e ee ettt e e e eeeeeeeasnnaeseeeeesesnnnnnns
7.3. Initializing the SNMP INterfacecccceeiviiiiiiiiiiiniiiiiiiiiiiceee e
T4, SNMP TabIES ...ccooviiiiiiiiiiiiiiiiiiiii
7.4.1. Data Type MappPInNgccuuuueeeeeerieiiiiiiiaeeeeeeeeeiiieiaeeeeeeeeeerennnaaeaeeeeeeens
7.4.2. Single-ROW Tablesuuuiiierieiiiiiiiiiiee et ee e e e e e eeeeeeees
7.4.3. Static TabIesccoviiiiiiiiiiiiiiiiii
7.4.4. DyNamic Tablesccceeeeiiiiiiiiiiiiieeeeeeeiiiiiieee e e e e eeeeeeiine e e e e e e eeeeranne s
7.4.5. Servers and Task GIOUPScoveeeeiiiiiiiiiiineeeeereeiiiiiieeeeeeeeeeiiiieeeeeeeeeens
7.5. SNMP GET OPEIatiOnscccuuuueieeeeireiiiiiiineeeeereriiiiiaeeeeerereensnnnaeesesseeesnnns
7.6. SNMP SET OPEIAtiONSccevvuvuuiieeeeeeiiiiiiiiiaaeeeeeeeeriineiaeaeeeseerssnnnaeeeseseeremnnns
7.7. Using SNMP to Start and Stop ACMS Entitiesceeeereiiieiriiiiinnneeeeeeenennnnn.
T.8. SINIMP TIAPS ..eeeeeviviuiiieeeeeeeiiiiiiiee e e e e et tetttieeeeeeeeeeaattaaaeseeeeeaessnnnaeeeeeeenssnnnnns
T.8.1. EXISTS TIAPS ..ueeeeeiieiiiiiiieeeeeeeeiiiiiiie e e e e e eeeeetiieeeeeeeeeeaaenaaeeeeeeeeennnnnns
7.8.2. EVENT_SEVERITY TIAPS -..vvvvtieeeeeiiiiiiiiieeee e et e

VSI ACMS for OpenVMS Remote Systems Management Guide

7.9. SNMP DebUug TTaCINGcevvvvuiiieeeeeiiiiiiiiieeeeee ettt e e e eeeeeeetiaeeeeeeeeeseaeannaeeeeeeeesssnnnnns 88
7.9.1. Starting SNMP Debug TTacingccoevvvuiiiieeeeeiiiiiiiiiiieeeeeeeeeeiiiee e e e e eeeeviinens 89
7.9.2. Stopping SNMP Debug TracCingceeeeeeeiiiiiiiiiieieeeeeieiiiiiieeeeeeeeeeiiiieeeeeeeeeenes 89

7.10. Remote Manager eSNMP Return Codescoeeeeiiiiiiiiiieeeeeiiiiiiiiiieeeeeeeeeeiiiie e e eeeeeeens 89

Part I1. Reference Information

Chapter 8. Management APIs 93
8.1. Common RPC FIeldscoooiiiiiiiiiiiii 93
8.1.1. Collection CIASSES ...ceeeeeveeeeieeeiiieieieieeeee et 93
8.1.2. INEIfaCe TYPES ..o 93
8.1.3. ENADIE SEALESeeee s 93
814, ENHILY TYPES coeeeeieiiiiiiiieiiieee e 94
8.1.5. FaCIILY TYPES ..eveveriiiiiiiiiiiiiieieie e 94
8.1.6. RUNNING STAES ..ooeeeiiiiiiiiiiiiiii 95
8.1.7. SEVETILY COURS ... e 95
8.1.8. Trap Parameterscccoeiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieiieieeeeeeeeeteee et 95

8.2. Thread-Safe and Non-Thread Safe CHEntscoooveeieiiiiiiiiiiiiii 96
8.3. ACMSMGMT_ADD_COLLECTION_2cociiiiiiiiiiiiiiiiii 96
Chapter 9. Remote Manager Reference Tables 243
0.1, DAt TYPES eeeeiiiiiee ettt ettt e e e e e ettt e e e ettt bbb e e e e eeeaeaaaaas 243
9.2, ACC TaDIL ...ttt e e ettt e e st e e e e e e 244
9.2.1. Field DeSCIIPHONS ...cceevvviiiiiiiiiiiiiiiiieeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 246

9.3, AGENE TADIE ...ttt 252
9.3.1. Field DESCIIPHONS ...ccoevvviiiiiiiiiiiiiiiiiieiieieeeeeeeeeeeeeeeeeeeeeeeeeeee e 255

9.4. Collection TabIecoeuviiiiiiiiiiiiiiiiiiiiiiiiiiiiieiiiiieeeeeeeet ettt 259
9.4.1. Field DESCIIPHONScoevvviiieiiiiiiiiiiiiieeieeeeeeeee e 260

0.5. CP TaDIE ...ceeiiiiiiiiiieeeet ettt e e e ettt e e e e eeeees 261
9.5.1. Field DESCIIPHONS ...cceevvviiiiiiiiiiiiiiiiiieieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 262

9.6. EXC TabIEeeeeiiiiiiiiiiiiiteee ettt e e ettt e e e e e 266
9.6.1. Field DESCIIPHONS ...cceevvviiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 269

9.7, INLErfaces TabIEuunui s 275
9.7.1. Field DESCIIPHONS ...ccoevvviiiiiiiiiiiiiiiiiieieeeeeeeeee e 275

9.8. Manager Status Table ... 276
9.8.1. Field DESCIIPHONS ...cceeveviiiiiiiiiiiiiiiiiieieeieeeeeeeeeeeeeeeeeeeeeeeee e 277

9.9. Parameter TabIecocooiiiiiiiiiiiiiiiiiii 277
9.9.1. Field DeSCIIPHONS ...cceevvviiiiiiiiiiiiiiiiiieiee e 279
9.10. QTT TADIE ..ceeeeeeiiiiiiiiieee ettt e ettt e e e e ettt et e e e e e s aibbtaeeeeeeens 282
9.10.1. Field DEeSCIIPONSuuuuuurureiiiiiiiiiiiireieteieieteeeteeeeeeeeeeeeeeeeeeeeeeeaenereeeeeseeenenanes 284
.11, Server Tablecoooeeeieiiee e 287
9.11.1. Field DEeSCIIPONScuuuuueruriieiiiiiiiiiiriiittteieteeeteeeeeteeeeeeeeeeeeeeereaenereeeeesenenenanes 287
9.12. Task Group TabIEccceuiiiiiiiiiiiiiiiiiiiiiiiiitieitiee ettt eeeeeeeeeeeeeeeeeeeeeees 289
9.12.1. Field DESCIIPONSeuutuiuruririiiiiiiiiiiiiieiiieteteeeteteeeeeeeeeeeeeeeeeeeeeseneeeeeeeseeenenanes 290
9130 TIAP TADIE ... e 291
9.13.1. Field DEeSCIIPONSuuuuiururuiiiiiiiiiiiiieieiiteieteeeteeeeeeeeeeeeeeeeeeeeeeeaeaeeeeeeesenenenanes 292
9.14. Valid Trap Minimums and MaXimUMSuueueuereiememerererereierereeereeeeeeereeereeeeeeee.. 294
9.14.1. Field DEeSCIIPONScuuuuiuririiiiiiiiiiiiiiiieteeeteteteeeeeeeeeeeeeeeeeeeeeeeeeaenereeeeereeenenanes 294
9.14.2. Valid Trap Minimums and MaximumScccceeeririiiiiiiiiiiiiiiiiiiiiiiieienenenenee. 296
9.14.3. SNMP Trap FOrmatcccoeiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeee 298
O.15. TSC TabIE ..ottt ettt e e e ettt e e e e e e e eeeens 299
9.15.1. Field DEeSCIIPONSeuuuuutruruiiiiiiiiiiiiieieieieteteteteeeeeeeteeeeeeeeeeeeesesenereeesesenenenanes 300
9.16. USEIS TaDIEevvviiiiiiiiiiiiiiitiit e 303

vi

VSI ACMS for OpenVMS Remote Systems Management Guide

9.16.1. Field DESCIIPLIONSccevviiiiiiieeeeeriiiiiiiiaeeeeeeeeeeiiiiee e e e eeeeeeaainanaeeeeeeareesnnnnneeeas 304
Chapter 10. ACMSCFG Commands 307
10.1. ACIMSCEG OVEIVIEW ...vuneiiviineiiiieeeeeiiee e et e e e e e e e e e e s eae e e e e e e s eraeeeeeraeeesenanes 307
10.1.1. Command FOImatoeiimiiiiiiiiii e 307
10.1.2. Command Objects and QUALTIEISccevvrruiierereriiiiiiiiiie e e e e 307
10.2. ACMSCFG ADD COLLECTIONuciiitiiiiiiiieeeieeee et e e e e e e e ena 309
10.3. ACMSCEG ADD TRAP ..o 312
10.4. ACMSCFG DELETE COLLECTIONciiviiiiiiiiieeiiee e 314
10.5. ACMSCEG DELETE TRAPooveiiiiii e 315
10.6. ACMSCEFG SET COLLECTIONcoouuiiiiiiiieiiie e 317
Chapter 11. ACMSMGR Commands 331
11.1. ACIMSMGR OVEIVIEWcoivviniiiiiieeeieiee e e e e e e 331
11.1.1. Command FOImaAtoeiimiiiiiiiii e e 331
11.1.2. Command Objects and QUALTIEIScoervrruiierrririiiiiiiiie e e e e 331
11.2. ACMSMGR ADD COLLECTIONcouuiiiiiiiiiiiiee e 335
11.3. ACMSMGR ADD FILTERooiiiiiiiiiiiie e 339
11.4. ACMSMGR ADD TRAP ..ooeeiiiieeeee e 341
11.5. ACMSMGR DELETE COLLECTIONccuuiiiiiiiiiiiiieeeeee e 343
11.6. ACMSMGR DELETE FILTERoooiviiiiiiiiiiee e 345
11.7. ACMSMGR DELETE TRAPoiiiiiiiiee e 347
) R TSR 349
11.9. ACMSMGR LOGIN ..ot 349
11.10. ACMSMGR LOGOUT ...ooiiiiieeeee et 351
11.11. ACMSMGR REPLACE SERVERcooiiiiiiiiiiiii e 353
11.12. ACMSMGR RESET ERRORooiiiiiiiiiiiieiciiee e 354
11.13. ACMSMGR RESET LOGcoovtiiiiiiieiiee e 355
11.14. ACMSMGR SAVE FILTERoooiiiiiiiiiiie e 357
11.15. ACMSMGR SET ACC ...t 358
11.16. ACMSMGR SET AGENT ..ottt 363
11.17. ACMSMGR SET COLLECTIONcooutiiiiiieieiiieeeeeeeeeeeee e 365
11.18. ACMSMGR SET CP ... 369
11.19. ACMSMGR SET EXC ..ottt eaaas 371
11.20. ACMSMGR SET INTERFACEooooiiiiiiiiiiieee e 374
11.21. ACMSMGR SET PARAMETERcoouniiiiiiiiiee e 376
11.22. ACMSMGR SET QToorieiiiiieeeee e 379
11.23. ACMSMGR SET SERVERiiiiiiiiiiii e 382
11.24. ACMSMGR SET TRAP ...ooeiiiieeeee e 385
11.25. ACMSMGR SET TSC ..ot 387
11.26. ACMSMGR SHOW ACCooviieiieeeee et 391
11.27. ACMSMGR SHOW AGENT ..ottt 396
11.28. ACMSMGR SHOW COLLECTIONciiviiiiiiiiiieeei e 400
11.29. ACMSMGR SHOW CP ... 402
11.30. ACMSMGR SHOW ERRORooiiiiiiiiiiiiieiieeeeeee e 405
11.31. ACMSMGR SHOW EXCoiiiiiiiiiiieeeee e 408
11.32. ACMSMGR SHOW FILTERoouviiiiiiiiiiiiie e 410
11.33. ACMSMGR SHOW GROUPooviiiiiieeeeeee e 412
11.34. ACMSMGR SHOW INTERFACEcoouiiiiiiiieiiee e 415
11.35. ACMSMGR SHOW LOGouoiiiiiiiiiieeee e 416
11.36. ACMSMGR SHOW MANAGERcoovviiiiiiei e 422
11.37. ACMSMGR SHOW PARAMETERcoovuiiiiiiiiiieeeeeee e 423
11.38. ACMSMGR SHOW PROGCESS ...t 426

vii

VSI ACMS for OpenVMS Remote Systems Management Guide

Appendix A. Remote Manager Logical Names

11.39.
11.40.
11.41.
11.42.
11.43.
11.44.
11.45.
11.46.
11.47.
11.48.
11.49.
11.50.
11.51.
11.52.
11.53.
11.54.
11.55.

Chapter 12. ACMSSNAP Commands

12.1.

12.2.
12.3.
12.4.
12.5.
12.6.
12.7.
12.8.
12.9.
12.10
12.11

ACMSMGR SHOW QTT ...oooiiiiiiiiiiiiiiiec e
ACMSMGR SHOW SERVERoooiiiiiiiiiiiiiiiieeiiietee e
ACMSMGR SHOW TRAPoooiiiiiiiiiiic e
ACMSMGR SHOW TSC ...ooiiiiiiiiiiiiiieeeeeieee ettt
ACMSMGR SHOW USERoociiiiiiiiiiiiieeiiic e
ACMSMGR SHOW VERSIONooiiiiiiiiiiiiiiiiiieeeeeiieeceee et ee e
ACMSMGR START EXC ..ottt
ACMSMGR START QT ...ccooiiiiiiiiiiee e
ACMSMGR START SYSTEMccooiiiiiiiiiiiiiieiiiiieietee e
ACMSMGR START TERMINALSccccoiiiiiiiiiiiiiiiiiieee e
ACMSMGR START TRACE_MONITORcccccciimmiiiiiiiiiiiiiieeeceeeeeieee
ACMSMGR STOP EXC ...ttt
ACMSMGR STOP MANAGERccooooiiiiiiiiiiiiiieeeeee e
ACMSMGR STOP QT ..cooooiiiiiiiiiieeei e
ACMSMGR STOP SYSTEMcoiiiiiiiiiiiiiiitiiiiiieetee e
ACMSMGR STOP TERMINALScooiiiiiiiiiiiiteeiiiieeee e
ACMSMGR STOP TRACE_MONITORcccccoommiiiiiiiiiiiiiiiieeicee e

ACMSSINAP OVEIVIEW ...ovniiiiiiiie et e e e e e e e e e e e aanes
12.1.1. Command FOImatoeiiiiiiiiiiiii e e
12.1.2. Command Objects and QUALTIEISceevvrruiieirreiiiiiiiiiie e
ACMSSNAP CLOSE Commandoeeiuueiiiieiiieeiieeieie e e eans
ACMSSNAP EXIT Commandoeeiuueiiiuiiiiieiiieeeiee e ee e e e e eeeen
ACMSSNAP HELP Commandoeouuniiiieiiieiiie e
ACMSSNAP NEXT Commandcoeouuiiiuiiiieiiiieeiiie e eeeeeie e e e eeeaneeees
ACMSSNAP OPEN Commandoeiuuniiirnieiiieeiiieeiieeeieeeeeee e e eeneeeeeeanas
ACMSSNAP PREV Commandc.coeiiuniiiieiiiieeiie e
ACMSSNAP QUIT Commandoeeeuueiiuneiiiieeiieeeiieee e eeee e eeeee e e e e eenes
ACMSSNAP RESET Commandoeovuuiiiiiiiiiieeiiine e
. ACMSSNAP SHOW Commandcccouuiiuuiiiiieiiieeiiie e eeeee e e eeeaneaes
. ACMSSNAP TRACE COommandcecouuiiiuneiiineeiieeiiie e eee e eeeeeeeaeeeanes

A.1. Remote Manager SEIVETccceeeeeeieiiiiiiieeeeeireiiiiiiieeeeeeeeeiaiiaeeeeeeeeeennenneaeens
A.2. Remote Manager Client (ACMSMGR ULlity)ccovvviienrriiiiiiiiiiiiiieeeeeeeeenns

Appendix B. RPC Procedures and Corresponding Rights Identifiers

Appendix C. RPC Procedures and Corresponding Rights Identifiers

Co1. SEIVEr MESSAZES .eeeieieiiiiiiiiiiiiiiiiiiieiei ettt
C.2. ACMSMGR MESSAZES ...eeeeeiiiiiiiiiiiiiiiiiiiiiieii e
C.3. ACMSCEG MESSAZES ...
C.4. ACMSSNAP MESSAZES ...vvvvvvvvrvrururururnrureretereeeeeteeeeeeererenereeeeereneneeerererarenaa—.

viii

Preface
1. About VSI

VMS Software, Inc. (VSI) is an independent software company licensed by Hewlett Packard Enterprise
to develop and support the OpenVMS operating system.

2. About this manual

This manual explains how to use the Remote Manager to manage VSI ACMS for OpenVMS (ACMS)
software systems remotely. The manual describes the features of the Remote Manager, which is based
on a client/server architecture, how to use the features, and how to manage the Remote Manager. It
also provides reference information for the utilities and commands you use in working with the Remote
Manager.

3. Document Structure

This manual contains ten chapters and three appendixes. The chapters are grouped into two parts. The
first part contains chapters concerning the use of remote management features of ACMS. The second
part contains chapters concerning reference information for the remote management of ACMS systems.
The appendixes follow Part II.

Part 1 Introduction

Chapter 1 Introduces the architecture, implementation, and
capabilities of ACMS remote management.

Chapter 2 Describes how to get started using the Remote
Manager including preparation and startup of

the server and client nodes; setting up TCP/IP;
setting up SNMP; and troubleshooting the Remote
Manager.

Chapter 4 Describes how to manage the ACMS Remote
Manager including configuring startup; starting,
stopping, and logging in to the Remote Manager;
starting and stopping interfaces; and modifying
management parameters and log files.

Chapter 5 Describes how to use the Remote Manager

to manage ACMS, including managing data
collection, displaying collected data, and modifying
ACMS systems.

Chapter 6 Describes how programmers can use the Open
Network Computing (ONC) remote procedure call
(RPC) interface to the ACMS Remote Manager to
develop their own programs for managing ACMS
systems.

Chapter 7 Describes how programmers can use the Simple
Network Management Protocol (SNMP) interface
to the ACMS Remote Manager to develop their
own programs for managing ACMS systems.

ix

Preface

Part 11

Reference Information

Chapter 8

Provides reference information about the ACMS
remote management APIs, which are procedures
that are intended to be called from ONC RPC
clients.

Chapter 9

Provides reference information about data types
and tables for the ACMS Remote Manager.

Chapter 10

Provides reference information about the
commands of the ACMSCEG utility for
performing operations on the Remote Manager
configuration file.

Chapter 11

Provides reference information about the
commands of the ACMSMGR utility for
performing operations on running ACMS systems.

Appendices

Appendix A

Contains information about the logical names used
by the Remote Manager server and the Remote
Manager client (ACMSMGR utility).

Appendix B

Contains information providing cross-references of
remote procedure call (RPC) procedures to rights
identifiers.

Chapter 12

Contains a listing of information about Simple
Network Management Protocol (SNMP) object
identifiers (OIDs) for ACMS management
information base (MIB) fields.

4. Related Documents

The following table lists the books in the ACMS for OpenVMS documentation set.

Table 1. Related documents

Title

Description

VSI ACMS Version 5.0 for OpenVMS Release Notes

Information about the latest release of the software.
Available online only.

VSI ACMS Version 5.0 for OpenVMS Installation
Guide

Description of installation requirements, the
installation procedure, and postinstallation tasks.

VSI ACMS for OpenVMS Getting Started

Overview of ACMS software and documentation.
Tutorial for developing a simple ACMS
application. Description of the AVERTZ sample
application.

VSI ACMS for OpenVMS Concepts and Design
Guidelines

Description of how to design an ACMS
application.

VSI ACMS for OpenVMS Writing Applications

Description of how to write task, task group,
application, and menu definitions using the
Application Definition Utility. Description of how
to write and migrate ACMS applications on an
OpenVMS Alpha system.

Preface

Title

Description

VSI ACMS for OpenVMS Writing Server Procedures

Description of how to write programs to use

with tasks and how to debug tasks and programs.
Description of how ACMS works with the APPC/
LU6.2 programming interface to communicate
with IBM CICS applications. Description of how
ACMS works with third-party database managers,
with ORACLE used as an example.

VSI ACMS for OpenVMS Systems Interface
Programming

Description of using Systems Interface (SI)
Services to submit tasks to an ACMS system.

VSI ACMS for OpenVMS ADU Reference Manual

Reference information about the ADU commands,
phrases, and clauses.

VSI ACMS for OpenVMS Quick Reference

List of ACMS syntax with brief descriptions.

VSI ACMS for OpenVMS Managing Applications

Description of authorizing, running, and managing
ACMS applications, and controlling the ACMS
system.

VSI ACMS for OpenVMS Remote Systems
Management Guide

Description of the features of the Remote Manager
for managing ACMS systems, how to use the
features, and how to manage the Remote Manager.

Online help

Online help about ACMS and its utilities.

For additional information on the compatibility of other software products with this version of ACMS,
refer to the Compag ACMS for OpenVMS Software Product Description (SPD 25.50.xx).

5. OpenVMS Documentation

The full VSI OpenVMS documentation set can be found on the VMS Software Documentation webpage

at https://docs.vmssoftware.com.

6. VSI Encourages Your Comments

You may send comments or suggestions regarding this manual or any VSI document by sending
electronic mail to the following Internet address: <docinfo@vmssoftware.com>. Users who have
VSI OpenVMS support contracts through VSI can contact <support@vmssoftware.com> for

help with this product.

7. Conventions

The following conventions may be used in this manual:

Convention Meaning

Ctrl/ x A sequence such as Ctrl/ x indicates that you must hold down the key labeled Ctrl
while you press another key or a pointing device button.

PF1 x A sequence such as PF1 x indicates that you must first press and release the key
labeled PF1 and then press and release another key or a pointing device button.

Return In examples, a key name enclosed in a box indicates that you press a key on the
keyboard. (In text, a key name is not enclosed in a box.)

Xi

https://docs.vmssoftware.com

Preface

Convention

Meaning

A horizontal ellipsis in examples indicates one of the following possibilities:
* Additional optional arguments in a statement have been omitted.
* The preceding item or items can be repeated one or more times.

* Additional parameters, values, or other information can be entered.

A vertical ellipsis indicates the omission of items from a code example or
command format; the items are omitted because they are not important to the
topic being discussed.

0)

In command format descriptions, parentheses indicate that you must enclose the
options in parentheses if you choose more than one.

In command format descriptions, brackets indicate optional choices. You can
choose one or more items or no items. Do not type the brackets on the command
line. However, you must include the brackets in the syntax for OpenVMS directory
specifications and for a substring specification in an assignment statement.

[

In command format descriptions, vertical bars separate choices within brackets or
braces. Within brackets, the choices are options; within braces, at least one choice
is required. Do not type the vertical bars on the command line.

{1

In command format descriptions, braces indicate required choices; you must
choose at least one of the items listed. Do not type the braces on the command
line.

bold text

This typeface represents the introduction of a new term. It also represents the
name of an argument, an attribute, or a reason.

italic text

Italic text indicates important information, complete titles of manuals, or variables.
Variables include information that varies in system output (Internal error number),
in command lines (/PRODUCER= name), and in command parameters in text
(where dd represents the predefined code for the device type).

UPPERCASE Uppercase text indicates a command, the name of a routine, the name of a file, or

TEXT the abbreviation for a system privilege.

Monospace Monospace type indicates code examples and interactive screen displays.

type
In the C programming language, monospace type in text identifies the following
elements: keywords, the names of independently compiled external functions and
files, syntax summaries, and references to variables or identifiers introduced in an
example.

- A hyphen at the end of a command format description, command line, or code line
indicates that the command or statement continues on the following line.

numbers All numbers in text are assumed to be decimal unless otherwise noted. Nondecimal

radixes—binary, octal, or hexadecimal—are explicitly indicated.

xii

Part l. Introduction

Part I contains information about using the remote management features of ACMS. It contains an
overview of the Remote Manager, as well as information on how it is managed and operates. It also
contains information on how to manage data collection and how to use the Remote Manager to modify
a running ACMS system. Finally, this part shows you how to write programs that perform remote
management using RPC and SNMP.

Chapter 1. Overview of Remote
Management

This chapter provides an overview of ACMS remote management.

1.1. Architecture and Implementation

The ACMS Remote Manager provides ACMS system managers with the capability of monitoring

and managing their ACMS application environment across a network. The facilities that comprise the
Remote Manager are based on a client/server architecture. Two protocols are supported for accessing
the ACMS remote management server: Open Network Computing Remote Procedure Call (ONC RPC),
which is used by command line utilities (provided with the remote management option) and can be
called directly from user-written programs; and Simple Network Management Protocol (SNMP), for use
with third-party management consoles.

Figure 1.1 shows the architecture of the ACMS Remote Manager.

Figure 1.1. ACMS Remote Manager Architecture

Web-Based Client (Remote)

B:‘g’%er bt anage dhelement-LiSL

Windaws Clisnt (Femote)

o S P e SHMP | W EEMBCRONIC PATROL
A Conzole
—— WBEM$SERVER : R [
g T5C K
ek WEBEM$CPOHOST R
UDRITCP ZHC
GRPKM
M. kM
PATROL |/
Eln ONC gerl
ACMSIGMT_HMMO
i - RPC T

TCPIP Services For Open'¥S
o] FPC [WP

RPC | sMP
ACHS Rem oebanager

AChMSMGR
Command

TCPRIP
t WIE
= g1

DoL Client

{Local or Rermone) Global

Section TCF/F MIE Client

(Loczl or Rermate)
DCL ACMWS
Subprocess Process

ATMSGEN ACMSOPER

FRemate Manager Sener

As Figure 1.1 shows, users communicate with the ACMS Remote Manager using one of the supported
interfaces over a TCP/IP network. Communications between the ACMS Remote Manager and the
ACMS run-time system are transparent. Users may be on the same or a different node than the Remote
Manager, but the Remote Manager must be running on the same node as the ACMS run-time system it is
monitoring or accessing.

The command line utility provides command line access to management information as well as control
of the Remote Manager process. This utility uses the RPC interface and can be run from any OpenVMS
node that has TCP/IP network connectivity to the ACMS node.

Chapter 1. Overview of Remote Management

The SNMP interface provides network access to ACMS management information using the industry
standard SNMP protocol. This protocol is supported by most leading system management packages
(including PATROL ® from BMC ® and Compagq Insight Manager from Compagq).

The RPC interface provides local or remote access to ACMS management information and is used by
user-written programs to access ACMS management information.

ACMS system managers control the data being collected as well as automatic variable monitoring and
the management interfaces themselves through either SNMP or RPC commands.

The Remote Manager obtains initial configuration information during process startup from a user-
maintained configuration file (described in Chapter 4). Once started, the Remote Manager provides
ACMS system managers remote access to their ACMS application environment through the interfaces.

1.2. Remote Management Capabilities

The Remote Manager provides ACMS system managers with the ability to:
* Remotely manage the Remote Manager (Chapter 4)
* Remotely manage data collection (Section 5.1), including:
* Remotely configure SNMP traps
* Remotely view ACMS Management Information on line
* Remotely modify ACMS run-time systems (Section 5.3)

* Write programs that remotely access management information on line using ONC RPC (Chapter 6)
and SNMP (Chapter 7)

Chapter 2. Getting Started with the
ACMS Remote Manager

This chapter describes how to prepare and run the ACMS Remote Manager software on a node where
VSI ACMS Version 4.3 for OpenVMS has been installed. This chapter does not describe the actual
installation. For information about installing VSI ACMS Version 4.3 for OpenVMS, refer to the VSI ACMS
Version 5.0 for OpenVMS Installation Guide.

Note

The procedures in this chapter assume VSI TCP/IP Services Version 5.0 for OpenVMS or higher is
installed. The image and process names changed in Version 5.0 from UCX* to TCPIP*. If you are using
a machine with an older version of TCP/IP Services installed, you should substitute UCX wherever you
see TCPIP in the instructions in this chapter.

Terminology

The following terms are used in this chapter:
* Server node

A node on which VSI ACMS Version 4.3 for OpenVMS has been installed and on which the
ACMS Remote Manager server will run. Server nodes can be either ACMS application or submitter
nodes, and can be managed either locally or remotely using one of the supported interfaces (RPC or
SNMP). Server nodes are automatically client nodes, but not all client nodes are server nodes.

¢ (Client node

A node on which VSI ACMS Version 4.3 for OpenVMS may or may not be installed. Client nodes
can get information from and perform operations on server nodes. However, users cannot obtain
ACMS system management information from or perform system management functions on nodes
that are client nodes only.

2.1. Running the ACMS Remote Manager

The following sections outline the steps required to get the ACMS Remote Manager running on an
OpenVMS system. If you are an inexperienced user of ACMS, you should first read Section 2.2 and
Section 2.3 for detailed information about how to set up a node for ACMS remote management.

This section describes setup for both client and server nodes. Server nodes automatically support
all client functions; once a node is set up as a server, it can function as a client and a server without
additional work. Client nodes can function only as clients.

When you complete the following procedures, the ACMS Remote Manager will be running on your
system and you can access it using the ACMSMGR command line utility.

2.1.1. Server Node Setup

Before you begin, you must have already installed the VSI ACMS Version 4.3 for OpenVMS kit on your
system. Also ensure that you have the minimum supported version of TCP/IP (as described in the ACMS

Chapter 2. Getting Started with the ACMS Remote Manager

Software Product Description [SPD 25.50. xx]) installed on your node, and that it is operational. (If
TCP/IP is not installed and operational, the ACMS Remote Manager will not run.) For information about
TCP/IP setup, see Section 2.2.

Once you have installed the ACMS and TCP/IP software, perform the following steps to set up a Remote
Manager server node:

1. Verify Portmapper (RPC) setup (see Section 2.1.1.1)

2. Run the ACMS postinstallation procedure (see Section 2.1.1.2)
3. Define process logicals and symbols (see Section 2.1.1.3)

4. Prepare the ACMS environment (see Section 2.1.1.4)

5. Start the ACMS Remote Manager (see Section 2.1.1.5)

Server nodes are automatically client nodes. Therefore, you do not need to perform the tasks in
Section 2.1.2 for nodes that you set up as server nodes.

2.1.1.1. Verify Portmapper (RPC) Setup

Before you attempt to start the Remote Manager, ensure that the proper TCP/IP support is in place. This
section provides an overview of the Portmapper (RPC) verification process. If you need more detailed
information, or if you will be using third-party tools or writing your own SNMP management tools, see
Section 2.2.

1. Look for the process TCPIPSPORTM (UCXS$PORTM on older versions):

$ SHOW SYSTEM/PROCESS=TCPIP*

If you find the TCPIP$PORTM process, RPC is running and you can skip to Section 2.1.1.2.
Otherwise, go to step 2.

2. See whether the Portmapper service is enabled:

$ TCPIP
TCPIP> SHOW SERVICE PORTMAPPER

Service Port Proto Process Address State
PORTMAPPER 111 TCP,UDP TCPIPSPORTM 0.0.0.0 Enabled

The Portmapper should have both the TCP and UDP protocols defined. If it does not, you may
need to configure the Portmapper (see Section 2.2.1). If the Portmapper state is Enabled, skip to
Section 2.1.1.2. Otherwise, go to step 3.

3. To enable the Portmapper, enter the following commands:

$ TCPIP

TCPIP> ENABLE SERVICE PORTMAPPER

TCPIP> SET CONFIGURATION ENABLE SERVICE PORTMAPPER
TCPIP> EXIT

Then restart TCP/IP. The Portmapper process does not automatically start when TCP/IP starts, so
you may not see the TCPIPSPORTM process. The process starts the first time the Portmapper is
accessed.

Chapter 2. Getting Started with the ACMS Remote Manager

2.1.1.2. Run the ACMS Postinstallation Procedure

If you did not run the postinstallation procedure when you installed the VSI ACMS Version 4.3 for
OpenVMS kit, do so now. For details, see Section 2.3.

1. Run the postinstallation procedure as follows:
$ Q@SYS$STARTUP:ACMS_POST_INSTALL
2. When you are asked whether you want to configure the ACMS Remote Manager, answer YES:

Do you want to SETUP and CONFIGURE the ACMS Remote System Manager [Y]?
YES

3. Answer the questions according to the needs of your organization.

2.1.1.3. Define Process Logicals and Symbols

The ACMS$SMGMT_ENV.COM command procedure is provided to define some symbols that make
using the ACMSMGR utility simpler. For more information, see Section 2.3.2, or run the procedure now
by entering the following command:

$ Q@SYSSSTARTUP :ACMSSMGMT_ENV.COM

2.1.1.4. Prepare the ACMS Environment

You are now ready to start the Remote Manager. If you need more information about this procedure, see
Section 2.3.3. Then follow these steps:

1. Ensure that the ACMSTART.COM procedure has been run by entering the following command:
$ ACMS/SHOW SYSTEM

If you get the following error, you must invoke the SYSSSTARTUP: ACMSTART.COM procedure
described in step 2:

$DCL-W-ACTIMAGE, error activating image ACMSHR

If you get a message indicating that the ACMS system is stopped, or if some information about the
ACMS system is displayed, go to Section 2.1.1.5.

2. Invoke the ACMSTART command procedure:

$ @SYSSSTARTUP :ACMSTART

2.1.1.5. Start the ACMS Remote Manager

To start the ACMS Remote Manager, follow these steps:
1. Enter the following command:
$ STARTMGR
2. Check that the ACMS$SMGMT_SVR process started by entering the following command:

$ SHOW SYSTEM/PROCESS=ACMSS$SMGMT_SVR

Chapter 2. Getting Started with the ACMS Remote Manager

3. If the process is running, you should be able to communicate with it using ACMSMGR commands
(see Section 2.1.3).

If the process is not running, you can look for information in either of two places:
* Type out the SYSSERRORLOG:ACMS$SMGMT_SERVER.OUT text file:

$ TYPE/PAGE SYSS$SERRORLOG:ACMSS$SMGMT_SERVER.OQUT
* View the Remote Manager log file by using the following command:

$ ACMSMGR SHOW LOG/LOCAL

For more information about these sources, refer to Section 2.4.2.1 and Section 2.4.2.2.

2.1.2. Client Node Setup

All ACMS Remote Manager client nodes require that TCP/IP be installed and operational. (For
information about TCP/IP setup, refer to Section 2.2.) Other than TCP/IP connectivity to the server
node, no additional TCP/IP setup is required. (The Portmapper does not need to be running on the client
node.)

The following sections describe how to set up an ACMS Remote Manager client node. You can skip
these sections if you are installing the ACMS Remote Mangement server; server nodes are automatically
client nodes.

If the client node will not be used as an ACMS submitter node, the ACMS Remote Option kit does not
need to be installed. How you set up the client node depends upon whether the ACMS Remote Option
kit has been installed.

* If the ACMS Remote Option kit has been installed, simply run the ACMS_POST_INSTALL.COM
command procedure (see Section 2.1.2.1).

* If the ACMS Remote Option kit has not been installed, you must copy some files and define several
symbols before you can use the ACMSMGR utility on a client node (see Section 2.1.2.2).

Once you have completed these tasks, you can try to communicate with a Remote Manager on a server
node using the procedure in Section 2.1.3.

Note that you cannot obtain ACMS system management information or perform system management
functions on nodes that are client nodes only. Client nodes can get information from and perform
operations on server nodes only.

2.1.2.1. Run ACMS_POST_INSTALL.COM
Follow these steps to run the ACMS_POST_INSTALL.COM command procedure:

1. Run the postinstallation procedure as follows:

$ Q@SYSSSTARTUP:ACMS_POST_INSTALL

2. When you are asked whether you want to configure the ACMS Remote System Manager, answer
YES:

Do you want to SETUP and CONFIGURE the ACMS Remote System Manager [Y]?
YES

Chapter 2. Getting Started with the ACMS Remote Manager

Answer the questions according to the needs of your organization.

Now execute the ACMS$SMGMT_ENV.COM command procedure to define some symbols that
make using the ACMSMGR utility simpler:

$ Q@SYSSSTARTUP :ACMSS$SMGMT_ENV.COM

2.1.2.2. Copy Files and Define Symbols

If you did not install the ACMS Remote Option kit (that is, if this node will not be an ACMS submitter
node), follow this procedure. You will need access to a node with one of the VSI ACMS Version 4.3 for
OpenVMS Run-Time kits installed.

1.

Copy the ACMSMGR executable to your node from SYS$SYSTEM on the node that has VSI
ACMS Version 4.3 for OpenVMS installed. Which executable to copy depends on the version of
Compaq TCP/IP Services for OpenVMS (TCP/IP) you have installed:

* If you are running Version 4.2 of Compaq TCP/IP, copy the ACMSSMGMT_CMD_UCX.EXE
file to SYS$SYSTEM on your node.

» If you are running TCP/IP Version 5.0 or higher, copy the ACMS$MGMT_CMD_TCPIP.EXE
file to SYS$SYSTEM on your node.

Copy ACMS$SMGMT_ENV.COM to your node and run it. This file is located in SYSSSTARTUP
of a node where VSI ACMS Version 4.3 for OpenVMS is installed. ACMS$SMGMT_ENV.COM
defines some symbols that make using the ACMSMGR utility simpler. Execute the command
procedure as follows:

$ Q@SYSSSTARTUP :ACMSS$SMGMT_ENV.COM

2.1.3. Communicate with the Remote Manager

Before you issue any ACMSMGR commands, you must either log in to the Remote Manager (see step 1)
or use an ACMS proxy (see step 2). For detailed information, see Section 2.3.5.

1.

To log in to the Remote Manager, you must have a valid user account and password on the node

on which the Remote Manager is running. The following example commands log in to the Remote
Manager on node SERVER, using account MYACCT and password MYPASS. (For more details, see
Section 2.3.5.1.)

$ DEFINE ACMSSMGMT_SERVER_NODE SERVER
$ DEFINE ACMSSMGMT_USER MYACCT
$ ACMSMGR LOGIN

ACMS Remote Management —-- Command line utility
Password:MYPASS

If the login succeeds, no messages are displayed. Go to step 3.
If the login fails, check the following possible reasons:
* You typed in an invalid user name or password.

* You defined the ACMS$MGMT_SERVER_NODE logical incorrectly (wrong or misspelled
node name).

Chapter 2. Getting Started with the ACMS Remote Manager

* You defined the ACMS$SMGMT_USER logical incorrectly (wrong or misspelled node name).
* The Remote Manager is not running on the node you specified.
Refer to Section 2.4 for more help.

If you will be using ACMS proxies to access the Remote Manager, and you already know that you
have a valid proxy account, go to step 3. If you have not set up proxies but would like to use them,
create a proxy file on the node on which the Remote Manager will run. (For more information, see
Section 2.3.5.2.)

$ SET DEFAULT SYS$SYSTEM $ MCR ACMSUDU UDU> CREATE/PROXY

Now you can add a proxy. To add a proxy, you need to know the following information:
* The nodes and accounts from which you will access the Remote Manager

* The account on the Remote Manager node you will use

For example, assume you will be on node CLIENT using account MYACCT, and you will be
accessing node SERVER using account SRVACCT. Enter the following command on node
SERVER:

UDU> ADD/PROXY CLIENT::MYACCT SRVACCT
You can now enter any of the ACMSMGR commands. For example:
$ ACMSMGR SHOW INTERFACES

This command results in output similar to the following:

ACMS Remote Management —-—- Command line utility
ACMS V4.4-0 1Interfaces Display Time: 18-APR-2001
13:59:15.51
Enabled Running Get Set Alarms Time Last

Node Interface State State Requests Requests Sent Alarm Sent

SERVER rpc enabled started 987 0 0 17-NOV-1858
00:00:00.00

SERVER snmp enabled started O 0 0 17-NOV-1858
00:00:00.00

If you get error messages instead, refer to Section 2.4.

2.2. TCP/IP Setup

There are two components to the TCP/IP setup for the ACMS Remote Manager:

Portmapper (RPC) setup (see Section 2.2.1)

Portmapper setup is required if you will be using the DCL. command line utility ACMSMGR for
remote management, or if you intend to write your own programs using the RPC APL

SNMP setup (see Section 2.2.2)

10

Chapter 2. Getting Started with the ACMS Remote Manager

SNMP setup is required if you will be using third-party tools (such as PATROL from BMC) for
remote system management, or if you will be writing your own SNMP management tools.

The information in the following sections applies only to nodes on which the ACMS Remote Manager
will run. It is not relevant for ACMS Remote Manager client nodes.

2.2.1. Set Up the Portmapper (RPC)

Perform this task if the Portmapper has not previously been set up on the node you are using, or if it has
been set up incorrectly.

The procedure described here may require a restart of TCP/IP on the node you are using.

Note

When you configure RPC, you are providing network access to the node. This may have significant
security implications. Be sure you understand these implications before you configure SNMP. If you are
in doubt, consult your network or security administrator.

2.2.1.1. Determine the Current Portmapper Configuration
To determine whether the Portmapper is configured, use the following commands:

$ TCPIP TCPIP> SHOW SERVICE PORTMAPPER

If the Portmapper is configured, you will see a display similar to the following:

Service Port Proto Process Address State
PORTMAPPER 111 TCP,UDP TCPIPSPORTM 0.0.0.0 Enabled

If you get an error message indicating that the record is not found, or if both protocols are shown but the
state is not Enabled, go to Section 2.2.1.3.

If the service is displayed, make sure that both TCP and UDP are shown in the "Proto" column and that
the state is Enabled. If both protocols are not shown or if you suspect that the Portmapper is not working
correctly, go to Section 2.2.1.2.

If both protocols are shown and the state is Enabled, then the Portmapper is configured on this node and
no additional work must be performed.

2.2.1.2. Remove the Existing Portmapper Configuration

Perform this task if you suspect the Portmapper is not working correctly, or if you were directed here
from Section 2.2.1.1.

Enter the following commands:

$ TCPIP TCPIP> SET NOSERVICE PORTMAPPER

Enter Y at the "Remove? [N]:" prompt, and then exit the utility.
Now shut down and restart TCP/IP on this node:

$ Q@SYSSSTARTUP:TCPIPS$SSHUTDOWN

11

Chapter 2. Getting Started with the ACMS Remote Manager

$ @SYSSSTARTUP:TCPIPSSTARTUP

Note

If you logged in to this node using TCP/IP, you will lose connectivity after the first command executes.
You may have to reboot the machine in order to log in and complete the procedure. To avoid this
problem, put the shutdown and startup commands into a command procedure, and submit the procedure
to a batch queue that is guaranteed to run on this node.

2.2.1.3. Configure the Portmapper

To configure the Portmapper, run the SYSSMANAGER:TCPIP$SCONFIG command procedure. Select
option 3 (Server components) and then option 8 (PORTMAPPER). Select the option to "Enable service
on this node." For example:

$ @SYSSMANAGER:TCPIPSCONFIG
Compaqg TCP/IP Services for OpenVMS Configuration Menu
Configuration options:

- Core environment

- Client components

- Server components

Optional components

— Shutdown Compaqg TCP/IP Services for OpenVMS
- Startup Compag TCP/IP Services for OpenVMS
— Run tests

~N o Ok WD
|

A - Configure options 1 - 4
[E] - Exit configuration procedure

Enter configuration option: 3

Compaqg TCP/IP Services for OpenVMS SERVER Components Configuration Menu

Configuration options:

1 - BIND Disabled
2 - BOOTP Disabled
3 - TFTP Disabled
4 - FTP Enabled
5 - LPR/LPD Disabled
6 - NFS Disabled
7 - PC-NFS Disabled
8 - PORTMAPPER Enabled
9 - TELNET/RLOGIN Enabled
10 - SNMP Enabled
11 - NTP Disabled
12 - METRIC Disabled
13 - POP Disabled
14 - FINGER Disabled
15 - RMT Disabled
16 - LBROKER Disabled
17 - DHCP Disabled
A - Configure options 1 - 17

12

Chapter 2. Getting Started with the ACMS Remote Manager

[E] - Exit menu

Enter configuration option: 8

PORTMAPPER SERVER configuration options:

1 - Enable service on all nodes
2 — Enable service on this node

E - Exit PORTMAPPER configuration
Enter configuration option: 2
To exit from the command procedure, enter E twice.

Now shut down and restart TCP/IP on this node:

$ Q@SYSSSTARTUP:TCPIPS$SSHUTDOWN
$ Q@SYSSSTARTUP:TCPIPSSTARTUP

Note

If you logged in to this node using TCP/IP, you will lose connectivity after the first command executes.
You may have to reboot the machine in order to log in and complete the procedure. To avoid this
problem, put the shutdown and startup commands into a command procedure, and submit the procedure
to a batch queue that is guaranteed to run on this node.

After TCP/IP starts up, the Portmapper should be ready to use. The Portmapper process itself does not
start until it is needed, but you should make sure it is defined as described in Section 2.2.1.1.

You can test RPC access to the Remote Manager by using ACMSMGR commands. But you will need to
get the ACMSMGR running first (see Section 2.3).

2.2.2. Set Up SNMP

Perform this task if SNMP is not set up on the node you are using, or if SNMP is set up incorrectly.

This procedure may require that you restart TCP/IP on the node you are using.

Note

When you configure SNMP, you must configure the SNMP communities to which the node will belong.
SNMP communities govern SNMP network access to the node, which may have significant security
implications. Be sure you understand these implications before you configure SNMP. If you are in doubt,
consult your network or security administrator. If the SNMP communities are not configured properly,
you may be unable to access the ACMS Remote Manager.

2.2.2.1. Determine the Current SNMP Configuration

To determine whether SNMP is configured, enter the following commands:
$ TCPIP TCPIP> SHOW SERVICES

If SNMP is configured, you will see a display similar to the following:

13

Chapter 2. Getting Started with the ACMS Remote Manager

Service Port Proto Process Address State
ESNMP 242 UDP ESNMP 0.0.0.0 Disabled
SNMP 161 UDP TCPIPS$SNMP 0.0.0.0 Enabled

If you do not see both of these services, proceed to Section 2.2.2.3. If both services are displayed,
SNMP is configured on this node. If you suspect that SNMP is not working correctly, you can proceed
to Section 2.2.2.2. Otherwise, there is no additional work to be performed. (Note: It is fine if ESNMP
has a state of Disabled.)

2.2.2.2. Remove the Existing SNMP Configuration

Perform this step if you suspect SNMP is not working correctly or if you were directed here from
Section 2.2.2.1.

Enter the following commands:

$ TCPIP TCPIP> SET NOSERVICE SNMP

Enter Y at the "Remove? [N]:" prompt, and then enter:

TCPIP> SET NOSERVICE ESNMP

Enter Y again at the "Remove? [N]:" prompt, and then exit the utility.
Now shut down and restart TCP/IP on this node:

$ Q@SYSSSTARTUP:TCPIPS$SNMP_SHUTDOWN
$ Q@SYSSSTARTUP:TCPIPS$SSNMP_STARTUP

2.2.2.3. Configure SNMP

To configure SNMP, run the SYSSMANAGER:TCPIP$CONFIG command procedure. Select option 3
(Server components) and then option 10 (SNMP Configuration). Select the option to "Enable service on
this node", and respond to the prompts as shown in the following example.

Note

Configuring SNMP communities must be coordinated among all nodes that will participate. If you are
unsure which SNMP communities to configure, contact your network administrator.

$ @SYSSMANAGER:TCPIPSCONFIG
Compaqg TCP/IP Services for OpenVMS Configuration Menu
Configuration options:

- Core environment

- Client components

- Server components

Optional components

— Shutdown Compag TCP/IP Services for OpenVMS
- Startup Compag TCP/IP Services for OpenVMS
— Run tests

~N o O WD
|

14

Chapter 2. Getting Started with the ACMS Remote Manager

A - Configure options 1 - 4
[E] - Exit configuration procedure

Enter configuration option: 3

Compaq TCP/IP Services for OpenVMS SERVER Components Configuration Menu

Configuration options:

1 - BIND Disabled
2 - BOOTP Disabled
3 - TFTP Disabled
4 - FTP Enabled
5 - LPR/LPD Disabled
6 - NFS Disabled
7 - PC-NFS Disabled
8 - PORTMAPPER Enabled
9 - TELNET/RLOGIN Enabled
10 - SNMP Enabled
11 - NTP Disabled
12 - METRIC Disabled
13 - POP Disabled
14 - FINGER Disabled
15 - RMT Disabled
16 - LBROKER Disabled
17 - DHCP Disabled
A - Configure options 1 - 17
[E] - Exit menu

Enter configuration option: 10

SNMP SERVER configuration options:

1 - Enable service on all nodes
2 — Enable service on this node

E - Exit PORTMAPPER configuration
Enter configuration option: 2

Do you want to provide the public community [Y]: <site dependent>
Do you want to provide another community [N]: <site dependent>
Enter contact person(s): <site administrator>

Enter the location of the system: <site location>

To exit from the command procedure, enter E twice.

After exiting from the procedure, you may need to modify the public communities you just specified to
allow SNMP reads, writes, or traps. The following example shows how to do so. (Community names are
case sensitive. Also note the use of double quotes.) To allow SNMP writes to occur on the node, you also
need to enable the set flag, as follows:

$ TCPIP

TCPIP> SET CONFIG SNMP/COMMUNITY="PUBLIC"/TYPE=WRITE
TCPIP> SET CONFIG SNMP/COMMUNITY="PUBLIC"/TYPE=TRAP
TCPIP> SET CONFIG SNMP/FLAGS=SETS

15

Chapter 2. Getting Started with the ACMS Remote Manager

Now exit the TCP/IP utility and restart TCP/IP on this node:

$ Q@SYSSSTARTUP:TCPIPSSHUTDOWN
$ Q@SYSSSTARTUP:TCPIPSSTARTUP

Note

If you logged in to this node using TCP/IP, you will lose connectivity after the first command executes.
You may have to reboot the machine in order to log in and complete the procedure. To avoid this
problem, put the shutdown and startup commands into a command procedure, and submit the procedure
to a batch queue that is guaranteed to run on this node.

After TCP/IP starts, SNMP should be ready to use. The following SNMP processes should be running:

TCPIPSESNMP
TCPIP$OS_MIBS

2.2.2.4. Test SNMP

TCP/IP includes a DCL command line utility that can be used to issue SNMP commands to SNMP
agents on OpenVMS. To use this utility, define the following foreign commands:

$ SNMPGET :== $SYSS$SSYSTEM:TCPIPS$SNMP_REQUEST
<your node name> PUBLIC GET -W 20 $ SNMPSET :== $SYSS$SSYSTEM:TCPIP
SSNMP_REQUEST
<your node name> PUBLIC SET -W 20

Then, after starting the ACMS Remote Manager (see Section 2.3), test access to SNMP:

$ SNMPGET 1.3.6.1.4.1.36.2.18.48.5.1.10.1
1.3.6.1.4.1.36.2.18.48.5.1.10 = 14

$ SNMPSET 1.3.6.1.4.1.36.2.18.48.5.1.10.1 -I 15
1.3.6.1.4.1.36.2.18.48.5.1.10 = 15

In this example, the first command issues an SNMP GET to get the value of the parameter
mgr_audit_level (the audit level of the main thread). The second command sets the value of the
mgr_audit_level parameter to 15 (log all messages). Following each command, the current value of the
field is returned.

If these commands fail to return the expected results, refer to Section 2.4.

2.3. Remote Manager Setup

Setting up the Remote Manager primarily involves preparing the OpenVMS environment to start the
Remote Manager. While many of the steps in this procedure can be performed without having previously
configured TCP/IP, it is strongly suggested that you perform TCP/IP setup tasks described in Section 2.2
before you attempt to start and access the Remote Manager.

Most of what you need to know to set up the ACMS Remote Manager is covered in Chapter 4. Please
read that chapter before you set up the ACMS Remote Manager.

2.3.1. Run the Postinstallation Procedure

The postinstallation procedure creates two important command procedures:

16

Chapter 2. Getting Started with the ACMS Remote Manager

* ACMS$MGMT_SETUP.COM
* ACMS$MGMT_ENV.COM
Both of these procedures are required to start and run the ACMS Remote Manager successfully.

In addition, the postinstallation procedure modifies ACMSTART.COM to execute ACMS
$MGMT_SETUP.COM to ensure that important logicals are defined whenever the ACMS run-time
system is started.

Run the ACMS_POST_INSTALL.COM command procedure as follows:

$ Q@SYSSSTARTUP:ACMS_POST_INSTALL

Respond appropriately to all prompts until you reach the following prompt:

Do you want to SETUP and CONFIGURE the ACMS Remote System Manager [Y]?

Be sure to respond YES (the default) to this prompt. Several more questions are posed. The procedure
continues with the following questions. Your responses are stored in the ACMS$SMGMT_SETUP.COM
file.

Do you want to allow Proxy Authorization [Y]?

All clients must be authenticated and authorized to access the ACMS Remote Manager. Proxy access
allows ACMS proxies to be used for this purpose. Proxy access is described in detail in Section 4.4.1.2.

Enter Y to enable proxy authentication and authorization when the Remote Manager is started.

(ACMSSMGMT_CONFIG) Enter the file specification for the configuration
file used by the ACMS Remote Manager
Equivalence string [SYSSSPECIFIC:[SYSEXE]ACMSSMGMT_CONFIG.ACM]:

The configuration file contains the default startup configuration for both ACMS data collections and

the Remote Manager. Section 4.2 describes how to use the ACMSCFG utility to manage this file. The
default location is SYS$SYSROOT:[SYSEXE]ACMS$MGMT_CONFIG.ACM. The information in this
file is not node dependent; however, you may choose to configure the nodes in your cluster differently.
If you configure all nodes in the cluster the same, you can put this file in the cluster common root.
Otherwise, the default value places it in the node-specific root.

Either press Return to accept the default, or type the file specification you want to use.

(ACMSSMGMT_TEMP) Enter the directory where the temp command procedures
will be created
Equivalence string [SYSSSPECIFIC:[SYSMGR] 1:

The Remote Manager uses temporary command procedures (see Section 5.3.2 to update the ACMS
run-time system. The default location of the command procedures is SYSSMANAGER. This directory
should not be a cluster common directory.

Either press Return to accept the default, or type the directory specification you want to use. If the
directory does not exist, the command procedure creates it for you.

(ACMSSMGMT_LOG) Enter the directory for the ACMS Remote Manager's Log file
Equivalence string [SYS$SSPECIFIC:[ACMS_RM.LOG] 1:

The Remote Manager log file (described in Section 4.7 contains a variety of messages generated
by the Remote Manager at run time. The default location of the audit log is SYS$SYSROOT:

17

Chapter 2. Getting Started with the ACMS Remote Manager

[ACMS_RM.LOG]JACMS$SMGMT_LOG.LOG. If you choose to place this log in a cluster common
directory, be sure that the file name is different for each node.

Either press Return to accept the default, or type the file specification you want to use.

(ACMSSMGMT_CREDS_DIR) Enter the directory for the ACMS Remote Manager
Credential's Equivalence string [SYS$SPECIFIC: [ACMS_RM.CREDS] 1:

Client credential files (described in Section 4.4.1.1 contain encrypted client identity information used
for client authorization. The default location for these files is SYS$SYSROOT:[ACMS_RM.CREDS].
Credential files are created with unique names and can be safely placed in a cluster common directory.

Either press Return to accept the default, or type the directory specification you want to use. If the
directory does not exist, the command procedure creates it for you.

Please enter the UIC for the ACMSS$SSNMP account, in the form [ggggg, nnnnnn]
UIC:

This account is used to control SNMP access to ACMS system management information and functions.
Section 4.4.1 and Section 7.2 describe the uses of this account. In general, if you will be using an
SNMP-based management console to access ACMS, you should create this account.

Please enter a password of at least 8 characters, using only
the following characters: ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789S_

Password:

The password for this account is never used. Enter any combination of the characters shown. However,
keep in mind that you will be prompted to verify whatever you type.

After you run the postinstallation procedure, you should rerun SYS$STARTUP: ACMSTART.COM to
ensure that the newly created ACMS$MGMT_SETUP.COM is run.

2.3.2. Define Process Logicals and Symbols
Four symbols are defined in the ACMS$MGMT_ENV.COM procedure:

* ACMSMGR: Used to invoke the ACMSMGR utility, which provides remote access to the ACMS
Remote Manager. The ACMSMGR utility is described in detail in Chapter 11.

* ACMSCEFG: Used to invoke the ACMSCFG utility, which allows the Remote Manager configuration
file to be managed. The ACMSCEFG utility is described in detail in Chapter 10.

* ACMSSNAP (and ACMSNAP): Used to invoke the ACMSSNAP utility, which enables users to
view ACMS Remote Manager data snapshot files. This utility and its use is described in detail in
Chapter 12.

* STARTMGR: Used to invoke the Remote Manager startup procedure.

* SNMPGET and SNMPSET: Used to issue SNMP get and set commands to the Remote Manager.
Requires knowledge of ACMS MIB OIDs, which are listed in the file MIB_OID.LIS available from
the directory ACMS$SRM_ EXAMPLES.

Before you attempt to run any of these utilities, run the ACMS$MGMT_ENV.COM procedure:

$ Q@SYSSSTARTUP :ACMSSMGMT_ENV.COM

18

Chapter 2. Getting Started with the ACMS Remote Manager

2.3.3. Review and Update the Configuration File

The ACMS$SMGMT_CONFIG system logical points to the configuration file. This logical is defined in
the ACMSSMGMT_SETUP.COM procedure, which is executed by the ACMSTART.COM procedure.
If this logical is not defined, the ACMSCFG utility will not be able to locate the file. If you have not
already run ACMSTART.COM, do so before issuing any ACMSCFG commands.

The ACMS_POST_INSTALL.COM procedure creates a configuration file with default values in SYS
$SYSROOT:[SYSEXE]JACMS$MGMT_CONFIG.ACM.

The configuration file contains the startup configuration for ACMS data collections and provides many
defaults for the Remote Manager. Section 4.2 describes how to use the ACMSCFG utility to manage this
file.

In particular, consider the following:
* Interfaces

By default, both RPC and SNMP interfaces are enabled. The RPC interface must be enabled if you
intend to use the ACMSMGR command line utility, or if you will be writing programs that use the
RPC APIL. The SNMP interface is required only if you will use a third-party SNMP management tool
to manage ACMS. The following command disables the SNMP interface:

$ ACMSCFG SET INTERFACE/INTERFACE=SNMP/STATE=DISABLED
e Data collections

By default, only ID and CONFIG class data is collected by all ACMS processes. If you intend to use
the Remote Manager to monitor run-time or pool data, you must enable data collection for those
classes. The following commands enable run-time and pool data collection for all processes:

$ ACMSCFG ADD COLL/ENT=*/CLASS=RUNTIME/COLL_STATE=ENABLED
$ ACMSCFG ADD COLL/ENT=*/CLASS=POOL/COLL_STATE=ENABLED

e Traps

Configuring traps is optional. Traps are used only if your SNMP management console listens for
traps. Section 7.8 discusses traps in more detail. If you are unsure about whether you need to
configure traps, use the defaults.

e Parameters

The parameters in the configuration file control various aspects of the Remote Manager. In general,
use the default values unless you have a particular reason to modify them. Refer to Section 9.9
includes a table with descriptions of each parameter.

2.3.4. Start the Remote Manager

At this point, you can start the Remote Manager. You can start the Remote Manager before or after you
start the ACMS run-time system. Start the Remote Manager by entering the following command:

$ STARTMGR
If you prefer, you can run the startup procedure directly:

$ @SYSSSTARTUP :ACMSSMGMT__STARTUP

19

Chapter 2. Getting Started with the ACMS Remote Manager

Once this command completes, you should be able to see the Remote Manager process running by
issuing the following command:

$ SHOW SYSTEM/PROCESS=ACMSS$MGMT_SVR

If this process is not running, refer to Section 2.4.

2.3.5. Communicate with the Remote Manager

If the ACMSSMGMT_SVR process is running and you have enabled both the RPC interface and proxy
access, you should be able to communicate with the Remote Manager. The exact commands you will use
depends on the interfaces you have enabled and the mode of authentication you want to use. This section
shows two examples of communicating with the Remote Manager:

* Using ACMSMGR and logging in explicitly
* Using ACMSMGR and a proxy account

2.3.5.1. Using ACMSMGR and Logging In Explicitly

If you will not be using proxy accounts, or if you have not set them up yet, you can log in directly to
the Remote Manager and communicate with it. To reduce typing, define the process logicals ACMS
$MGMT_USER to be the user account you will log in with, and ACMS$SMGMT_SERVER_NODE to
be the node on which the Remote Manager is running:

$ DEFINE ACMSS$SMGMT_USER MYNAME
$ DEFINE ACMS$MGMT_SERVER_NODE NODE_SERVER_RUNS_ON

Then you can log in as follows (the ACMSMGR utility will prompt you for your password):

$ ACMSMGR LOGIN Password: MYPASSWORD

If no error messages are returned, you have successfully logged in to the Remote Manager. You can now
issue ACMSMGR commands from this process. Try the following command:

$ ACMSMGR SHOW USERS

2.3.5.2. Using ACMSMGR and a Proxy Account

If you will be using proxy accounts, you must set them up prior to issuing any ACMSMGR commands.
If you have already set them up, you can skip to the example ACMSMGR command.

If you have not set up your proxies, you start by running the ACMSUDU utility. It's best to run this from
the SYS$SYSTEM directory, since that is where ACMSUDU expects to find the file in which it stores
proxies.

Start ACMSUDU as follows:

$ SET DEFAULT SYSS$SYSTEM
$ MCR ACMSUDU UDU>

If you have never set up an ACMS proxy before, create the proxy file now. Use the following command:

UDU> CREATE/PROXY

Now you need to define the proxy accounts. Proxy accounts have three components: the remote node,
the remote account, and the local account.

20

Chapter 2. Getting Started with the ACMS Remote Manager

The remote node is the node from which you will be accessing this node. You can either specify a node
name or use the asterisk wildcard (*). Be aware that the Remote Manager treats every access as a remote
access. This means that even if you access the Remote Manager only from the same node it runs on, you
must create a proxy. In that case, the remote and local nodes are the same.

The remote account is the account on the remote node that will be accessing the Remote Manager. This
is the user name on the remote node.

The local account is the account on the local node that will be used for authorization. It must be a valid
account on the local node.

To add the proxy record, use the following command:

UDU> ADD/PROXY remote-node::remote—account local-account

Once the proxy record has been added, you can attempt to access the Remote Manager. Using a

proxy does not require a separate login; you just issue the command. Also, do not define the ACMS
$MGMT_USER logical. If it is defined, the ACMSMGR utility will look for login information and will
not attempt proxy access.

Try this command:

$ AMCMSGR SHOW USERS/NODE=remote-manager-node
If no error messages are returned, a list of users logged in to the Remote Manager will be
displayed. To reduce typing when issuing more commands, define the process logical ACMS
$MGMT_SERVER_NODE to be the name of the node you want to access; this eliminates the need for
using the /NODE qualifier in ACMSMGR commands.

If an error is returned, refer to Section 2.4.

2.4. Troubleshooting the ACMS Remote
Manager Startup

The following sections provide troubleshooting information for the following problems:
* Problems starting ACMS (Section 2.4.1)
* Problems starting the ACMS Remote Manager (Section 2.4.2)

e Problems with ACMSMGR (Section 2.4.3)

2.4.1. Problems Starting ACMS

The following message is displayed when the ACMS run-time system is being started and the ACMS
Central Controller (ACC) cannot open the Remote Manager configuration file:

$ACMSMGMT-I-CEFGNOTOPEN, Unable to open management config file, using
defaults

Possible reasons for this message include:

* The logical name ACMS$MGMT_CONFIG is not defined.

21

Chapter 2. Getting Started with the ACMS Remote Manager

Solution: This logical is typically defined in the file SYSSSTARTUP:ACMS$SMGMT_SETUP.COM,
which is created by the SYSSSTARTUP:ACMS_POST_INSTALL.COM command procedure. If
the ACMSSMGMT_SETUP.COM file does not exist, run ACMS_POST_INSTALL.COM. If it does
exist, edit it and add the definition of ACMS$MGMT_CONFIG. In either case make sure to run
ACMS$MGMT_SETUP.COM, and then run the ACMSCEFG utility to create a new, default file.

* The logical name ACMS$SMGMT_CONFIG does not point to the configuration file, or the file has
not been created.

Solution: Ensure that the logical is defined properly (see the first bullet). If it is, you can create a new
file by running the ACMSCFG utility. ACMSCFG will ask whether you want to create a new file.
Answer yes, and then review the default settings.

* The ACC process does not have read access to the file pointed to by the logical name ACMS
$MGMT_CONFIG.

Solution: Modify the permissions on the file and restart ACMS.
e The ACMS_POST_INSTALL.COM procedure has not been run.

Solution: Run this procedure to prepare your system to run the ACMS Remote Manager. See the first
bullet for more information.

2.4.2. Problems Starting the ACMS Remote Manager

The Remote Manager writes error messages to two locations. If you are experiencing problems with the
Remote Manager, check both locations for messages.

e SYS$ERRORLOG:ACMS$MGMT_SERVER.OUT (see Section 2.4.2.1)

» Remote Manager log, pointed to by logical ACMS$MGMT_LOG (see Section 2.4.2.2)

2.4.2.1. ACMSSMGMT_SERVER.OUT Messages

This is an ASCII text file that contains the redirected SYSSOUTPUT from the Remote Manager process.
In general, messages appear in this log only if the Remote Manager is unable to write to its log file. The
following conditions are exceptions:

* The literal "log_to_sysout" is passed to the Remote Manager startup procedure as P1 (for example,
@SYSS$STARTUP:ACMSSMGMT_STARTUP.COM log_to_sysout). Except for rare debugging
circumstances, the "log_to_sysout" literal should not be passed to the Remote Manager startup
procedure as P1.

* The Remote Manager experiences an access violation or other nontrapped fatal error.
Under these circumstances, OpenVMS exception output is written to ACMS$MGMT_SERVER.OUT.

If you experience problems with SNMP, refer to Section 7.9 for information about obtaining SNMP
debug output.

LOG: Could not open file acms$mgmt_log

This message indicates that the Remote Manager could not open the file pointed to by the logical ACMS
$MGMT_LOG. Possible reasons for this include:

22

Chapter 2. Getting Started with the ACMS Remote Manager

* The logical is not defined, or is improperly defined.

Solution: This logical is typically defined in the file SYSSSTARTUP:ACMS$MGMT_SETUP.COM,
which is created by the SYSSSTARTUP:ACMS_POST_INSTALL.COM command procedure. If
the ACMSSMGMT_SETUP.COM file does not exist, run ACMS_POST INSTALL.COM. If it does
exist, edit it and add the definition of ACMS$MGMT_LOG. In either case, make sure to run ACMS
$MGMT_SETUP.COM, and then start the Remote Manager again.

¢ The device is full.

Solution: If there is insufficient space for the log file, either redefine the logical to point to another
device or make room on the device.

* The Remote Manager does not have write access to the file.

Solution: Modify the permissions on the file or directory to which the ACMS$MGMT_LOG logical
points.

* The ACMS_POST_INSTALL.COM procedure has not been run.

Solution: Run this procedure to prepare your system to run the ACMS Remote Manager. See the first
bullet for more information.

2.4.2.2. Remote Manager Log Entries

The messages written to the Remote Manager are determined by Remote Manager parameter settings
(for example, mgr_audit_level, rpc_audit_level, and so on). Changing the parameter values results

in either more or fewer messages appearing in the Remote Manager log. By default, messages with a
severity of warning (w), error (e), or fatal (f) are written to the Remote Manager log. The log is pointed
to by logical ACMSSMGMT_LOG.

You can use the ACMSMGR SHOW LOG command to display messages in the Remote Manager log. If
the Remote Manager is not running, use the /[LOCAL qualifier to read the log file directly. You must be
logged in to a node with direct access to the log file in order to use the /[LOCAL switch. For instance:

$ ACMSMGR SHOW LOG/LOCAL

See Section 4.7 for detailed information about the log file maintained by the ACMS Remote Manager.
mgr: f : Failure opening config file

The Remote Manager could not open the configuration file. See the discussion in Section 2.4.2.1.
mgr: f : No Interfaces were enabled. Process will shutdown

At least one interface must be enabled when the Remote Manager is started. Otherwise, it is impossible
to communicate with the Remote Manager. If both interfaces are disabled, the Remote Manager will not
start.

Solution: Issue the following command to see the current interface settings in the configuration file:

$ ACMSCFG SHOW INTERFACE

Enable at least one of the interfaces as follows (substitute SNMP for RPC if you want to enable the
SNMP interface instead of the RPC interface):

23

Chapter 2. Getting Started with the ACMS Remote Manager

$ ACMSCFG SET INTERFACE/INTERFACE=RPC/STATE=ENABLED
Now restart the Remote Manager.
procmon: e : Failure obtaining current collection states. Bypassingqti

This message can safely be ignored. It is generated when an ACMS entity is not started and the Remote
Manager is parsing the collection table.

procmon: f : Failure waiting on mgmt$x_proc_mon_cond_var

This message can safely be ignored. It is generated when the process monitor thread is unexpectedly
interrupted, generally during Remote Manager shutdown.

Remote Manager hangs during process startup

Most Remote Manager hangs during process startup are due to problems with the Portmapper. Verify
that the Portmapper is functioning properly, and restart the Remote Manager.

rpc: f : Unable to initialize security. Aborting
The Remote Manager was unable to find a rights identifier in the UAF.
Solution: Create the rights identifier.

sec: e : Failure obtaining uaf info for ACMS$SNMP

If the SNMP interface is enabled, the ACMS$SNMP account must exits. Otherwise, it can perform no
operations. If the account exists, it must be granted at least one of the following rights identifiers: ACMS
$MGMT_READ, ACMS$SMGMT_WRITE, ACMS$MGMT_OPER.

Solution: Either disable the SNMP interface (${ACMSCFG,ACMSMGR] SET INTERFACE/
INTERFACE=SNMP/STATE=DISABLED), or create the ACMS$SNMP account and grant it one of
the rights.

sec: e : MGMTSL_ACMSMGMT_READ Rights identifier not found in rights db!
The Remote Manager was unable to find the rights identifier in the UAF.

Solution: Create the rights identifier.

sec: f : ACMS$SNMP user has been granted no rights.

If the SNMP interface is enabled, the ACMS$SNMP account must be granted at least one of the
following rights identifiers: ACMS$MGMT_READ, ACMSSMGMT_WRITE, ACMS$MGMT_OPER.
Otherwise, the account cannot perform any operations. If it is not granted any rights identifiers, the
thread will not start.

Solution: Either disable the SNMP interface (${ACMSCFG,ACMSMGR] SET INTERFACE/
INTERFACE=SNMP/STATE=DISABLED), or grant one of the rights to the ACMS$SNMP account.

shmp: e : Terminating....
This is a general error that simply reports that the thread is exiting. Look in the log file for the

reason the thread is exiting. If there are no other error messages, look in SYSSERRORLOG:ACMS
$MGMT_SERVER.OUT.

24

Chapter 2. Getting Started with the ACMS Remote Manager

snmp: f : Internal Initialization failed, exiting...

This is a general error that simply reports that the thread is exiting. Look in the log file for the
reason the thread is exiting. If there are no other error messages, look in SYSSERRORLOG:ACMS
$MGMT_SERVER.OUT.

snmp: w : An esnmp error has occurred: -1

This message, if followed by termination of the SNMP thread, usually indicates that SNMP has not been
set up properly on the node.

Solution: Configure and enable the SNMP interface. Restart TCP/IP and then restart the Remote
Manager.

If this message is received, but is not followed by termination of the SNMP thread, the SNMP interface
was able to recover from this error and there is no action that must be taken.

shmp: w : An esnmp error has occurred: -5

This is a warning message that refers to a problem communicating with the SNMP master agent. These
errors usually are recoverable and the SNMP interface continues to work. In general, you can ignore this
message.

However, frequent occurrences of this error may be attributable to a busy system and may indicate a
need to modify one or more of the following parameters: snmp_agent_time_out, snmp_are_you_there,
snmp_sel_time_out.

2.4.3. Problems with the ACMSMGR Utility

ACMSMGR problems typically fall into two categories:
* ACMSMGMT-W-NOCLNT_ATTACH messages (see Section 2.4.3.1)

* ACMSMGR hangs (see Section 2.4.3.2)

2.4.3.1. ACMSMGMT-W-NOCLNT_ATTACH Messages

ACMSMGR can display the following message:
$ACMSMGMT-W-NOCLNT_ATTACH, Cannot create client for node NODE\NOCLNT_ATTACH
This message usually is followed by these messages:

$ACMSMGMT-E-NOCLIENTS, No clients created, cannot continue
$ACMSMGMT-E-FAIL, Operation failed

These messages usually are returned when the Remote Manager is not running on the target node.
Possible reasons for this include:

* The Remote Manager is not started.

Solution: Start the Remote Manager as follows:
$ Q@SYSSSTARTUP :ACMSS$SMGMT__STARTUP

* The Remote Manager is not fully initialized. Complete initialization of the Remote Manager may
take several seconds.

25

Chapter 2. Getting Started with the ACMS Remote Manager

Solution: Wait several seconds and then reissue the command that resulted in this error.
¢ The node name is incorrect.

Solution: Double-check the spelling of the node name in the /NODE qualifier or in the ACMS
$MGMT_SERVER_NODE logical.

2.4.3.2. ACMSMGR Hangs

ACMSMGR hangs are generally the result of a problem with the Portmapper or the Remote Manager. To
verify that the Remote Manager has connected to the Portmapper, issue the following commands on the
node on which the Remote Manager is running:

$ TCPIP
TCPIP> SHOW PORTMAPPER

If the Remote Manager has connected, you will see a display similar to the following:

Program Number Version Protocol Port—number Process Service—name
000186A0 (100000) 2 TCP 111 20407ES5E PORTMAPPER
000186A0 (100000) 2 UDP 111 20407ES5E PORTMAPPER
20000099 (536871065) 1 UDP 1023 20408675

20000099 (536871065) 1 TICP 1023 20408675

If the bottom two lines are missing (program number 20000099, version 1), then the Remote Manager
is not connected to the Portmapper. Either the Remote Manager is not started or has terminated, or the
RPC interface is not enabled.

If no lines are displayed (that is, if a “record not found” message is displayed), the Portmapper is not
started. Refer to Section 2.2 for more information.

Solution: Correct the problem with the Remote Manager or the Portmapper.

26

Chapter 3. Using the Remote Manager
to Manage ACMS

This chapter describes how to prepare and run the ACMS Remote Manager web agent.

3.1. Overview of the Remote Manager Web
Agent

With the Remote Manager web agent, system managers can use their web browser to monitor and tune
remote ACMS systems. The ACMS for OpenVMS Alpha Development and Run-time kits include the
Remote Manager Hyper- Media Management Object (HMMO), which is integrated into the VSI web-
based enterprise management (WBEM) environment. Known as the Remote Manager web agent, this
object functions as a Remote Manager client through the ONC RPC interface.

Note

ACMS HMMO will work only with Insight Management Agents using the ELM HTTP/HTTPS server.
It will not work with versions of Insight Management Agent using the System Management Homepage
as the HTTP/HTTPS server.

The Remote Manager web agent environment consists of the following host systems:

* Web client — One or more local systems running a web browser that supports Java plug-ins,
JavaScript, and Cascading Style Sheets (CSS).

* Web server — An OpenVMS Alpha system where the web agent (ACMS$MGMT_HMMO) and
WBEM management server (WBEMS$SERVER) processes are running. This system serves the
ACMS Remote Management web page and handles all communication between the web client and
Remote Manager server systems.

* Remote Manager server — One or more OpenVMS Alpha or 164 systems where Remote Manager
server processes (ACMS$MGMT_SVR) are running. The ACMS information displayed on the web
agent home page is a result of executing ACMSMGR commands on the Remote Manager servers.

As shown in Figure 1.1, the Remote Manager web agent (ACMS$MGMT_HMMO) relies on the
WBEM management server (WBEMS$SERVER) to relay data to and from the web browser. The web
agent uses its internal web server to connect to the ACMS Remote Management page. All command
input is then relayed to Remote Manager server through the HMMO.

3.2. Remote Manager Web Agent Setup

Before you begin, you must have already installed OpenVMS Alpha Version 8.2 on the web server
system. Also, ensure that all web client systems are running one of the currently supported web browsers.
See the VSI ACMS for OpenVMS Software Product Description (SPD 25.50.xx) for a list of the currently
supported web browsers.

Once the OpenVMS Alpha software is installed, perform the following steps to set up the Remote
Manager web agent on the web server system:

* Install the Remote Manager web agent software (Section 3.2.1)

27

Chapter 3. Using the Remote Manager to Manage ACMS

Install the VSI Management Agents for OpenVMS software (Section 3.2.2)
Assign additional rights identifiers (Section 3.2.3)
Start the web agent (Section 3.2.4)

Enable access to Remote Manager hosts (Section 3.2.5)

3.2.1. Install the Remote Manager Web Agent Software

The Remote Manager web agent software is bundled with the ACMS for OpenVMS Alpha Run-time
and Development kits. To install the web agent software, choose to install the WBEM-related files
component of either kit.

This section contains excerpts from an ACMS Development kit installation. Refer to the VSI ACMS
Version 5.0 for OpenVMS Installation Guide for detailed information about the entire ACMS installation
procedure.

1.

Run the VSI ACMS for OpenVMS Alpha 5.0 installation procedure for either the ACMS Run-time
or Development kit, in as described in Section 3.2.1 of the VSI ACMS Version 5.0 for OpenVMS
Installation Guide. For example:

$ Q@SYSSUPDATE:VMSINSTAL ACMSDEVA_050 MTAO: OPTIONS N,AWD=DISKI1
OpenVMS AXP Software Product Installation Procedure V8.2

It is 22-JUN-2001 at 11:00.
Enter a question mark (?) at any time for help.

A series of product-specific questions are displayed that prompt you to choose the appropriate
installation options. Answer the following prompts accordingly:

Do you want the full ACMS installation [NO]? N

Do you want to install the ACMS component software [YES]? N

Do you want to install the WBEM-related files for ACMS [YES]? Y
Do you want to update the LSE environment for ACMS [YES]? N

S

The installation procedure then checks for prerequisite software and adequate disk space and lists a
summary of the components to be installed, as follows:

CHECKING INSTALLATION PREREQUISITES

(required and optional software checked)
(product licenses checked)
(disk space checked)

ACMS PREVIOUS INSTALLATION

(previous installation of ACMS is compatible with current
installation)

ACMS WBEM CHECK

The following steps will be taken to complete this installation:
o WBEM environment will be updated for ACMS

28

Chapter 3. Using the Remote Manager to Manage ACMS

3. When prompted to continue the installation, answer YES. The procedure enters the ACMS WBEM

The rest of the installation will take approximately 7 minutes.

Note that this time is heavily dependent your system load, hardware

and kit media. The time mentioned was measured on a stand-alone
DEC 3000 (Alpha) system with a disk-resident kit. Your time may
vary.

Setup phase.

The WBEM setup procedure (SYS$STARTUP:ACMSS$SWBEM_SETUP.COM) is then invoked,

which creates or updates the ACMS$WBEM account and creates the necessary directories and web
agent files.

Do one of the following:

If the account does not exist, you are prompted to supply a UIC and password for the account, as

follows:

The ACMSSWBEM account used to execute ACMSMGR WBEM commands is not
available.

You must supply a UIC and password for this account so that it can be

created.
Please enter the UIC for the ACMSSWBEM account, in the form

[ggggg, nnnnnn]
UIC: [320,525]

Please enter a password of at least 8 characters, using only

the following characters: ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789$_
Password:

Verification:

Enter the appropriate UIC and password. The ACMS$WBEM account is then created and
assigned the ACMS$SMGMT_READ rights identifier.

If the account already exists, a list of the rights identifiers currently assigned to the account are
displayed, as follows:

R R R R R S R R R R R R I S R R R R R I I R I I R R I I I I I I I I R I e S b i e

* ACMS WBEM Setup *
R iR b b b b b b b b b b b d b b b b b b I b b b b b b b b b b b b ab b b b b b I b I b b b b db b ab b db b b b b b b b b b b e b b b g
Checking for user account ACMSSWBEM
Identifier for ACMSSMGMT_READ exists in RIGHTSLIST
Identifier for ACMSSMGMT_WRITE exists in RIGHTSLIST
Identifier for ACMS$SMGMT_OPER exists in RIGHTSLIST
Identifier for ACMSSMGMT_SYSUPD exists in RIGHTSLIST

The account ACMSSWBEM exists.

The identifiers on the account ACMSSWBEM are

Identifier Value Attributes
ACMSSMGMT_READ $X8001012E
ACMSSMGMT_WRITE $X8001012F
ACMSSMGMT_OPER $X80010130
ACMSSMGMT_SYSUPD %$X800101DB

Do you wish to reset the account ACMSSWBEM to the default wvalues
[N] 7y

29

Chapter 3. Using the Remote Manager to Manage ACMS

You can choose to reset the identifiers at this time by answering YES.

The setup procedure then completes by creating the following directories and files on the web server
system:

The ACMS WBEM setup has completed.
The following files were copied:

To SYSS$SSYSROOT: [WBEM]
ACMS$MGMT_HMMO . EXE
RUN_ACMS__HMMO.COM
STOP_ACMS_HMMO.COM

To SYS$SSYSROOT: [WBEM.WEB.IM.ACMSHMMO.ENG]
ACMS.CSS
ACMSHMMO.JS
ACMSMENUTREE . JAR
ACMS_BANNER.HTML
ACMS_INDEX.HTML
ACMS_MENU.HTML
ACMS_OUTPUT.HTML
To SYS$SSYSROOT: [WBEM.WEB.IM.ACMSHMMO.IMAGES]
ACMSHMMO.GIF
HPLOGO.GIF
WEBBUM.GIF
To SYSSCOMMON: [SYSLIB]
ACMSSTRACE_SHR.EXE
You may wish to purge these directories.

Once the ACMS installation is complete, download and install the VSI Management Agent for
OpenVMS software, as described in the next section.

3.2.2. Install the VSI Management Agents for OpenVMS
Software

If you have not already installed the VSI Management Agents for OpenVMS software, do so now. You
can download this software from the web page listed in Section 3.1.

Follow the associated instructions to copy, unpack, and install the appropriate VSI Management Agents
for OpenVMS PCSI kit. Once the software is installed, issue the following command to start the
management agent process:

$ SET DEFAULT SYSSSPECIFIC: [WBEM]
$ QWBEM$SRUN_WEBSERVER.COM

Note that the WBEM server (WBEMS$SERVER) is the only process started by this procedure. None of
the other Management Information Base (MIB) processes included in the WBEM kit (such as, WBEM
$CPQHOST) are used by the Remote Manager agent. If you plan to use software on this system that
relies on the MIB processes, run the WBEM$STARTUP.COM procedure, as described in the WBEM
installation material.

3.2.3. Assign Additional Rights Identifiers

The installation procedure automatically grants the ACMS$MGMT_READ rights identifier to the
ACMS$WBEM account when it is created. This enables all SHOW commands to be executed from the

30

Chapter 3. Using the Remote Manager to Manage ACMS

web agent. In order to enable all other non-read operations (such as SAVE, SET, START, STOP, RESET,
ADD, and DELETE), grant one or more of the following rights identifiers to the ACMS$WBEM
account:

* ACMS$MGMT_WRITE
* ACMS$MGMT_OPER
*« ACMS$MGMT_SYSUPD

See Section 4.4.2 for more information on the use of rights identifiers.

3.2.4. Start the Remote Manager Web Agent Process

Enter the following command to start the Remote Manager web agent process:

$ SUBMIT/NOTIFY/LOG=SYSSSYSROOT: [WBEM] /QUEUE=queue—name -
_$ J/USER=ACMSSWBEM SYSS$SSPECIFIC:[WBEM]RUN_ACMS_HMMO.COM

where queue-name is a valid OpenVMS batch queue. If the process is already running, this command
restarts the process.

3.2.5. Enable Access to Remote Manager Hosts

In order for the Remote Manager web agent to access a Remote Manager server system, the logical
ACMSSMGMT_ALLOW_PROXY _ACCESS on the host system must be set to a value of 1, which
enables proxy access.

Also, an ACMS proxy entry for the ACMS$WBEM account is required. For example, the following
proxy entry grants the user ACMS$WBEM access to the local host from any known system:

$ MCR ACMSUDU
UDU>SHOW /PROXY *::ACMSSWBEM
Remote User: *::ACMSSWBEM Local User: ACMSSWBEM

The rights identifiers on the local ACMS$WBEM account control the level of access allowed on the host
system.

Note

Even if the Remote Manager is running on the same node as the web agent, it is still considered a remote
host and the requirements above still apply.

3.2.6. Stop the Remote Manager Web Agent

Use the following command to stop the web agent process:

$ Q@SYSSSPECIFIC: [WBEM]STOP_ACMS_HMMO.COM

If you also want to stop the WBEM server process, enter the following command:

$ @SYSSSPECIFIC: [WBEM]WBEMSSTOP_WEBSERVER.COM

3.3. Using the Remote Manager Web Agent

The following sections describe how to access and use the Remote Manager web agent interface.

31

Chapter 3. Using the Remote Manager to Manage ACMS

3.3.1. Accessing the ACMS Remote Management Web
Page

From a browser on the web client system, enter the following URL to connect to the web server system:
http://server-host: 2301/ acnmshmo/ eng/ acns_i ndex. ht m

where server-host represents the address of the OpenVMS Alpha system on which the web agent
software is running. This address can be expressed in any of the following forms:

node (node name)
node.company.com (URL)
165.112.94.78 (IP address)

The ACMS Remote Management page is displayed, similar to the figure below.

Figure 3.1. Remote Manager Web Agent Page

D MACRD - ACMS Remoie anagement Home Page Macrosalt intermet [xplorer provided by He-.. F._EF
"
i

O ea - T e Uw B3
——" v Qe -
ACMS Remote Management

ACMS Remote Management
Command Outpul

ACMS Web Serve Banner

macy o gt o =
ACMS EM Haat

Command Selection

Ouipur

This page consists of the following frames:
Banner frame

Displays the application name as well as the name of the web server system. This frame also
contains a link that you can use to send feedback about the web agent directly to VSL

Command Selection frame

Displays a tree that contains selections representing the various ACMSMGR commands. The items
in this tree are grouped by common command verbs (such as, SHOW and SET) or by object (such,
as Remote Manager). This frame also contains a series of links to pertinent VSI WBEM and ACMS
information, such as to the HTML version of this guide.

Output frame

Displays the results of the selected command. Brief instructions on how to interact with the data in
this frame are displayed along with the related output and status messages (if any).

32

Chapter 3. Using the Remote Manager to Manage ACMS

3.3.2. Conventions

The web agent uses color and font highlighting to indicate the different states and types of data displayed
in the output frame. The default conventions are described in the table below. Note, however, that you
can change these conventions as described in the following section.

Table 3.1. Remote Manager Web Agent Conventions

Text appearing in... Indicates...
White with teal or blue background Active and stored values that can be changed.
To set a value, single click on the item. (Set
commands)
Teal italics Dynamic configuration fields. (Show commands)
Gray Inactive data; old process data that is still available

will be displayed. The node name is also prefixed
with an asterisk, similar to ACMSMGR displays.
(Show commands)

Red Warning or error messages. (All)

Blue Disabled collection state. Data displayed for
the related class may not be current. (Show
commands)

3.3.3. Customizing the Display

The Remote Management web page relies on a cascading style sheet (CSS) to manage its formatting.
Based on the CSS level 2 specification (CSS2) from the World Wide Web Consortium (W3C), the
ACMS.CSS file functions as a template for information displayed in the output frame.

If you are familiar with CSS files, you can customize the formatting of information in the output frame
by editing the file ACMS.CSS located in SYS$SYSROOT:[WBEM.WEB.IM.ACMSHMMO.ENG].

For example, to remove the background image in the output frame, open the CSS file and search for the
following statement:

BODY {background-color: white; background-image:
url (/acmshmmo/images/webbum.gif); color: black;}

Replace this statement with the following:
BODY {background-color: white; color: black;}

To learn more about CSS files or the CSS2 specification, visit the W3C web site for the latest
information and resource listings:

http://ww. w3. or g/ Styl e/ CSS

Note

Each browser may interpret style sheet properties differently. Be aware that slight variations in format
may occur depending upon the browser that you use.

33

Chapter 3. Using the Remote Manager to Manage ACMS

3.3.4. Selecting the Remote Manager Host

When you first access the ACMS Remote Management web page, the name of the web server is
displayed as the Remote Manager host.

To choose a different Remote Manager host, click the Change button in the command selection frame.
The Select Host popup window is displayed, similar to the figure below.

Figure 3.2. Select Host
| 3 femote Mansger Host Selection 3 |

« Please Enter RM Hostto Connect lo
1 jvLcrow]
OK Cancel
|Hava Appkt Window

Enter the name of the Remote Manager host, and click OK. Note that if you enter a URL or IP address,
only the short form of the name is displayed in the command selection frame.

3.4. Issuing Remote Manager Commands

The Remote Manager web agent interface provides detailed usage instructions on each page displayed
within the output frame. Therefore, the following sections are only intended to provide a brief overview
of issuing the most common Remote Manager commands with the web agent.

The Remote Manager web agent interface provides you with much of the same capability as ACMSMGR
in managing ACMS systems. The main functional differences are that with the web agent:

* You cannot view TRAP information.
* There is no equivalent to the SHOW LOG/LOCAL and SHOW ERROR/LOCAL commands.
* You can only connect to one Remote Manager host system per window.

You can quickly reissue any web agent command using the Refresh (or Reload) option of your browser
to reload the page in the output frame. To save frequently issued commands, bookmark the page in the
output frame.

3.4.1. Using Show Commands

To display information about an ACMS entity or object:

1. In the command selection frame, click Show to expand the list of valid entities and Remote Manager
objects.

2. Click on the appropriate entity (such as, TSC) or object (such as, Process). If you selected an entity,
click on the appropriate type of information to display (such as, Config), and choose the scope of
display (such as, Brief/Stored).

The results of the command are displayed in the output frame, similar to the figure below. Note that
all dynamic data is displayed in italics.

34

Chapter 3. Using the Remote Manager to Manage ACMS

.
Figure 3.3. Show TSC
sorema @ G- n s
e v Pa =
MACRO - ACMS Remote Management
ACMS Web Host V5.0 TSC Table Display 4-JAN.2006
00:19:26.66
Max
: Cosfig Rus .o CP Max TTs PermMis
Nede AB o miain Do N e LagincPer CPc CPL
cr
MACRO A cnsbled smwted SYSTEM 3 60 »n 1 2
T >
g 6T HACROACH O =t iyl & iscs rre

3.4.2. Using Set Commands

To change information related to an ACMS entity or Remote Manager object:

1. In the command selection frame, click Set to expand the list of valid entities and Remote Manager
objects.

2. Click on the appropriate entity (such as, ACC) or object (such as, Remote Manager > Collection).

If you selected an entity, click on the appropriate type of information you want to change (such as,
ACMSGEN).

The available values are displayed in the output frame, similar to the figure below. Note that any
active and stored data that can be changed is displayed reverse highlight.

Figure 3.4. Set ACC

T WACRD - ACMS Remmote Managemest Home Page - icrosodt Interrset Explorer provided by BewdettPacken) FE
™ . »

Sem reoom €

MACRO -
Set ACC on MACRO

Click o either the S or SINER, vakoe to st it
Comsaand Qualifier Active Stored
ACC Prace 4
Max Apgpl
MSS AMax Obj
MSS Maskef (bytes)
MSS Poalsre (pagelets
MSS Process Pool {pageless)
MSS Net Retry Timser (D) (sec)

WS Poobsize (pagelets)

C Poclsize (pageless)

SVSGEN Parameosrs i
Tac
CF M5 Quitas

ACC Usemmame
Usemesses Defauk (D)

Node Name (ACMSGEN) (DECnet node)

Retes

HF WBEM Liks
Haome Page for MAC

a2 M emalvere g ROST MACROBCHD =prenre i1 N Loca rvaver

35

Chapter 3. Using the Remote Manager to Manage ACMS

3. Move the cursor over the value you want to change until the link cursor appears, and then click on
the value. A popup window is displayed prompting you for a new value.

4. Enter the new value in the popup window, and click OK.

Note that you can update the values displayed in the output frame at any time by clicking the Refresh
button.

3.4.3. Using Start and Stop Commands

To start or stop an ACMS object, such as an application (EXC):
1. In the command selection frame, click Start or Stop to expand the list of objects.
2. Click on the appropriate object (such as, Remote Manager > Collection).

Except for System, the command is executed as soon as it is selected. If you chose Start or Stop
System, additional choices are displayed in the output frame.

3. Click on the appropriate check boxes to set or unset one or more values, and click the Start
SYSTEM or Stop SYSTEM button.

3.4.4. Using Add and Delete Commands

To add or delete a Remote Manager object, such as an error filter:

1. In the command selection frame, click on the appropriate entry, either Error Management or
Remote Manager.

2. Click on the subentries until you reach the item you want to add or delete (such as, Add Filter).

A form with related parameter information is displayed, similar to the figure below.

Figure 3.5. Add Error Filter

3 MACRO - ACMS Remote Management Home Page - Microsoft Inlernet Explorer provided by Hewiett Packard |4=1.]
Me B We Pwwis Twb # g

(3 tack - 0@ G = e £ i - w03

v oo »

8) ~rize: va

MACRO - ACMS Remote Management

Please choose a filter input method, enter the required
information to add a filter on host MACRO, and then click
"Add Filter™:
ACMS Web Server Host: Use a Hexadecmal code (ex. *a00000ABCD) or decanal integer (ex
it e e 12345678
ACMS RM Hont: = Add Fiker code =
Or e a code name (ex. ACMSACC-W-AUDSYSSTARTS)
Add Fiber nasme =
O lond # list of Eers from » fer e (ex path_nameS fiker kst
Add Fiker file
T+ 7 Foamits Wanagi Add Fitar
= _) Etror Manapemest
Show Lag Agnive Filers:
Reset Log { HEX Code) NAME
Ehvow Fllker There are no Fiters
fusd Fills
Delete Fither
a Filtees o Tad File

HP WEEM Lisks

Home Page foe MACRO

3. Complete form and click Add or Delete.

36

Chapter 3. Using the Remote Manager to Manage ACMS

3.5. Troubleshooting the Remote Manager
Web Agent

WBEM Home Page does not display the ACMS Icon

ACMS HMMO is not registered with the WBEM$SERVER process. After starting the WBEM
server with the following command:

$ Q@SYSSSPECIFIC: [WBEM]WBEMSRUN_WEBSERVER.COM

You may need to delay starting the ACMS HMMO until the WBEMS$SERVER process is in the HIB
state. If the ACMS HMMO is started too soon it may not register with the WBEM$SERVER. The
SYS$SPECIFIC:[WBEM]WBEM$RUN_WEBSERVER.COM must be run prior to running SYS
$SPECIFIC:[WBEM]RUN_ACMS_HMMO.COM.

WBEM Home Page does not display

If you access the WBEM Home Page at http://host_name:2301/, and the page does not display,
it may be that the WBEMS$SERVER is not started. Another possibility is that the ACMS
$SMGMT_HMMO process was started prior to the WBEM$SERVER process. To ensure proper
startup, stop both processes and then restart them in the correct order.

Remote Manager web page displays, but remote commands fail.

This indicates that the Remote Manager web agent cannot connect to the specified Remote Manager
server host. If all commands fail, ensure that the Remote Manager server process is running on the
host system and that access to it has been properly setup (as described in Section 3.2.5. If some
commands work and others fail, the ACMS$SWBEM account may not have the required rights
identifier; see Section 3.2.3.

Page Refresh or Reload does not update the output frame.

This behavior is browser dependent. To refresh the information displayed in the output frame, move
the cursor inside the frame to specifically refresh or reload the information within it.

3.5.1. Reporting Problems

If the ACMSSMGMT_HMMO process crashes, the following files will contain any error information
that was available: SYS$SPECIFIC:[WBEM]JACMS$MGMT_ HMMO.LOG;* SYS$SPECIFIC:
[WBEM]ACMS$MGMT_HMMO.ERR;*.

If there are any new dump files you may want to examine the file to locate the problem source. SYS
$SPECIFIC:[WBEM]*.DMP;*

If the problem is with WBEMS$SERVER process, send the dump file to your VSI support representative.
If the problem is with the ACMS HMMO process, please have the following files ready for analysis in
addition to a procedure that reproduces the situation:

SYS$SPECIFIC:[WBEM]JACMS$SMGMT_HMMO.LOG;*

SYSS$SSPECIFIC:[WBEM]ACMS$MGMT_HMMO.ERR;*

SYS$SPECIFIC:[WBEM]*.html;*

37

Chapter 3. Using the Remote Manager to Manage ACMS

SYSS$SPECIFIC:[WBEM]*.txt;*
SYS$SPECIFIC:[WBEM]SYS$OUTPUT.*;

SYSS$SPECIFIC:[WBEM]*.DMP;*

38

Chapter 4. Managing the Remote
Manager

This chapter describes how to manage the ACMS Remote Manager.

4.1. Overview

The ACMS Remote Manager runs on the same node as the ACMS run-time system but runs
independently of it. The Remote Manager may be started and stopped at any time without affecting the
ACMS run-time system. Similarly, the ACMS system can be started and stopped at any time without
affecting the Remote Manager process. Remote management can be performed only on nodes where the
Remote Manager has been started.

ACMS system managers configure the Remote Manager process (for example, which interfaces are
enabled, what alarms to send) using a combination of the ACMSCFG utility (which provides initial
configuration settings at process startup) and the ACMSMGR utility (to change settings once the process
has started). Management consoles that support SNMP can also be used to configure and manage the
Remote Manager.

Before the Remote Manager process can communicate with external entities, either SNMP or RPC
must be configured and running on the appropriate nodes. See the VSI ACMS Version 5.0 for OpenVMS
Installation Guide for information about configuring and starting SNMP and RPC.

4.2. Configuring Remote Manager Startup

Before the Remote Manager is started, the configuration file should contain the appropriate settings.
Both the ACMS run-time system and the Remote Manager read the configuration file during startup. If
the ACMS Central Controller (ACC) process cannot read the configuration file when starting up, it uses
default values. If the Remote Manager cannot read the configuration file when starting up, it logs an error
and exits. By default, the configuration file is stored in SYS$SYSTEM: ACMS$MGMT_CONFIG.ACM.
This location can be changed using the systemwide logical ACMS$MGMT_CONFIG. Use the
ACMSCEFG utility to change values in this file. The ACMSCFG utility allows ACMS system managers to
set:

* The interfaces to be started

* Data-collection options

* Remote Manager run-time parameters
e SNMP traps

The configuration file is created during postinstallation with a set of default values. ACMS system
managers should review these settings prior to starting the Remote Manager to determine whether
the settings are appropriate for the node on which the process will run. Use the ACMSCFG SHOW
commands as follows to display the settings:

$ ACMSCFG SHOW INTERFACE
$ ACMSCFG SHOW COLLECTION
$ ACMSCFG SHOW PARAMETER

39

Chapter 4. Managing the Remote Manager

$ ACMSCFG SHOW TRAP

Note

Changes made to the ACMSCEFG file are not automatically reflected in the running system. The
ACMSCEFG file is read during Remote Manager and ACMS system startup only. The Remote Manager
process must be restarted in order for configuration file changes to the Parameter, Interface, and Trap
tables to become active. The ACMS run-time system must be restarted in order for configuration file
changes to the Collection table to become active. After the Remote Manager process has been started,
you can use the ACMSMGR utility to make dynamic changes to the active system.

4.2.1. How to Run the ACMSCFG Utility

The ACMSCEFG utility is a DCL command line tool that is invoked using a foreign command. The
ACMSCEFG utility accepts a number of command line arguments that determine what operations it
should perform. The basic syntax for running the ACMSCFG utility is as follows:

ACMSCFEFG verb object qualifier

For example, to display the current data collection settings, you would use the following command:

$ ACMSCFG SHOW COLLECTION

You can get help on the available ACMSCFG commands and their syntax using the following command:

$ ACMSCFG HELP

You can define your own foreign command by using the following DCL command:

$ MYCOMMAND :== SYSSYSTEM:ACMS$MGMT_CONFIG_CMD
If you do this, you would substitute MYCOMMAND for ACMSCEFG in the preceding examples.

When the ACMSCFG utility is started, it attempts to locate the ACMS$SMGMT_CONFIG.ACM file
by translating the logical name ACMS$MGMT_CONFIG. If that attempt fails, it looks in the default
location, SYS$SYSTEM: ACMS$SMGMT_CONFIG. If that lookup fails, ACMSCFG asks the user
whether to create a new file. New files are created with default values in the directory that the logical
name ACMS$SMGMT_CONFIG translates to. If the logical name is not defined or does not include a
directory specification, the default directory location is the current directory.

4.2.2. Displaying Current Values

Current ACMSCEFG values can be displayed using the SHOW command, as follows:
ACMSCFG SHOW object

Valid SHOW objects are:

* Collection

* Control

* Interface

e Parameter

40

Chapter 4. Managing the Remote Manager

e Trap

The values for each object type correspond directly to fields in management configuration tables. These
tables are discussed in Chapter 9.

The following is an example SHOW command and its output:

SPARKS> ACMSCFG SHOW COLLECTION

Entity Collect Collect Storage Storage
Type Entity Name Class State Storage Location State

Interval

* * id enabled acms$mgmt_snapshot enabled 3600

* * config enabled acms$mgmt_snapshot disabled 3600

* * error enabled acms$mgmt_snapshot disabled 300

4.2.3. Changing Values
ACMSCEFG values can be changed using one of three verbs:
* ADD

The ADD verb is used to add rows for the following objects:

e Collection

e Trap

Example:

$ ACMSCFG ADD COLLECTION/ENTITY=*/NAME=*/CLASS=RUNTIME
« DELETE

The DELETE verb is used to delete rows for the following objects:

* Collection

e Trap

Example:

$ ACMSCFG DELETE COLLECTION/ENTITY=*/NAME=*/CLASS=RUNTIME
« SET

The SET verb is used to add rows for the following objects:

* Collection

* Interface

e Parameter

e Trap

41

Chapter 4. Managing the Remote Manager

Example:

$ ACMSCFG SET COLLECTION/ENTITY=*/NAME=*/CLASS=RUNTIME/
COLL_STATE=ENABLED

Each object has unique qualifiers that determine which values are to change. Qualifiers are either
mandatory or optional. Mandatory qualifiers have no default and must be specified by the user.
Optional qualifiers have default values and do not have to be specified. See Chapter 10 for a complete
description of the syntax for each command and the qualifiers they support.

4.3. Starting and Stopping the Remote
Manager

The following information discusses starting and stopping the ACMS Remote Manager.

4.3.1. Remote Manager Startup

The Remote Manager is started as a detached process using the command procedure SYS
$STARTUP:ACMS$MGMT_STARTUP, as follows:

$ @SYS$STARTUP : ACMS$MGMT_STARTUP

You should run this file from the SYSTEM account during system startup. You can run the file either
before or after the ACMS run-time system has been started. Alternatively, you can run it at any time
from a privileged account.

During process startup, the Remote Manager reads the ACMSCEFG file (located in SYS
$SYSTEM:ACMSSMGMT_CONFIG.ACM or wherever the ACMS$MGMT_CONFIG logical points).
If the file cannot be found and opened, the Remote Manager will not start.

The Remote Manager writes errors to the ACMS$SMGMT_LOG file. This is a binary file that can be
displayed using the ACMSMGR utility, as follows:

$ ACMSMGR SHOW LOG

The ACMSMGR utility generally performs operations on remote nodes. If the Remote Manager fails to
start, it will not be accessible remotely. You will need to log in to the node on which it failed to start, and
issue the following command:

$ ACMSMGR SHOW LOG/LOCAL

This command instructs the ACMSMGR utility to read the log file directly, bypassing the Remote
Manager. See Chapter 11 for a complete description of the ACMSMGR utility, commands, and
command syntax.

In addition to writing messages to the ACMS$MGMT_LOG file, the Remote Manager writes messages
to SYS$SOUTPUT if it cannot access the log file. You can have all messages written to SYSSOUTPUT
by invoking the startup procedure with the LOG_TO_SYSOUT parameter, as follows:

$ @SYS$STARTUP :ACMS$MGMT_STARTUP LOG_TO_SYSOUT

The ACMS$MGMT_STARTUP procedure redirects SYSSOUTPUT for the Remote Manager to a file
called ACMS$MGMT_SERVER.OUT in the SYSSERRORLOG directory.

42

Chapter 4. Managing the Remote Manager

4.3.2. Remote Manager Shutdown

The Remote Manager is stopped using the ACMSMGR STOP MANAGER command, which has the
following syntax:

ACMSMGR STOP MANAGER /NODE=node-name

The /NODE qualifier can be omitted if the ACMS$SMGMT_SERVER_NODE logical is defined. If the /
NODE qualifier is provided, it overrides the ACMS$MGMT_SERVER_NODE logical.

The Remote Manager can be stopped independently of the ACMS run-time system. Stopping the
Remote Manager has no effect on the running ACMS system. Note, however, that simply stopping the
Remote Manager does not stop any active data collections. Data collections can be stopped only by using
ACMSMGR commands, or from an SNMP management console that has access to the Remote Manager.

Note also that prior to issuing this command, the user must either have logged in to the Remote Manager,
or the user must have a valid proxy (and proxy access must have been enabled). Regardless of how
access is gained, the user must hold the ACMS$SMGMT_OPER rights identifier on the node the Remote
Manager is running in order to stop it. See Section 4.4 for a description of how to log in to the Remote
Manager.

The ACMSMGR STOP MANAGER command executes asynchronously of the actual shutdown. That is,
the command will complete (control will return to the user) before the shutdown has completed.

If the Remote Manager fails to shut down, it can be stopped by using the DCL command STOP/ID,
which has the following syntax:

STOP/ID=pid

Determine the PID of the Remote Manager using the DCL command SHOW SYSTEM, and then look
for the process named ACMS$MGMT_SVR.

4.4. Logging In to the Remote Manager

The Remote Manager requires that each client is authenticated and that each access attempt is
authorized.

4.4.1. Authentication

Authentication can be performed in one of two ways: either through an explicit login (using a valid
OpenVMS user name and password) or through a valid ACMS proxy account.

The exception to this rule is SNMP access, which is controlled by the presence of the ACMS$SNMP
account in the local rights database. Authentication for external entities that communicate with the
Remote Manager through the SNMP protocol is allowed only when a valid OpenVMS account exists
for the user ACMS$SNMP. If this account exists and is not disusered, the user is considered to be an
authentic user. Authorization for SNMP users is treated the same as for any other user — by OpenVMS
rights identifier. See Section 4.4.2 for more information about authorization.

All access for an interface can be disabled by disabling the interface itself, either through the ACMSCFG
utility prior to management startup, or through the ACMSMGR utility after Remote Manager startup.

The total number of users that can be simultaneously logged in to the Remote Manager (regardless of
authentication mechanism) is controlled by the Remote Manager parameter MAX_LOGINS, which can

43

Chapter 4. Managing the Remote Manager

be modified by the Remote Manager. (This parameter is not the same as the MAX_LOGINS ACMS
system parameter in ACMSGEN.) When the number of users currently logged in is equal to the value of
this parameter, new logins are rejected until some users have logged out, or until their credentials have
expired. You can set the initial value of MAX_LOGINS with the ACMSCFG utility. You can change the
value of MAX_LOGINS dynamically (but nondurably) with the ACMSMGR utility.

Attempts to log in to the Remote Manager are recorded in the Remote Manager log file if the
security_audit_level parameter is set for informational level logging (any odd value, up to and including
F). By default, informational messages are not logged. See Section 4.7.1 for more information.

Use the SHOW USER command of the ACMSMGR utility to display a list of users currently logged in
to the Remote Manager. (Note: You must be authenticated in order to issue this command.)

$ ACMSMGR SHOW USER

4.4.1.1. Logging In

Login is performed using the ACMSMGR LOGIN command, which has the following syntax:

ACMSMGR LOGIN /USER=user—-name /PASSWORD=password /NODE=node—-name

The /USER qualifier can be omitted if the ACMS$SMGMT_USER logical is defined. If the qualifier
is provided, it overrides the ACMS$SMGMT_USER logical. If neither the logical nor the qualifier is
present, the ACMSMGR utility prompts the user for the user name.

If the /PASSWORD qualifier is not present, the ACMSMGR utility prompts the user for the password.
There is no logical name for the password.

The /NODE qualifier can be omitted if the ACMS$MGMT_SERVER_NODE logical is defined. If it
is provided, it overrides the ACMS$SMGMT_SERVER_NODE logical. If neither the qualifier nor the
logical name is provided, no login is attempted.

For each node to which a user logs in, a credentials file is created, either in the current directory or in
the directory pointed to by the logical name ACMS$SMGMT_CREDS_DIR. The credentials file contains
encrypted security information (password is not stored in the file) and can be used by subsequent
executions of the ACMSMGR utility. Credentials are specific to the process that created them and
cannot be used by other processes. Prior to creating a new credentials file, any old credential files for the
process are deleted.

Once a user has logged in to the Remote Manager, the user's credentials are valid for the duration of the
credentials lifetime period, as specified by the parameter LOGIN_CREDS_LIFETIME. You can set the
initial value of LOGIN_CREDS_LIFETIME with the ACMSCEFG utility. You can change the value of
LOGIN_CREDS_LIFETIME dynamically (but nondurably) with the ACMSMGR utility.

Once a user's credentials have expired, the user must log in to the server again.

4.4.1.2. Proxy Accounts

Proxy access to the management server is supported if the logical name ACMS
$MGMT_ALLOW_PROXY_ACCESS is defined on the Remote Manager node. The valid values for
this logical name are: 1, T, t, Y, y, TRUE, and true. If the name is defined to be any other value or if the
logical name is not defined, proxy access is disabled.

When proxy access is allowed, users do not need to explicitly log in to the Remote Manager with a user
name and password, and no credentials file is created. See Section 4.4.1.1 for a description of how to log
in with user name and password.

44

Chapter 4. Managing the Remote Manager

In order for a user to be granted proxy access, there must be an entry in the ACMSPROXY.DAT for the
combination of node and user attempting access. See VSI ACMS for OpenVMS Managing Applications
for more information. The first time a user attempts to access a management function without having
first logged in using user name and password, the Remote Manager looks for a valid ACMS proxy. If one
is found, the OpenVMS account specified by the proxy is used for authorization.

The Remote Manager maintains a cache of users who have been logged in by proxy. Records

remain in the cache for the duration of the proxy credentials' lifetime, as specified by the
PROXY_CREDS_LIFETIME parameter. You can set the initial value of PROXY_CREDS_LIFETIME
with the ACMSCEFG utility. You can change the value of PROXY_CREDS_LIFETIME dynamically
(but nondurably) with the ACMSMGR utility. Proxy credentials are automatically refreshed when they
expire.

4.4.2. Authorization

Authorization consists of ensuring that the user attempting access holds the appropriate rights identifier
on the node they are attempting to access. There are three levels of access, each with its own identifier,
as shown in Table 4.1.

Table 4.1. Node Access Types and Rights Identifiers

Access Type Rights Identifier
Operate ACMS$MGMT_OPER
Read ACMS$SMGMT_READ
Write ACMSSMGMT_WRITE

4.4.2.1. Read Access

Read access allows users to perform the following functions:
* Login
* Logout

e Issue SHOW commands

4.4.2.2. Write Access

Write access allows users to issue the following commands:

» ADD
» DELETE
» SET

4.4.2.3. Operate Access
Operate access allows users to issue the following commands:
* REPLACE

* RESET

45

Chapter 4. Managing the Remote Manager

* START

 STOP

4.5. Starting and Stopping Interfaces

You can control which interfaces are started or stopped by using either the ACMSCFG utility prior to
Remote Manager startup or the ACMSMGR utility after Remote Manager startup. The Remote Manager
supports two interfaces:

* RPC

The RPC interface is used by the ACMSMGR utility, and also by any user-written programs based
on the MGMT API. Most users will enable the RPC interface.

* SNMP

The SNMP interface is used by third-party system management packages to access ACMS
management information. If no SNMP enabled packages are being used, this interface can safely be
disabled.

Either the RPC or SNMP interface should always be enabled. If both are disabled, there is no way to
communicate with the Remote Manager.

For a more complete discussion of the available interfaces and their attributes, see Section 9.7.

4.5.1. Using ACMSCFG to Enable or Disable Interfaces

Use the ACMSCEFG utility to configure which interfaces should be enabled or disabled when the Remote
Manager starts up. Either the SNMP or RPC interface should always be enabled. If both are disabled,
there is no way to communicate with the Remote Manager.

Use the ACMSCFG SET INTERFACE command to enable or disable an interface. This command has
the following syntax:

ACMSCFG SET INTERFACE /INTERFACE=interface-name /STATE=state
In this format:

* interface-name is one of the supported interfaces (SNMP or RPC).

* state is one of the following states: ENABLED or DISABLED.

Use the ACMSCFG SHOW INTERFACE command to determine the state of an interface in the
configuration file:

$ ACMSCFG SHOW INTERFACE

4.5.2. Using ACMSMGR to Start or Stop Interfaces

Use the ACMSMGR utility to dynamically enable or disable an interface after the Remote Manager has
already been started. As noted previously, at least one of either the SNMP or RPC interfaces should
always be enabled. If both are disabled, there is no way to communicate with the Remote Manager (for
example, to shut it down or to enable an interface). Changes made with the ACMSMGR interface are

46

Chapter 4. Managing the Remote Manager

not stored in the ACMSCEFG file and are lost when the Remote Manager is stopped. Use the ACMSCFG
utility to save changes to the ACMSCEFG file.

An interface cannot disable itself. Since the ACMSMGR utility uses the RPC interface, it cannot be used
to disable the RPC interface. To disable the RPC interface, either use the ACMSCEFG utility and restart
the Remote Manager, or use the SNMP interface.

Use the ACMSMGR SET INTERFACE command to disable the SNMP interface. The command has the
following syntax:

ACMSMGR SET INTERFACE /INTERFACE=interface-name /STATE=state
In this format:

* interface-name must be SNMP.

* state is one of the following states: ENABLED or DISABLED.

Use the ACMSMGR SHOW INTERFACE command to determine the state of an interface:

$ ACMSMGR SHOW INTERFACE

4.6. Modifying Management Parameters

There are a large number of parameters that affect the internal processing of the ACMS Remote
Manager. In general, most of these parameters will not need to be changed. However, you may need to
alter some of these parameters in order to make the ACMS Remote Manager operate more efficiently
or to meet your computing needs. You can modify these parameters using both the ACMSCFG and the
ACMSMGR utilities.

For a more complete discussion of the available management parameters and their functions, see
Section 9.9.

4.6.1. Using ACMSCFG to Modify Management
Parameters

Use the ACMSCEFG utility to set the values of management parameters when the Remote Manager starts
up.

Use the ACMSCFG SET PARAMETER command to modify the value of a parameter. The command
has the following syntax:

ACMSCFG SET PARAMETER /parameter-name=value

In this format:

* parameter-name is one of the management parameters listed in Section 9.9.
* value is the new value for the parameter.

Use the ACMSCFG SHOW PARAMETER command to determine the current value of the parameter in
the configuration file:

$ ACMSCFG SHOW PARAMETER

47

Chapter 4. Managing the Remote Manager

4.6.2. Using ACMSMGR to Modify Management
Parameters

Use the ACMSMGR utility to dynamically modify a management parameter after the Remote Manager
has already been started. Not all parameters can be modified dynamically. Also, changes made with the
ACMSMGR interface are not stored in the ACMSCEFG file and are lost when the Remote Manager is
stopped.

Use the ACMSMGR SET PARAMETER command to modify the value of a parameter. The command
has the following syntax:

ACMSMGR SET PARAMETER /parameter-name=value

In this format:

* parameter-name is one of the dynamic management parameters listed in Section 9.9.
* value is the new value for the parameter.

Use the ACMSMGR SHOW PARAMETER command to determine the current value of the parameter
in the configuration file:

$ ACMSMGR SHOW PARAMETER

4.7. Managing Log Files

The ACMS Remote Manager maintains an audit log of internally generated messages. The log is stored
in a location determined by the logical name ACMS$MGMT_LOG. If the logical is not defined, the
default location is in the default directory for the account under which the Remote Manager process runs.

Depending on the tracing levels specified, the size of this file will vary. It is strongly suggested that
ACMS system managers monitor this file to ensure that it does not grow too large.

If the Remote Manager is unable to write to the audit log, it prints a message to file SYS
$ERRORLOG:ACMS$MGMT_SERVER.OUT and terminates. This can occur if logical name ACMS
$MGMT_LOG is incorrectly defined, if the output device is full, or if the Remote Manager does not
have sufficient privilege to write to the file.

4.7.1. Setting Audit Levels

Facilities within the Remote Manager write audit log messages based on the parameter settings, as shown
in Table 4.2.

Table 4.2. Audit Level Parameters

Parameter Function

DCL_AUDIT_LEVEL Controls auditing for the DCL subprocess (used
internally to modify the ACMS run-time system).

MGR_AUDIT_LEVEL Controls auditing for the main Remote Manager
process.

MSG_PROC_AUDIT_LEVEL Controls auditing for the message processing
thread (used internally to handle communications
from ACMS processes).

48

Chapter 4. Managing the Remote Manager

Parameter

Function

PROC_MON_AUDIT_LEVEL

Controls auditing for the process monitor.

RPC_AUDIT_LEVEL

Controls auditing for the RPC interface.

SECURITY_AUDIT_LEVEL

Controls auditing for security access (authorization
and authentication).

SNMP_AUDIT_LEVEL

Controls auditing for the SNMP interface.

TIMER_AUDIT_LEVEL

Controls auditing for the timer thread.

The value of each parameter determines what level of information is stored in the Remote Manager audit
log. Table 4.3 shows the four levels of auditing and the integer value for each.

Table 4.3. Auditing Levels and Their Values

Auditing Level Integer Value
Informational 1
Warning 2
Error 4
Fatal 8

Auditing values can be combined by logically ORing the integer values in order to have multiple levels of
auditing in effect for a given facility. Table 4.4 shows the valid auditing values.

Table 4.4. Auditing Level Combinations and Their Values

Auditing Level

Value

None

Info

Warn

Info, Warn

Error

Info, Error

Warn, Error

Info, Warn, Error

Fatal

Info, Fatal

Warn, Fatal

Info, Warn, Fatal

Error, Fatal

Info, Error, Fatal

Warn, Error, Fatal

All

mlmlg|lalm|s[o|e[w[alulr[vwlvw]~]c

Parameter settings are stored in the ACMSCEFG file and can also be modified dynamically using the
ACMSMGR utility. For example, in order to specify that all messages and events generated by the
security routines should be stored in the audit log, use the following command:

49

Chapter 4. Managing the Remote Manager

$ ACMSCFG SET PARAMETER/SECURITY_AUDIT_LEVEL=F
Alternatively, to dynamically modify an auditing level, use the following ACMSMGR utility command:

$ ACMSMGR SET PARAMETER/SECURITY_ AUDIT LEVEL=F

4.7.2. Displaying Audit Messages

Use the SHOW LOG command in the ACMSMGR utility to display Remote Manager audit messages.
This command accepts a number of qualifiers, including a qualifier that identifies the node from which
to get audit messages (/NODE) and a qualifier that specifies the beginning time of messages to display (/
SINCE).

The following example shows how to display audit messages from the node SPARKS:
$ ACMSMGR SHOW LOG/NODE=SPARKS

You can display audit messages from a node other than the current node only if the Remote Manager is
running on the target node. If the Remote Manager is not running on the target node, you must first log
in to the target node, and then issue the SHOW LOG command using the /[LOCAL qualifier.

The following example shows how to display audit messages on the current node when the Remote
Manager process is not running:

$ ACMSMGR SHOW LOG/LOCAL

For a complete description of the ACMSMGR commands and qualifiers, see Chapter 11.

4.7.3. Resetting the Audit Log

Use the ACMSMGR RESET LOG command to close the current audit log file and open a new version.
You may want to reset the log if it has grown too large.

The following example shows how to reset the log on node SPARKS:

$ ACMSMGR RESET LOG/NODE=SPARKS

50

Chapter 5. Using the Remote Manager
to Manage ACMS

5.1. Managing Data Collection

Data collection is the mechanism by which ACMS run-time data is made available to the ACMS Remote
Manager and, consequently, to other processes. Data collections do not involve disk or network read or
write operations. All data collection is performed in memory on the local node.

ACMS systems managers control what data is collected by manipulating entries in the Collection table.
In the Collection table, the data to be collected is specified by a combination of entity, class, and name.

» Entity refers to an ACMS run-time process type, such as ACC, EXC, or CP.
* Class refers to the class of data to be collected (see Section 5.1.1).

* Name refers to a process or application name that uniquely identifies a particular ACMS run-time
process.

Using the combination of entity, class, and name gives ACMS system managers a great deal of flexibility
in configuring the data to be collected.

Data collection can be managed either statically, through the ACMSCEFG file, or dynamically, using one
of the supported interfaces. For example, the ACMSMGR SET COLLECTION command can be used to
dynamically enable or disable data collection on a local or remote node. Similarly, SNMP management
tools can issue SNMP SET commands to dynamically modify entries in the Collection table. Users can
also write their own programs and use the remote procedure call ACMSMGMT_SET_COLLECTION_1
(see Chapter 8) to dynamically manage data collection.

In general, management information is not collected unless an ACMS system manager has specifically
enabled it. The exceptions are identification and configuration information. By default, these two classes
of data are enabled for all ACMS entities. Having these classes enabled by default is an optimization
that imposes little run-time overhead and ensures that process startup information is available. VSI
recommends that you leave these classes enabled.

Data collection for other entities and classes is not enabled by default. When the ACMS system is
started, the ACMS processes read either the configuration file (if the Remote Manager is not already
running) or the Collection table to determine which classes of data to collect. Thereafter, external
processes use the SNMP or RPC management interfaces to enable or disable data collection for a given
entity, class, and name.

For each entity and class for which collection is enabled, a table of data values is populated by the
appropriate ACMS processes (determined by name) and can be accessed by external entities using one of
the data access interfaces (SNMP or RPC).

ACMS entities that collect data do so continuously when collection has been enabled for that entity/class/
name combination. With the exception of event notifications (generated as the result of ACMS process
startup or shutdown), and POOL information (which is updated based on timer intervals), collection data
is modified when it changes.

51

Chapter 5. Using the Remote Manager to Manage ACMS

5.1.1. Entities, Classes, Names, and Collections

ACMS system managers control data collection by modifying entries in the Collection table. The
Collection table is keyed to entity, class, and name.

An entity is an ACMS run-time process or object. The valid ACMS entities are:

ACC

CP

EXC

QTI

SERVER
TASK GROUP
TSC

*or ALL

* (all)

The wildcard value “*' is valid, and specifies all entities. When specifying an entity, you are specifying
the type of process that it is. The asterisk (*) wildcard value is valid and specifies all entities. When
specifying an entity, you are specifying its process type. The asterisk (*) wildcard value is valid and
specifies all entities. When specifying an entity, you are specifying its process type.

A class is a set of run-time data values that entities set. Referring to data by class is a convenient method
of referring to a set of related data values. However, the actual values contained in a class are entity
specific. The following are valid classes:

Configuration

This class is a set of values that can be changed for the process and that controls some fundamental
aspects of the execution. Configuration values are entity specific. An example of a Configuration
class value for ACC is the maximum number of applications that may be running. An example value
for a Server is the maximum number of instances.

Identification

This class is a set of values that do not change for the process as long as it is running and that help
identify the process. Examples of Identification class values are process name, PID, and version.

Pool

This class is a set of values related to the current or historical MSS or workspace pool processing
for the process. MSS pool values are the same for all entities except ACC. An example of a Pool
class value for ACC is the current free amount in the MSS shared pool. An example value for other
processes is the current free amount in the MSS process pool.

Run-time

This class is a set of values that reflect either current or historical run-time processing for the process.
Run-time values are also entity specific. An example of a Runtime class value for ACC is current
number of applications. An example value for an EXC is the current number of executing tasks.

52

Chapter 5. Using the Remote Manager to Manage ACMS

The asterisk is a wildcard value that specifies all classes.

A name specifies one or more specific processes of an entity type. The name field is entity specific.

An example name for EXCs is the application name. An example name for CPs is process name. The
wildcard value **' is also supported, and for CPs is process name. The asterisk (*) wildcard value is also
supported and matches all names.

Entity, class, and name are used in combination to determine which processes will collect which values.
Duplicate rows (that is, rows with the same entity, class, and name) are not allowed, but it is possible to
have overlapping entries in the Collection table if the wildcard value ** is used. Consider the example in
table if the asterisk wildcard value is used. Consider the example in Table 5.1.

Table 5.1. Example 1: Collection with Wildcards

Name Entity Class
* ACC *
* ACC Runtime

In this example, the entries overlap but are not duplicates. This is allowed because the attributes of each
collection may be different. But users should be cautious when using the wildcard to avoid redundant
processing.

When more than one row applies, the most specific row will be used, based on the column precedence
of name, then entity, and then class. Within a particular column, wildcards are the least specific. In
Table 5.1, both rows are equivalent in name and entity, but the second row is more specific in class. In
this case, the values from the first row will be used for all classes except the Runtime class. The values
from the second row will be used for the Runtime class.

Consider the example in Table 5.2.

Table 5.2. Example 2: Collection with Wildcards

Name Entity Class Collection State
* * Runtime Enabled
* EXC Runtime Disabled
VR_APPL EXC Runtime Enabled

In this example, the first row enables run-time data collection for all entities. The second row disables
it for all EXCs. The third row enables it for the VR_APPL. As a result, among applications, only the
VR_APPL will collect run-time data.

As an aide to identifying which row is the most specific and therefore will apply to a given process, the
ACMSMGR command SHOW COLLECTIONS includes a column that represents the weight of a given
row. A row with higher weight overrides a row with lower weight when they apply to the same class and
process. Consider the following example, which is the same as the example in Table 5.2 but includes the
weights (in the column labelled "Wt") of each row.

SPARKS> ACMSMGR SHOW COLLECTION
ACMS Remote Management —- Command line utility

ACMS V4.4-0 Entity/Collection Table Display Time: 19-APR-2001
11:46:36.49

53

Chapter 5. Using the Remote Manager to Manage ACMS

Node Wt Entity Collect Collect
Storage Storage

Type Entity Name Class State Storage Location
State Interval
SPARKS 2 * * runtime enabled acms$mgmt_snapshot
enabled 3600
SPARKS 4 exc * runtime disabled acms$mgmt_snapshot
disabled 10
SPARKS 8 exc VR_APPL runtime enabled acms$mgmt_snapshot

disabled 10

In this example, the last row has the highest weight, and will override the other two rows for the
RUNTIME class for the VR_APPL.

5.1.2. Starting and Stopping Collections

Users start and stop data collections by modifying the data collection state field in the Collection table.
The Collection table is accessed through either the ACMSCFG utility prior to management startup, or
through the ACMSMGR utility after Remote Manager startup.

By default, the ACMSCEFG file includes entries to enable collection for the Identification and
Configuration classes for all processes. Unless specific action has been taken to disable these collections,
identification and configuration information is always available for all running processes.

Before a collection can be modified, it must be added to the entity collection table. By default, if the
collection state is not specified when a collection is added, the collection state is DISABLED. Otherwise,
the collection state is whatever was specified.

When the data collection state is set to ENABLED, the Remote Manager sends messages to the
appropriate ACMS processes (based on the entity and name fields in the Collection table row) to begin
collection for the class. When the data collection state is set to DISABLED, a similar message is sent to
stop collection for the class. Once collection has started, it continues until the data collection state is set
to DISABLED.

The requesting user must have ACMS$SMGMT_WRITE privilege in order to start or stop a collection.

5.1.2.1. Using ACMSCFG to Start or Stop Collections

Use the ACMSCEFG utility to set the state for a collection when the Remote Manager starts up. Some
ACMSCFG commands are described here; for details on all ACMSCFG commands, see Chapter 10.

Use the ACMSCFG ADD COLLECTION command to create a new collection record. The command
has the following syntax:

ACMSCFG ADD COLLECTION /ENTITY=entity /CLASS=class /NAME=name /
COLL_STATE=state

Use the ACMSCFG SET COLLECTION command to modify the state of an existing collection record
in the configuration file. The command has the following syntax:

ACMSCFG SET COLLECTION /ENTITY=entity /CLASS=class /NAME=name /
COLL_STATE=state

54

Chapter 5. Using the Remote Manager to Manage ACMS

Use the ACMSCFG DELETE COLLECTION command to delete a collection. The command has the
following syntax:

ACMSCFG DELETE COLLECTION /ENTITY=entity /CLASS=class /NAME=name

Deleting a collection can cause the Remote Manager to disable the class for a process because collections
are disabled by default. The collection state for a process becomes disabled when no collections remain
to specifically enable the class.

Use the ACMSCFG SHOW COLLECTION command to determine which collections already exist and
their collection states. The command has the following syntax:

ACMSCFG SHOW COLLECTION

Note

You cannot use the ACMSCFG utility to add, delete, or modify Collection and Identification class
records.

5.1.2.2. Using ACMSMGR to Start or Stop Collections

Use the ACMSMGR utility to dynamically modify the state of a collection after the Remote Manager
has already been started. Note that changes made with the ACMSMGR interface are not automatically
stored in the ACMSCEFG file and are lost when the Remote Manager is stopped.

Use the ACMSMGR ADD COLLECTION command to create a new collection record. The command
has the following syntax:

ACMSMGR ADD COLLECTION /ENTITY=entity /CLASS=class /NAME=name /
COLL_STATE=state

Use the ACMSMGR SET COLLECTION command to modify the state of an existing collection. The
command has the following syntax:

ACMSMGR SET COLLECTION /ENTITY=entity /CLASS=class /NAME=name /
COLL_STATE=state

Use the ACMSMGR DELETE COLLECTION command to delete a collection. The command has the
following syntax:

ACMSMGR DELETE COLLECTION /ENTITY=entity /CLASS=class /NAME=name

Deleting a collection can cause the Remote Manager to disable the class for a process because collections
are disabled by default. The collection state for a process becomes disabled when no collections remain
to specifically enable the class.

Use the ACMSMGR SHOW COLLECTION command to determine which collections already exist and
their collection states. The command has the following syntax:

ACMSMGR SHOW COLLECTION

5.1.2.3. Using SNMP to Start or Stop Collections

Use the SNMP interface to dynamically modify the state of a collection after the Remote Manager has
already been started. Note that changes made with the SNMP interface are not stored in the ACMSCFG
file and are lost when the remote Remote Manager is stopped.

55

Chapter 5. Using the Remote Manager to Manage ACMS

The SNMP interface responds to SNMP commands issued by SNMP consoles. An SNMP console issues
an SNMP SET command to the Remote Manager to modify the Collection table.

The SNMP OID (object ID) for the collection state columns are listed in in the file MIB_OID.LIS in
ACMS$RM_EXAMPLES. The data type for the field is INTEGER. Possible settings for this field have
the following meanings:

¢ (= Collection is disabled.
¢] = Collection is enabled.
¢ 9 =Collection record is deleted.

You cannot add a collection record using the SNMP interface.

5.2. Displaying Collected Data

Management data can be displayed using either the ACMSMGR utility or one of the programming
interfaces (SNMP or ONC RPC). Data is displayed by entity and, optionally, by class.

5.2.1. Using ACMSMGR to Display Collected Data

Use the ACMSMGR SHOW command to display collected data. See Chapter 11 for a description of
each command.

The following ACMSMGR command displays ACC data:
$ ACMSMGR SHOW ACC /NODE=SPARKS /ID
The following example shows output from this command:

ACMS Remote Management Option —-- Command line utility
ACMS V4.4-0 ACC Table Display Time: 19-APR-2001
11:59:09.56

ID
Node Class PID Process Name Start Time
User Name Version
sparks enabled 2020C8BB ACMSO1ACC001000 18-APR-2001 14:44:47.29
SYSTEM vV4.4-0

5.3. Managing ACMS Using the Remote
Manager

The ACMS Remote Manager provides the ability to modify the running ACMS system using either the
SNMP or the RPC interface. In general, only Configuration class variables can be modified at run time.
However, not all Configuration class variables can be modified. Chapter 9 lists all Configuration class
variables by entity and indicates which ones can be modified.

5.3.1. Types of Variables

Many Configuration class variables can have the following two forms:

56

Chapter 5. Using the Remote Manager to Manage ACMS

e Stored variable (see Section 5.3.1.1)
e Active variable (see Section 5.3.1.2)

The programming interfaces expose stored and active values as separate variables.

5.3.1.1. Stored Variables

Stored variables are maintained by the ACMS run-time system on disk, either in the ACMSGEN file

or as part of an ADB or TDB file. For example, mss_maxobj is a run-time variable that is stored in the
ACMSGEN file. The auditing state for a particular application is a run-time variable that is stored in the
application database (ADB).

As you might expect, the ACMS Remote Manager allows ACMSGEN stored values to be modified, but
it does not allow modifications to values that are stored in application executables.

Changes to stored values are durable but not dynamic. That is, if the stored value of a variable is
modified, the value survives the restart of the ACMS run-time system. However, changes to stored values
do not take effect immediately. Some or all of the ACMS run-time system needs to be restarted before
the new value takes effect.

For example, to change the value of the mss_net_retry_timer parameter in the ACMSGEN file using
ACMSMGR, use the following command:

$ ACMSMGR SET ACC/MSS_NET RETRY_TIMER=50/STORED

To change the value in ACMSGEN file using the RPC interface, set the mss_net_retry_timer_stored
field in the acc_config_rec using the ACMSMGMT_SET_ACC procedure. To change the same value
using an SNMP console, set the acc_mss_net_retry_timer_stored field in the ACC Table.

Note that none of these changes would effect the running system. To effect the running system, you must
change the active value (see Section 5.3.1.2.)

5.3.1.2. Active Variables

Active variables are maintained in memory by the ACMS run-time system. All Configuration class
variables are active because they have an in-memory value. Although the ACMS Remote Manager allows
most active values to be modified, not all changes to active values are dynamic. Refer to Chapter 9 to
determine whether a particular active value is dynamic. Changes to nondynamic active variables are
essentially useless.

Changes to active values are never durable; that is, they never survive a restart of the system.

For example, to change the active value of the mss_net_retry_timer using ACMSMGR, use the following
command:

$ ACMSMGR SET ACC/MSS_NET_RETRY_TIMER=50/ACTIVE

To change the value using the RPC interface, set the mss_net_retry_timer_active field in the
acc_config_rec using the ACMSMGMT_SET_ACC procedure. To change the same value using an
SNMP console, set the acc_mss_net_retry_timer_active field in the ACC table.

Note that none of these changes would survive a system restart. To change a value and have it survive a
system restart, you have to change the stored value (see Section 5.3.1.1.)

57

Chapter 5. Using the Remote Manager to Manage ACMS

5.3.2. How the Remote Manager Makes Changes

The ACMS Remote Manager applies changes to the ACMS run-time system either by using the
ACMSGEN parameter file and utility, or through the ACMSOPER utility. In either case, the ACMS
Remote Manager server applies updates to the running system by creating temporary command
procedures that are executed by a spawned DCL subprocess (process name ACMS$SMGMT_DCL).

The temporary command procedures are written to and read from the directory pointed to by the logical
name ACMSSMGMT_TEMP. If this logical is not defined when the Remote Manager starts, it will
define the logical to point to SYSSMANAGER.

Temporary command procedures are given names unique to the procedure instance that creates them,
but the names are not unique across nodes. These names are deleted after they have been executed.

If the Remote Manager server does not have access to the directory pointed to by ACMS
$MGMT_TEMP, all update attempts fail. However, the definition of the logical can be changed without
restarting the Remote Manager. Changing the definition at run time should be done cautiously. One or
more updates could fail if the logical is changed in the middle of an update operation.

If the ACMSMGR or RPC interface is used, any errors that occur during the system update are returned
to the user and are written to the Remote Manager log file. Depending on the current setting of the
dcl_audit_level parameter, some messages may not be written to the log.

User accounts (including proxy accounts and the ACMS$SNMP account, if SNMP is being used) must
be granted the ACMSSMGMT_WRITE or ACMS$MGMT_OPERATE rights identifier in order to
modify Configuration class values. See Section 4.4.2 for a list of functions and the rights identifier
required for each.

5.3.3. Using ACMSMGR to Modify the ACMS Run-Time
System

The ACMSMGR utility can be used to dynamically modify Configuration class parameters for ACMS
run-time entities. More than one value can be modified at once, on one or more nodes. The command
executes synchronously; that is, it does not complete until an attempt has been made to update all
parameters. Multiple node updates are processed serially; all updates are performed on one node before
any updates are attempted on subsequent nodes.

Use the ACMSMGR SET command to modify a Configuration class variable. The syntax of the
command is as follows:

ACMSMGR SET entity [/parameter=value,...]
For example, the following command disables ACMS auditing on the node specified by ACC:
$ ACMSMGR SET ACC /AUDIT_STATE=DISABLED

Two qualifiers are provided to control whether the active (/ACTIVE) or stored (/STORED) value of
the variable is to be modified. The default is /STORED. Both qualifiers can be specified in a single
command to update both values. For example, the following command modifies both the active and
stored values of the ACC Configuration class variable node_name:

$ ACMSMGR SET ACC/NODE_NAME=SPARKS/ACTIVE/STORED

If a specified qualifier does not apply (for example, /ACTIVE is specified for a nondynamic variable),
the qualifier is ignored.

58

Chapter 5. Using the Remote Manager to Manage ACMS

For a complete list of Configuration class variables, see Chapter 9.

The ACMSMGR START and STOP commands can be used to dynamically start and stop the following
processes:

* ACKC (starts or stops the entire ACMS run-time system)
« EXC

* MANAGER (Remote Manager; stop only)

« QTI

* TRACE_MONITOR

* TSC (starts or stops the TSC and any CPs)

In addition, ACMS procedure servers can be replaced (stopped and restarted) using the ACMSMGR
REPLACE command.

Different qualifiers are available for each command and process.

For more information about ACMSMGR commands, refer to Chapter 11.

5.3.4. Using SNMP to Modify the ACMS Run-Time
System

The SNMP interface can be used to dynamically modify Configuration class parameters for ACMS run-
time entities. Updates to Configuration class parameters are synchronous; the SNMP command does not
complete until an attempt has been made to update the parameter.

The SNMP interface responds to SNMP commands issued by SNMP consoles. An SNMP console issues
an SNMP SET command to the Remote Manager to modify Configuration class parameters.

There are both active and stored values for many of the Configuration class variables. In the ACMS
MIB, each value is given a separate variable (OID).

Because the SNMP protocol offers only GET and SET commands, the SNMP interface handles
the following operations differently from the RPC interface in order to perform the full range of
management activities:

» Starting and stopping processes (see Section 5.3.4.1)
* Adding and deleting table rows (Section 5.3.4.2)
* Replacing servers (Section 5.3.4.3)

Not all operations that can be performed by the RPC interface can be performed by the SNMP interface.
The following sections indicate which operations are not available in the SNMP interface.

5.3.4.1. Starting and Stopping Processes Using SNMP

To start or stop the following ACMS processes, issue an SNMP SET command on the Configuration
class variable acms_state, and specify the state as either 1 (to start the process) or O (to stop the process).

* ACC

59

Chapter 5. Using the Remote Manager to Manage ACMS

o QITI
« TSC
You cannot start or stop CP processes.

To start an ACMS application, issue an SNMP SET command on the exc-appl-name field in the
excTable, specifying a row that is not currently in use and that is less than the value of the acc-max-appl-
active field in the accTable.

To stop an ACMS application, issue an SNMP SET command on the exc-acms-state field, specifying a
value of 0.

You cannot start or stop application procedure servers or task groups.

5.3.4.2. Adding and Deleting Rows Using SNMP

Currently, no tables allow rows to be added using SNMP.
The Collection and Trap tables allow rows to be deleted using SNMP.

* To delete rows from the Collection table, set the collection-state field to 9. (A value of 1 enables the
collection; a value of O disables the collection; a value of 9 deletes the collection.)

* To delete rows from the Trap table, set the trap-delete field to 1. This is the only value allowed for
this field.

5.3.4.3. Replacing Application Procedure Servers Using SNMP

To replace an ACMS application procedure server, issue an SNMP SET command on the ser-replace-
flag field in the Server table, specifying a nonzero value.

5.3.5. Using ONC RPC to Modify the ACMS Run-Time
System

The RPC interface can be used to dynamically modify Configuration class parameters for ACMS run-
time entities. Configuration class parameter updates are synchronous; the RPC command does not
complete until an attempt has been made to update the parameter.

There are both active and stored values for many of the Configuration class variables. In the
ACMSMGMT_RPC.X IDL file, each value is given a separate variable.

Separate RPC commands for each entity type are provided for modifying Configuration class variables.
In addition, RPC commands are provided to perform start, stop, add, delete, replace, and reset functions.
Chapter 8 provides details about all of the RPC commands.

60

Chapter 6. Management Programming
Using ONC RPC

Programmers who want to access and maintain the ACMS Remote Manager from their own programs
can use the following two interfaces:

* Simple Network Management Protocol (SNMP)

The SNMP interface is provided for integration with enterprise management packages such as
PATROL ® from BMC ® and Tivoli from IBM ®. For more information, see Chapter 7.

* Open Network Computing (ONC) Remote Procedure Call (RPC)

The ONC RPC interface is for system managers and system programmers who want to write custom
tools and applications that access the ACMS Remote Manager.

This chapter describes the ONC RPC interface. Programmers who are familiar with the C programming
language and RPC mechanisms can use this information when coding and building their own client
programs. For a more complete discussion of ONC RPC programming, see Power Programming with
RPC by John Bloomer, published by O'Reilly & Associates, Inc., Sebastopol, CA.

6.1. ONC RPC Overview

ONC RPC is a widely used and supported remote procedure call (RPC) mechanism. Similar to
other RPC mechanisms, the ONC RPC protocol supports a request/response model, in which client
applications make requests of servers and receive responses. Clients typically make synchronous
calls to remote servers over a network. The RPC mechanism hides the network operations from the
programmer, making each remote procedure call appear to be a local function invocation.

Unlike the SNMP interface, which connects to the ACMS Remote Manager using the SNMP master
agent, access through ONC RPC is directly to the ACMS Remote Manager.

Figure 6.1 provides a graphical overview of the ONC RPC interface.

Figure 6.1. ONC RPC Interface Overview

Remote Manager ACMWS Remote ACMS
diants {oMT Hch> Manager <:> ; N
(User-uritten programs) (RPC listenen run-time system

Programming for ONC RPC is based on interface definitions coded in Interface Definition Language
(IDL). Functions and their arguments are described in IDL source files, which are precompiled using an
IDL compiler. The outputs from the IDL compiler are a set of C source and header files that are then
compiled and linked with client and server programs to form run-time executables. (For Remote Manger
client development, server stub files are not needed and can be discarded.)

Figure 6.2 provides a graphical overview of programming for ONC RPC.

61

Chapter 6. Management Programming Using ONC RPC

Figure 6.2. ONC RPC Programming Overview

Clignt stub

ACMEMGMT_RPC_CLNT.C

Data
N WSrsian
routines

Function and
argument [y IDL compiler
deﬂni%ns [{]n]W]

ACMEM GMT_RPC.X

ACMEMGMT_RPC_XDR.C

$RPCGEM

ACKSM GMT_FP G} Header filg

ACMEMGMT_RFPC.H

ACMEMGMT_RPC_SVC O

The IDL that describes the procedures supported by the ACMS Remote Manager is provided with the
ACMS Remote Manager installation and provides the basis for ACMS management programming. Users
write their own client programs, calling the functions described in the ACMS Remote Manager IDL file
(ACMSMGMT_RPC.X). They precompile the IDL file with the precompiler provided by their TCP/IP

package, and then compile and link their client programs. No compilation or linking is required for the
Remote Manager; it contains all the support required by ONC RPC client programs.

The ACMS Remote Manager provides several types of procedures that are callable through the ONC
RPC interface. These procedures provide read and write access to each table maintained by the Remote
Manager, as well as command routines (such as start and stop). Table 6.1 summarizes the types of

procedures available.

Table 6.1. Procedures for Accessing Remote Manager Functions

Procedure Type Table or Object Description

Add Collection, Trap Allows entries to be added to
configuration tables.

Delete Collection, Trap Allows entries to be removed
from configuration tables.

Get ACC, MGR_STATUS, PARAM, |Returns all columns in the table.

QTIL, TSC
List Collection, CP, EXC, Interfaces, |Returns a linked list of records
Log, Process, Trap, Server, Task |based on selection criteria. All
Group, Users columns in the table are returned
with each row.

Replace Server Allows an application server to
be replaced.

Reset Log Allows the current version of the
Remote Manager log to be closed
and a new version to be opened.

Set ACC, CP, Collection, EXC, Allows modifications to the

Interfaces, Trap, Param, QTI, table. For configuration tables,

SERVER, TSC set functions allow rows to be
added to tables. (Entity rows can
only be added by starting the
appropriate process.)

Start ACC, TSC, QTI, EXC, Trace Allows ACMS processes to be

Monitor started.

62

Chapter 6. Management Programming Using ONC RPC

Procedure Type Table or Object Description
Stop Manager, ACC, TSC, QTIL, EXC, |Allows ACMS processes to be
Trace Monitor stopped.

The procedure names and arguments for each procedure type are similar — all get calls have similar
names and arguments; set calls have similar names and arguments, and so on.

The sections that follow describe in more detail how to write programs that access these functions.

6.2. APl Overview

Remote management client programs follow a typical programming model that involves the following
phases:

e Initialization

During the initialization phase, client programs establish connections with the Remote Managers
they will be calling. As part of this phase, the programs select a security mode (explicit or implicit).
Once this phase is complete, the Remote Managers have been verified to be available, and the client
authentication has been verified. This phase involves using a combination of ONC RPC function
calls and an ACMS Remote Manager function call (if explicit authentication is being used).

* Processing

During the processing phase, client programs make procedure calls to the Remote Managers. During
this phase, clients obtain or modify management information. This phase involves the use of the
functions defined in the ACMS$RM_EXAMPLES:ACMSMGMT_RPC.X IDL file.

¢ Termination

During the termination phase, clients halt execution. There is no API support or programming
requirement for this phase.

6.3. Initialization and Security

In order to perform initialization, ACMS remote client programs must first determine the type of
authentication (explicit or implicit) they will use. The type of authentication determines whether or not
the client program must obtain credentials.

The Remote Manager performs authentication either explicitly, using a valid OpenVMS account name
and password, or implicitly, using ACMS proxies. Implicit authentication is allowed only if it has been
enabled on the Remote Manager node, and does not require the use of credentials. Explicit authentication
requires the use of credentials and also requires that the client process execute a separate login using the
ACMSMGR utility.

See Section 4.4 for a discussion of the various security modes and how to log in using ACMSMGR.

Once the authentication mode has been determined, remote management clients perform the following
tasks:

* Establish an RPC connection with the Remote Manager on the target node.
The cint_create function call establishes RPC client connections.

» Establish the security context and, optionally, populate it with credentials information.

63

Chapter 6. Management Programming Using ONC RPC

The security context is established by calling the authunix_create_default function. As a result
of this call, client process-identity information is passed to the server on each procedure call. The
Remote Manager uses this information to authorize the user for each function.

The default security context is not sufficient if explicit authentication is being used. Clients that need
to support explicit authentication call the acms$mgmt_get_credentials function to obtain a client
ID, which was previously issued for the client process by executing a login through the ACMSMGR
utility. This client ID is used on subsequent RPC calls.

Note

In order for credentials information to be created, the client process must first execute the login
command of the ACMSMGR utility. The only way to create credentials files is by using the
ACMSMGR utility.

6.3.1. Initialization Example

The following example code shows a client program that establishes an RPC connection with the Remote
Manager, establishes the security context, and then populates it with credentials information if a logical
name (ACMS$SMGMT_USER) has been defined.

#include <rpc/rpc.h>
#include string
#include "acmsmgmt_rpc.h"

CLIENT *cl;

char sname[] = "sparks";

char *username_p, username[l13] = "";
int client_id;

int status;

int acms$Smgmt_get_creds () ;

int main ()

{

/* if the logical is defined, credential information will be used */
username_p = getenv ("ACMSSMGMT_USER") ;
if (username_p)

strcpy (username, username_p) ;

/* establish an rpc connection to the server */
cl = clnt_create(sname, ACMSMGMT_RPC, ACMSMGMT_VERSION, "tcp");

/* 1f the connection was established */
if (cl != NULL) {

/* create a security context */
cl->cl_auth authunix_create_default ();
client_id = 0;

/* optionally, get credentials for this user & server */
if (strlen(username))
status = acms$mgmt_get_creds (sname,username, &client_id) ;

64

Chapter 6. Management Programming Using ONC RPC

return(l);

}

6.4. Get Procedures

Get procedures are available for all ACMS Remote Manager tables. Get procedures return all columns
from a single table row.

As Table 6.2 shows, a separate get procedure is available for each entity and table.

Input arguments to get procedures are client_id. See Chapter 8 for details about each call.

Table 6.2. Get Procedures

Procedure Description

acmsmgmt_get_acc_1 No keys; only 1 ACC per node.
acmsmgmt_get_mgr_status_1 No keys; only one row in the Manager Status table.
acmsmgmt_get_param_1 No keys; only one row in the Parameter table.
acmsmgmt_get_qti_1 No keys; only 1 QTI per node.
acmsmgmt_get_tsc_1 No keys; only 1 TSC per node.

6.4.1. Get Example

The following example code shows how a client program calls the acmsmgmt_get_param_1 procedure
and displays the current value of a parameter.

int get_param_data(int client_id, CLIENT *cl)
{

int x = 0;

int y = 0;

param_rec?2 *params;
param_rec_out2 *param_rec;

static struct sub_id_struct sub_rec;
int status;

sub_rec.client_id = client_id;
param_rec = acmsmgmt_get_param_2 (&sub_rec,cl);

if (!param_rec) |
printf ("\n RPC Call to get Parameter data failed");
return (MGMT_FAIL);

if (param_rec->status != MGMT_SUCCESS) {
printf ("\n Call to get Parameter data failed, returning status code
sd",
param_rec—>status);
status = param_rec—>status;
xdr_free (xdr_param_rec_out2, param_rec);

65

Chapter 6. Management Programming Using ONC RPC

free(param_rec);
return (status);

params = ¶m_rec—->param_rec_out2_u.data;

printf ("\n Maximum logins allowed is %d",params—>max_logins);

xdr_free (xdr_param_rec_out2,

free(param_rec);
return (0) ;

}

6.5. List Procedures

param_rec) ;

List procedures operate on all rows in a table. Procedures are available for each entity and each
configuration table with more than one row. There are no list procedures for the following tables, since

they contain only one row:

e ACC table
e TSC table
* QTI table

e Parameter table

As Table 6.3 shows, separate list procedures are provided for the remainder of the management
information and configuration tables. Input to a list procedure is a selection criteria record, which varies
depending on the table being accessed. Some key values in the selection criteria records will support

wildcards (*, %). support wildcards (*, %).

Table 6.3. List Procedures

Procedure

Description

acmsmgmt_list_collections_1

Key value is table index.

acmsmgmt_list_cp_1

No keys.

acmsmgmt_list_exc_1

Key value is application name or table index.

acmsmgmt_list_interfaces_1

No keys.

acmsmgmt_list_log_1

No keys; selection criteria is before_time,
since_time, file_name, facility, severity.

acmsmgmt_list_proc_1

No keys.

acmsmgmt_list_server_1

Key value is application name, server name, or
table index.

acmsmgmt_list_tg_1

Key value is application name, task group name, or
table index.

acmsmgmt_list_trap_1

No keys.

acmsmgmt_list_users_1

No keys.

For all list procedures, only entire rows (that is, all columns in the row) are returned. Data is
returned in a linked list. The number of nodes in the list is determined by the systemwide parameter
table field max_rpc_return_recs. When the number of rows to be returned exceeds the value of

66

Chapter 6. Management Programming Using ONC RPC

max_rpc_return_recs, the caller must reissue the call, providing the appropriate key values to fetch
the next set of rows. The call returns status MGMT_NO_MORE_ROWS if there are no more rows
available. Procedures with no keys return all rows in the table on the first call, regardless of the value of
the max_rpc_return_recs field.

6.5.1. Linked List Example

Data from list calls is returned in a linked list. The example in this section uses the acmsmgmt_list_log_1
procedure to illustrate how linked list processing works.

The call to the acmsmgmt_list_log_1 procedure requires the following input structure:

struct log_sel_struct {

int
string
string
string
int
int
int

bi

client_id;
before_time<TIME_SIZE_A>;
since_time<TIME_SIZE_A>;
file_name<STORAGE_LOC_SIZE>;
dup_count;

facility;

severity;

In the code example that follows, the lines of code beginning with log_rec initialize the fields in this
structure as follows:

* Client_id is set to O to select proxy authentication.

* Before_time is set to a NULL string to specify no end date for viewing log entries. Note that you
cannot provide a NULL pointer.

» Since_time is set to the 1st of January 1998. Log entries from this date and later will be viewed.

» File_name is set to an empty string, which causes the active log file to be used.

* Dup_count is set to -1. This field is used to uniquely identify log records with identical times.

* Facility is set to -1, which causes entries for all facilities to be returned.

» Severity is set to -1, which causes entries of all severity levels to be returned.

The following

example code shows the initialization of the client and the call to the

acmsmgmt_list_log_1 procedure:

static struct log_sel_struct log_rec; log_data_list *log; log_link
*nl; char null_time_str[24] = ""; char first_of_jan[24] = "01-
JAN-1998 00:00:00.00"; char file_spec[] = "ACMSSMGMT_LOG"; char sname[]
= "sparks"; int skip_rec = 0; /* Initialize client connection; if that
fails, exit*/ ¢l = clnt_create (sname, ACMS_MGMT_RPC, ACMS_MGMT_VERSION,
"tcp"); 1if (!cl) return(FAIL); /* Create a default security context */
cl->cl_auth = authunix_create_default (); /* So far so good. Initialize
log selection data */ log_rec.client_id = 0; log_rec.before_time =
null_time_str; log_rec.since_time = first_of_jan; log_rec.file_name =
file_spec; #include
<rpc/rpc.h> #include
<stdio.h> #include string #include "acmsmgmt_rpc.h" CLIENT *cl;

int main

() { int skip_rec = 0; char null_time_str([24] = ""; char

67

Chapter 6. Management Programming Using ONC RPC

first_of_jan[24] = "01-JAN-1998 00:00:00.00"; char file_spec[] =

"v. /* use default, i.e. active log file */ char sname[] = "sparks";
char time_cache [MGMT_S_TIME_A+1]; top: /* Now make RPC */ log =
acmsmgmt_list_log(log_rec,cl);

static struct log_sel_struct log_rec; log_data_list *log; log_link *nl; /* Initialize client connection; if
that fails, exit*/ cl = clnt_create(sname, ACMSMGMT_RPC, ACMSMGMT_VERSION, "tcp"); if (!cl)
return(MGMT_FAIL); /* Create a default security context */ cl->cl_auth = authunix_create_default(); /
* So far so good. Initialize log selection data */ log_rec.client_id = 0; log_rec.before_time =
null_time_str; log_rec.since_time = first_of_jan; log_rec.file_name = file_spec; log_rec.dup_count =
-1; log_rec.facility = -1; /* don't match on facility */ log_rec.severity = -1; /* don't match on severity */
top: /* Now make RPC */ log = acmsmgmt_list_log_1(&log_rec,cl);

The return value from the calls to all list procedures (including acmsmgmt_list_log_1) is a pointer
to a union. If the pointer returned is NULL, the call has failed. RPC error checking must be used
to determine the cause of the error. If a valid pointer has been returned, it will point to a structure
containing a union with the following structure:

#include <rpc/rpc.h>
#include <stdio.h>
#include string

#include "acmsmgmt_rpc.h"

CLIENT *cl;

int main ()

{

int skip_rec = 0;

char null_time_str([24] = "";

char first_of_jan[24] = "01-JAN-1998 00:00:00.00";

char file_spec[] = ""; /* use default, i.e. active log file */

char time_cache [MGMT_S_TIME_A+1];
static struct log_sel_struct log_rec;
log_data_list *log;

log_link *nl;

/* Initialize client connection; 1f that fails, exit*/
cl = clnt_create(sname, ACMSMGMT_RPC, ACMSMGMT_VERSION, "tcp");
if (!cl)
return (MGMT_FAIL);
/* Create a default security context */
cl->cl_auth = authunix_create_default ();
/* So far so good. Initialize log selection data */
log_rec.client_id = 0;
log_rec.before_time null_time_str;

log_rec.since_time first_of_jan;
log_rec.file_name = file_spec;

log_rec.dup_count = -1,
log_rec.facility = -1; /* don't match on facility */
log_rec.severity = -1; /* don't match on severity */

68

Chapter 6. Management Programming Using ONC RPC

top:
/* Now make RPC */
log = acmsmgmt_list_log_1(&log_rec,cl);

The status field determines which structure is being returned. If the status is equal to MGMT_FAIL, the
rc field is returned. The rc field contains a status code indicating the reason for failure.

If the status field is not equal to MGMT_FAIL, a pointer to a linked list has been returned.

The log_list field is defined as a pointer to linked list node, as follows:

typedef struct log_link *log_list;

The linked list node has the following structure:

struct log_link {
logging_rec log_data;
log_list pNext;

bi

In this structure, log_data is of type logging_rec, which is a record structure containing the log data. The
pNext field is a pointer to the next node in the linked list (which is of type log_link).

Figure 6.3 illustrates the return structure and how the linked list is constructed.

Figure 6.3. Linked List: Return Structure and Construction

myplr = acmsmgrt_list_logimyrec;

m structlog_data_list {
[mypr = imgtaius‘
union 4§

1o Jigtlist, J=—x)|

intre;
}log_cata list u;

struct lag_link §
logging_rec log_data;

log_list phlest;

structlag_link {
logging rec log_data;

log_list phlest;

structlog link {
logging_rec log data;

h

The following example code shows how to check whether the call completed successfully, and how to
traverse the linked list to display the data:

/* if a NULL pointer was returned, the RPC failed */
if (!'log)
return (MGMT_FAIL) ;

/* if bad status was returned, something failed in our call.
log—>log_data_list_u.rc contains the status */

if (log—->status == MGMT_FAIL)
return (log->log_data_list_u.rc);

/* while more data in the list, display the data */

for (nl = log->log_data_list_u.list; nl != NULL; nl = nl->pNext) {
if (skip_rec)
skip_rec = 0;
else

69

Chapter 6. Management Programming Using ONC RPC

printf("\n %$-12s\t%-s", sname,nl->log_data.log_msqg) ;

/* save last time received to use as next time to read forward from

*/
memcpy (&time_cache[0],nl->log_data.log_msg, 23);
log_rec.dup_count = nl->log_data.dup_count;
log_rec.since_time = time_cache;

}

if (log->status == MGMT_NOMORE_DATA)
printf ("\n *** End of data **");

else {
skip_rec = 1;
goto top;

}

return(l);

}

In this example, the returned pointer is checked for whether data has been returned (log is not NULL).
Then the status code is checked for whether the call completed successfully.

If the call completed successfully, the code drops into a FOR loop and starts printing the data. For this
particular call, the client prints all the records the very first time the RPC is called; on subsequent calls,
the first record is a duplicate of the last one from the previous call and is not printed.

After printing a record, the key data is saved to be used again on a subsequent call. Remember that only
max_rpc_return_recs is returned in each call to the acmsmgmt_list_log_data_1 procedure. There may
be more log records than can be sent at once. It is the responsibility of the client to initialize the call
properly to get the next set of records.

Once all the returned records have been returned, the code will call the acmsmgmt_list_log_data_1
procedure again if the status code from the call was not MGMT_NOMORE_DATA. In this way, all the
records are retrieved.

6.6. Set Procedures

Set procedures are available for many of the ACMS Remote Manager tables. Set procedures allow you to
modify ACMS entity and Remote Manager configuration information. As Table 6.4 shows, a separate set
procedure is available for each entity and table.

Table 6.4. Set Procedures

Procedure Description

acmsmgmt_set_acc_1 No keys; only 1 ACC per node.
acmsmgmt_set_coll_1 Key value is entity, ID, and class.
acmsmgmt_set_exc_1 Key value is application name.
acmsmgmt_set_interface_1 Key value is interface name.
acmsmgmt_set_param_1 No keys; only one row in the parameter table.
acmsmgmt_set_qti_1 No keys; only 1 QTT per node.
acmsmgmt_set_server_1 Key value is application name and server name.
acmsmgmt_set_trap_1 Key value is entity, ID, and parameter.

70

Chapter 6. Management Programming Using ONC RPC

Procedure Description

acmsmgmt_set_tsc_1 No keys; only 1 TSC per node.

For Entity tables, set procedures allow fields to be modified for a particular entry. A unique key value
must be provided to identify the particular table row to be updated for tables with more than one row.
Only configuration class fields can be modified in entity tables.

For the Trap and Collection tables, add and delete procedures (described in Section 6.7 and Section 6.8)
are available along with set procedures. Each procedure requires a unique key value.

For all tables, some or all fields in a row can be modified in a single call. The Remote Manager scans

the input record for uninitialized fields (that is, fields that are not set to the default value of -1); if a

field contains an initialized value, the Remote Manager attempts to apply the update. The corresponding
field in the return record is updated with the completion status of the update. Updates are applied
serially, but the Remote Manager attempts to update all initialized fields regardless of the outcome of any
individual update. The exception to this processing is if an internal error occurs, in which case processing
is aborted.

All calls are synchronous.

See Chapter 8 for details about each call.

6.6.1. Set Example

The following example code shows how a client program calls the acmsmgmt_set_param_1 procedure to
change the values of the proc_mon_interval and mss_coll_interval parameters.

This example assumes client initialization has been performed as described in Section 6.3.

int set_param_data(int client_id, CLIENT *cl)
{
int x = 0;
0;

int y

static param_config_rec2 set_struct;
param_status_rec2 *ret_struct;
static int *status;

/* initialize input argument; values < 0 are not processed
by the server */
memset (&set_struct, -1, sizeof (set_struct));

/* establish the client id */
set_struct.client_id = client_id;

set_struct.params.proc_mon_interval = 60;
set_struct.params.mss_coll_interval = 60;
ret_struct = acmsmgmt_set_param_2 (&set_struct,cl);

if (!ret_struct) {
printf ("\nCall to modify parameters failed");
return (MGMT_FAIL);

if (ret_struct->status != MGMT_SUCCESS) {

71

Chapter 6. Management Programming Using ONC RPC

if (ret_struct->status != MGMT_WARN) {
printf ("\nCall to modify parameters failed, returning %d",
ret_struct->status);
status=ret_struct->status;
xdr_free (xdr_param_status_rec2, ret_struct);
free (ret_struct);
return (MGMT_FAIL);

if (ret_struct->param_status_rec_u.data.proc_mon_interval !=
MGMT_SUCCESS)
printf ("\n Call to modify proc_mon_interval failed");
if (ret_struct->param_status_rec_u.data.mss_coll_interval !=
MGMT_SUCCESS)
printf ("\n Call to modify mss_coll_interval failed");
xdr_free (xdr_param_status_rec2, ret_struct);
free (ret_struct);
return (MGMT_FAIL);
}

else
printf ("\n Call to update parameters successful");
xdr_free (xdr_param_status_rec2, ret_struct);
free (ret_struct);
return(0);

}

In this example, note that the input argument (set_struct) is initialized to negative values prior to the
call. The Remote Manager will attempt to apply updates for any positive values found; negative values
are ignored.

Following the call to the update routine, the return record pointer is tested to ensure that it is not NULL
(that is, that the call completed). Then individual return codes are tested to determine the status of the
updates. The first status check (ret_rec->status) determines the overall call status. For instance, security
violations will be recorded in this field. If that status field contains a failure code, no updates were
attempted. If that status field contains MGMT_SUCCESS, updates were attempted for the two fields.
The subsequent status checks in the return record determine the outcome of those updates.

6.7. Delete Procedures

Delete procedures are available for the Collection and Trap tables. Delete procedures allow you to
remove rows from the corresponding table. As Table 6.5 shows, a separate delete procedure is available
for each of these tables.

The delete procedures require an input record with key data to be passed by the caller. A simple status
code is returned indicating the success or failure of the operation.

All calls are synchronous.

See Chapter 8 for details about each call.

Table 6.5. Delete Procedures

Procedure Description

acmsmgmt_delete_collection_1 Key value is entity, ID, and class.

72

Chapter 6. Management Programming Using ONC RPC

Procedure Description

acmsmgmt_delete_trap_1 Key value is entity, ID, and parameter.

6.7.1. Delete Example

The following example code shows how a client program calls the acmsmgmt_delete_collection_1
procedure to remove a collection row.

This example assumes that client initialization has been performed as described in Section 6.3.

int del_coll_data(int client_id, CLIENT *cl)
{

static int *status;
static coll_del_rec set_struct;

static char ent_name [MGMT_S_ENTITY_NAME];

set_struct.client_id = client_id;

set_struct.entity_type = MGMT_ACC;

strcpy (ent_name, "*");

set_struct.entity_name = ent_name;
set_struct.collection_class = MGMT_CLASS_ALL;
status = acmsmgmt_delete_collection_1 (&set_struct,cl);

if (!status) {
printf ("\n Call to delete collection failed");
return (MGMT_FATIL) ;

if (*status != MGMT_SUCCESS) {

printf ("\nCall to delete collection failed with status
%d", *status) ;

return (MGMT_FATIL) ;

}
else
printf ("\nCall to delete collection was executed");
free (status)
return (0);

}

In this example, the input record is prepared with key information, and then the call to delete the row is
performed. Following the call to the delete routine, the value pointed by status is checked for success or
failure. In either event, a message is printed out indicating the completion status of the call.

6.8. Add Procedures

Add procedures are available for the Collection and Trap tables. Add procedures provide the ability to
add rows to the corresponding table. As shown in Table 6.6, a separate add procedure is available for
each of these tables.

The add procedures require an input record with an entire table row, including unique key data to be
passed by the caller. The Remote Manager validates the input fields before adding the record, including
checking for duplicate keys. A record is returned with an overall status code indicating the success or
failure of the operation, and with individual status codes for each field indicating which fields are invalid.

73

Chapter 6. Management Programming Using ONC RPC

All calls are synchronous.

See Chapter 8 for details about each call.

Table 6.6. Add Procedures

Procedure Description
acmsmgmt_add_collection_1 Key value is entity, ID, and class.
acmsmgmt_add_trap_1 Key value is entity, ID, and parameter.

6.8.1. Add Example

The following example code shows how a client program calls the acmsmgmt_add_collection_1
procedure to add a collection row.

This example assumes client initialization has been performed as described in Section 6.3.

int add_collection_data (int client_id, CLIENT *cl)
{
static char c_name_all[2] = "xn.
static coll_config_rec_2 set_struct;
struct coll_status_rec_2 *status_rec;

set_struct.client_id = client_id;
set_struct.coll.entity_type = MGMT_ACC;
set_struct.coll.entity_name = c_name_all;
set_struct.coll.collection_class = MGMT_CLASS_ALL;
set_struct.coll.collection_state = MGMT_STATE_ENABLED;
status_rec = acmsmgmt_add_collection_2 (&set_struct,cl);
if (!status_rec) {

printf ("\n Call to add collection record failed");
return (MGMT_FAIL);

if (status_rec—->status == MGMT_WARN) {
printf ("\nThe following fields are invalid: ");
if (status_rec->coll_status_rec_2_u.data_warn.entity_type ==
MGMT_FAIL)

printf ("\n entity_type");
if (status_rec—->coll_status_rec_2 u.data_warn.collection_class
== MGMT_FAIL)
printf ("\n collection_class");
if (status_rec—->coll_status_rec_2 u.data_warn.collection_state
== MGMT_FAIL)
printf ("\n coll _state");

return (0);

else 1f (status_rec—>status != MGMT_SUCCESS) {
printf ("\nCall to add collection failed with status",
status_rec->coll_status_rec_2_u.rc);
xdr_free (xdr_coll_status_rec_2,status_rec);
free(status_rec);
return (0);

74

Chapter 6. Management Programming Using ONC RPC

else
printf ("\nCall to add collection was executed");
xdr_free (xdr_coll_status_rec_2, status_rec);
free(status_rec);
return(l);

}

In this example, the input record is prepared with key and data values, and then the call to add the row is
performed.

Following the call to the add routine, the return record pointer is tested to ensure that it is not NULL
(that is, that the call completed). Then the overall status code (status_rec->status) is checked to
determine whether the add was performed.

A status value of MGMT_WARN indicates that some fields were in error, so individual return codes are
tested to determine which fields were invalid.

A status value other than MGMT_WARN or MGMT_SUCCESS means a general error occurred. A
value of MGMT_SUCCESS means the record was added.

6.9. Start, Stop, and Replace Procedures

These three types of procedures are similar in the way they are called and in the data that is returned

to them, even though they do very different operations. Start and stop procedures are used to start or
stop various ACMS processes; the replace procedure is used to replace a running procedure server in an
application.

An exception is the call to the acmsmgmt_stop_1 procedure, which requests the Remote Manager to shut
down. For more information about the acmsmgmt_stop_1 procedure, see Chapter 8.

For the rest of the start, stop, and replace procedures, an input record, which contains key data or startup
or shutdown qualifier flags, is provided by the caller; the return data contains a status code and a linked

list of status messages. Status messages are generated by ACMSOPER and are returned in their entirety.

(Linked-list processing is illustrated in Section 6.5.1.)

All calls are synchronous.

See Chapter 8 for details about each call.

Table 6.7. Start, Stop, and Replace Procedures

Procedure Description

acmsmgmt_replace_server_1 Key is application name and server name.

acmsmgmt_start_acc_1 No keys; specify auditing, QTI, and terminal
disposition.

acmsmgmt_start_exc_1 Key is application name; no startup qualifiers.

acmsmgmt_start_qti_1 No keys or qualifiers.

acmsmgmt_start_tsc_1 No keys or qualifiers.

acmsmgmt_stop_acc_1 No keys; specify cancel disposition.

acmsmgmt_stop_exc_1 Key is application name; specify cancel disposition.

acmsmgmt_stop_qti_1 No keys or qualifiers.

75

Chapter 6. Management Programming Using ONC RPC

Procedure Description

acmsmgmt_stop_tsc_1 No keys or qualifiers.

6.9.1. Start Example

The following example code shows how a client program calls the acmsmgmt_start_acc_1 procedure to
start ACMS on a remote node. In this example, the QTI and TSC are started along with the system, and
system auditing is enabled.

This example assumes client initialization has been performed as described in Section 6.3.

int start_acc(int client_id, CLIENT *cl)

{

dcl_link *nl;
static acc_startup_rec start_struct;
static cmd_output_rec *ret_struct;

start_struct.client_id = client_id;

start_struct.audit_sw = 1;

start_struct.gti_sw = 1;

start_struct.terminals_sw = 1;

ret_struct = acmsmgmt_start_acc_1 (&start_struct,cl);

if (!ret_struct) {
printf ("\n Call to start ACMS system failed");
return (MGMT_FAIL);

if (ret_struct->status != MGMT_SUCCESS) {

if (ret_struct->status != MGMT_WARN) {
printf ("\nCall to start ACMS system failed with status %d",
ret_struct->status);
xdr_free (xdr_cmd_output_rec, ret_struct);
free (ret_struct);
return (0);

printf ("\n Call to start ACMS system completed with warnings or
errors");

for (nl = ret_struct->cmd_output_rec_u.data.cmd_output; nl != NULL;
nl = nl->pNext)
printf ("\n %s",nl->dcl_msqg);
xdr_free (xdr_cmd_output_rec, ret_struct);
free (ret_struct);
return (MGMT_FAIL);

else {
printf ("\nCall to start ACMS system was executed");
for (nl = ret_struct->cmd_output_rec_u.data.cmd_output; nl != NULL;

nl = nl->pNext)
printf ("\n %s",nl->dcl_msqg);

xdr_free (xdr_cmd_output_rec, ret_struct);

76

Chapter 6. Management Programming Using ONC RPC

free (ret_struct);
return (0) ;

}

In this example, the input record is prepared with qualifier data, and then the call to start the system is
performed. Auditing is enabled, and QTI and TSC will be started with the system.

The return value from the calls to the start, stop (except acmsmgmt_stop_1), and replace procedures is

a pointer to a union. If the pointer returned is NULL, the call has failed. RPC error checking must be
used to determine the cause of the error. If a valid pointer is returned, it points to a structure containing a
union with the following structure:

union cmd_output_rec switch (int status) {
case MGMT_WARN:
cmd_rec data_warn;
case MGMT_SUCCESS:
cmd_rec data;
case MGMT_FATL:
int rc;
default:
void;

b

The status field determines which structure is being returned. If the status is equal to MGMT_FAIL, the
rc field is returned. The rc field contains a status code indicating the reason for failure.

If the status field is not equal to MGMT_WARN or MGMT_SUCCESS, a pointer to a linked list has
been returned. The linked list contains a text field and a forward pointer. By following the forward
pointers, all the records in the list can be retrieved. Section 6.5.1 illustrates how to follow the linked list.

In either case, the example code prints out the contents of all the strings in the linked list. These strings
are status messages returned by ACMSOPER.

71

Chapter 6. Management Programming Using ONC RPC

78

Chapter 7. Management Programming
Using SNMP

Programmers who want to access and maintain the ACMS Remote Manager from their own programs
can use the following two interfaces:

* Open Network Computing (ONC) Remote Procedure Call (RPC)

The ONC RPC interface is for system managers and system programmers who want to write custom
tools and applications that access the ACMS Remote Manager. For more information, see Chapter 6.

* Simple Network Management Protocol (SNMP)

The SNMP interface is provided for integration with enterprise management packages such as
PATROL ® from BMC ® and Tivoli from IBM ®.

This chapter discusses the SNMP interface. Programmers who are familiar with SNMP console
programming can use this information when writing routines that interact with the ACMS Remote
Manager using the SNMP protocol. The information in this chapter is also useful for programmers who
are integrating the ACMS Remote Manager with other enterprise management packages through the
SNMP protocol.

The ACMS Remote Manager implements the management information base (MIB) for SNMP. To
access ACMS MIB information through SNMP, you must have an SNMP-enabled console (such as
PATROL ® from BMC ®) or you can use an SNMP MIB browser such as the one provided by Compaq
TCP/IP Services for OpenVMS, which includes the TCPIP$SNMP_REQUEST.EXE utility.

Alternatively, you can write your own SNMP interface. For more information about programming
SNMP, refer to Windows NT SNMP by James D. Murray, published by O'Reilly & Associates, Inc.,
Sebastopol, CA.

7.1. SNMP Overview

The ACMS Remote Manager implements a MIB for ACMS. When the SNMP interface is enabled,
either during or after Remote Manager process startup, it registers the ACMS subtree with the local
SNMP master agent. SNMP console requests go first to the SNMP master agent (provided by the
installed TCP/IP software, such as Compaq TCP/IP Services for OpenVMS), which in turn delivers
them to the ACMS Remote Manager. Figure 7.1 illustrates the SNMP interface with the ACMS Remote
Manager.

Figure 7.1. SNMP Program Interface with Remote Manager

@Q ShMP master ACREHZS;:DE <::> ACMS
agent (SNMF subagent) run-fime system
_)ﬂuu_ww-

SMMP rmanagement
consoles

Communications between the SNMP interface and the master agent use the eSNMP protocol. This
protocol is transparent to SNMP consoles.

79

Chapter 7. Management Programming Using SNMP

The ACMS Remote Manager provides management information to SNMP management platforms

in response to snmp_get and snmp_getnext messages. Management platforms can modify many
management data elements by sending the appropriate snmp_set message. If any traps have been
configured, the ACMS Remote Manager will generate SNMP traps when the Remote Manager detects a
trap condition (for example, when an ACMS process starts or stops).

All Management table fields are available to SNMP management applications through get operations,
but not all fields can be set. In general, the fields that can be set are Configuration class fields (in ACMS
entity tables) and nearly all Manager configuration table fields. See Chapter 9 for a list of all tables and
fields.

7.2. SNMP Security

Security for the SNMP interface is enforced first by the SNMP master agent (not the ACMS MIB).
SNMP supports the concept of communities, which are essentially node inclusion lists. Whoever
installs and configures the SNMP software package (typically the network manager) sets up SNMP
communities. Nodes that are part of the SNMP community to which the subagent belongs can connect
to the master agent; any node that can connect to the master agent can connect and interact with the
subagent. All SNMP communities are allowed any combination of read, write, and trap access. Nodes
that are not part of the community do not have access to the master agent.

Note that communities work at the node level only. It is not possible to restrict the access of individual
user accounts on the node, although it may be possible to restrict access to the SNMP console software
on a per-user basis. Note also that node authentication itself is relatively weak and provides no
safeguards against masquerades or other forms of network deception.

As a second level of security, the ACMS Remote Manager requires that a special OpenVMS account
(ACMSS$SNMP) be created for the SNMP interface on nodes on which the Remote Manager runs.

The account must be granted OpenVMS rights for read, write, or operate access (or some combination
of these) to Remote Manager data and functions. This allows ACMS system managers to grant read
access, for instance, through the SNMP interface, but to prevent write or operate access. See Section 4.4
for a discussion of how to configure Remote Manager authentication and authorization for the SNMP
interface.

7.3. Initializing the SNMP Interface

In order for SNMP consoles to communicate with the ACMS Remote Manager through SNMP, the
Remote Manager SNMP interface must have been started. The SNMP interface runs as a separate
thread in the Remote Manager and can be started or stopped at any time without restarting the Remote
Manager.

The SNMP interface is started using the SET INTERFACE command. The current state of the interface
can be determined using the SHOW INTERFACE command. Refer to Section 4.5 for more information
about using ACMSCFG and ACMSMGR to start and stop interfaces.

During startup, the SNMP interface first performs some housekeeping tasks and then attempts to register
with the SNMP master agent.

In order for the SNMP interface to initialize successfully, the following conditions must be met:
e The ACMS$SNMP account on the Remote Manager node must exist.

e The ACMS$SMGMT_READ, ACMS$SMGMT_WRITE, and ACMS$SMGMT_OPER rights
identifiers must exist. At least one of these identifiers must be granted to the ACMS$SNMP account.

80

Chapter 7. Management Programming Using SNMP

* The SNMP master agent must be running on the Remote Manager node.

If any of the initialization tasks fail, or if registration fails, the SNMP interface writes error messages to
the Remote Manager log and the thread exits. In this case, users should check the Remote Manager log
for messages, correct the problem, and restart the interface.

During initialization, the Remote Manager establishes a timeout that the master agent will use
when communicating with it. The timeout is based on the value of the Remote Manager parameter
SNMP_AGENT_TIME_OUT.

If initialization is successful, the SNMP interface thread waits for incoming SNMP requests. The wait
times out periodically (based on the Remote Manager parameters SNMP_SEL._TIME_OUT and
SNMP_ARE_YOU_THERE stored in the Parameter table), and checks to make sure the SNMP master
agent is still running by sending an “are you there” message to the master agent. If the master agent
responds, the Remote Manager continues to wait for incoming messages. If the master agent does not
respond, the SNMP interface thread attempts to restart the connection. If the restart fails, the SNMP
thread exits.

7.4. SNMP Tables

The tables in Chapter 9 and the tables defined in the ACMS MIB map to each other on a one-to-one
basis. However, data types are slightly different between SNMP and RPC, most significantly in the use of
the gauge structure type. Section 7.4.1 describes data type mapping.

When accessing any of the ACMS MIB tables, it is important to keep in mind the dynamic nature of the
ACMS run-time system. ACMS entities may be stopped and restarted; collection states for the entities
may change dynamically; new processes (especially EXC and CPs) may be created. It is also important
to understand that the size of some ACMS MIB tables may change when either the ACMS run-time
system is restarted, or even as certain processes are started and stopped.

If the proper access strategies are not used when getting or setting ACMS MIB data, unpredictable and
erroneous results can occur.

Different access strategies must be used for different types of tables. In the ACMS MIB, there are
three types of tables. Specific access strategies for each table type are discussed in separate sections, as
follows:

* Single-row tables (see Section 7.4.2)

e Static tables (see Section 7.4.3)

* Dynamic tables (see Section 7.4.4)

Also refer to Section 7.4.5 for a discussion of how the Server and Task Group tables are indexed.

Regardless of the type of table, identity and state validation should be performed for all ACMS entity
tables (ACC, TSC, CP, QTI, EXC, server, task group).

Identity validation is performed by storing the PID field of the process occupying the row the first time
the row is accessed. Then, when revisiting the table, get the PID along with the data values. Then check
that the PID has not changed. If it has, the data refers to a new process.

Note that the process name is not a good means of identifying a process, because process names can be
reused between entity executions.

81

Chapter 7. Management Programming Using SNMP

Also note PID is not an ID class field for servers and task groups. For these two entity types, the EXC
PID should be used.

State validation is performed by checking the collection state for the class that contains the field. For
instance, if the exc-current-waiting-tasks-num (in the EXC run-time class) is being monitored, ensure

that the exc-rt-coll-state is enabled (equal to 1). Otherwise, the value in that field is no longer being
updated by the EXC, and is no longer accurate.

7.4.1. Data Type Mapping

The ACMS Remote Manager implements three data types:

e Integer
* String
* Gauge

The integer and string data types map directly to the SNMP INTEGER and DisplayString data types.

The gauge data type defined for the Remote Manager is not the same as the SNMP Gauge type. In order
to avoid confusion, the Remote Manager SNMP interface maps the Remote Manager gauge fields to
SNMP INTEGER and DisplayString data types. So for each Remote Manager gauge data type, three
fields are defined in the MIB: the current field value, the maximum (or minimum) field value, and the
maximum (or minimum) field value time.

For example, consider the ACC run-time field current_appls. This is defined as a Remote Manager gauge
data type in Section 9.2. In the MIB, three fields are defined:

acc—current—appls—num INTEGER,
acc—current—appls—max INTEGER,
acc—current—-appls—-time DisplayString

This is the case for all Remote Manager gauge data types. For Remote Manager min gauge data types,
there is a -min field instead of a -max field. For both gauge data types, time is expressed in the form DD-
MMM-YYYY HH:MM_:SS.hh.

7.4.2. Single-Row Tables

Access to single-row tables is straightforward, because only a single row is ever accessed. The following
are single-row tables:

e ACC table
e QTTI table
e TSC table

* Parameter table
* Remote Manager table

Bounds checking need not be performed. However, for Entity tables (ACC, QTI, TSC), both identity and
state validation must be performed.

82

Chapter 7. Management Programming Using SNMP

7.4.3. Static Tables

Static tables are sized when the parent process starts and do not change as long as the parent process is
running. For each static table, there is a field in the table of the parent process that indicates the upper
bound of the static table.

Table 7.1 shows the static tables, their parent process, and the field that indicates the upper bound of the
table.

Table 7.1. Static Tables

Table Parent Process Upper Bound (field and table)

Cp TSC tsc-cp-slots-active in the TSC
table

EXC ACC acc-max-appl-active in the ACC
table

Server EXC exc-server-types in the EXC table

Task Group EXC exc-task-groups in the EXC table

Interfaces Remote Manager rmlIfCt in the Remote Manager
table

Collection Remote Manager totl-entity-slots in the Parameter
table

In static tables, table data is not always contiguous and table rows can be reused. The PID field should be
used to establish process identity.

For example, consider the following CP table. Assume that the first CP is permanent, and the second two
are not.

Table Row CP process name CP PID

1 ACMS01CP001000 2040013D
2 ACMS01CP002000 2040013E
3 ACMS01CP0O03000 2040013F

An SNMP console searching this table sequentially would find all three CP instances; access to table
row 4 would return an error. However, if the users attached to the CP in table row 2 log out, the CP
terminates and the table now looks like this:

Table Row CP process name CP PID

1 ACMS01CP001000 2040013D
2
3 ACMS01CP003000 2040013F

An SNMP console searching this table sequentially and stopping when the first error is returned would
find only the first CP. Access to the second row would return an error. Therefore, when scanning static
tables, it is important to examine all rows of the table before terminating the scan; that is, perform a loop
based on the tsc-cp-slots-active field in the TSC table.

Finally, consider what happens if a new CP now starts. The table would look as follows:

Table Row CP process name CP PID

1 ACMS01CP001000 2040013D
2 ACMS01CP002000 20400140
3 ACMS01CP003000 2040013F

83

Chapter 7. Management Programming Using SNMP

Table row 2 is now valid again, but a different process occupies it. Therefore, any cached information for
table row 2 is invalid and must be refreshed with the data from the new process.

7.4.4. Dynamic Tables

Dynamic tables do not have a fixed upper bound; they grow and shrink as entries are added and
removed. However, data in dynamic tables is always contiguous, so there are never invalid rows stored
between valid rows. When a row becomes invalid because it is empty or unoccupied, it is removed from
the table and the remaining rows are renumbered.

The following are dynamic tables:
* User table
* Log table
* Trap table

To see how a dynamic table changes when a table row is removed, assume that a user table has the
following contents:

Table row User Name Client Id
1 Userl 1
2 User?2 2
3 User3 3
4 User4 4

If User?2 logs out, the contents of the table would change as follows:

Table row User Name Client Id
1 Userl 1
2 User3 3
3 User4 4

As with static tables, you must ensure that the table row being accessed has not been reused or
renumbered. Among dynamic tables, only the Trap table allows updates. Note that entries are never
deleted or modified in the Log table; new entries are always appended to the end.

7.4.5. Servers and Task Groups

The Servers and Task Group tables are indexed by a compound index. For both tables, the first key
value is the table row of the owning EXC; the second key value is the Server or Task Group row. When
fetching or setting Server or Task Group rows, you must first determine the EXC (application) they
belong to, and then determine the particular server or task group.

For example, assume the EXC table has a total of four rows. Application Appll occupies row 1, and has
two servers (ServerA and ServerB) and one task group (TaskGroupA). Application Appl2 occupies row
3 and has two servers (ServerC and ServerD) and two task groups (TaskGroupB, TaskGroupC). EXC
table rows 2 and 4 are unused. Table 7.2 and Table 7.3 list the contents of each table.

Table 7.2. EXC Table (OID 1.3.6.1.4.1.36.2.18.48.13)
Row Contents
1 Appll

2 (unused)

84

Chapter 7. Management Programming Using SNMP

Row Contents

3 Appl2

4 (unused)

Table 7.3. Server Table (OID 1.3.6.1.4.1.36.2.18.48.13)

Key 1 (EXC) Key 2 (Server) Contents

1 1 ServerA

1 2 ServerB

3 1 ServerC

3 2 ServerD
Table 7.4. Task Group Table (OID 1.3.6.1.4.1.36.2.18.48.13)

Key 1 (EXC) Key 2 (Task Group) Contents

1 1 TaskGroupA
3 1 TaskGroupB
3 2 TaskGroupC

In order to access the ser-server-name field for ServerA in application Appll, the OID would be
1.3.6.1.4.1.36.2.18.48.14.1.3.1.1 To access the same field for ServerD in Appl2, the OID would be
1.3.6.1.4.1.36.2.18.48.14.1.3.3.2.

There is no way to determine to which task group a server belongs. In contrast, you can always
determine from the OID which application a server belongs to because ACMS requires that each server
be given a unique name within the application.

7.5. SNMP GET Operations

SNMP get requests are satisfied at the time they are received by the subagent. Get requests can take one
of three forms: get, get next, and get bulk.

* Get operations are simple requests for single data items.
* Get next requests are iterative requests for logically sequential information.
* Get bulk requests obtain a logical sequence of information in a single request.

The SNMP subagent for ACMS supports only the first operation. SNMP “walks”, if performed, return
unpredictable results.

OID's for ACMS Management tables are documented in Section x.x (THIS SECTION IS TO BE
DETERMINED).

7.6. SNMP SET Operations

SNMP set requests are executed at the time they are received by the subagent and are applied to the
running system. However, not all fields that can be set are dynamic; the actual implementation of
modification may not occur until the affected entities are restarted.

For more discussion about updates that modify the ACMS run-time system, see Section 5.3.

85

Chapter 7. Management Programming Using SNMP

OIDs for ACMS Management tables are documented in the file MIB_OID.LIS available from the
directory ACMS$RM_EXAMPLES. The MIB definition for the ACMS subtree is provided in the
ACMS$RM_EXAMPLES directory in file MGMTMIB.MY.

In order for SNMP set requests to complete successfully, the following conditions must be met:

* The ACMS$SNMP account on the Remote Manager node must be granted the ACMS
$MGMT_WRITE or ACMS$SMGMT_OPER identifier, depending on the operation being performed
(see Appendix B).

* The SNMP interface must already be started.
* The ACMS run-time system must already be started (to update ACMS entity information).

General eSNMP return codes for SNMP get requests are returned from the Remote Manager (see
Section 7.10). For details about a specific error, refer to the Remote Manager log.

7.7. Using SNMP to Start and Stop ACMS
Entities

To start and stop ACMS entities (or to stop the Remote Manager), the Remote Manager allows SNMP
users to modify the ID class field running_state. In general, ID class fields are read only. However, since
SNMP does not support a START or STOP command, the SET command must be used.

Modifications to the running_state fields are not performed directly by the Remote Manager. Instead, the
Remote Manager uses ACMSOPER commands to request the shutdown or startup of the ACMS entity.
The ACMS entities update the running_state field when they start or stop.

For instance, to start the ACMS run-time system, an SNMP console program issues an SNMP SET
command for the ACC running_state OID, specifying the value “started”. The Remote Manager
interprets this message as an attempt to start the system and issues the appropriate ACMSOPER
command.

The SNMP set call is synchronous. That is, it does not complete until the ACMS operation has
completed.

Failure messages related to start or stop requests are written to the Remote Manager log.

7.8. SNMP Traps

SNMP traps provide a means of automatically notifying the system support team when a warning or
error condition exists. Users configure SNMP traps in the SNMP trap table; however, note that traps
are not generated unless a corresponding entry exists in the entity/collection table. Refer to the Data
Abstraction for the contents of each of these tables.

At runtime, SNMP traps can be generated either as the result of an error event occurring (i.e. a new entry
being made in the Class 6 table), or if a monitored parameter exceeds (or falls below) a user defined
threshold. The SNMP interface will monitor both sources of data, and will generate traps accordingly.
Note that SNMP traps themselves will result in error records being written, but are not themselves
trappable.

Error events are inspected at the time they are detected by the error collection routines to determine if
a trap should be generated or not. Thresholds are checked on a user defined interval to determine if a

86

Chapter 7. Management Programming Using SNMP

trap should be generated or not. For both sources of traps, a gating factor is used to prevent a persistent
error from flooding the system. After n number of consecutive alarms (where n is the gating factor), the
monitoring interval is continuously doubled, until the error condition does not re-occur. As a matter of
implementation, monitoring of the value is not suspended when the interval is doubled. Instead, traps are
discarded for the duration of the inflated monitoring interval.

It is possible to have SNMP traps generated for the following events: SNMP trap table; when a matching
condition or event occurs, an SNMP trap is generated. SNMP management consoles listen for SNMP
traps and then respond in a console-dependent (and usually user-configurable) manner.

See Section 9.13 for a discussion of the Trap table and the format of trap messages.

At run time, SNMP traps can be generated as the result of either an ACMS process starting or stopping,
or an event that occurred within the Remote Manager (for example, a failure in communications with
ACMS).

ACMS system managers configure traps by modifying the Trap table, either by using the ACMSCFG
utility prior to Remote Manager startup or by using the ACMSMGR utility after the Remote Manager
has been started. Changes made using ACMSCFG do not affect the running system until the Remote
Manager is restarted; changes made using ACMSMGR are not saved when the Remote Manager stops.

The configuration process is the same with either utility. You use the ADD TRAP command to add new
traps, use the DELETE TRAP command to remove traps, and use the SET TRAP command to modify
traps.

Keep in mind that although you can add, delete, or modify entries in the trap table at almost any time,
traps will not be generated unless the SNMP interface is started. In addition, traps are not queued if the
SNMP interface is disabled.

The combination of entity, name, and parameter uniquely identify a trap in the Trap table. For each trap,
a minimum and a maximum value can be specified, along with a severity. Minimum and maximum trap
values specify thresholds that trigger traps when the associated parameter is either greater than or less
than the threshold. Minimum and maximum trap values are parameter specific.

A special value of -1 is used as a placeholder when creating a trap for which a minimum or maximum
does not apply. In many situations, only the minimum or maximum value setting is meaningful. In this
instance, set the desired field (minimum or maximum) to the threshold value, and set the other to -1.
Two trap parameters are supported:

* EXISTS (see Section 7.8.1)

 EVENT_SEVERITY (see Section 7.8.2)

7.8.1. EXISTS Traps

The trap parameter EXISTS allows traps to be generated based on whether an ACMS process starts or
stops.

Specifying a minimum trap value of 1 for a process specifies, in effect, that a trap should be generated
whenever the process stops — that is, when the process existence is less than 1.

Specifying a maximum value of 0 specifies that a trap should be generated whenever the process starts
— that is, when the processes existence is greater than 0.

87

Chapter 7. Management Programming Using SNMP

A minimum value of 0 or a maximum value of 1, while valid, is basically useless, since the EXISTS
parameter is never greater than 1 or less than 0.

7.8.2. EVENT_SEVERITY Traps

The trap parameter EVENT_SEVERITY allows traps to be generated based on the facility and severity
of events being logged to the Remote Manager log. For example, an EVENT_SEVERITY trap can be
configured for Remote Manager SNMP events with severity higher than WARNING (such as ERROR or
FATAL). Any time a Remote Manager SNMP operation fails with a severity higher than WARNING, an
SNMP trap is generated.

Other facilities that can be monitored are:

o (all)

* MGR (Remote Manager main process)

* PROCMON (process monitor thread)

¢ RPC (RPC interface thread)

e SNMP (SNMP interface thread)

* SEC (security routines)

* LOG (event logging thread)

e TIMER (internal timer thread)

* DCL (DCL subprocess management thread)
* MSG_PROC (processes incoming ACMS errors)
* TRAP (trap sender thread)

Use care when you configure traps so that you do not create unnecessary traps. In general, traps are
intended to be used to signal significant events. For instance, specifying a minimum severity of FATAL
or ERROR causes all informational and warning messages to generate traps. This is probably not a good
use of network or console resources.

7.9. SNMP Debug Tracing

In addition to the normal logging the Remote Manager performs, it is possible to enable debug-level
SNMP tracing. This level of tracing is performed by the eSNMP TCP/IP code layer and may not be
available for all TCP/IP products. The Compag TCP/IP Services for OpenVMS product supports debug-
level SNMP tracing. If you use a third-party TCP/IP product, check with that vendor regarding support
for this option.

Debug-level tracing of the Remote Manager SNMP interface can be valuable for developing SNMP
console applications or for trying to debug a particular SNMP environmental problem. However, it is
relatively resource intensive and should be performed in a controlled environment for short durations.

To enable debug-level SNMP tracing, the Remote Manager must be started with the command line
argument LOG_TO_SYSOUT, as follows:

@sysS$Sstartup:acmsSmgmt_startup LOG_TO_SYSOUT

88

Chapter 7. Management Programming Using SNMP

The SNMP_AUDIT_LEVEL parameter must be greater than 0. When the SNMP interface is started,
it will enable debug-level tracing in the eSNMP code layer. All output is directed to SYSSOUTPUT
for the Remote Manager process, which is redirected by the startup command procedure to SYS
$ERRRORLOG:ACMS$MGMT_SERVER.OUT.

7.9.1. Starting SNMP Debug Tracing

To start the Remote Manager with debug-level SNMP tracing, run the startup command procedure SYS
$STARTUP:ACMS$MGMT_STARTUP, specifying LOG_TO_SYSOUT as the only parameter to the
command procedure, as follows:

$ @SYS$STARTUP:ACMS$SMGMT_STARTUP LOG_TO_SYSOUT
Once the Remote Manager has been started and the SNMP interface has been enabled, make sure that

the SNMP_AUDIT_LEVEL parameter is greater than 0. To do this, use the following ACMSMGR
command:

$ ACMSMGR SET PARAM/SNMP_AUDIT_LEVEL=F

The SNMP debug output is written to SYSSERRORLOG:ACMS$MGMT_SERVER.OUT, which is an
ASCII file that can be typed or edited.

7.9.2. Stopping SNMP Debug Tracing

To stop debug-level SNMP tracing, either restart the Remote Manager (without the LOG_TO_SYSOUT
parameter), or use the following command to set the SNMP_AUDIT_LEVEL parameter to O:

$ ACMSMGR SET PARAM/SNMP_AUDIT_LEVEL=0

7.10. Remote Manager eSNMP Return Codes

Table 7.5 describes the return codes returned by the Remote Manager eSNMP routines.

Table 7.5. Remote Manager eSNMP Routines Return Codes

Return Code Description

ESNMP_MTHD_commitFailed An attempt to apply an update failed. This is also
returned from a start or stop attempt that fails.
Refer to the Remote Manager log for details.

ESNMP_MTHD_genErr An internal error occurred. This could be due to
security violations, a failure updating a particular
field, or an internal processing error. Refer to the
Remote Manager log for details.

ESNMP_MTHD_noCreation The table does not allow new rows to be created.
The OID specified for the set operation indicates a
table row that does not exist, and the table does not
allow new rows to be created.

ESNMP_MTHD_noError The set operation was successful.

ESNMP_MTHD_noSuchlInstance A request was made for a variable that does not
exist. Either the OID is invalid, or the particular
table row does not exist (is out of bounds).

89

Chapter 7. Management Programming Using SNMP

Return Code

Description

ESNMP_MTHD_noSuchObject

The column specified does not exist.

ESNMP_MTHD_notWritable

An attempt was made to set a variable that is read
only.

ESNMP_MTHD _resourceUnavailable

The table row exists (is within the bounds of the
table) but is currently unused (empty).

ESNMP_MTHD_wrongValue

An attempt was made to update a field with an
invalid value.

90

Part Il. Reference Information

Part II contains reference information for the ACMS Remote Manager.

91

92

Chapter 8. Management APlIs

The Management APIs are intended to be called from Open Network Computing (ONC) Remote
Procedure Call (RPC) clients. ONC RPC Interface Definition Language (IDL) for all procedures is
contained in the file ACMS$RM_EXAMPLES:ACMSMGMT _RPC.X.

Programmers who write client programs are strongly urged to become familiar with the contents of
this file. Many programming questions can be answered by looking at the actual RPC definitions. All
structure definitions, for example, are contained within this file.

Note

The acms$mgmt_get_creds procedure is not included in the ACMSMGMT_RPC.X IDL because

it is not a remote procedure call. It is a statically linked, locally executed function for those clients
performing explicit authentication. The ACMS$MGMT_GET_CREDENTIALS.OBJ object module is
located in the ACMS$SRM_EXAMPLES directory.

The acms$mgmt_get_creds procedure is for use by ONC RPC clients only.

8.1. Common RPC Fields

The tables in this section list commonly used fields and their values.

8.1.1. Collection Classes

Table 8.1 shows the symbolic names for Remote Manager collection classes.

Table 8.1. Collection Classes

Symbolic Name Description
MGMT_CLASS_ALL All classes
MGMT_CLASS_CFG Config class
MGMT_CLASS_ID ID class
MGMT_CLASS_POOL Pool class
MGMT_CLASS_RT Runtime class

8.1.2. Interface Types

Table 8.2 shows the symbolic names for Remote Manager interfaces.

Table 8.2. Interface Types

Symbolic Name Description

MGMT_IF_RPC Remote Procedure Call (RPC) interface

MGMT_IF_SNMP Simple Network Management Protocol (SNMP)
interface

8.1.3. Enable States

shows the symbolic names for Remote Manager enable states.

93

Chapter 8. Management APIs

Table 8.3. Enable States

Symbolic Name Description
MGMT_STATE_DISABLED Disabled
MGMT_STATE_ENABLED Enabled

8.1.4. Entity Types

Table 8.4 shows the symbolic names for Remote Manager entity types.

Table 8.4. Entity Types

Symbolic Name Description

MGMT_ACC Application Central Controller (ACC) process
MGMT_ALL All entities

MGMT_CP Command Process (CP) process
MGMT_EXC Application Execution Controller (EXC) process
MGMT_MGR Remote Manager process

MGMT_QTI Queued Task Initiator (QTT) process
MGMT_SER Procedure server types

MGMT_TG Task groups

MGMT_TSC Terminal Subsystem Controller (TSC) process
MGMT_UNSUPPORTED Null value

8.1.5. Facility Types

Table 8.5 shows the symbolic names for Remote Manager facility types.

Table 8.5. Facility Types

Symbolic Name Description

MGMT_FAC_ALL Any facility type.

MGMT_FAC_DCL A thread that manages a spawned DCL process.
The DCL process is used to execute ACMSOPER
commands.

MGMT_FAC_LOG The event log writer thread.

MGMT_FAC_MGR The mainline Remote Manager process.

MGMT_FAC_MSGPROC A thread that handles messages coming in from
ACMS processes.

MGMT_FAC_PROCMON A thread dedicated to monitoring processes.

MGMT_FAC_RPC The RPC interface thread (listener and
procedures).

MGMT_FAC_SEC Security routines in the Remote Manager.

MGMT_FAC_SNMP The SNMP interface thread (message loop and
procedures).

94

Chapter 8. Management APIs

Symbolic Name Description

MGMT_FAC_TIMER A thread that controls timers for the Remote
Manager.

MGMT_FAC_TRAP A thread that sends out SNMP traps.

8.1.6. Running States

Table 8.6 shows the symbolic names for Remote Manager running states.

Table 8.6. Running States

Symbolic Name Description

MGMT_STATE_INITED Process or object has initialized.
MGMT_STATE_INITING Process or object is initializing.
MGMT_STATE_LOAD_DONE Process or object has finished loading.

MGMT _STATE_LOADING Process or object is loading itself.
MGMT_STATE_STARTED Process or object has started and is ready to run.
MGMT_STATE_STARTING Process or object is starting the mainline.
MGMT_STATE_STOPPED Process or object is stopped.

8.1.7. Severity Codes

Table 8.7 shows the symbolic names for Remote Manager severities.

Severities are generally reported as simple severities (informational, warning, error, fatal) but may
be combined by logically ORing the values when used as selection criteria (such as for selecting log
records).

Table 8.7. Severity Codes

Symbolic Name Description
MGMT_SEV_ERR Error
MGMT_SEV_FATAL Fatal
MGMT_SEV_INFO Informational
MGMT_SEV_NONE Null value
MGMT_SEV_WARN Warning

8.1.8. Trap Parameters

The table below shows the symbolic names for Remote Manager trap parameters.

Table 8.8. Trap Parameters

Symbolic Name Description
MGMT_EXISTS Existence traps
MGMT_SEVERITY Remote Manager severity traps

95

Chapter 8. Management APIs

8.2. Thread-Safe and Non-Thread Safe Clients

Each of the procedures documented in this chapter (and those in ACMS$MGMT_EXAMPLES.C) are
designed to use the thread-safe client stub provided with the Remote Manager, as described in the file
ACMS$SMGMT_EXAMPLES_BUILD.COM. As a result, each procedure contains one or more "free"
calls that prevent memory leaks in multithreaded client implementations.

If you intend to build a multithreaded client, you must modify any existing, customized API functions to
include these calls, then recompile them along with the thread-safe client stub.

If you want to implement a non-thread safe client using the RPC-generated stub, omit the "free" calls.
See ACMSSMGMT _EXAMPLES BUILD.COM for detailed build instructions.

8.3. ACMSMGMT ADD COLLECTION 2
ACMSMGMT ADD_COLLECTION 2

ACMSMGMT_ADD_COLLECTION_2 — This procedure adds entries to the Remote Manager
Collection table. Collection table entries can also be modified and deleted.

Format

coll _status_rec_2 *acnmsngnt _add_col |l ection_2(coll _config rec_2 *set_struct, CLI ENT

Parameters
set struct
Type: Coll_config_rec_2
Access: Read
Mechanism: By reference
Usage: Structure that contains the following client identification and Collection table
fields.
client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is being used, a valid
client ID must be provided. If the value for
client_id is 0, proxy access is used. Client_id is
obtained by calling the acms$mgmt_get_creds
procedure.
coll
Type: Coll_update_rec_r_2
Access: Read
Mechanism: By value

96

Chapter 8. Management APIs

Usage:

Structure containing a Collection table record.
Collection table fields are described in Section 9.4.
See the Description section for information on how
to initialize this record.

cl

Type: CLIENT *

Access: Read

Mechanism: By value

Usage: Pointer to an RPC client handle previously obtained by calling the
RPC routine CLNT_CREATE.

Return Value

Type: Coll_status_rec_2
Access: write
Mechanism: By reference
Usage: Pointer to a record that contains a union consisting of either a
failure code or a structure of type coll_update_rec_r_2, which
contains status codes for each field. See the Description section for
a discussion of how to determine the update status for any field. The
following are the contents of this union:
status
Type: Integer
Access: write
Mechanism: By value
Usage: Failure return code.
data_warn
Type: Coll_output_rec_r_2
Access: write
Mechanism: By value
Usage: Structure containing a Collection
table record. The entries in
this field contain status codes
corresponding to the fields in the
coll structure. See the Description
section for a discussion of how to
determine the update status for
any field.
Description

This procedure adds a row to the Collection table (see Section 9.4).

97

Chapter 8. Management APIs

Additions to this table are not durable; that is, they do not survive a restart of the Remote Manager. To
make nondynamic, permanent updates to the Collection table, use the ACMSCFG utility.

Calls to this procedure must specify entity_type, entity_name, and collection_class. The combination
of these fields must be unique within the collection table for the row to be added. Tables above contain
symbolic values used to populate the entity_type and collection_class fields; entity_name is specified as
a null-terminated string.

ID and Config class rows cannot be added. By default, these classes are always enabled for all ACMS
processes.

The Collection table contains a fixed number of rows, which is determined by the Remote Manager
parameter total_entity_slots. This is a nondynamic parameter and requires a restart of the ACMS system
in order to be changed. The default is 20 rows.

Additions to the Collection table are processed immediately, and may affect more than one ACMS
process.

Example

int add_collection_data (int client_id, CLIENT *cl)
{

static char c_name_all[] = "*";

static coll_config_rec_2 set_struct;

struct coll_status_rec_2 *status_rec;
set_struct.client_id = client_id;
set_struct.coll.entity_type = MGMT_ALL;
set_struct.coll.entity_name = c_name_all;
set_struct.coll.collection_class = MGMT_CLASS_RT;
set_struct.coll.collection_state = MGMT_STATE_DISABLED;
status_rec = acmsmgmt_add_collection_2 (&set_struct,cl);
if (!status_rec) {

printf ("\n Call to add collection failed");
return (MGMT_FAIL);

if (status_rec—->status == MGMT_WARN) {
printf ("\nThe following updates failed: ");
if (status_rec->coll_status_rec_2_u.data_warn.entity_type ==
MGMT_FAIL)

printf ("\n entity type invalid");
if (status_rec->coll_status_rec_2 u.data_warn.collection_state
== MGMT_FAIL)
printf ("\n coll_state invalid");

if (status_rec->coll_status_rec_2_u.data_warn.storage_state ==
MGMT_FAIL)

printf ("\n storage_state invalid");
if (status_rec->coll_status_rec_2_u.data_warn.storage_interval
== MGMT_FAIL)
printf ("\n storage_interval invalid");
}
else if (status_rec->status != MGMT_SUCCESS) {

printf ("\nCall to add collection with status %d",

98

Chapter 8. Management APIs

status_rec->coll_status_rec_2_u.rc);
xdr_free (xdr_coll_status_rec_2, status_rec);
free(status_rec);
return (MGMT_FAIL);
}

else
printf ("\nCall to add collection was executed");
xdr_free (xdr_coll_status_rec_2, status_rec);
free(status_rec);
return(0);

}

In the preceding example, the ACMSMGMT_ADD_COLLECTION_2 procedure is called to add a row
to the Collection table. The row added is for entity type of * (all), entity name of * (all), and collection
class RUNTIME. The collection state is set to DISABLED. If the call succeeds, a Collection table row
is added, and the RUNTIME collection state for some processes may be disabled. Otherwise, an error
message is displayed.

ACMSMGMT ADD_ERR FILTER 2

ACMSMGMT_ADD_ERR_FILTER_2 — This procedure adds entries to the ACMS Error Filter table.
Error Filter table entries can also be deleted.

Format
error_filter_config rec_r_2 *acnsngnt_add_err _filter_2(err_filter_config_rec_
Parameters

err_filter_cfg_rec

Type: Err_filter_config_rec_r_2
Access: Read
Mechanism: By reference
Usage: Structure that contains the following client identification and Error
Filter table fields.
client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is being
used, a valid client ID must be
provided. If the value of client_id
is 0, proxy access is used.
Client_id is obtained by calling
the acms$mgmt_get_creds
procedure.
error_code

99

Chapter 8. Management APIs

Type: Integer
Access: Read
Mechanism: By value
Usage: Structure containing an Error
Filter table record. Error Filter
table fields are described in
Section 9.4. See the Description
section for information on how to
initialize this record.
cl2
Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling the

RPC routine CLNT_CREATE.

Return Value

Type: Err_filter_status_rec

Access: Write

Mechanism: By reference

Usage: Pointer to a record that contains a union consisting of either a

failure code or a structure of type err_filter_update_rec_r, which
contains status codes for each field. See the Description section for
a discussion of how to determine the update status for any field. The
following are the contents of this union:

status

Type: Integer

Access: Write

Mechanism: By value

Usage: Failure return code.
data_warn

Type: Err_filter_update_rec_r
Access: Write

Mechanism: By value

Usage: Structure containing an Error

Filter table record. The entries
in this field contain status codes
corresponding to the fields in
the err_filter_entry structure.
See the Description section for a
discussion of how to determine
the update status for any field.

100

Chapter 8. Management APIs

Description

This procedure adds a row to the Error Filter table.

Additions to this table are durable; that is, they do survive a restart of the Remote Manager.
Calls to this procedure must specify a valid message_code for the row to be added.

The Error Filter table is dynamic and does not have a fixed upper boundary. The size of the table
fluctuates as entries are added and deleted. When a row becomes empty or unoccupied, it is removed
and the remaining rows are renumbered.

Additions to the Error Filter table are processed immediately, and may affect more than one ACMS
process.

Example

int add_err_filter (int client_id,CLIENT *cl2)
{

int *status;
err_filter_config_rec_r_ 2 set struct;

set_struct.client_id = client_id;
set_struct.err_code = 16637820;
status = acmsmgmt_add_err_filter_ 2 (&set_struct,cl2);

if (!status) {
printf ("\n Call to add filter failed");
return (MGMT_FAIL) ;

if (*status != MGMT_SUCCESS) {
printf ("\nCall to add error filter failed with status %d", *status);
free(status);
return (MGMT_FAIL) ;
}

else {
printf ("\nCall to add error filter was executed");

free(status);
return(0);

}

In the preceding example, the acmsmgmt_add_err_filter_2 procedure is called to add a row to the Error
Filter table. If the call succeeds, the filter is added to the Error Filter table. Otherwise, an error message
is displayed.

ACMSMGMT_ADD_TRAP_1

ACMSMGMT_ADD_TRAP_1 — This procedure adds entries to the Remote Manager Trap table. Trap
table entries can also be modified and deleted.

Format

trap_status_rec *acnmsngmt _add _trap_1(trap_config rec *set_struct, CLIENT *cl)

101

Chapter 8. Management APIs

Parameters
set_struct
Type: Trap_config_rec
Access: Read
Mechanism: By reference
Usage: Structure that contains the following client identification and Trap
table fields.
client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is being
used, a valid client ID must be
provided. If the value of client_id
is 0, proxy access is used.
Client_id is obtained by calling
the acms$mgmt_get_creds
procedure.
trap_entry
Type: Trap_update_rec_r
Access: Read
Mechanism: By value
Usage: Structure containing a Trap
table record. See the Description
section for information on how to
initialize this record.
cl
Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling the

RPC routine CLNT_CREATE.

Return Value

Type: Trap_status_rec
Access: Write
Mechanism: By reference

102

Chapter 8. Management APIs

the contents of this union:

Usage: Pointer to a record that contains a union consisting of either a failure
code or a structure of type trap_update_rec_r, which contains status
codes for each field. See the Description section for a discussion of
how to determine the update status for any field. The following are

status

Type: Integer

Access: Write

Mechanism: By value

Usage: Failure return code.
data_warn

Type: Trap_update_rec_r
Access: Write

Mechanism: By value

Usage: Structure containing a Trap

table record. The entries in
this field contain status codes
corresponding to the fields in
the trap_entry structure. See
the Description section for a

discussion of how to determine

the update status for any field.

Description

This procedure adds a row to the Trap table.

Additions to this table are not durable; that is, they do not survive a restart of the Remote Manager. To
make nondynamic, permanent updates to the Trap table, use the ACMSCFG utility.

Calls to this procedure must specify entity_type, entity_name, and param_to_trap. The combination
of these fields must be unique within the Trap table for the row to be added. Table 8-1 and Table §8-4
contain symbolic values used to populate the collection_class and entity_type fields.

Setting fields trap_min, trap_max and/or severity to -1 causes them to be ignored when trap conditions

are evaluated at run time. Otherwise, they must contain valid values for the row to be added (trap_min

and trap_max must be position numbers; severity must be one of the valid severities).

Additions to the Trap table are processed immediately, and may affect more than one ACMS process.

The size of the Trap table is unbounded.

Example

int add_trap_data(int client_id,CLIENT *cl)
{

static char c_name_all[2] = "*";
static trap_config_rec set_struct;
struct trap_status_rec *status_rec;

103

Chapter 8. Management APIs

set_struct.client_id = client_id;

set_struct.trap_entry.entity_type = MGMT_ACC;
set_struct.trap_entry.entity_name = c_name_all;
set_struct.trap_entry.param_to_trap = MGMT_EXISTS;
set_struct.trap_entry.min = -1;
set_struct.trap_entry.max = 0;
set_struct.trap_entry.severity = MGMT_SEV_ERR;

status_rec

= acmsmgmt_add_trap_1 (&set_struct,cl);

if (!status_rec) {
printf ("\n Call to add trap failed");
return (MGMT_FAIL);

if (status_
printf ("\nThe following fields are invalid:

rec—->status == MGMT_WARN) {

")

if (status_rec—->trap_status_rec_u.data_warn.entity_type ==

MGMT_FAIL)
printf ("\n entity_type not found or invalid");
if (status_rec->trap_status_rec_u.data_warn.param_to_trap ==
MGMT_FAIL)
printf ("\n param not found or invalid");

if (status_rec->trap_status_rec_u.data_warn.min
printf ("\n min invalid");

if (status_rec->trap_status_rec_u.data_warn.max
printf ("\n max invalid");

if (status_rec->trap_status_rec_u.data_warn.severity

printf ("\n severity invalid");

}
else 1f (status_rec—>status != MGMT_SUCCESS) {
printf ("\nCall to add trap failed with status %d",
status_rec->trap_status_rec_u.rc);

MGMT_FAIL)

MGMT_FAIL)

== MGMT_FAIL)

xdr_free (xdr_trap_status_rec,

status_rec);

free(status_rec);
return (MGMT_FAIL);

}

else

printf ("\nCall to add trap was executed");

xdr_free (xdr_trap_status_rec,

status_rec);

free(status_rec);

return(0);

In the preceding example, the ACMSMGMT_ADD_TRAP_1 procedure is called to add a row to

the Trap table. The new row will contain an entity type of ACC, an entity name of * (all), and a trap
parameter of EXISTS. The value of the trap_min field is -1 (ignored), and the value of the trap_max
field is 0. The severity of the trap will be error. The effect of this addition is to cause an error-level trap
to be generated whenever the ACC is started on the target node. If the call succeeds, the trap is added to

the Trap table. Otherwise, an error message is displayed.

ACMSMGMT_DELETE_COLLECTION_1

ACMSMGMT_DELETE_COLLECTION_1 — This procedure deletes entries from the Remote

Manager Collection table. Collection table entries can also be added and updated.

104

Chapter 8. Management APIs

Format

int *acnmsngnt _del ete_collection_1(coll _del _rec *set_struct, CLI ENT *cl)

Parameters

set_struct

Type: Coll_del_rec

Access: Read

Mechanism: By reference

Usage: Structure that contains the following client identification and

Collection table fields.

client_id

Type: Integer

Access: Read

Mechanism: By value

Usage: If explicit authentication is
being used, a valid client
ID must be provided. If the
value for client_id is O, proxy
access is used. Client_id is
obtained by calling the acms
$mgmt_get_creds procedure.

entity_type

Type: Integer

Access: Read

Mechanism: By value

Usage: The type of ACMS entity the

process is.

entity_name

Type: Null-terminated string
Access: Read

Mechanism: By reference

Usage: Pointer to a character string

containing a full or partial entity
name. May contain wildcard
characters (¥, !).

collection_class

Type:

Integer

105

Chapter 8. Management APIs

Access: Read
Mechanism: By value
Usage: The type of collection class to
delete.
cl
Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling the
RPC routine CLNT_CREATE.

Return Value

Type: Integer

Access: Write

Mechanism: By reference

Usage: Pointer to a status code containing a success or failure status code.
MGMT_SUCCESS indicates success. Other values indicate failure.

Description

This procedure deletes a row from the Collection table.

Calls to this procedure must specify entity_type, entity_name, and collection_class. The combination
of these fields must exactly match an existing row in the table for the row to be deleted. Table 8-1
and Table 8-4 contain symbolic values used to populate the collection_class and entity_type fields;
entity_name is specified as a null-terminated string.

ID and CONFIG class rows cannot be deleted.

The Collection table contains a fixed number of rows, which is determined by the Remote Manager
Parameter table field total_entity_slots. This is a nondynamic parameter and requires a restart of the
ACMS system in order to be changed. The default is 20 rows. When a row is deleted, it becomes

immediately available for reuse.

Deletions from the collection table are processed immediately, and may affect more than one ACMS

process.

Example

int delete_collection_data(int client_id, CLIENT *cl)

{

static char c_name_all[] = "*";
static coll_del_rec set_struct;

int *status;

set_struct.client_id
set_struct.entity_type
set_struct.entity_name

client_id;
= MGMT_ALL;
c_name_all;

106

Chapter 8. Management APIs

set_struct.collection_class = MGMT_CLASS_RT;
status = acmsmgmt_delete_collection_1 (&set_struct,cl);

if (!status) {
printf ("\n Call to delete collection failed");
return (MGMT_FAIL);

if (*status != MGMT_SUCCESS) {
printf ("\n Call to delete collection failed with status %d", *status);
free (status);
return (MGMT_FAIL);
}

else
printf ("\nCall to delete collection was executed");
free (status);
return(0);

}

In the preceding example, the ACMSMGMT_DELETE_COLLECTION_1 procedure is called to delete
a row from the Collection table. The row deleted is for entity type of * (all), entity name of * (all),

and a collection class of RUNTIME. If the call succeeds, the collection table row is deleted, and the
RUNTIME collection state for some processes may be changed depending on the collection state of the
row before it was deleted. Otherwise, an error message is displayed.

ACMSMGMT DELETE_ERR_FILTER 2

ACMSMGMT_DELETE_ERR_FILTER_2 — This procedure deletes entries from the Remote Manager
Error Filter table. Error Filter table entries can also be added.

Format

int *acmsngnt _delete _err _filter_ _2(err_del _rec *set _struct, CLI ENT *cl 2)

Parameters
set_struct
Type: Err_del_rec
Access: Read
Mechanism: By reference
Usage: Structure that contains the following client identification and Error
Filter table fields.
client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is
being used, a valid client

107

Chapter 8. Management APIs

ID must be provided. If the
value for client_id is O, proxy
access is used. Client_id is
obtained by calling the acms
$mgmt_get_creds procedure.

error_code
Type: Integer
Access: Read
Mechanism: By value
Usage: The type of ACMS entity the
process is.
cl2
Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling the

RPC routine CLNT_CREATE.

Return Value

Type: Integer

Access: Write

Mechanism: By reference

Usage: Pointer to a status code containing a success or failure status code.
MGMT_SUCCESS indicates success. Other values indicate failure.

Description

This procedure deletes rows from the Error Filter table.

The Error Filter table is dynamic and does not have a fixed upper boundary. The size of the table
fluctuates as entries are added and deleted. When a row becomes empty or unoccupied, it is removed
and the remaining rows are renumbered.

Changes to the Error Filter table are processed immediately, and may affect more than one ACMS

process.

Example

int delete_err_filter (int client_id,CLIENT *cl2)

{

int *status;

err_filter_config_rec_r_ 2 set_struct;

set_struct.client_id
set_struct.err_code

client_id;
= 16638720;

108

Chapter 8. Management APIs

status = acmsmgmt_delete_err_filter_2 (&set_struct,cl2);

if (!status) {
printf ("\n RPC Call to delete filter failed");
return (MGMT_FAIL);

}

if (*status != MGMT_SUCCESS) {
printf("\n Call to delete error filter failed with status
&d", *status) ;
free(status);
return (MGMT_FAIL);
}

else {
printf ("\n Call to delete error filter was executed");
}
free(status);
return(0);

}

In the preceding example, the acmsmgmt_delete_err_filter_2 procedure is called to delete a row from
the Error Filter table.

ACMSMGMT_DELETE_TRAP_1

ACMSMGMT_DELETE_TRAP_1 — This procedure deletes entries from the Remote Manager Trap
table. Trap table entries can also be added and updated.

Format

int *acnmsngnt _delete_trap_1(trap_del _rec *set_struct, CLI ENT *cl)

Parameters
set_struct
Type: Trap_del_rec
Access: Read
Mechanism: By reference
Usage: Structure that contains the following client identification and Trap
table fields.
client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is

being used, a valid client

ID must be provided. If the
value for client_id is O, proxy
access is used. Client_id is

109

Chapter 8. Management APIs

obtained by calling the acms
$mgmt_get_creds procedure.

entity_type

Type: Integer

Access: Read

Mechanism: By value

Usage: The type of ACMS entity the

process is.

entity_name

Type: Null-terminated string
Access: Read

Mechanism: By reference

Usage: Pointer to a character string

containing a full or partial entity
name. May contain wildcard
characters (¥, !).

param_to_trap

Type: Integer
Access: Read
Mechanism: By value
Usage: The type of parameter to be
monitored for trap conditions.
cl
Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling the

RPC routine CLNT_CREATE.

Return Value

Type: Integer

Access: Write

Mechanism: By reference

Usage: Pointer to a status code containing a success or failure status code.
MGMT_SUCCESS indicates success. Other values indicate failure.

Description

This procedure deletes rows from the Trap table.

Calls to this procedure must specify entity_type, entity_name, and param_to_trap. These fields must
exactly match an existing record in the Trap table for the delete to be performed. Table 8-1 and table 8-4

110

Chapter 8. Management APIs

contain symbolic values used to populate the collection_class and entity_type fields; symbolic values to
the param_to_trap field are described in Table 8-8.

Deletions from the Trap table are processed immediately and may affect more than one ACMS process.

Example

int delete_trap_data(int client_id, CLIENT *cl)
{

static char c_name_all[2] = "*";
static trap_del_rec set_struct;
static int *status;

set_struct.client_id client_id
set_struct.entity_type = MGMT_ACC;
set_struct.entity_name c_name_all;
set_struct.param_to_trap MGMT_EXISTS;

status = acmsmgmt_delete_trap_1 (&set_struct,cl);

if (!status) {
printf ("\n Call to delete trap failed");
return (MGMT_FAIL) ;

if (*status != MGMT_SUCCESS) {
printf ("\nCall to delete trap failed with status %d", *status);
free(status);
return (MGMT_FAIL);
}

else
printf ("\nCall to delete trap was executed");
free(status);
return(0) ;

}

In the preceding example, the ACMSMGMT_DELETE_TRAP_1 procedure is called to delete a row
from the Trap table. The row to be deleted contains an entity type of ACC, an entity name of * (all), and
a trap parameter of EXISTS. If the call succeeds, the trap is deleted from the Trap table. Otherwise, an
error message is displayed.

ACMSMGMT_GET ACC 2

ACMSMGMT_GET_ACC_2 — ACMS Remote Manager clients call this procedure to obtain class
information about an ACMS Central Controller (ACC) on a local or remote node.

Format
acc_rec_out 2 *acnmsngnt _get _acc_2 (sub_id_struct *sub_rec, CLI ENT *cl)
Parameters

sub_rec

Type: Sub_id_struct

111

Chapter 8. Management APIs

Access: Read
Mechanism: By reference
Usage: Structure that contains the following client authorization
information.
client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is
being used, a valid client
ID must be provided. If the
value for client_id is O, proxy
access is used. Client_id is
obtained by calling the acms
$mgmt_get_creds procedure.
cl
Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling the
RPC routine CLNT_CREATE.

Return Value

Type: Acc_rec_out_2

Access: Write

Mechanism: By reference

Usage: Pointer to record returned. If NULL, the RPC has

failed. If not null, the record contains either an
error code in the status field (the RPC succeeded,
but the call failed for another reason) or the data
requested.

Description

This procedure obtains class information about an ACC. The return pointer points to a record of type
acc_rec_out_2, which contains a union consisting of either a failure return code or a pointer to an ACC
record.

If the ACMS run-time system is not running when this call is issued, the Remote Manager returns the
MGMT_NOT_MAPPED error code.

Example

int get_acc_data(int client_id,CLIENT *cl)
{

112

Chapter 8. Management APIs

acc_rec_r_2 *accs;
acc_rec_out_2 *acc_rec;

static struct sub_id_struct sub_rec;
int status;

sub_rec.client_id = client_id;
acc_rec = acmsmgmt_get_acc_2 (&sub_rec,cl);
if (lacc_rec) {

printf ("\n RPC Call to get ACC data failed");
return (MGMT_FAIL);

}
if (acc_rec—->status != MGMT_SUCCESS) {
printf ("\n Call to get ACC data failed, returning status code %d",
acc_rec—->status);
xdr_free (xdr_acc_rec_out_2, acc_rec);
free (acc_rec);
return (status);
}
accs = &acc_rec—>acc_rec_out_2_u.acc_rec;

printf ("\n ACC version is %s",accs—->acms_version);
xdr_free (xdr_acc_rec_out_2, acc_rec);
free (acc_rec);

return(0);

}
In the preceding example, the ACMSMGMT_GET_ACC_2 procedure is called to fetch ACC

management information. If the call succeeds, the ACC version is printed from the retreived record.
Otherwise, an error message is displayed.

ACMS$MGMT GET CREDS

ACMS$MGMT_GET_CREDS — Clients that support explicit authentication call this procedure to

obtain a client ID. A client ID is issued for the client process when the client process logs in to the

ACMS Remote Manager using the ACMSMGR LOGIN command. Once obtained by this procedure, the
client ID is used on subsequent RPC calls.

Format

int acne$ngnt _get creds(char *server_node, char *user_nane, int *client)

Parameters

server_node

Type: String
Access: Read

Mechanism: By reference

113

Chapter 8. Management APIs

Usage: Name of the node the server that issued the client ID was running
on; the node that will be accessed. Client_id is valid only for the
server that issued it.

user_name

Type: String

Access: Read

Mechanism: By reference

Usage: Name of the user the client ID was issued to, and on whose behalf
the client ID is used. The name may the same as or different than
the account name of the client process.

client

Type: Integer

Access: Write

Mechanism: By reference

Usage: The client ID to be used for the target user on the target server node.

The client ID is valid only for the client process that created it.

Return Value

Type: Integer
Access: Write
Mechanism: By value
Usage: The completion status of the call. The following are possible return
values:
Value Description
MGMT_SUCCESS Client ID was fetched; credentials
verified.
MGMT_NO_NODELOGICAL |Can't translate UCX
$INET_HOST logical name to
get local node name.
MGMT_NO_CREDS_FILE Credentials file was not found.
MGMT_CREDS_DATA_ERR |Credentials file is corrupt.
MGMT_WRONG_PID PID in credentials file doesn't
match client process's PID.
MGMT_WRONG_NODE Node name in credentials file
doesn't match server_node
argument.
Description

Clients call this procedure to fetch a previously created client ID from an encrypted credentials file.
Credentials files can be created only by the ACMSMGR LOGIN command. They are stored in the

114

Chapter 8. Management APIs

directory pointed to by the logical name ACMS$MGMT_CREDS_DIR (or SYS$LOGIN if ACMS
$MGMT_CREDS_DIR is not defined). Credentials files are named using the following format:

user—-name_pid_target-node_current-node.dat
In this format:

* user-name must match the user_name argument string.

* pid must match the PID of the client process.

* target-node must match the server_node argument string.

* current-node must be the local node name (as determined by the logical name UCXS$INET_HOST).

Note

For credentials information to be created, the client process must first execute the login command of the
ACMSMGR utility. The only way to create credentials files is by using the ACMSMGR utility.

If the credentials file cannot be located, opened, and read, an error is returned. Once opened and read,
the credentials in the file are verified. If the credentials are acceptable, the client_id field is populated
and the procedure returns a status that indicates success.

This procedure is statically linked and locally executed.

Example

#include <rpc/rpc.h>
#include string
#include "acmsmgmt_rpc.h"

CLIENT *cl;

char sname[] = "sparks";

char *username_p, username[l13] = "";
int client_id;

int status;

int acms$Smgmt_get_creds () ;

int main ()

{

/* 1f the logical is defined, credential information will be used */
username_p = getenv ("ACMSSMGMT_USER") ;
if (username_p)

strcpy (username, username_p) ;

/* establish an rpc connection to the server */
cl = clnt_create(sname, ACMSMGMT_RPC, ACMSMGMT_VERSION, "tcp");

/* 1f the connection was established */
if (cl != NULL) {

/* create a security context */
cl->cl_auth = authunix_create_default ();
client_id = 0;

115

Chapter 8. Management APIs

/* optionally, get credentials for this user & server */
if (strlen (username))
status = acms$mgmt_get_creds (sname,username, &client_id) ;

}

return(l);

}

The preceding example is a program that performs initialization for an ACMS Remote Manager client.
The program calls the acms$mgmt_get_creds procedure to obtain the client ID for the user whose name
is defined by the logical name ACMS$SMGMT_USER on the node SPARKS.

ACMSMGMT_GET_ERR_FILTER 2
ACMSMGMT_GET_ERR_FILTER_2 — ACMS Remote Manager clients call this procedure to obtain

a listing of system messages currently being filtered from the Remote Manager, and subsequently, the
error log.

Format

int *acmsnmgnmt _get _err _filter 2 (sub_id struct *sub id rec, CLI ENT *cl 2)

Parameters
sub_id_rec
Type: Sub_id_struct
Access: Read
Mechanism: By reference
Usage: Structure that contains the following client authorization
information.
client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is
being used, a valid client
ID must be provided. If the
value for client_id is O, proxy
access is used. Client_id is
obtained by calling the acms
$mgmt_get_creds procedure.
cl2
Type: CLIENT *
Access: Read

116

Chapter 8. Management APIs

Mechanism: By value

Usage: Pointer to an RPC client handle previously obtained by calling the
RPC routine CLNT_CREATE.

Return Value

Type: Err_filter_data_list_2

Access: Write

Mechanism: By reference

Usage: Pointer to record returned. If NULL, the RPC has

failed. If not null, the record contains either an
error code in the status field (the RPC succeeded,
but the call failed for another reason) or the data
requested.

Description

This procedure obtains class information about an Error Filter. The return pointer points to a record of
type err_filter_data_list_2, which is a union containing either an error code or a pointer to an Error Filter
record.

If the ACMS run-time system is not running when this call is issued, the Remote Manager returns the
MGMT_NOT_MAPPED error code.

Example

int get_err_filter (int client_id,CLIENT *cl2)
{

int status;

err_filter_data_list_2 *err_filter;
err_filter_link_2 *nl;

struct sub_id_struct sub_rec;

sub_rec.client_id = client_id;
err_filter = acmsmgmt_get_err_filter_2 (&sub_rec,cl2);

if (lerr_filter) {
printf ("\n RPC Call to get Error Filter failed");
return (MGMT_FAIL);

if (err_filter->status != MGMT_SUCCESS) {
printf ("\n Call to get Error Filter failed, returning status code
sd",
err_filter->status);
status = err_filter—->status;
xdr_free (xdr_err_filter_data_list_2, err_filter);
free(err_filter);
return (status);

117

Chapter 8. Management APIs

for (nl = err_filter—->err_ filter_data_list_2 u.list; nl != NULL;
nl = nl->pNext) {
printf ("Filter name = %s, and code =%X\n",

nl->err_filter_data.err_msg_name,
nl->err_filter_data.err_code);

}
xdr_free (xdr_err_filter_data_list_2, err_filter);
free(err_filter);

return(0);

}

In the preceding example, the acmsmgmt_get_err_filter_2 procedure is called to fetch error filter
information. If the call succeeds, the message code and symbolic name are fetched. Otherwise, an error
message is displayed.

ACMSMGMT_GET_MGR_STATUS _1

ACMSMGMT_GET_MGR_STATUS_1 — ACMS Remote Manager clients call this procedure to obtain
run-time status information about a Remote Manager on a particular node.

Format

nmgr_status_rec_out *acnsngnt _get _ngr_status_1(sub_id_struct *sub_rec,

Parameters
sub_rec
Type: Sub_id_struct
Access: Read
Mechanism: By reference
Usage: Structure that contains the following client authorization
information.
client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is
being used, a valid client
ID must be provided. If the
value for client_id is O, proxy
access is used. Client_id is
obtained by calling the acms
$mgmt_get_creds procedure.
cl

Type: CLIENT *

118

CLI ENT *cl)

Chapter 8. Management APIs

Access: Read

Mechanism: By value

Usage: Pointer to an RPC client handle previously obtained by calling the
RPC routine CLNT_CREATE.

Return Value

Type: Mgr_status_rec_out
Access: Write
Mechanism: By reference
Usage: Pointer to a record that contains a union consisting either of a failure
code or a pointer to a structure of type mgr_status_rec, which
contains the status data. The following are the contents of this union:
rc
Type: Integer
Access: Write
Mechanism: By value
Usage: Failure return code.
data
Type: Mgr_status_rec
Access: Write
Mechanism: By reference
Usage: Remote Manager status data
record. Contains the fields from
the Manager Status table.
Description

This procedure gets run-time information about a Remote Manager on a particular node. The return
pointer points to a record of type mgr_status_rec_out, which contains a union consisting of a failure
returns code or a pointer to a manager status record.

This procedure does not require the ACMS run-time system in order to execute.

Example

int get_mgr_data(int client_id,CLIENT *cl)

{

mgr_status_rec
mgr_status_rec_out

*mgrs;
*mgr_data;

static struct sub_id_struct sub_rec;

int status;

sub_rec.client_id

client_id;

mgr_data = acmsmgmt_get_mgr_status_1 (&sub_rec,cl);

119

Chapter 8. Management APIs

if (!mgr_data) <
printf ("\n RPC Call to get RM data failed");
return (MGMT_FAIL);

if (mgr_data->status != MGMT_SUCCESS) {
printf ("\n Call to get RM data failed, returning status code %d",
mgr_data->status);
status = mgr_data->status;
xdr_free (xdr_mgr_status_rec_out, mgr_data);
free (mgr_data);
return (status);

mgrs = &mgr_data->mgr_status_rec_out_u.data;
printf ("\n RPC UDP state is %d",mgrs—->rpc_udp_state);
xdr_free (xdr_mgr_status_rec_out, mgr_data);
free (mgr_data);
return(0);

}

In the preceding example, the ACMSMGMT_GET_MGR_STATUS_1 procedure is called to fetch the
contents of the Manager Status table. If the call succeeds, the current state of the TCP/UDP protocol in
the RPC interface is printed from the retrieved record. Otherwise, an error message is displayed.

ACMSMGMT_GET_PARAM 2

ACMSMGMT_GET_PARAM_2 — ACMS Remote Manager clients call this procedure to obtain
configuration information about a Remote Manager on a particular node.

Format

paramrec_out2 *acnmsnmgm get param 2(sub_id struct *sub_rec, CLIENT *cl)

Parameters
sub_rec
Type: Sub_id_struct
Access: Read
Mechanism: By reference
Usage: Structure that contains the following client authorization
information.
client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is
being used, a valid client

120

Chapter 8. Management APIs

ID must be provided. If the
value for client_id is O, proxy
access is used. Client_id is
obtained by calling the acms
$mgmt_get_creds procedure.

cl

Type: CLIENT *

Access: Read

Mechanism: By value

Usage: Pointer to an RPC client handle previously obtained by calling the
RPC routine CLNT_CREATE.

Return Value

Type: Param_rec_out2

Access: Write

Mechanism: By reference

Usage: Pointer to record returned. If NULL, the RPC has
failed. If not null, the record contains either an
error code in the status field (the RPC succeeded,
but the call failed for another reason), or the data
requested.

Description

This procedure gets configuration information about a Remote Manager on a particular node. The return
pointer points to a record of type param_rec_out2, which contains a union consisting of either a failure
return code or a pointer to a Parameter record.

This procedure does not require the ACMS run-time system in order to execute.

Example

int get_param_data(int client_id, CLIENT *cl)
{

int x = 0;

int y = 0;

param_rec?2 *params;
param_rec_out2 *param_rec;

static struct sub_id_struct sub_rec;
int status;

sub_rec.client_id = client_id;
param_rec = acmsmgmt_get_param_2 (&sub_rec,cl);

if (!param_rec) |
printf ("\n RPC Call to get Parameter data failed");

121

Chapter 8. Management APIs

return (MGMT_FAIL);

if (param_rec->status != MGMT_SUCCESS) {
printf ("\n Call to get Parameter data failed, returning status code
sd",
param_rec—->status);
status = param_rec—>status;
xdr_free (xdr_param_rec_out2, param_rec);
free(param_rec);
return (status);

params = ¶m_rec—->param_rec_out2_u.data;
printf ("\n Maximum logins allowed is %d",params—>max_logins);
xdr_free (xdr_param_rec_out2, param_rec);
free(param_rec);
return(0);

}

In the preceding example, the ACMSMGMT_GET_PARAM_2 procedure is called to fetch the contents
of the Parameter table. If the call succeeds, the maximum number of logins is printed from the retrieved
record. Otherwise, an error message is displayed.

ACMSMGMT_GET_QTI_2

ACMSMGMT_GET_QTI_2 — ACMS Remote Manager clients call this procedure to obtain class
information about a Queued Task Initiator (QTI) on a local or remote node.

Format

gqti _rec_out 2 *acnmsngnt _get qti _2(sub_id struct *sub rec, CLIENT *cl)

Parameters
sub_rec
Type: Sub_id_struct
Access: Read
Mechanism: By reference
Usage: Structure that contains the following client authorization
information.
client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is
being used, a valid client
ID must be provided. If the
value for client_id is O, proxy

122

Chapter 8. Management APIs

access is used. Client_id is
obtained by calling the acms
$mgmt_get_creds procedure.

cl

Type: CLIENT *

Access: Read

Mechanism: By value

Usage: Pointer to an RPC client handle previously obtained by calling the
RPC routine CLNT_CREATE.

Return Value

Type: Qti_rec_out2

Access: Write

Mechanism: By reference

Usage: Pointer to record returned. If NULL, the RPC has
failed. If not null, the record contains either an
error code in the status field (the RPC succeeded,
but the call failed for another reason) or the data
requested.

Description

This procedure obtains class information about a QTI on a local or remote node. The return pointer
points to a record of type qti_rec_out_2, which contains a union consisting of either a failure return code

or a pointer to a QTI record.

If the ACMS run-time system is not running when this call is issued, the Remote Manager returns the
MGMT_NOT_MAPPED error code.

Example

int get_qgti_data(int client_id,CLIENT *cl)

{

qgti_rec_r_2

qti_rec_out_2

*gtis;
*gti_rec;

static struct sub_id_struct sub_rec;

int status;

sub_rec.client_id

client_id;

gti_rec = acmsmgmt_get_gti_2 (&sub_rec,cl);

if (!gti_rec)

printf ("\n RPC Call to get QTI data failed");

return (MGMT_FAIL);

}

if (gti_rec—->status

!= MGMT_SUCCESS) {

123

Chapter 8. Management APIs

printf ("\n Call to get QTI data failed, returning status code %d4d",

qti_rec—->status);
status = gti_rec->status;
xdr_free (xdr_qgti_rec_out_2, gti_rec);
free(gti_rec);
return (status);

}
qgtis = &qti_rec->gti_rec_out_2_u.gti_rec;

printf ("\n QTI process name 1is %s",gtis->process_name) ;

xdr_free (xdr_qgti_rec_out_2, gti_rec);
free(gti_rec);
return(0);

}

In the preceding example, the ACMSMGMT_GET_QTI_2 procedure is called to fetch QTI management
information. If the call succeeds, the QTI process name is printed from the retrieved record. Otherwise,
an error message is displayed.

ACMSMGMT_GET TSC_2

ACMSMGMT_GET_TSC_2 — ACMS Remote Manager clients call this procedure to obtain class
information about a Terminal Subsystem Controller (TSC) on a local or remote node.

Format

tsc_rec_out 2 *acnsngnt get tsc 2(sub_id struct *sub rec, CLIENT *cl)

Parameters
sub_rec
Type: Sub_id_struct
Access: Read
Mechanism: By reference
Usage: Structure that contains the following client authorization
information.
client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is

being used, a valid client

ID must be provided. If the
value for client_id is O, proxy
access is used. Client_id is
obtained by calling the acms
$mgmt_get_creds procedure.

124

Chapter 8. Management APIs

cl

Type: CLIENT *

Access: Read

Mechanism: By value

Usage: Pointer to an RPC client handle previously obtained by calling the
RPC routine CLNT_CREATE.

Return Value

Type: Tsc_rec_out_2

Access: Write

Mechanism: By reference

Usage: Pointer to record returned. If NULL, the RPC has
failed. If not null, the record contains either an
error code in the status field (the RPC succeeded,
but the call failed for another reason) or the data
requested.

Description

The return pointer points to a record of type tsc_rec_out_2, which contains a union consisting of either a

failure return code or a pointer to a TSC record.

If the ACMS run-time system is not running when this call is issued, the Remote Manager returns the

MGMT_NOT_MAPPED error code.

Example

int get_tsc_data(int client_id,CLIENT *cl)

{

tsc_rec_r_2
tsc_rec_out_2

*tscs;
*tsc_rec;

static struct sub_id_struct sub_rec;

int status;

sub_rec.client_id = client_id;

tsc_rec = acmsmgmt_get_tsc_2 (&sub_rec,cl);

if (!tsc_rec) {

printf ("\n RPC Call to get TSC data failed");

return (MGMT_FAIL);
}

if (tsc_rec—->status != MGMT_SUCCESS) {
printf ("\n Call to get TSC data failed, returning status code %d",

tsc_rec—->status);
status = tsc_rec—>status;
xdr_free (xdr_tsc_rec_out_2,

tsc_rec);

125

Chapter 8. Management APIs

free(tsc_rec);
return (status);

}
tscs = &tsc_rec->tsc_rec_out_2_u.tsc_rec;

printf ("\n TSC process name 1is %s",tscs—->process_name) ;
xdr_free (xdr_tsc_rec_out_2, tsc_rec);
free(tsc_rec);

return(0);

}
In the preceding example, the ACMSMGMT_GET_TSC_2 procedure is called to fetch TSC

management information. If the call succeeds, the TSC's process name is printed from the retrieved
record. Otherwise, an error message is displayed.

ACMSMGMT_GET_VERSION_2

ACMSMGMT_GET_VERSION_2 — ACMS Remote Manager clients call this procedure to obtain
version information for ACMS.

CLI ENT *cl)

Format
version_data |list_2 *acnsngnt _get version_2(sub_id struct *sub_rec,
Parameters
sub_rec
Type: Sub_id_struct
Access: Read
Mechanism: By reference
Usage: Structure that contains the following client authorization
information.
client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is
being used, a valid client
ID must be provided. If the
value for client_id is O, proxy
access is used. Client_id is
obtained by calling the acms
$mgmt_get_creds procedure.
cl
Type: CLIENT *

126

Chapter 8. Management APIs

Access: Read

Mechanism: By value

Usage: Pointer to an RPC client handle previously obtained by calling the
RPC routine CLNT_CREATE.

Return Value

Type: version_data_list_2

Access: Write

Mechanism: By reference

Usage: Pointer to record returned. If NULL, the RPC has
failed. If not null, the record contains either an
error code in the status field (the RPC succeeded,
but the call failed for another reason) or the data
requested.

Description

The return pointer points to a record of type version_data_list_2, which constains a union consisting of
either a failure return code or a pointer to a version record.

If the ACMS run-time system is not running when this call is issued, the Remote Manager returns the
MGMT_NOT_MAPPED error code.

Example

int get_version_data (int client_id,CLIENT *cl2)

{

struct sub_id_struct sub_rec;
version_data_list_2 *version;
int status;

sub_rec.client_id = client_id;

version = acmsmgmt_get_version_2 (&sub_rec,cl2);

if

if

5d",

(!'version) {
printf ("\n RPC Call to get Version data failed");
return (MGMT_FAIL);

(version—->status != MGMT_SUCCESS) {
printf ("\n Call to get Version data failed, returning status code

version—->status);
status = version—->status;
xdr_free (xdr_version_data_list_2, version);
free(version);
return (status);

127

Chapter 8. Management APIs

printf ("\n ACMS version is %s",version-—->
version_data_list_2 u.data.acms_version);
xdr_free (xdr_version_data_list_2, version);
free (version);
return(0);

}
In the preceding example, the ACMSMGMT_GET_VERSION_2 procedure is called to fetch ACMS

version information. If the call succeeds, the version of the installed ACMS software is printed from the
retrieved record. Otherwise, an error message is displayed.

ACMSMGMT _LIST COLLECTIONS 2

ACMSMGMT_LIST_COLLECTIONS_2 — ACMS Remote Manager clients call this procedure to
obtain a list of Collection table entries.

Format

coll _data list_2 *acnsngm _|ist_collections_2(coll _sel _struct *coll _rec, CLIENT *c

Parameters
coll_rec
Type: Coll_sel_struct
Access: Read
Mechanism: By reference
Usage: Defines starting point for list of records to be returned. Also
identifies the user. The coll_rec structure contains the following
fields:
client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is being

used, a valid client ID must
be provided. If the value for
client_id is 0, proxy access is

used.
starting_rec
Type: Integer
Access: Read
Mechanism: By value
Usage: Sequential record number

(starting at 0) of record to begin
list from. Records are returned
sequentially from the table. Up to

128

Chapter 8. Management APIs

max_rpc_return_recs (Parameter
table configuration value) are
returned in each call.

cl

Type: CLIENT *

Access: Read

Mechanism: By value

Usage: Pointer to an RPC client handle previously obtained by calling the

RPC routine CLNT_CREATE.

Return Value

Type: Coll_data_list_2

Access: Write

Mechanism: By reference

Usage: Pointer to a union. The union contains either a failure code or a pointer to a

structure of type coll_list, which contains the start of a linked list of records. The
following are the contents of this union:

re

Type: Integer

Access: Write

Mechanism: By value

Usage: Failure return code.

list

Type: Coll_list_2

Access: Write

Mechanism: By reference

Usage: Start of linked list. Pointer to a structure of collection table

record, and a forward pointer to the next node in the linked
list. The following are the contents of this structure:

pNext

Type: Coll_list_2

Access: Write

Mechanism: By value

Usage: Start of linked list. Pointer to a structure
of type coll_list.

coll_data

Type: Coll_rec_2

Access: Write

Mechanism: By reference

129

Chapter 8. Management APIs

Collection table row. Collection table

Usage:
fields are described in Section 9.4.

Description

The ACMSMGMT_LIST_COLLECTIONS_2 procedure returns a linked list of collection table rows.
The number of rows returned in a single call is bounded by the value of the Parameter table field
max_rpc_return_recs. More than one call may be required to fetch all the rows. The selection record
field starting_rec determines the table row to begin with. Records are returned sequentially from the
table, beginning with the starting_rec row. Row numbering begins at 0.

Entire table rows are returned. See Section 9.4 for a description of the fields in the coll_rec structure.

If the ACMS run-time system is not running when this call is issued, the Remote Manager returns the
MGMT_NOT_MAPPED error code.

If the end of the table is reached during execution of this procedure, MGMT_NOMORE_DATA is
returned in the status field.

Example

int list_collection_data(int client_id, CLIENT *cl)
{

int rec_count = 0;
coll _data_list_2 *coll;
coll_link_2 *nl;

static struct coll_sel_struct coll_rec;
int status;

char c_states[2][9] = {"enabled","disabled"};

char c_entities[10]1[9] = {"unknown","*",6 "acc","tsc","qgti", "cp", "exc",
"Server" , "group" , "mgr" };

char c_classes[6][8] = {"*","id","config", "runtime", "pool", "error"};

coll_rec.client_id = client_id;
top:
coll_rec.starting_rec = rec_count;

coll = acmsmgmt_list_collections_2 (&coll_rec,cl);

if (!coll) {
printf ("\n RPC Call to get Collection data failed");
return (MGMT_FAIL) ;

if ((coll->status != MGMT_SUCCESS) && (coll->status !=
MGMT_NOMORE_DATA)) {
printf ("\n Call to get Collection data failed, returning status code
%$d",coll->status);
xdr_free (xdr_coll_data_list2, coll);
free(coll);
return (status);

for (nl = coll->coll_data_list_2_u.list; nl != NULL; nl = nl->pNext) {
rec_count++;

130

Chapter 8. Management APIs

if (nl->coll_data.entity_name_s > 0)
printf ("\n Entity: %-9s Name: %-32s Class: %-9s
Collection State: %-9s",
c_entities[nl->coll_data.entity_typel,
nl->coll_data.entity_name,
c_classes[nl->coll_data.collection_class],
c_states[nl->coll_data.collection_state]);

}

if (coll->status != MGMT_NOMORE_DATA)
goto top;

printf ("\n End of data");
xdr_free (xdr_coll_data_list_2, coll);
free(coll);

return(0);

}

In the preceding example, the ACMSMGMT_LIST_COLLECTIONS_2 procedure is called to fetch the
contents of the Collection table. If the call succeeds, the entity type, name, class, and collection state are
printed for each row in the table. Otherwise, an error message is displayed.

ACMSMGMT _LIST CP 2

ACMSMGMT_LIST_CP_2 — ACMS Remote Manager clients call this procedure to obtain a list of
Command Process (CP) table entries.

Format

cp_data list_2 *acnsngm _|ist_cp_2(cp_sel _struct *sub_rec, CLIENT *cl)

Parameters
sub_rec
Type: Cp_sel_struct
Access: Read
Mechanism: By reference
Usage: Structure that contains the following client authorization
information.
client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is

being used, a valid client

ID must be provided. If the
value for client_id is O, proxy
access is used. Client_id is
obtained by calling the acms
$mgmt_get_creds procedure.

131

Chapter 8. Management APIs

proc_name
Type: String
Access: Read
Mechanism: By value
Usage: String that lists the OpenVMS
process name for each CP.
cl
Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling the

RPC routine CLNT_CREATE.

Return Value

Type: Cp_data_list_2

Access: Write

Mechanism: By reference

Usage: Pointer to a record that contains a union consisting of either a failure code or a

pointer to a structure of type cp_data_list2, which contains the start of a linked list
of records. The following are the contents of this union:

re

Type: Integer

Access: Write

Mechanism: By value

Usage: Failure return code.

list

Type: Cp_list_2

Access: Write

Mechanism: By reference

Usage: Start of linked list. Pointer to a structure of CP table record,

and a forward pointer to the next node in the linked list. The
following are the contents of this structure:

pNext

Type: Cp_list_2

Access: Write

Mechanism: By value

Usage: Start of linked list. Pointer to a structure
of type coll_list.

cp_data

132

Chapter 8. Management APIs

Type: Cp_rec_r_2

Access: Write

Mechanism: By reference

Usage: CP table row. CP table fields are
described in Section 9.5.

Description

The ACMSMGMT _LIST_CP_2 procedure returns a linked list of CP table rows. All CP table rows are
returned in each call. Records are returned sequentially from the table, beginning at the start of the table.

Entire table rows are returned. See Section 9.5 for a description of the fields in the cp_rec_r structure.

If the ACMS run-time system is not running when this call is issued, the Remote Manager returns the
MGMT_NOT_MAPPED error code.

Rows in the CP table are subject to reuse. Rows are assigned round-robin, and are not cleared until they
have been reassigned. So some rows may contain data for inactive CPs. It is the caller's responsibility
to examine the record_state field to determine whether this row belongs to an active (record_state field
is MGMT_VALID) or inactive (record_state field is MGMT_INACTIVE) CP, and to process the row
accordingly.

Example

int list_cp_data(int client_id,CLIENT *cl)

{

static char c_all_cps[2] = "*";
cp_data_list_2 *cp_data;
cp_link_2 *nl;

static struct cp_sel_struct sub_rec;
int status;

sub_rec.client_id = client_id;

sub_rec.proc_name

cp_data = acmsmgmt_list_cp_2 (&sub_rec,cl);

if

if

c_all_cps;

(!cp_data) {

printf ("\n RPC Call to get CP data failed");

return (MGMT_FAIL);

(cp_data->status == MGMT_FAIL) {

if (cp_data->cp_data_list_2_u.rc == MGMT_NOMORE_DATA) {

printf ("\n No CP data found");

xdr_free (xdr_cp_data_list_2, cp_data);

free(cp data);
return (MGMT_FAIL);
}
printf ("\n Call to get CP data failed,
cp_data->cp_data_list_2_u.rc);
status = cp_data->cp_data_list_2_u.rc;

returning status code %d",

xdr_free (xdr_cp_data_list_2, cp_data);

free(cp_data);
return (status);

133

Chapter 8. Management APIs

}
if (cp_data->status == MGMT_WARN)
printf ("\n ** Warning, some data may be from inactive processes **");
for (nl = cp_data->cp_data_list_2_u.list; nl != NULL; nl = nl->pNext) {
if (nl->cp_data.record_state == MGMT_INACTIVE)
printf ("\n INACTIVE ");
else
printf ("\n ") ;
printf (" PID: %8X Process Name: %-s",
nl->cp_data.pid,
nl->cp_data.process_name) ;
}

printf ("\n End of data");
xdr_free (xdr_cp_data_list_2, cp_data);
free(cp_data);

return(0);

}

In the preceding example, the ACMSMGMT_LIST_CP_2 procedure is called to fetch the contents of
the CP table. If the call succeeds, the state of the CP (if INACTIVE), its PID, and process name are
displayed for each table row returned. Otherwise, an error message is displayed.

ACMSMGMT _LIST EXC_2

ACMSMGMT_LIST_EXC_2 — ACMS Remote Manager clients call this procedure to obtain a list of
Application Execution Controller (EXC) (ACMS application) table entries.

Format

exc_data |ist_2 *acnsngnt |ist _exc_2(exc_sel struct *sub_rec, CLIENT *cl)

Parameters

sub_rec

Type: Exc_sel_struct

Access: Read

Mechanism: By reference

Usage: Structure that contains client information and application selection

criteria. The structure contains the following fields.

client_id

Type: Integer

Access: Read

Mechanism: By value

Usage: If explicit authentication is
being used, a valid client
ID must be provided. If the
value for client_id is O, proxy

134

Chapter 8. Management APIs

access is used. Client_id is
obtained by calling the acms
$mgmt_get_creds procedure.
appl_name
Type: Null-terminated string
Access: Read
Mechanism: By reference
Usage: A pointer to an application name.
The name may contain wildcard
characters (¥, !). Specify in all
uppercase characters.
cl
Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling the
RPC routine CLNT_CREATE.

Return Value

Type: Exc_data_list_2

Access: Write

Mechanism: By reference

Usage: Pointer to a record that contains a union consisting of either a failure code or a

pointer to a structure of type exc_data_list_2, which contains the start of a linked
list of records. The following are the contents of this union:

re

Type: Integer

Access: Write

Mechanism: By value

Usage: Failure return code.

list

Type: Exc_list_2

Access: Write

Mechanism: By reference

Usage: Start of linked list. Pointer to a structure containing an EXC
table record, and a forward pointer to the next node in the
linked list. The following are the contents of this structure:
pNext
Type: Exc_list_2
Access: Write

135

Chapter 8. Management APIs

Mechanism: By value

Usage: Start of linked list. Pointer to a structure
of type coll_list.

exc_data

Type: Exc_rec_r_2

Access: Write

Mechanism: By reference

Usage: EXC table row. EXC table fields are

described in Section 9.6.

Description

The ACMSMGMT_LIST_EXC_2 procedure returns a linked list of EXC table rows. All EXC table rows
whose application_name field matches the appl_name field in the selection record are returned in each
call.

Entire table rows are returned. See Section 9.6 for a description of the fields in the exc_rec_r structure.

If the ACMS run-time system is not running when this call is issued, the Remote Manager returns the
MGMT_NOT_MAPPED error code.

Rows in the EXC table are subject to reuse. Rows are assigned round-robin, and are not cleared until
they have been reassigned. Therefore, some rows may contain data for inactive EXCs. It is the caller's
responsibility to examine the record_state field to determine whether this row belongs to an active
(record_state field is MGMT_VALID) or inactive (record_state field is MGMT_INACTIVE) EXC, and
to process the row accordingly.

Example

int list_exc_data(int client_id, CLIENT *cl)
{

static char c_all_appls[2] = "*";
exc_data_list_2 *exc_data;
exc_link_2 *nl;

static struct exc_sel_struct sub_rec;
int status;

sub_rec.client_id = client_id;
sub_rec.appl_name = c_all_appls;

exc_data = acmsmgmt_list_exc_2 (&sub_rec,cl);

if ('exc_data) A
printf ("\n RPC Call to get EXC data failed");
return (MGMT_FAIL);

}

if (exc_data—->status == MGMT_FAIL) {
if (exc_data->exc_data_list_2_u.rc == MGMT_NOMORE_DATA) {
printf ("\n No EXC data found");
xdr_free (xdr_exc_data_list_2, exc_data);
free (exc_data);

136

Chapter 8. Management APIs

if

for

return (MGMT_FAIL);
}
printf ("\n Call to get EXC data failed, returning status code %d4d",
exc_data->exc_data_list_2_u.rc);

status = exc_data->exc_data_list_2 u.rc;

xdr_free (xdr_exc_data_list_2, exc_data);

free (exc_data);
return (status);

(exc_data—->status == MGMT_WARN)
printf ("\n ** Warning, some data may be from inactive processes **");

(nl = exc_data->exc_data_list_2_u.list; nl != NULL; nl = nl->pNext)
if (nl->exc_data.record_state == MGMT_INACTIVE)

printf ("\n INACTIVE ");
else

printf ("\n ") ;

printf (" PID: %8X Application : %-s",
nl->exc_data.pid,
nl->exc_data.appl_name);

printf ("\n End of data");
xdr_free (xdr_exc_data_list_2, exc_data);
free(exc_data);

return(0);

}

In the preceding example, the ACMSMGMT_LIST_EXC_2 procedure is called to fetch the contents of
the EXC table. If the call succeeds, the state of the EXC (if inactive), its PID, and its application name
are displayed for each table row returned. Otherwise, an error message is displayed.

ACMSMGMT _LIST INTERFACES 1

ACMSMGMT_LIST_INTERFACES_1 — ACMS Remote Manager clients call this procedure to obtain
information about all configured interfaces for a Remote Manager server on a local or remote node.

Format
interfaces_rec_out *acnsngnt |ist_interfaces_1 (sub_id_struct *sub_rec,
Parameters
sub_rec
Type: Sub_id_struct
Access: Read
Mechanism: By reference
Usage: Structure that contains the following client authorization
information.
client_id

137

CLI El

Chapter 8. Management APIs

Type: Integer

Access: Read

Mechanism: By value

Usage: If explicit authentication is

being used, a valid client

ID must be provided. If the
value for client_id is O, proxy
access 1is used. Client_id is
obtained by calling the acms
$mgmt_get_creds procedure.

cl

Type: CLIENT *

Access: Read

Mechanism: By value

Usage: Pointer to an RPC client handle previously obtained by calling the

RPC routine CLNT_CREATE.

Return Value

Type: Interfaces_rec_out

Access: Write

Mechanism: By reference

Usage: Pointer to a record that contains a union consisting
of either a failure code or a pointer to the start of a
linked list of records. See the Description section
for a discussion of the structure of the union. The
records contain all the fields of the Interfaces table
(see Section 9.7).

Description

The ACMSMGMT_LIST_INTERFACES_1 procedure returns an array of Remote Manager Interfaces
table rows. All records in the table are returned. Each record represents a separate interface, as
determined by the interface_type field.

The return record is a union containing either a failure code or the first record in the list, as follows:

struct interfaces_rec_out {

bi

int status;
union {

interfaces_rec_out_r interfaces;
int rc;
} interfaces_rec_out_u;

To determine the status of the call and the contents of the return record, first check the status field. The
following are possible values in the status field:

138

Chapter 8. Management APIs

* MGMT_FAIL

The call has failed and the rc field contains a specific error code describing the failure.
* MGMT_SUCCESS

The call completed successfully. All rows in the table were returned.

The array is contained in a structure of type interfaces_rec_out_r with an integer field (num_elements)
containing the size of the array, as follows:

struct interfaces_rec_out_r {
int num_elements;
interfaces_rec values [MGMT_K_MAX_ IF];
bi

Example

int list_interfaces_data(int client_id, CLIENT *cl)
{

interfaces_rec_out *1f_ptr;
interfaces_rec_out_r *inter;

static struct sub_id_struct sub_rec;
int status;

sub_rec.client_id = client_id;
if_ptr = acmsmgmt_list_interfaces_1 (&sub_rec,cl);

if ('if_ptr) |
printf ("\n RPC Call to get Interfaces data failed");
return (MGMT_FAIL) ;

inter = &if_ptr->interfaces_rec_out_u.interfaces;
if (if_ptr->status == MGMT_FAIL) {
printf ("\n Call to get Interfaces data failed, returning status code
&d",if_ptr->interfaces_rec_out_u.rc);
status = if_ptr->interfaces_rec_out_u.rc;
xdr_free (xdr_interfaces_rec_out, if_ptr);
free(if_ptr);
return (status);

printf ("\n RPC interface has processed %d read requests",
inter->values|[0] .get_request_count) ;
printf ("\n SNMP interface has processed %d read requests",
inter->values([1l] .get_request_count);
xdr_free (xdr_interfaces_rec_out, if_ptr);
free(if_ptr);
return(0) ;

}

In the preceding example, the ACMSMGMT_LIST_INTERFACES_1 procedure is called to fetch
the contents of the Interfaces table. If the call succeeds, the number of read requests by each interface
is printed from the retrieved record. Otherwise, an error message is displayed. The example in
Section 6.4.1 shows how to declare and initialize the input arguments to this procedure.

139

Chapter 8. Management APIs

ACMSMGMT LIST LOG 1

ACMSMGMT_LIST_LOG_1 — ACMS Remote Manager clients call this procedure to obtain
information from a Remote Manager log on a local or remote node.

Format

|l og_data_list *acmsngnt _list _log 1 (log_sel _struct *log_rec, CLIENT *cl)

Parameters
log_rec
Type: Log_sel_struct
Access: Read
Mechanism: By reference
Usage: Defines which log records to return. The log_sel_struct contains the
following fields:
client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is being

used, a valid client ID must
be provided. If the value for
client_id is 0, proxy access is

used.

before_time

Type: Null-terminated character string

Access: Read, optional

Mechanism: By reference

Usage: Pointer to a null-terminated
character string containing a
valid OpenVMS ASCII time

string. This field determines the
chronological starting point for
the list of records to be returned.
If omitted, records are returned
beginning at the start of the file.
Format is OpenVMS ASCII time

(DD-MMM-YY HH:MM:SS.hh).
since_time
Type: Null-terminated character string
Access: Read, optional
Mechanism: By reference

140

Chapter 8. Management APIs

Usage: Pointer to a null-terminated
character string containing a
valid OpenVMS ASCII time
string. This field determines the
chronological ending point for
the list of records to be returned.
If omitted, records are returned
until end of file is reached.
Format is OpenVMS ASCII time
(DD-MMM-YY HH:MM_:SS.hh).

file_name

Type: Null-terminated character string

Access: Read, optional

Mechanism: By reference

Usage: Pointer to a null-terminated
character string containing
either a valid OpenVMS file
specification or a logical name
pointing to a valid OpenVMS
file specification. This field
determines the log file to be
processed. An empty string
requests the default (currently
open) log file.

dup_count

Type: Integer

Access: Read

Mechanism: By value

Usage: A sequential counter of records
with the same time. This allows
records to be unique even if they
were generated at the same time.
Set this value to -1 for the initial
call.

facility

Type: Integer

Access: Read, optional

Mechanism: By value

Usage: Value of a valid Remote Manager
facility. If specified, only audit
records with matching facility
codes are returned.

severity

Type: Integer

Access: Read, optional

141

Chapter 8. Management APIs

Mechanism: By value
Usage: Value of a valid Remote Manager
severity. If specified, only audit
records with matching severity
are returned.
cl
Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling the

RPC routine CLNT_CREATE.

Return Value

Type: Log_data_list

Access: Write

Mechanism: By reference

Usage: Pointer to a union. The union contains either a failure code or a

pointer to the start of a linked list of records. See the Description
section for a discussion of the structure of the union. The following

are the contents of this record:

log_data_list

Type: Logging_rec

Access: Write

Mechanism: By reference

Usage: Pointer to a structure of type
logging_rec.

dup_count

Type: Integer

Access: Write

Mechanism: By value

Usage: Integer value with uniquely
identifies records generated at the
same time.

log_msg

Type: Null-terminated character string

Access: Write

Mechanism: By reference

Usage: Pointer to a null-terminated

character string containing the
audit information.

142

Chapter 8. Management APIs

pNext
Type: Log_list
Access: Write
Mechanism: By value
Usage: Pointer to the next record in the
linked list.
Description
Note

The ACMSMGMT_LIST_LOG_1 procedure is also described in detail in Section 6.6.1.

The ACMSMGMT_LIST_LOG_1 procedure returns a linked list of Remote Manager log entries,
ordered by time. The records to be returned are determined by the fields specified in thelog_sel_struct
input argument. Records can be selected by date and time, facility, and severity. Note that only
max_rpc_return_rec data (Parameter table field) is returned in each call. The end of data is signaled by
the status field (see the following example). If the end of data is not signaled, repeated calls are needed
to fetch all matching records.

The return record is a union containing either a failure code or the first record in the list:

struct log_data_list {
int status;
union {
int rc;
log_list 1list;
} log_data_list_u;
bi

To determine the status of the call and the contents of the return record, first check the status field. The
following are possible values in the status field:

* MGMT_FAIL
The call has failed and the rc field contains a specific error code describing the failure.
* MGMT_NOMORE_DATA

There are no more records in the file. The linked list may or may not contain the final records,
depending on whether any more records matched the selection criteria.

* MGMT_SUCCESS
The call completed successfully. More records exist than were returned in the call.

The ACMSMGMT_LIST_LOG_1 procedure returns n records per call, where n is determined by the
Remote Manager parameter field max_rpc_return_recs. Therefore, repeated calls may be necessary to
retrieve all records that match the selection criteria. Context is not maintained by the server between
calls; the selection criteria are evaluated on each call by the Remote Manager. Following the initial call,
callers should place the correct time value in the since_time field of the log_sel_struct input argument,
as well as the correct dup_count value in order to have the chronologically next »n records returned.

This procedure does not require the ACMS run-time system to execute.

143

Chapter 8. Management APIs

Example

int list_log_data(int client_id,CLIENT *cl)
{

int skip_rec = 0;

char null_time_str[24] = "";

char first_of_jan[24] "01-JAN-1998 00:00:00.00";

char file_spec]] = """, /* use default, i.e. active log file */
char time_cache [MGMT_S_TIME_A+1];

static struct log_sel_struct log_rec;

log_data_list *log;

log_link *nl;

int status;

/* Initialize log selection data */

log_rec.client_id client_id;

log_rec.before_time = null_time_str;

log_rec.since_time first_of_jan;

log_rec.file_name file_spec;

log_rec.dup_count = -1;

log_rec.facility -1; /* don't match on facility */
log_rec.severity -1; /* don't match on severity */

top:
log = acmsmgmt_list_log_1(&log_rec,cl);

if (!'log)
return (MGMT_FAIL) ;

if (log->status == MGMT_FAIL) {
status = log->log_data_list_u.rc;
xdr_free (xdr_log_data_list, log);
free(log);
return (status);

for (nl = log->log_data_list_u.list; nl != NULL; nl = nl->pNext) {
if (skip_rec)
skip_rec = 0;
else

[

printf("\n %$-12s\t%-s", sname,nl->log_data.log_msqg) ;

memcpy (&time_cache[0],nl->log_data.log_msg, 23);

log_rec.dup_count = nl->log_data.dup_count;
log_rec.since_time = time_cache;

}

if (log->status == MGMT_NOMORE_DATA)

printf ("\n *** End of data **");

else {
skip_rec = 1;
goto top;

144

Chapter 8. Management APIs

xdr_free (xdr_log_data_list, log);
free(log);
return(0);

}

In the preceding example, the ACMSMGMT_LIST_LOG_1 procedure is called to fetch the contents
of the RM log file. All entries since January 1, 1998 are requested. If the call succeeds, each entry is
printed out. Otherwise, an error message is displayed. This example is very similar to the one described
in detail in Chapter 6.

ACMSMGMT_LIST_PROC_1 — ACMS Remote Manager clients call this procedure to obtain a list
of ACMS processes running on a particular node, along with some collection state information for each
process.

Format

proc_data |list *acmsnmgm |ist _proc_1 (sub_id _struct *sub rec, CLIENT *cl)

Parameters
sub_rec
Type: Sub_id_struct
Access: Read
Mechanism: By reference
Usage: Structure that contains the following client authorization
information.
client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is
being used, a valid client
ID must be provided. If the
value for client_id is O, proxy
access is used. Client_id is
obtained by calling the acms
$mgmt_get_creds procedure.
cl
Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling the
RPC routine CLNT_CREATE.

145

Chapter 8. Management APIs

Return Value

Type: Proc_data_list

Access: Write

Mechanism: By reference

Usage: Pointer to a record that contains a union consisting of either a failure code or a

pointer to a structure of type proc_link, which contains the start of a linked list of
records. The following are the contents of this union:

re

Type: Integer

Access: Write

Mechanism: By value

Usage: Failure return code.

list

Type: Proc_list

Access: Write

Mechanism: By reference

Usage: Start of linked list. Pointer to a structure of process data,

and a forward pointer to the next node in the linked list. The
following are the contents of this structure:

pNext

Type: Proc_list

Access: Write

Mechanism: By value

Usage: Start of linked list. Pointer to a structure
of type user_list.

proc_data

Type: Proc_rec

Access: Write

Mechanism: By reference

Usage: The data describing the process. This

record contains the following fields:

record_state

Type: Integer

Access: Write
Mechanism: By value

Usage: The current state

of the record.
Will be either
MGMT_VALID or
MGMT_INACTIVE.

146

Chapter 8. Management APIs

entity_type

Type: Integer

Access: Write

Mechanism: By value

Usage: The type of ACMS
entity the process
is.

pid

Type: Integer

Access: Write

Mechanism: By value

Usage: OpenVMS Process

ID.

process_name

Type: Null-terminated
string

Access: Write

Mechanism: By reference

Usage: The OpenVMS

process name.

class_states

Type: Array of integers
Size: 5

Access: Write
Mechanism: By value

Usage: An array of

integers. Each array
element represents
the collection

state for a class.
Positions are:

e 0:ID

* 1: CONFIG

e 2: RUNTIME
e 3:POOL

* 4: ERROR

147

Chapter 8. Management APIs

Description

The ACMSMGMT _LIST_PROC_1 procedure returns a linked list of processes that a particular Remote
Manager is aware of. The Remote Manager builds this list from the various ACMS Entity tables. For
each process, the Remote Manager populates a proc_data record.

Note that some entity tables may contain rows with inactive data, that is, data for processes that are no
longer active. The data in these rows may or may not be interesting to the caller. To distinguish active
and inactive processes, the Remote Manager sets the record_state field to MGMT_VALID for active
processes and to MGMT_INACTIVE for inactive processes. The caller is responsible for checking this
field and taking appropriate action.

The collection_states field is a simple array of five integers. Each array element contains either a 1 (if the
collection class is enabled) or a 0 (if the collection class is disabled). Array elements are positional, as
described in the Return Value section.

Like other procedures that return linked lists, the return parameter is a union containing either a failure
status code or a linked list of records.

To determine the status of the call and the contents of the return record, first check the status field. The
following are possible values in the status field:

* MGMT_FAIL

The call has failed and the rc field contains a specific error code describing the failure.
* MGMT_SUCCESS

The call completed successfully. All user records have been returned.

If the status field value is MGMT_SUCCESS, a linked list has been returned. The linked list contains
a structure containing the process data, and a forward pointer. By following the forward pointer, all the
records in the list can be retrieved.

If the ACMS run-time system is not running when this call is issued, the Remote Manager returns the
MGMT_NOT_MAPPED error code.

Example

int list_process_data(int client_id, CLIENT *cl)
{

proc_data_list “*proc;

proc_link *nl;

static struct sub_id_struct sub_rec;
int status;

sub_rec.client_id = client_id;
proc = acmsmgmt_list_proc_1 (&sub_rec,cl);
if (!proc) A

printf ("\n RPC Call to get Process data failed");
return (MGMT_FAIL);

148

Chapter 8. Management APIs

if ((proc—->status != MGMT_SUCCESS) && (proc—->status !=
MGMT_NOMORE_DATA)) A
printf ("\n Call to get Process data failed, returning status code
sd",
proc—->proc_data_list_u.rc);
status = proc->proc_data_list_u.rc;
xdr_free (xdr_proc_data_list, proc);
free(proc);
return (status);

for (nl = proc->proc_data_list_u.list; nl != NULL; nl = nl->pNext) {
if (nl->proc_data.record_state == MGMT_INACTIVE)
printf ("\n INACTIVE ");
else
printf ("\n ") ;

printf (" PID: %8X Process Name: %s",nl->proc_data.pid,
nl->proc_data.process_name)

14

}

printf ("\n End of data");
xdr_free (xdr_proc_data_list, proc);
free(proc);

return(0);

}

In the preceding example, the ACMSMGMT_LIST_PROC_1 procedure is called to fetch information
about collection states from all processes accessible to the Remote Manager. If the call succeeds, the
name of the process, along with its state is displayed (inactive processes have that string printed before
the process name). Otherwise, an error message is displayed.

ACMSMGMT _LIST SERVER_1

ACMSMGMT_LIST_SERVER_1 — ACMS Remote Manager clients call this procedure to obtain a list
of procedure server table (Server table) entries.

Format

ser_data_list *acmsnmgnt | ist_server_1(ser_sel _struct *sub_rec, CLIENT *cl)

Parameters

sub_rec

Type: Ser_sel_struct

Access: Read

Mechanism: By reference

Usage: Structure that contains client information and procedure server

selection criteria. The structure contains the following fields.

client_id
Type: Integer
Access: Read

149

Chapter 8. Management APIs

Mechanism: By value

Usage: If explicit authentication is
being used, a valid client
ID must be provided. If the
value for client_id is O, proxy
access is used. Client_id is
obtained by calling the acms
$mgmt_get_creds procedure.

appl_name

Type: Null-terminated string

Access: Read

Mechanism: By reference

Usage: A pointer to an application name.

The name may contain wildcard
characters (¥, !). Specify in all
uppercase characters.

server_name

Type: Null-terminated string
Access: Read
Mechanism: By reference
Usage: A pointer to a procedure server
name. The name may contain
wildcard characters (*, !). Specify
in all uppercase characters.
cl
Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling the

RPC routine CLNT_CREATE.

Return Value

Type: Ser_data_list

Access: Write

Mechanism: By reference

Usage: Pointer to a record that contains a union consisting of either a failure code or a

pointer to a structure of type ser_link, which contains the start of a linked list of
records. The following are the contents of this union:

rce
Type: Integer
Access: Write

150

Chapter 8. Management APIs

Mechanism: By value

Usage: Failure return code.

list

Type: Ser_list

Access: Write

Mechanism: By reference

Usage: Start of linked list. Pointer to a structure containing an EXC

table record, and a forward pointer to the next node in the
linked list. The following are the contents of this structure:

pNext

Type: Ser_list

Access: Write

Mechanism: By value

Usage: Start of linked list. Pointer to a structure
of type coll_list.

ser_data

Type: Ser_rec_r

Access: Write

Mechanism: By reference

Usage: Server table row. Server table fields are
described in Section 9.11.

Description

The ACMSMGMT_LIST_SER_1 procedure returns a linked list of Server table rows. All matching
Server table rows are returned in each call. Matching is performed first on application name, and then on
server name. Therefore, all matching servers for all matching applications are returned.

Entire table rows are returned. See Section 9.11 for a description of the fields in the ser_rec_r structure.

If the ACMS run-time system is not running when this call is issued, the Remote Manager returns the

MGMT_NOT_MAPPED error code.

Rows in the EXC table are subject to reuse. Rows are assigned round-robin, and are not cleared until
they have been reassigned. Therefore, some rows may contain data for inactive EXCs. The Remote
Manager attempts to retrieve server information for inactive EXCs. It is the caller's responsibility to
examine the record_state field to determine whether this row belongs to an active (record_state field is
MGMT_VALID) or inactive (record_state field is MGMT_INACTIVE) EXC, and to process the row
accordingly.

Example

int list_ser_data(int client_id, CLIENT *cl)

{

static char c_all_appls[2] = "*";

ser_data_list

ser_link

*nl;

*ser_data;

151

Chapter 8. Management APIs

static struct ser_sel_ struct sub_rec;
int status;

sub_rec.client_id client_id;
sub_rec.appl_name = c_all_appls;
sub_rec.server_name = c_all_appls;

ser_data = acmsmgmt_list_server_1 (&sub_rec,cl);

if (!ser_data) {
printf ("\n RPC Call to get Server data failed");
return (MGMT_FAIL);

if (ser_data->status == MGMT_FAIL) {
if (ser_data->ser_data_list_u.rc == MGMT_NOMORE_DATA) {
printf ("\n No SERVER data found");
xdr_free (xdr_ser_data_list, ser_data);
free(ser_data);
return (MGMT_FAIL);
}
printf ("\n Call to get Server data failed, returning status code %d4d",
ser_data->ser_data_list_u.rc);
status = ser_data->ser_data_list_u.rc;
xdr_free (xdr_ser_data_list, ser_data);
free(ser_data);
return (status);

if (ser_data->status == MGMT_WARN)
printf ("\n ** Warning, some data may be from inactive processes **");

for (nl = ser_data->ser_data_list_u.list; nl != NULL; nl = nl->pNext) {
if (nl->ser_data.record_state == MGMT_INACTIVE)
printf ("\n INACTIVE ");
else
printf ("\n ") ;
printf (" Application : %-32s Server: %-s",

nl->ser_data.appl_name,
nl->ser_data.server_name);

printf ("\n End of data");
xdr_free (xdr_ser_data_list, ser_data);
free(ser_data);

return(0);

}

In the preceding example, the ACMSMGMT_LIST_SERVER_1 procedure is called to fetch the contents
of the Server tables for all applications on the target node. If the call succeeds, the state of the server (if
inactive), the name of the application it belongs to, and the name of the server are displayed for each
table row returned. Otherwise, an error message is displayed.

ACMSMGMT _LIST TG_2

ACMSMGMT_LIST_TG_2 — ACMS Remote Manager clients call this procedure to obtain a list of
Task Group table entries.

152

Chapter 8. Management APIs

Format

tg data list_2 *acnsngnt list tg 2(tg_sel _struct *sub rec, CLIENT *cl)

Parameters
sub_rec
Type: Tg_sel_struct
Access: Read
Mechanism: By reference
Usage: Structure that contains client information and task group selection
critera. The structure contains the following fields.
client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is
being used, a valid client
ID must be provided. If the
value for client_id is O, proxy
access is used. Client_id is
obtained by calling the acms
$mgmt_get_creds procedure.
appl_name
Type: Null-terminated string
Access: Read
Mechanism: By reference
Usage: A pointer to an application name.
The name may contain wildcard
characters (*, !). Specify in all
uppercase characters.
tg_name
Type: Null-terminated string
Access: Read
Mechanism: By reference
Usage: A pointer to a task group name.
The name may contain wildcard
characters (*, !). Specify in all
uppercase characters.
cl
Type: CLIENT *
Access: Read

153

Chapter 8. Management APIs

Mechanism:

By value

Usage:

Pointer to an RPC client handle previously obtained by calling the
RPC routine CLNT_CREATE.

Return Value

Type: Tg_data_list_2
Access: Write
Mechanism: By reference
Usage: Pointer to a record that contains a union consisting of either a failure code or a
pointer to a structure of type tg_link_2, which contains the start of a linked list of
records. The following are the contents of this union:
re
Type: Integer
Access: Write
Mechanism: By value
Usage: Failure return code.
list
Type: Tg_list_2
Access: Write
Mechanism: By reference
Usage: Start of linked list. Pointer to a structure containing a Task
Group table record, and a forward pointer to the next node
in the linked list. The following are the contents of this
structure:
pNext
Type: Tg_list_2
Access: Write
Mechanism: By value
Usage: Start of linked list. Pointer to a structure
of type coll_list.
tg_data
Type: Tg_rec_r_2
Access: Write
Mechanism: By reference
Usage: Task Group table row. Task Group table
fields are described in Section 9.12.
Description

The ACMSMGMT_LIST_TG_2 procedure returns a linked list of Task Group table rows. All matching
Task Group table rows are returned in each call. Matching is performed first on the application name,

154

Chapter 8. Management APIs

and then on the task group name. Therefore, all matching task groups for all matching applications are
returned.

Entire table rows are returned. See Section 9.12 for a description of the fields in the tg_rec_r structure.

If the ACMS run-time system is not running when this call is issued, the Remote Manager returns the
MGMT_NOT_MAPPED error code.

Rows in the EXC table are subject to reuse. Rows are assigned round-robin, and are not cleared until
they have been reassigned. Therefore, some rows may contain data for inactive EXCs. The Remote
Manager will attempt to retrieve task group information for inactive EXCs. It is the caller's responsibility
to examine the record_state field to determine whether this row belongs to an active (record_state field
is MGMT_VALID) or inactive (record_state field is MGMT_INACTIVE) EXC, and to process the row
accordingly.

Example

int list_group_data(int client_id, CLIENT *cl)
{

static char c_all_appls[2] = "*";
tg_data_list_2 *tg_data;
tg_link_2 *nl;

static struct tg_sel_struct sub_rec;
int status;

sub_rec.client_id = client_id;
sub_rec.appl_name = c_all_appls;
sub_rec.tg_name = c_all_appls;

tg_data = acmsmgmt_list_tg_2 (&sub_rec,cl);

if ('tg_data) A
printf ("\n RPC Call to get Task Group data failed");
return (MGMT_FAIL);

if (tg_data->status == MGMT_FAIL) {
if (tg_data->tg_data_list_2_u.rc == MGMT_NOMORE_DATA) {
printf ("\n No GROUP data found");
xdr_free (xdr_tg_data_list_2, tg_data);
free(tg_data);
return (MGMT_FAIL);
}
printf ("\n Call to get Task Group data failed, returning status code
%d",tg_data->tg_data_list_2_u.rc);
status = tg_data->tg_data_list_2_u.rc;
xdr_free (xdr_tg_data_list_2, tg_data);
free(tg_data);
return (status);

if (tg_data->status == MGMT_WARN)
printf ("\n ** Warning, some data may be from inactive processes **");

for (nl = tg_data->tg_data_list_2_u.list; nl != NULL; nl = nl->pNext) {
if (nl->tg_data.record_state == MGMT_INACTIVE)

155

Chapter 8. Management APIs

printf ("\n INACTIVE ");
else
printf ("\n ") ;
printf (" Application: %-32s Task Group: %-s",
nl->tg_data.appl_name,
nl->tg_data.tg_name);
}

printf ("\n End of data");
xdr_free (xdr_tg_data_list_2, tg_data);
free(tg_data);

return(0);

}

In the preceding example, the ACMSMGMT_LIST_TG_1 procedure is called to fetch the contents
of the Task Group tables for all applications on the target node. If the call succeeds, the state of the
task group (if inactive), the name of the application it belongs to, and the name of the task group are
displayed for each table row returned. Otherwise, an error message is displayed.

ACMSMGMT _LIST TRAP_1

ACMSMGMT_LIST_TRAP_1 — ACMS Remote Manager clients call this procedure to obtain a list of
Trap table entries.

Format

trap_data_list *acnsngnt list _trap_1(sub_id_struct *sub_id_rec, CLIENT *cl)

Parameters
sub_rec
Type: Sub_id_struct *
Access: Read
Mechanism: By reference
Usage: Structure that contains the following client authorization
information.
client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is
being used, a valid client
ID must be provided. If the
value for client_id is O, proxy
access is used. Client_id is
obtained by calling the acms
$mgmt_get_creds procedure.
cl
Type: CLIENT *

156

Chapter 8. Management APIs

Access: Read

Mechanism: By value

Usage: Pointer to an RPC client handle previously obtained by calling the
RPC routine CLNT_CREATE.

Return Value

Type: Trap_data_list

Access: Write

Mechanism: By reference

Usage: Pointer to a union. The union contains either a failure code or a pointer to a

structure of type trap_list, which contains the start of a linked list of records. The
following are the contents of this union:

rc
Type: Integer

Access: Write

Mechanism: By value

Usage: Failure return code.

list

Type: Trap_list

Access: Write

Mechanism: By reference

Usage: Start of linked list. Pointer to a structure of trap table rows,

and a forward pointer to the next node in the linked list. The
following are the contents of this structure:

pNext

Type: Proc_list

Access: Write

Mechanism: By value

Usage: Start of linked list. Pointer to a structure
of type trap_list.

trap_data

Type: Trap_rec

Access: Write

Mechanism: By reference

Usage: Trap table row. Trap table fields are
described in Section 9.13.

157

Chapter 8. Management APIs

Description

The acmsmgmt_list_trap_1 procedure returns a linked list of Trap table rows. All Trap table rows are
returned in each call. Records are returned sequentially from the table, beginning at the start of the table.

Entire table rows are returned. See Section 9.13 for a description of the fields in the trap_rec structure.

This procedure does not require the ACMS run-time system in order to execute.

Example

int list_trap_data(int client_id,CLIENT *cl)
{

char c_states[2][9] = {"enabled","disabled"};

char c_entities[10]1[9] = {"unknown","*", "acc","tsc","qgti", "cp", "exc",
"server", "group", "mgr"};

char c_classes[6][8] = {"*","id","config", "runtime", "pool", "error"};

char c_trap_params[2][15] = {"exists","event severity"};

trap_data_list “*trap;

trap_link *nl;

static struct sub_id_struct sub_rec;
int status;

sub_rec.client_id = client_id;
trap = acmsmgmt_list_trap_1 (&sub_rec,cl);

if (!'trap) A
printf ("\n RPC Call to get Trap data failed");
return (MGMT_FAIL);

if (trap->status != MGMT_SUCCESS) {
printf ("\n Call to get Trap data failed, returning status code %d4d",
trap->trap_data_list_u.rc);
status = trap->trap_data_list_u.rc;
xdr_free (xdr_trap_data_list, trap);
free(trap);
return (status);

for (nl = trap->trap_data_list_u.list; nl != NULL; nl = nl->pNext) {
printf ("\n Entity: %-9s Name: %-32s Param: %$-15s Trap Min: %d

Trap Max: %d",
c_entities[nl->trap_data.entity_typel,
nl->trap_data.entity_name,
c_trap_params[nl->trap_data.param_to_trap],
nl->trap_data.min,
nl->trap_data.max);

printf ("\n End of data");
xdr_free (xdr_trap_data_list, trap);
free(trap);

return(0) ;

158

Chapter 8. Management APIs

In the preceding example, the acmsmgmt_list_trap_1 procedure is called to fetch the contents of the
Trap table. If the call succeeds, the entity_type, entity_name, parameter, trap_min, and trap_max
fields are displayed for each row in the table. Otherwise, an error message is displayed. The example in
Section 6.3.1 shows how to declare and initialize the input arguments to this procedure.

ACMSMGMT_LIST_USERS _1

ACMSMGMT_LIST_USERS_1 — ACMS Remote Manager clients call this procedure to obtain
information about users attached to a Remote Manager server on a local or remote node.

Format
user _data list *acnsnmgmt |ist _users 1 (sub_id struct *sub_rec, CLIENT *cl)
Parameters
sub_rec
Type: Sub_id_struct
Access: Read
Mechanism: By reference
Usage: Structure that contains the following client authorization
information.
client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is
being used, a valid client
ID must be provided. If the
value for client_id is O, proxy
access is used. Client_id is
obtained by calling the acms
$mgmt_get_creds procedure.
cl
Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling the
RPC routine CLNT_CREATE.

Return Value

Type: User_data_list
Access: Write
Mechanism: By reference

159

Chapter 8. Management APIs

Usage:

Pointer to a record that contains a union consisting of either a failure code or a
pointer to a structure of type user_link, which contains the start of a linked list of
records. The following are the contents of this union:

rc

Type: Integer

Access: Write

Mechanism: By value

Usage: Failure return code.

list

Type: User_list

Access: Write

Mechanism: By reference

Usage: Start of linked list. Pointer to a structure of user data, and

a forward pointer to the next node in the linked list. The
following are the contents of this structure:

pNext

Type: User_list

Access: Write

Mechanism: By value

Usage: Start of linked list. Pointer to a structure
of type user_list.

user_data

Type: User_rec

Access: Write

Mechanism: By reference

Usage: The data describing the user. This record

contains the following fields:

client_id

Type: Integer

Access: Write

Mechanism: By value

Usage: Integer value
containing the
client ID for the
user.

reserved

Type: Integer

Access: Write

Mechanism: By value

160

Chapter 8. Management APIs

Usage: Reserved for VSI
use.

gid

Type: Word

Access: Write

Mechanism: By value

Usage: UIC group
identifier.

uid

Type: Word

Access: Write

Mechanism: By value

Usage: UIC user identifier.

proxy_gid

Type: Word

Access: Write

Mechanism: By value

Usage: UIC group
identifier of the
proxy user, if proxy
is being used.

proxy_uid

Type: Word

Access: Write

Mechanism: By value

Usage: UIC user identifier
of the proxy user,
if proxy is being
used.

node-name

Type: Null-terminated
string

Access: Write

Mechanism: By reference

Usage: Pointer to a null-
terminated string
containing the
name of the node
from which the
user logged in.

expires

161

Chapter 8. Management APIs

Type: Null-terminated
string

Access: Write

Mechanism: By reference

Usage: Time the user's
credentials expire.
Time is expressed
in OpenVMS
ASCII time format
(DD-MMM-YYYY
HH:MM_:SS.hh).

user-name

Type: Null-terminated
string

Access: Write

Mechanism: By reference

Usage: Pointer to a null-
terminated string
containing the user
name.

rights

Type: Array of integers

Access: Write

Mechanism: By value

Usage: ACMS
management rights
identifiers held by
the user.

proxy_flag

Type: Integer

Access: Write

Mechanism: By value

Usage: Indicates whether
the record is
for a proxy user
(proxy_flag =1) or
is not for a proxy
user (proxy_flag =
0).

Description

The ACMSMGMT_LIST_USERS_1 procedure returns a linked list of users who are logged in to a
particular Remote Manager. All user records are returned on each call to this procedure.

162

Chapter 8. Management APIs

Like other procedures that return linked lists, the return parameter is a union containing either a failure
status code or a linked list of records.

To determine the status of the call and the contents of the return record, first check the status field. The
following are possible values for the status field:

* MGMT_FAIL

The call has failed, and the rc field contains a specific error code describing the failure.
* MGMT_SUCCESS

The call completed successfully. All user records have been returned.

If the status field is equal to MGMT_SUCCESS, a linked list has been returned. The linked list contains
a structure containing the user data and a forward pointer. By following the forward pointer, all the
records in the list can be retrieved.

This procedure does not require the ACMS run-time system to execute.

Example

int list_users_data(int client_id, CLIENT *cl)
{

user_data_list *user;

user_link *nl;

static struct sub_id_struct sub_rec;
int status;

sub_rec.client_id = client_id;
user = acmsmgmt_list_users_1 (&sub_rec,cl);

if (luser) {
printf ("\n RPC Call to get User data failed");
return (MGMT_FATIL) ;

if ((user->status != MGMT_SUCCESS) && (user->status !=
MGMT_NOMORE_DATA))
printf ("\n Call to get User data failed, returning status code %d",
user—->user_data_list_u.rc);
status = user->user_data_list_u.rc;
xdr_free (xdr_user_data_list, user);
free (user);
return (status);

for (nl = user->user_data_list_u.list; nl != NULL; nl = nl->pNext)
printf ("\n User %s is logged in from node %s",nl->user_data.uname,
nl->user_data.nodename) ;

printf ("\n End of data");
xdr_free (xdr_user_data_list, user);
free (user);

return(0) ;

163

Chapter 8. Management APIs

In the preceding example, the ACMSMGMT_LIST_USERS_1 procedure is called to fetch information
about the users who have logged in to the Remote Manager. If the call succeeds, the name of the user
and the node they logged in from are displayed. Otherwise, an error message is displayed. Note that the
name displayed is the name by which the user is known to the server, and may be a proxy account. The
example in Section 6.3.1 shows how to declare and initialize the input arguments to this procedure.

ACMSMGMT_REPLACE_SERVER 1

ACMSMGMT_REPLACE_SERVER 1 — This procedure requests the Remote Manager to replace an
ACMS procedure server in an ACMS application on the same node on which the Remote Manager is

running.

Format

cnd_out put _rec *acnsnmgm repl ace_server_1(ser_sel struct

Parameters

sub_rec

Type: Ser_sel_struct

Access: Read

Mechanism: By reference

Usage: Structure that contains client information and procedure server

selection criteria. The structure contains the following fields.

client_id

Type: Integer

Access: Read

Mechanism: By value

Usage: If explicit authentication is
being used, a valid client
ID must be provided. If the
value for client_id is 0, proxy
access is used. Client_id is
obtained by calling the acms
$mgmt_get_creds procedure.

appl_name

Type: Null-terminated string

Access: Read

Mechanism: By reference

Usage: A pointer to an application name.

The name may contain wildcard
characters (¥, !). Specify in all
uppercase characters.

server_name

Type:

Null-terminated string

164

*sub_rec, CLI ENT *cl)

Chapter 8. Management APIs

Access: Read
Mechanism: By reference
Usage: A pointer to a procedure server
name. The name may contain
wildcard characters (*, !). Specify
in all uppercase characters.
cl
Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling the

RPC routine CLNT_CREATE.

Return Value

Type: Cmd_output_rec

Access: Write

Mechanism: By reference

Usage: Pointer to a union. The union contains either a failure code or a structure of type

cmd_rec, which points to a linked list containing status messages. The following
are the contents of this union:

status

Type: Integer

Access: Write

Mechanism: By value

Usage: Failure return code.
rc

Type: Integer

Access: Write

Mechanism: By value

Usage: Failure return code.

data, data_warn

Type: Cmd_rec

Access: Write

Mechanism: By value

Usage: Structure containing the first node in a linked list of status

messages (type dcl_list). The following are the contents of
this structure:

cmd_output
Type: Decl_list
Access: Write

165

Chapter 8. Management APIs

Mechanism: By reference
Usage: Pointer to a linked list of records
containing status messages related to the
failure of any updates. This structure
contains the following fields:
dcl_msg
Type: Null-terminated
string
Access: Write
Mechanism: By reference
Usage: The status message.
pNext
Type: Decl_list
Access: Write
Mechanism: By reference
Usage: Pointer to the next
node in the linked
list.

Description

This procedure requests to have an ACMS procedure server replaced (stopped and started) in an
application that is running on the same node on which the Remote Manager is running. The combination
of appl_name and server_name in the input record determines which server will be replaced.

This call executes synchronously. It does not return to the caller until the attempt to replace the server
is complete. Any messages associated with an unsuccessful replacing of the server are returned in the
cmd_output linked list.

The data and data_warn structures contain identical data. If the operation fails, the status field of both
structures will be MGMT_WARN; in this case, use the data_warn structure to fetch the status messages
from the cmd_output linked list.

If the operation is successful, the status field of both structures will be MGMT_SUCCESS. There are no
status messages associated with a successful call.

If the status field contains MGMT_FAIL, the call failed. There are no status messages returned; instead,
the reason for the failure is contained in the rc field.

Example

int replace_server (int client_id,CLIENT *cl)

{

dcl_link *nl;
static char c_name_all[2] = "*";
static char vr_read_server[] = "VR_READ_SERVER";

static struct ser_sel_ struct sub_rec;
static cmd_output_rec *ret_struct;

sub_rec.client_id = client_id;

166

Chapter 8. Management APIs

sub_rec.appl_name = c_name_all;
sub_rec.server_name = vr_read_server;

ret_struct = acmsmgmt_replace_server_1 (&sub_rec,cl);

if (!ret_struct) {
printf ("\n Call to replace server failed");
return (MGMT_FAIL);

if (ret_struct->status != MGMT_SUCCESS) {

if (ret_struct->status != MGMT_WARN) {
printf ("\nCall to replace procedure server %s failed",
sub_rec.server_name) ;
return (MGMT_FAIL);

printf ("\n Call to replace procedure server %s completed with warnings
or
errors",sub_rec.server_name);

for (nl = ret_struct->cmd_output_rec_u.data.cmd_output; nl != NULL;
nl= nl->pNext)
printf ("\n %s",nl->dcl_msqg);
xdr_free (xdr_cmd_output_rec, ret_struct);
free (ret_struct);
return (MGMT_FAIL);

else {
printf ("\nCall to replace procedure server %s was executed",
sub_rec.server_name) ;
for (nl = ret_struct->cmd_output_rec_u.data.cmd_output; nl != NULL;
nl = nl->pNext)
printf ("\n %s",nl->dcl_msqg);

xdr_free (xdr_cmd_output_rec, ret_struct);
free (ret_struct);
return(0);

}

In the preceding example, the acmsmgmt_replace_server_1 procedure is called to replace servers
named VR_READ_SERVER in any application on the target node. If the call succeeds, all
VR_READ_SERVER servers are replaced (stopped and started). Otherwise, any error messages
associated with the failure are displayed. The example in Section 6.3.1 shows how to declare and
initialize the input arguments to this procedure.

ACMSMGMT RESET LOG_1

ACMSMGMT_RESET_LOG_1 — This procedure requests the Remote Manager to close the current
version of its log file and open a new one.

Format

int *acnmsngnt _reset | og_1(sub_id_struct *sub_rec, CLI ENT *cl)

167

Chapter 8. Management APIs

Parameters
sub_rec
Type: Sub_id_struct
Access: Read
Mechanism: By reference
Usage: Structure that contains the following client authorization
information.
client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is
being used, a valid client
ID must be provided. If the
value for client_id is O, proxy
access is used. Client_id is
obtained by calling the acms
$mgmt_get_creds procedure.
cl
Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling the
RPC routine CLNT_CREATE.

Return Value

Type: Integer

Access: Write

Mechanism: By reference

Usage: Pointer to a status code containing a success or
failure status code. MGMT_SUCCESS indicates
success. Other values indicate failure.

Description

This procedure requests the Remote Manager to close the currently open version of its log and to open
a new one. All subsequent log entries are posted to the new version, and the old version can be safely
removed.

Example

int reset_log_data(int client_id,CLIENT *cl)
{

168

Chapter 8. Management APIs

static struct sub_id_struct sub_rec;
int *status;

sub_rec.client_id = client_id;
status = acmsmgmt_reset_log_1 (&sub_rec,cl);

if (!status) {
printf ("\n Call to reset log failed");
return (MGMT_FAIL);

if (*status != MGMT_SUCCESS) {
printf ("\n Call to reset log failed with status %d", *status);
free(status);
return (MGMT_FAIL);
}

else
printf("\n Call to reset log completed");
free(status);
return(0);

}

In the preceding example, the acmsmgmt_reset_log_1 procedure is called to close the current Remote
Manager log and to open a new one. If the call succeeds, a success message is displayed. Otherwise, an
error message is displayed. The example in Section 6.3.1 shows how to declare and initialize the input
arguments to this procedure.

ACMSMGMT_RESET ERR_2

ACMSMGMT_RESET_ERR_2 — This procedure requests the Remote Manager to close the current
version of the error log file and open a new one.

Format

int *acnmsngnt _reset_err_2(sub_id_struct *sub_rec, CLI ENT *cl)

Parameters
sub_rec
Type: Sub_id_struct
Access: Read
Mechanism: By reference
Usage: Structure that contains the following client authorization
information.
client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is
being used, a valid client

169

Chapter 8. Management APIs

ID must be provided. If the
value for client_id is O, proxy
access is used. Client_id is
obtained by calling the acms
$mgmt_get_creds procedure.

cl

Type: CLIENT *

Access: Read

Mechanism: By value

Usage: Pointer to an RPC client handle previously obtained by calling the
RPC routine CLNT_CREATE.

Return Value

Type: Integer

Access: Write

Mechanism: By reference

Usage: Pointer to a status code containing a success or
failure status code. MGMT_SUCCESS indicates
success. Other values indicate failure.

Description

This procedure requests the Remote Manager to close the currently open version of the error log and to

open a new one. All subsequent erro log entries are posted to the new version, and the old version can be

safely removed.

Example

int reset_err_data(int client_id,CLIENT *cl)
{

static struct sub_id_struct sub_rec;
int *status;

sub_rec.client_id = client_id;
status = acmsmgmt_reset_err_2 (&sub_rec,cl);

if (!status) {
printf ("\n Call to reset log failed");
return (MGMT_FAIL);

if (*status != MGMT_SUCCESS) {
printf ("\n Call to reset log failed with status %d", *status);
free(status);
return (MGMT_FAIL);
}
else
printf ("\n Call to reset log completed");

170

Chapter 8. Management APIs

free(status);
return(0);

}

In the preceding example, the ACMSMGMT_RESET_ERR_2 procedure is called to close the current
error log and to open a new one. If the call succeeds, a success message is displayed. Otherwise, an error
message is displayed.

ACMSMGMT_SAVE_ERR_FILTER_2

ACMSMGMT_SAVE_ERR_FILTER_2 — This procedure saves the current error filter records to an
error filter file.

Format

int *acnmsngnmt save err filter _2(sub_id struct *sub rec, CLI ENT *cl)

Parameters

set_struct

Type: Err_filter_config_rec_r_2

Access: Read

Mechanism: By reference

Usage: Structure that contains the following client authorization and error

filter record information.

client_id

Type: Integer

Access: Read

Mechanism: By value

Usage: If explicit authentication is

being used, a valid client

ID must be provided. If the
value for client_id is O, proxy
access is used. Client_id is
obtained by calling the acms
$mgmt_get_creds procedure.

err_filter_file_name

Type: file_spec

Access: Read

Mechanism: By value

Usage: Specifies the OpenVMS file

specification for the error filter
file.

err_msg_name

Type:

String

Access:

Read

Chapter 8. Management APIs

Mechanism: By value

Usage: Symbolic name of the error
message.

err_code

Type: String

Access: Read

Mechanism: By value

Usage: Decimal or hexadecimal code for
the error message.

cl

Type: CLIENT *

Access: Read

Mechanism: By value

Usage: Pointer to an RPC client handle previously obtained by calling the

RPC routine CLNT_CREATE.

Return Value

Type: Integer

Access: Write

Mechanism: By reference

Usage: Pointer to a status code containing a success or
failure status code. MGMT_SUCCESS indicates
success. Other values indicate failure.

Description

This procedure saves all records in the Error Filter table to the specified ASCII text file.

Example

int save_err_filter(int client_id, CLIENT *cl)
{
int *status;
static char c_null_str[2] = "";
static char file_spec = "sys$login:err_filter.dat";
err_filter_config_rec_r_ 2 set_struct;

set_struct.client_id = client_id;

set_struct.err_filter_file_name = file_spec;
set_struct.err_msg_name = c_null_str;

set_struct.err_code = -2;

status = acmsmgmt_save_err_filter_file_2 (&set_struct, cl);

if (!status) {
printf ("\n Call to save error filter failed");
return (MGMT_FAIL);

172

Chapter 8. Management APIs

if (*status != MGMT_SUCCESS) {
printf ("\n Call to save error filter failed with status %d",
*status);
free(status);
return (MGMT_FAIL);
}

else {
printf ("\n Call to save error filter completed");

}

free(status);
return(0);

}

In the preceding example, the ACMSMGMT_SAVE_ERR_FILTER_2 procedure is called to save all
the records in the Error Filter table to the file SYSSLOGIN:ERR_FILTER.DAT. If the call succeeds, a
success message is displayed. Otherwise, an error message is displayed.

ACMSMGMT_SET ACC_2

ACMSMGMT_SET_ACC_2 — This procedure modifies ACMS Central Controller (ACC) Config class
fields.

Format

acc_status_rec_2 *acnsngm _set _acc_2(acc_config rec_2 *set_struct, CLI ENT *cl)

Parameters
set_struct
Type: Acc_config_rec
Access: Read
Mechanism: By reference
Usage: Structure that contains the following client identification and ACC
table fields.
client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is
being used, a valid client
ID must be provided. If the
value for client_id is O, proxy
access is used. Client_id is
obtained by calling the acms
$mgmt_get_creds procedure.
active_sw

173

Chapter 8. Management APIs

Type:

Integer

Access:

Read

Mechanism:

By value

Usage:

Indicates whether active variables
should be updated (active_sw =
1). Active variables are currently
in use by the ACMS system;
updates to active variables

take effect immediately but

are not durable (that is, they

do not survive a restart of

the ACMS system). Not all
variables are dynamic, however.
Refer to Section 9.2, and to

the field descriptions in this
section, to determine whether a
particular variable can be updated
dynamically.

current_sw

Type:

Integer

Access:

Read

Mechanism:

By value

Usage:

Indicates whether current
variables should be updated
(current_sw = 1). Current
variables are those stored in the
ACMSGEN file currently in use
by the ACMS system and are
durable (that is, they can survive
a restart of the ACMS system).
Updates to current variables take
effect when the ACMS system is
restarted.

acc_priority, audit_state, max_appl, mss_maxobj, mss_maxbuf,
mss_poolsize, wsc_poolsize, tws_poolsize, twsc_poolsize

Type: Integer

Access: Read

Mechanism: By value

Usage: Values to be updated. These

fields correspond to fields of
the same names in the ACC
table, depending on the value
of active_sw and current_sw
in this record (for example,
acc_priority will update the

174

Chapter 8. Management APIs

acc_priority_active field if
active_sw is equal to 1). See
Section 9.2 for a discussion
of these fields. Note that
not all fields can be updated
dynamically.

acc_username, username_default, node_name

Type:

Null-terminated string

Access:

Read

Mechanism:

By reference

Usage:

Values to be updated. These
fields correspond to fields of
the same names in the ACC
table, depending on the value

of active_sw and current_sw

in this record (for example,
username_default will update
the username_default_active
field if active_sw is equal

to 1). See Section 9.2 for a
discussion of these fields. Note
that not all fields can be updated
dynamically. In order to have any
of these fields set to null (that

is, ""), set the field to the string
"NULL".

cl

Type:

CLIENT *

Access:

Read

Mechanism:

By value

Usage:

Pointer to an RPC client handle previously obtained by calling the
RPC routine CLNT_CREATE.

Return Value

Type: Struct acc_status_rec

Access: Write

Mechanism: By reference

Usage: Pointer to a union. The union contains either a failure code or a structure of type

acc_config_rec_out, which contains status codes for each field, as well as a linked
list of status messages associated with the update. See the Description section for
a discussion of how to determine the update status for any field. The following are

the contents of this union:

status

175

Chapter 8. Management APIs

Type: Integer

Access: Write

Mechanism: By value

Usage: Failure return code.

data, data_warn

Type: Acc_config_rec_out

Access: Write

Mechanism: By value

Usage: Structure containing fields corresponding to the fields in the

acc_config_rec structure, as well as a linked list of status
messages associated with the update. See the Description
section for a discussion of how to determine the update status
for any field. The following are the contents of this structure:

acc_priority, audit_state, max_appl, mss_maxobj,
mss_maxbuf, mss_poolsize, wsc_poolsize, tws_poolsize,
twsc_poolsize

Type: Integer

Access: Write

Mechanism: By value

Usage: Status fields corresponding to the fields
in the input argument.

acc_username, username_default, node_name

Type: Null-terminated string

Access: Write

Mechanism: By reference

Usage: These fields contain the values that were
supplied in the input argument, and can
be ignored.

cmd_output

Type: Dcl_list

Access: Write

Mechanism: By reference

Usage: Pointer to a linked list of records

containing status messages related to the
failure of any updates. This structure
contains the following fields:

dcl_msg

176

Chapter 8. Management APIs

Type: Null-terminated
string

Access: Write

Mechanism: By reference

Usage: The status message.

pNext

Type: Decl_list

Access: Write

Mechanism: By reference

Usage: Pointer to the next
node in the linked
list.

Description

This procedure requests updates to ACMS ACC Config class fields contained in the ACC table (see
Section 9.2). Note that the ACC table contains both active and stored values. The active_sw field and
current_sw field control which fields are to be updated.

Attempting to update an active field that is nondynamic is essentially useless, since the value of the active
field value will not change. For instance, calling this procedure with the active_sw field set to 1 and the
acc_username field populated produces no change to the system.

Setting the current_sw field to 1 causes updates to be written to the current ACMSGEN file. These
updates are durable, that is, they can survive a restart of the ACMS sytem, but they do not affect the
active system until the system is restarted.

Both current_sw and active_sw can be set on a given call. If they are, both the active and stored values
for any nonnegative or nonnull fields will be updated.

For any nonnegative integer fields, the completion status of the update is returned in the corresponding
field in the return structure. For string fields, the string field value is returned regardless of the status of
the call.

In order to have one of the string fields set to a null string, that is, "", populate the field with the value
NULL. To have one of the string fields ignored, pass in a null string.

Example

int set_acc_data(int client_id, CLIENT *cl)
{

static char c_name_all[2] = "*";
static char c_null_str[2] = "";
static acc_config_rec_2 set_struct;
acc_status_rec_2 *ret_struct;
dcl_link *nl;

memset (&set_struct, -1, sizeof (set_struct));
set_struct.client_id = client_id;
1;

set_struct.active_sw

177

Chapter 8. Management APIs

set_struct.current_sw = 0;
set_struct.audit_state = MGMT_STATE_DISABLED;

/* Have to provide a pointer for string conversions by XDR
or it will access vio. RM will ignore any fields with
strlen of 0 */

set_struct.acc_username = c_null_str;

set_struct.username_default = c_null_str;

set_struct.node_name = c_null_str;

ret_struct = acmsmgmt_set_acc_2 (&set_struct,cl);

if (!ret_struct) {
printf ("\n Call to modify ACC failed");
return (MGMT_FAIL);

if (ret_struct->status != MGMT_SUCCESS)
printf ("\n Call to modify ACC returned the following warnings or
errors\n");
else
printf ("\n Call to modify ACC completed\n");

for (nl = ret_struct->acc_status_rec_2_u.data.cmd_output; nl != NULL;
nl = nl->pNext)
printf ("\n %s",nl->dcl_msqg);
xdr_free (xdr_acc_status_rec_2, ret_struct);
free(ret_struct);
return(0);

}

In the preceding example, the acmsmgmt_set_acc_1 procedure is called to disable system auditing on the
target node. If the call succeeds, system auditing is disabled on the target node, and a success message is
displayed. Otherwise, an error message is displayed. The example in Section 6.3.1 shows how to declare
and initialize the input arguments to this procedure.

ACMSMGMT SET_COLLECTION_2

ACMSMGMT_SET_COLLECTION_2 — This procedure modifies entries in the Remote Manager
Collection table. Collection table entries can also be added and deleted.

Format

coll _status _rec_2 *acnmsngnt _set _collection_2(coll _config rec_2 *set_struct, CLI ENT

Parameters

set_struct

Type: Coll_config_rec

Access: Read

Mechanism: By reference

Usage: Structure that contains the following client identification and
collection table fields.

178

Chapter 8. Management APIs

client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is
being used, a valid client
ID must be provided. If the
value for client_id is O, proxy
access is used. Client_id is
obtained by calling the acms
$mgmt_get_creds procedure.
coll
Type: Struct coll_update_rec_r
Access: Read
Mechanism: By value
Usage: Structure containing a Collection
table record. Collection
table fields are described in
Section 9.4. See the Description
section for information on how to
initialize this record.
cl
Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling the

RPC routine CLNT_CREATE.

Return Value

Type: Struct coll_status_rec

Access: write

Mechanism: By reference

Usage: Pointer to a union. The union contains either a failure code or a

structure of type coll_update_rec_r, which contains status codes

for each field. See the Description section for a discussion of how
to determine the update status for any field. The following are the

contents of this union:

status

Type:

Integer

179

Chapter 8. Management APIs

Access: write

Mechanism: By value

Usage: Failure return code.

data_warn

Type: Coll_update_rec_r

Access: write

Mechanism: By value

Usage: Structure containing a Collection
table record. The entries in this
field contain status codes that
correspond to the fields in the
coll structure. See the Description
section for a discussion of how to
determine the update status for
any field.

Description
This procedure requests updates to fields in the Collection table (see Section 9.4).

Updates to this table are not durable; that is, they do not survive a restart of the Remote Manager. To
make nondynamic, permanent updates to the collection table, use the ACMSCFG utility.

Calls to this procedure must specify entity_type, entity_name, and collection_class. These fields
must exactly match an existing record in the Collection table for the update to be applied. Table 8.1
and Table 8.4 contain symbolic values used to populate the collection_class and entity_type fields;
entity_name is specified as a null-terminated string.

For any nonnegative fields, the completion status of the update is returned in the corresponding field in
the return structure. This includes the key fields of entity_type, entity_name, and collection_class. If no
matching record is found in the table, entity_type and collection_class contain values of MGMT_FAIL.

Updates to the collection table are processed immediately and may affect more than one ACMS process.
See Section 5.1 for discussion of how the collection table affects ACMS data collection.

Example

int set_collection_data (int client_id, CLIENT *cl)
{

static char c_name_all[2] = "*";
static coll_config_rec_2 set_struct;
struct coll_status_rec_2 *status_rec;

set_struct.client_id = client_id;
set_struct.coll.entity_type = MGMT_ALL;
set_struct.coll.entity_name = c_name_all;
set_struct.coll.collection_class = MGMT_CLASS_RT;

set_struct.coll.collection_state MGMT_STATE_ENABLED;

status_rec = acmsmgmt_set_collection_2 (&set_struct,cl);
if (!status_rec) {

180

Chapter 8. Management APIs

printf ("\n Call to modify collection failed");
return (MGMT_FAIL);

if (status_rec—->status == MGMT_WARN) {
printf ("\nThe following updates failed: ");
if (status_rec->coll_status_rec_2_u.data_warn.entity_type ==
MGMT_FAIL)

printf ("\n Record not found");
if (status_rec—->coll_status_rec_2 u.data_warn.collection_state
== MGMT_FAIL)
printf ("\n coll _state invalid");

if (status_rec->coll_status_rec_2_u.data_warn.storage_state ==
MGMT_FAIL)

printf ("\n storage_state invalid");
if (status_rec->coll_status_rec_2_u.data_warn.storage_interval
== MGMT_FAIL)
printf ("\n storage_interval invalid");
}
else if (status_rec->status != MGMT_SUCCESS) {

printf ("\n Call to modify collection failed with status
%$d", status_rec—>coll_status_rec_2_u.rc);
xdr_free (xdr_coll_status_rec_2, status_rec);
free(status_rec);
return (MGMT_FAIL);
}

else
printf ("\nCall to modify collection was executed");
xdr_free (xdr_coll_status_rec_2, status_rec);
free(status_rec);
return(0);

}

In the preceding example, the acmsmgmt_set_collection_1 procedure is called to set the collection

state to ENABLED for the Collection table record with entity of * (all), name of * (all), and class of
RUNTIME. If the call set the collection state to ENABLED for the Collection table record with an
entity of * (all), a name of * (all), and class of RUNTIME. If the call succeeds, the new value will be
stored in the Collection table, all ACMS processes on the target node will begin collecting run-time
data, and a success message will be displayed. Otherwise, an error message is displayed. The example in
Section 6.3.1 shows how to declare and initialize the input arguments to this procedure.

ACMSMGMT_SET CP_2

ACMSMGMT_SET_CP_2 — This procedure modifies the ACMS Central Process (CP) class attributes.
Format

cp_status_rec_2 *acnsngnt _set_cp_2(cp_config_rec_2 *cp_cfg_rec, CLI ENT *cl)
Parameters

cp_cfg_rec_2

Type: Cp_config_rec
Access: Read

181

Chapter 8. Management APIs

Mechanism: By reference
Usage: Structure that contains the following client identification and
collection table fields.
client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is
being used, a valid client
ID must be provided. If the
value for client_id is O, proxy
access 1is used. Client_id is
obtained by calling the acms
$mgmt_get_creds procedure.
astlm, biolm, bytlm, current_sw, diolm, enqlm, fillm, pgflquota,
tqelm, wsdefault, wsextent, wsquota
Type: Cp_rec_r
Access: Read
Mechanism: By value
Usage: Structure containing a CP table
record. CP table fields are
described in . See the Description
section for information on how to
initialize this record.
cl
Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling the

RPC routine CLNT_CREATE.

Return Value

Type: Cp_status_rec_2

Access: write

Mechanism: By reference

Usage: Pointer to a record that contains a union consisting of either a failure

code or a structure of type config_rec_out_2, which contains status
codes for each field. See the Description section for a discussion of
how to determine the update status for any field. The following are
the contents of this union:

rc

Type: Integer

182

Chapter 8. Management APIs

Access: write

Mechanism: By value

Usage: Failure return code.
data_warn

Type: Config_rec_out_2

Access: write

Mechanism: By value

Usage: Structure containing a CP table

record. The entries in this

field contain status codes that
correspond to the fields in the

cp structure. See the Description
section for a discussion of how to
determine the update status for
any field.

Description

This procedure requests updates to fields in the CP table.

Updates to this table are not durable; that is, they do not survive a restart of the Remote Manager. To
make nondynamic, permanent updates to the collection table, use the ACMSCFG utility.

Updates to the CP table are processed immediately and may affect more than one ACMS process.

Example

int set_cp_data(int client_id,CLIENT *cl)

{

cp_config_rec_2 set_struct;
cp_status_rec_2 *ret_struct;
dcl_link *nl;

memset (&set_struct, -1, sizeof (set_struct));

set_struct.client_id = client_id;
set_struct.current_sw = 1;

set_struct.astlm = 500;

ret_struct = acmsmgmt_set_cp_2 (&set_struct,cl);

if (!ret_struct) {
printf ("\n Call to modify CP failed");
return (MGMT_FAIL);

if (ret_struct->status != MGMT_SUCCESS)
printf ("\n Call to modify CP returned the following warnings or
errors\n") ;
else
printf ("\n Call to modify CP completed\n");

for (nl = ret_struct->cp_status_rec_2_u.data.cmd_output; nl != NULL;

183

Chapter 8. Management APIs

nl = nl->pNext)
printf ("\n %s",nl->dcl_msqg);
xdr_free (xdr_cp_status_rec_2, ret_struct);
free (ret_struct);
return(0);

}

In the preceding example, the ACMSMGMT_SET_CP_2 procedure is called. Otherwise, an error
message is displayed.

ACMSMGMT_SET_EXC_2

ACMSMGMT_SET_EXC_2 — This procedure modifies the ACMS Application Execution Controller
(EXC) Config class attributes.

Format

exc_status_rec_2 *acnsngm _set _exc_2(exc_config rec_2 *set struct, CLI ENT *cl)

Parameters
set_struct
Type: Exc_config_rec
Access: Read
Mechanism: By reference
Usage: Structure that contains the following client identification and EXC
table fields.
client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is being
used, a valid client ID must be
provided. If the value of client_id
is 0, proxy access is used.
Client_id is obtained by calling
the acms$mgmt_get_creds
procedure.
appl_name
Type: Null-terminated string
Access: Read
Mechanism: By reference
Usage: Name of the application to
update.

184

Chapter 8. Management APIs

audit_state, max_tasks, sp_mon_interval, max_servers,
server_proc_dmpflag, transaction_timeout
Type: Integer
Access: Read
Mechanism: By value
Usage: Values to be updated. These
fields correspond to the
active fields of the same
names in the EXC table (for
example, max_tasks will
update max_tasks_active). See
Section 9.6 for a discussion
of these fields. All fields in
this record can be updated
dynamically. Stored values cannot
be changed for EXCs (application
must be rebuilt).
cl
Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling the
RPC routine CLNT_CREATE.

Return Value

Type: Struct exc_status_rec

Access: Write

Mechanism: By reference

Usage: Pointer to a union. The union contains either a failure code or a structure of type

exc_config_rec_out, which contains status codes for each field, as well as a linked
list of status messages associated with the update. See the Description section for
a discussion of how to determine the update status for any field. The following are

the contents of this union:

status

Type: Integer

Access: Write

Mechanism: By value

Usage: Failure return code.

data, data_warn

Type: Exc_config_rec_out

Access: Write

185

Chapter 8. Management APIs

Mechanism:

By value

Usage:

Structure containing fields corresponding to the fields in the
exc_config_rec structure, as well as a linked list of status
messages associated with the update. See the Description
section for a discussion of how to determine the update status
for any field. The following are the contents of this structure:

audit_state, max_tasks, sp_mon_interval, max_servers,
server_proc_dmpflag, transaction_timeout

Type: Integer

Access: Write

Mechanism: By value

Usage: Status fields corresponding to the fields
in the input argument.

cmd_output

Type: Decl_list

Access: Write

Mechanism: By reference

Usage: Pointer to a linked list of records

containing status messages related to the
failure of any updates. This structure
contains the following fields:

dcl_msg

Type: Null-terminated
string

Access: Write

Mechanism: By reference

Usage: The status message.

pNext

Type: Decl_list

Access: Write

Mechanism: By reference

Usage: Pointer to the next
node in the linked
list.

Description

This procedure requests updates to ACMS EXC Config class fields contained in the EXC table (see
Section 9.6). Note that the EXC table contains both active and stored values; however, only the active
fields can be changed. In order to change the stored values, the application must be rebuilt.

186

Chapter 8. Management APIs

For any nonnegative integer fields, the completion status of the update is returned in the corresponding
field in the return structure.

Example

int set_exc_data(int client_id,CLIENT *cl)
{

static char vr_appl[] = "VR_APPL";
static exc_config_rec_2 set_struct;
exc_status_rec_2 *ret_struct;
dcl_link *nl;

memset (&set_struct, -1,sizeof (set_struct));
set_struct.client_id = client_id;
set_struct.audit_state MGMT_STATE_DISABLED;
set_struct.appl_name vr_appl;

ret_struct = acmsmgmt_set_exc_2 (&set_struct,cl);

if (!ret_struct) {
printf ("\n Call to modify EXC failed");
return (MGMT_FAIL);

if (ret_struct->status != MGMT_SUCCESS)
printf ("\n Call to modify EXC returned the following warnings or
errors\n") ;
else
printf ("\n Call to modify EXC completed\n");

for (nl = ret_struct->exc_status_rec_2_u.data.cmd_output; nl != NULL; nl

nl->pNext)
printf ("\n %s",nl->dcl_msqg);
xdr_free (xdr_exc_status_rec_2, ret_struct);
free(ret_struct);
return(0) ;

}

In the preceding example, the acmsmgmt_set_exc_1 procedure is called to disable application auditing
for the application VR_APPL on the target node. If the call succeeds, the VR_APPL no longer writes
application auditing messages, and a success message is displayed. Otherwise, an error message is
displayed. The example in Section 6.3.1 shows how to declare and initialize the input arguments to this
procedure.

ACMSMGMT_SET_INTERFACE_1

ACMSMGMT_SET_INTERFACE_1 — This procedure modifies the status of a Remote Manager
interface. Either the SNMP or RPC interface can be modified. Note: ACMS Remote Manager will not
allow the RPC interface to be DISABLED through this call. The only way to disable the RPC interface
dynamically is to use the SNMP interface.

Format

int *acnmsngnt _set _interface_1(interface_config rec *if_cfg_rec, CLI ENT *cl)

187

Chapter 8. Management APIs

Parameters
if_cfg_rec
Type: Interface_config_rec
Access: Read
Mechanism: By reference
Usage: Structure that contains the following client identification and
interface configuration fields.
client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is
being used, a valid client
ID must be provided. If the
value for client_id is 0, proxy
access is used. Client_id is
obtained by calling the acms
$mgmt_get_creds procedure.
interface_type
Type: Integer
Access: Read
Mechanism: By value
Usage: Indicates the interface to be
modified. Table 8.2 shows
the valid symbolic values for
interface types.
state
Type: Integer
Access: Read
Mechanism: By value
Usage: Indicates desired state of the
interface. Table 8.3 shows the
valid symbolic values for the
allowable states.
cl
Type: CLIENT *
Access: Read
Mechanism: By value

188

Chapter 8. Management APIs

Usage:

Pointer to an RPC client handle previously obtained by calling the
RPC routine CLNT_CREATE.

Return Value

Type: Integer

Access: Write

Mechanism: By reference

Usage: Pointer to status value returned. If NULL or
MGMT_SUCCESS, the RPC has succeeded.
If neither NULL nor MGMT _SUCCESS, the
procedure call failed and the value pointed to is the
reason for failure.

Description

This procedure modifies the status of an interface. Interfaces can be enabled (that is, requested to start)
or disabled (that is, requested to stop) by setting the state field in if_cfg_rec to the appropriate value.

Note that it is not possible to use the RPC interface to enable the RPC interface. In order to use the RPC
interface, it must already be enabled. In order to start the RPC interface, either use the SNMP interface,
or use the ACMSCEFG utility to configure the RPC interface to be enabled when the Remote Manager

starts up.

It is also not possible to use this call to disable the RPC interface. The ACMS Remote Manager does not
allow an interface to disable itself. The only way to disable the RPC interface dynamically is to use the

SNMP interface.

Example

int set_interface_data(int client_id, CLIENT *cl)

{

static interface_config_rec set_struct;
int *status;

memset (&set_struct, -1, sizeof (set_struct));
set_struct.client_id = client_id;
set_struct.interface_type = MGMT_IF_SNMP;
set_struct.state = MGMT_STATE_ENABLED;
status = acmsmgmt_set_interface_1 (&set_struct,cl);
if (!status) {
printf ("\n Call to update SNMP interface failed");
return (MGMT_FAIL);

}

if (*status != MGMT_SUCCESS) {

printf ("\n Call to update SNMP interface failed with
%$d", *status) ;

free(status);
return (MGMT_FAIL);

status

189

Chapter 8. Management APIs

else
printf ("\n Call to set SNMP interface completed");
free(status);
return(0);

}

In the preceding example, the acmsmgmt_set_interface_1 procedure is called to enable the SNMP
interface. If the call succeeds, the SNMP interface is running on the target node, and a success message
is displayed. Otherwise, an error message is displayed. The example in Section 6.3.1 shows how to
declare and initialize the input arguments to this procedure.

ACMSMGMT _SET_PARAM_2

ACMSMGMT_SET_PARAM_2 — This procedure requests updates to fields in the Remote Manager
Parameter table.

Format

param status_rec2 *acnsngnt _set param 2(param config rec2 *set _struct, CLI ENT *cl)

Parameters
set_struct
Type: Param_config_rec
Access: Read
Mechanism: By reference
Usage: Structure that contains the following client identification and
parameter configuration fields.
client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is
being used, a valid client
ID must be provided. If the
value for client_id is O, proxy
access is used. Client_id is
obtained by calling the acms
$mgmt_get_creds procedure.
params
Type: Struct param_rec
Access: Read
Mechanism: By value
Usage: Structure containing a Parameter
table record. Parameter
table fields are described in

190

Chapter 8. Management APIs

Section 9.9. See the Description
section for information on how to
initialize this record.

cl

Type: CLIENT *

Access: Read

Mechanism: By value

Usage: Pointer to an RPC client handle previously obtained by calling the
RPC routine CLNT_CREATE.

Return Value

Type: Struct param_status_rec

Access: write

Mechanism: By reference

Usage: Pointer to a union. The union either contains a failure code or

a structure of type param_rec, which contains status codes for
each field. See the Description section for a discussion of how to
determine the update status for any field. The following are the
contents of this union:

status

Type: Integer

Access: write

Mechanism: By value

Usage: Failure return code.

data, data_warn

Type: Param_rec

Access: write

Mechanism: By value

Usage: Structure containing a Parameter

table record. The entries in
this field contain status codes
correspond to the fields in

the params structure. See

the Description section for a
discussion of how to determine
the update status for any field.

Description

This procedure requests updates to fields in the Parameter table (see Section 9.9). Some field updates are
dynamic; others are not. Updates to this table are not durable; that is, they do not survive a restart of the
Remote Manager.

191

Chapter 8. Management APIs

When this procedure is called, any fields with negative values are ignored. Callers should initialize any
fields to a negative value, for example, -1, for which updates are not to be applied. All nonnegative fields
are validated prior to being updated.

For any nonnegative fields, the completion status of the update is returned in the corresponding field in
the return structure. For instance, if the mss_coll_interval and max_logins fields in the params structure
of the param_config_rec are nonnegative when this procedure is called, the mss_coll_interval and
max_logins field of the data or data_warn structures of the param_status_rec will contain the completion
status for those updates.

The data and data_warn structures contain identical data. If the operation fails, the status field of either
structure is MGMT_WARN; in this case, use the data_warn structure to fetch the status messages from
the cmd_output linked list.

If the operation is successful, the status field of either structure is MGMT_SUCCESS. There are no
status messages associated with a successful call.

If the status field contains MGMT_FAIL, the call failed. There are no status messages returned; instead,
the reason for the failure is contained in the rc field.

Example

int set_param_data(int client_id, CLIENT *cl)
{

static param_config_rec2 set_struct;
param_status_rec2 *ret_struct;
int status;

memset (&set_struct, -1, sizeof (set_struct));

set_struct.client_id = client_id;
set_struct.params.max_logins = 25;

ret_struct = acmsmgmt_set_param_2 (&set_struct,cl);

if (!ret_struct) {
printf ("\n Call to modify parameters failed");
return (MGMT_FAIL);

if (ret_struct->status != MGMT_SUCCESS) {

if (ret_struct->status != MGMT_WARN) {
printf ("\nCall to modify parameters failed, returning %d",
ret_struct->status);
status = ret_struct->status;
xdr_free (xdr_param_status_rec2, ret_struct);
free (ret_struct);
return (MGMT_FAIL);

if (ret_struct->param_status_rec2_u.data.max_logins != MGMT_SUCCESS)
printf ("\n max_logins specified was invalid ");
xdr_free (xdr_param_status_rec2, ret_struct);
free (ret_struct);
return (MGMT_FAIL) ;

192

Chapter 8. Management APIs

}

else
printf ("\n Call to set params completed");
xdr_free (xdr_param_status_rec2, ret_struct);
free (ret_struct);
return(0);

}

In the preceding example, the acmsmgmt_set_param_1 procedure is called to set the maximum
number of logins to the Remote Manager to 25. If the call succeeds, the new value will be stored in the
Parameter table and a success message will be displayed. Otherwise, an error message is displayed. The
example in Section 6.3.1 shows how to declare and initialize the input arguments to this procedure.

ACMSMGMT_SET_QTI_2

ACMSMGMT_SET_QTI_2 — This procedure modifies Queued Task Initator (QTI) Config class
attributes.

Format

gti _status_rec_2 *acnsngm _set _qti _2(qti _config rec_2 *set_struct, CLI ENT *cl)

Parameters
set_struct
Type: Qti_config_rec
Access: Read
Mechanism: By reference
Usage: Structure that contains the following client identification and QTI
table fields.
client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is being
used, a valid client ID must be
provided. If the value of client_id
is 0, proxy access is used.
Client_id is obtained by calling
the acms$mgmt_get_creds
procedure.
active_sw
Type: Integer
Access: Read
Mechanism: By value

193

Chapter 8. Management APIs

Usage:

Indicates whether active variables
should be updated (active_sw =
1). Active variables are currently
in use by the ACMS system;
updates to active variables

take effect immediately but

are not durable (that is, they

do not survive a restart of

the ACMS system). Not all
variables are dynamic, however.
Refer to Section 9.10 and to

the field descriptions in this
section, to determine whether a
particular variable can be updated
dynamically.

current_sw

Type:

Integer

Access:

Read

Mechanism:

By value

Usage:

Indicates whether current
variables should be updated
(current_sw = 1). Current
variables are those stored in the
ACMSGEN file currently in use
by the ACMS system and are
durable (that is, they survive a
restart of the ACMS system).
Updates to current variables take
effect when the ACMS system is
restarted.

qti_priority, max_threads, sub_timeout, retry_timer, polling_timer

Type: Integer

Access: Read

Mechanism: By value

Usage: Values to be updated. These

fields correspond to fields of
the same names in the QTI
table, depending on the value
of active_sw and current_sw
in this record (for example,
qti_priority will update the
qti_priority_stored field if
current_sw is equal to 1). See
Section 9.10 for a discussion
of these fields. Note that

194

Chapter 8. Management APIs

not all fields can be updated
dynamically.

qti_username

Type:

Null-terminated string

Access:

Read

Mechanism:

By reference

Usage:

Values to be updated. This field
corresponds to the qti_username
field in the QTI table; the exact
field depends on the value

of active_sw and current_sw

in this record (for example,
gti_username will update the
gti_username_stored field if
current_sw is equal to 1). See
Section 9.10 for a discussion

of these fields. Note that

not all fields can be updated
dynamically. In order to have this
field set to null (that is, ""), set
the field to the string "NULL".

cl

Type:

CLIENT *

Access:

Read

Mechanism:

By value

Usage:

Pointer to an RPC client handle previously obtained by calling the

RPC routine CLNT_CREATE.

Return Value

Type: Struct qti_status_rec

Access: Write

Mechanism: By reference

Usage: Pointer to a union. The union contains either a failure code or a structure of type

qti_config_rec_out, which contains status codes for each field, as well as a linked
list of status messages associated with the update. See the Description section for
a discussion of how to determine the update status for any field. The following are
the contents of this union:

status

Type: Integer

Access: Write

Mechanism: By value

Usage: Failure return code.

195

Chapter 8. Management APIs

data, data_warn

Type: Qti_config_rec_out

Access: Write

Mechanism: By value

Usage: Structure containing fields corresponding to the fields in

the qti_config_rec structure, as well as a linked list of status
messages associated with the update. See the Description
section for a discussion of how to determine the update status
for any field. The following are the contents of this structure:

qti_priority, max_threads, sub_timeout, retry_timer,

polling_timer

Type: Integer

Access: Write

Mechanism: By value

Usage: Status fields corresponding to the fields

in the input argument.

qti_username

Type: Null-terminated string

Access: Write

Mechanism: By reference

Usage: This field contains the value that was
supplied in the input argument and can
be ignored.

cmd_output

Type: Dcl_list

Access: Write

Mechanism: By reference

Usage: Pointer to a linked list of records

containing status messages related to the
failure of any updates. This structure
contains the following fields:

dcl_msg

Type: Null-terminated
string

Access: Write

Mechanism: By reference

Usage: The status message.

196

Chapter 8. Management APIs

pNext

Type: Dcl_list

Access: Write

Mechanism: By reference

Usage: Pointer to the next
node in the linked
list.

Description

This procedure requests updates to ACMS QTI Config class fields contained in the QTI table (see
Section 9.10). Note that the QTI table contains both active and stored values. The active_sw field and
current_sw field control which fields should be updated.

Attempting to update an active field that is nondynamic is essentially useless, since the active field
value does not change. For instance, calling this procedure with the active_sw field set to 1 and the
gti_username field populated produces no change to the system.

Setting the current_sw field to 1 causes updates to be written to the current ACMSGEN file. These
updates are durable, that is, they survive a restart of the ACMS sytem, but do not affect the active system
until the system is restarted.

Both current_sw and active_sw can be set on a given call. In this case, both the active and stored values
for any nonnegative or nonnull fields are updated.

For any nonnegative integer fields, the completion status of the update is returned in the corresponding
field in the return structure. For string fields, the string field value is returned, regardless of the status of

the call.

In order to have one of the string fields set to a null string, that is, "", populate the field with value
"NULL". To have one of the string fields ignored, pass in a null string.

Example

int set_gti_data(int client_id,CLIENT *cl)

{

static char c_name_all[2] =
static char c_null_str[2] =
static gti_config_rec_2 set_struct;
rec_2 *ret_struct;

gti_status_

dcl_link

*nl;

mwimw,.
14

mww.,.
14

memset (&set_struct,—-1,sizeof (set_struct));

set_struct
set_struct
set_struct
set_struct

/* Have to

or it will gtiess vio.

.client_id =
.active_sw =
.current_sw =
.polling_timer =

client_id;
1;

0;

4999;

provide a pointer for string conversions

by XDR

RM will ignore any fields with

197

Chapter 8. Management APIs

strlen of 0 */

set_struct.gti_username = c_null_str;
ret_struct = acmsmgmt_set_gti_2 (&set_struct,cl);
if (!ret_struct) {

printf ("\n Call to modify gti failed");
return (MGMT_FAIL);
}

if (ret_struct->status != MGMT_SUCCESS)
printf ("\n Call to modify QTI returned the following warnings or
errors\n");
else
printf ("\n Call to modify QTI completed\n");

for (nl = ret_struct->qti_status_rec_2_u.data.cmd_output; nl != NULL;
nl = nl->pNext)
printf ("\n %s",nl->dcl_msqg);
xdr_free (xdr_qgti_status_rec_2, ret_struct);
free (ret_struct);
return(0);

}
In the preceding example, the acmsmgmt_set_qti_1 procedure is called to set the ACMSGEN parameter
gti_polling_timer to 4999 milliseconds. If the call succeeds, only the active value is modified, the stored

value is unchanged, and a success message is displayed. Otherwise, an error message is displayed. The
example in Section 6.3.1 shows how to declare and initialize the input arguments to this procedure.

ACMSMGMT_SET_SERVER_1

ACMSMGMT_SET_SERVER 1 — This procedure modifies server (ACMS procedure server) Config
class attributes.

Format

ser_status_rec *acnsngnt _set _server _1(ser_config rec *set _struct, CLIENT *cl)

Parameters
set_struct
Type: Ser_config_rec
Access: Read
Mechanism: By reference
Usage: Structure that contains the following client identification and Server
table fields.
client_id
Type: Integer
Access: Read

198

Chapter 8. Management APIs

Mechanism: By value

Usage: If explicit authentication is being
used, a valid client ID must be
provided. If the value of client_id
is 0, proxy access is used.
Client_id is obtained by calling
the acms$mgmt_get_creds

procedure.

appl_name

Type: Null-terminated string

Access: Read

Mechanism: By reference

Usage: Name of the application to which
the server to be updated belongs.

server_name

Type: Null-terminated string
Access: Read

Mechanism: By reference

Usage: Name of the server to update.

creation_delay, creation_interval, deletion_delay, deletion_interval,
server_proc_dmpflag, minimum_instances, maximum_instances

Type: Integer

Access: Read

Mechanism: By value

Usage: Values to be updated. These

fields correspond to the active
fields of the same names in

the Server table (for example,
creation_delay updates the
creation_delay_active field). See
Section 9.11 for a discussion

of these fields. All fields in

this record can be updated

dynamically.
cl
Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling the

RPC routine CLNT_CREATE.

199

Chapter 8. Management APIs

Return Value

Type: Struct ser_status_rec

Access: Write

Mechanism: By reference

Usage: Pointer to a union. The union contains either a failure code or a structure of type

ser_config_rec_out, which contains status codes for each field, as well as a linked
list of status messages associated with the update. See the Description section for
a discussion of how to determine the update status for any field. The following are
the contents of this union:

status

Type: Integer

Access: Write

Mechanism: By value

Usage: Failure return code.

data, data_warn

Type: Ser_config_rec_out

Access: Write

Mechanism: By value

Usage: Structure containing fields corresponding to the fields in

the ser_config_rec structure, as well as a linked list of status
messages associated with the update. See the Description
section for a discussion of how to determine the update status
for any field. The following are the contents of this structure:

creation_delay, creation_interval, deletion_delay,
deletion_interval, server_proc_dmpflag, minimum_instances,
maximum_instances

Type: Integer

Access: Write

Mechanism: By value

Usage: Status fields corresponding to the fields
in the input argument.

cmd_output

Type: Decl_list

Access: Write

Mechanism: By reference

Usage: Pointer to a linked list of records
containing status messages related to the

200

Chapter 8. Management APIs

failure of any updates. This structure

contains the following fields:

dcl_msg

Type: Null-terminated
string

Access: Write

Mechanism: By reference

Usage: The status message.

pNext

Type: Decl_list

Access: Write

Mechanism: By reference

Usage: Pointer to the next
node in the linked
list.

Description

This procedure requests updates to ACMS server Config class fields contained in the Server table (see
Section 9.11). Note that the Server table contains only active values.

For any nonnegative integer fields, the completion status of the update is returned in the corresponding
field in the return structure.

Example

int set_ser_data(int client_id,CLIENT *cl)
{

static char c_name_all[2] = "*";
static char vr_appl[] = "VR_APPL";
static ser_config_rec set_struct;
ser_status_rec *ret_struct;
dcl_link *nl;

memset (&set_struct, -1, sizeof (set_struct));
set_struct.client_id = client_id;
set_struct.appl_name vr_appl;
set_struct.server_name c_name_all;
set_struct.creation_delay = 20;

ret_struct = acmsmgmt_set_server_1 (&set_struct,cl);
if (!ret_struct) {

printf ("\n Call to modify Server failed");
return (MGMT_FAIL);

if (ret_struct->status != MGMT_SUCCESS)

201

Chapter 8. Management APIs

printf ("\n Call to modify Server returned the following warnings or
errors\n");
else
printf ("\n Call to modify Server completed\n");

for (nl = ret_struct->ser_status_rec_u.data.cmd_output; nl != NULL;
nl = nl->pNext)
printf ("\n %s",nl->dcl_msqg);
xdr_free (xdr_ser_status_rec, ret_struct);
free (ret_struct);
return(0);

}

In the preceding example, the acmsmgmt_set_server_1 procedure is called to set the creation_delay
parameter field for all servers in application VR_APPL to 20 seconds. If the call succeeds, this
parameter field is modified for all servers in the VR_APPL, and a success message is displayed.
Otherwise, an error message is displayed. The example in Section 6.3.1 shows how to declare and
initialize the input arguments to this procedure.

ACMSMGMT_SET_TRAP_1

ACMSMGMT_SET_TRAP_1 — This procedure modifies entries in the Remote Manager Trap table.
Trap table entries can also be added and deleted.

Format

trap_status_rec *acmsngmt _set _trap_1(trap_config _rec *set_struct, CLI ENT *cl)

Parameters
set_struct
Type: Trap_config_rec
Access: Read
Mechanism: By reference
Usage: Structure that contains the following client identification and Trap
table fields.
client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is being
used, a valid client ID must be
provided. If the value of client_id
is 0, proxy access is used.
Client_id is obtained by calling
the acms$mgmt_get_creds
procedure.
trap_entry

202

Chapter 8. Management APIs

Type: Struct trap_update_rec_r
Access: Read
Mechanism: By value
Usage: Structure containing a Trap
table record. Trap table fields
are described in Section 9.13.
See the Description section for
information on how to initialize
this record.
cl
Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling the

RPC routine CLNT_CREATE.

Return Value

Type: Struct trap_status_rec

Access: Write

Mechanism: By reference

Usage: Pointer to a union. The union contains either a failure code or a

structure of type trap_update_rec_r, which contains status codes
for each field. See the Description section for a discussion of how
to determine the update status for any field. The following are the

contents of this union:

status

Type: Integer

Access: Write

Mechanism: By value

Usage: Failure return code.
data_warn

Type: Trap_update_rec_r
Access: Write

Mechanism: By value

Usage: Structure containing a Trap

table record. The entries in
this field contain status codes
corresponding to the fields in
the trap_entry structure. See
the Description section for a

203

Chapter 8. Management APIs

discussion of how to determine
the update status for any field.

Description

This procedure requests updates to fields in the Trap table (see Section 9.13).

Updates to this table are not durable; that is, they do not survive a restart of the Remote Manager. To
make nondynamic, permanent updates to the Trap table, use the ACMSCFG utility.

Calls to this procedure must specify entity_type, entity_name, and param_to_trap. These fields must
exactly match an existing record in the Trap table for the update to be applied. Table 8.1 and Table 8.4
contain symbolic values used to populate the collection_class and entity_type fields; symbolic values to
the param_to_trap field are described in Table 8.8.

Setting fields trap_min, trap_max, or severity to -2 excludes them from being updating. Otherwise, the
corresponding field in the matching trap record is modified. -1 is a special value that causes the field to
be ignored when evaluating the trap conditions; see Section 7.8.

Updates to the Trap table are processed immediately and may affect more than one ACMS process. See
Section 7.8 for a discussion of how to set SNMP traps.

Example

int set_trap_data(int client_id,CLIENT *cl)
{

static char c_name_all[2] = "*";
static trap_config_rec set_struct;
struct trap_status_rec *status_rec;

set_struct.client_id = client_id
set_struct.trap_entry.entity_type = MGMT_ACC;
set_struct.trap_entry.entity_name = c_name_all;
set_struct.trap_entry.param_to_trap = MGMT_EXISTS;
set_struct.trap_entry.min = 1;
set_struct.trap_entry.max = -1,
set_struct.trap_entry.severity = MGMT_SEV_FATAL;
status_rec = acmsmgmt_set_trap_1 (&set_struct,cl);

if (!status_rec) {

printf ("\n Call to modify trap failed");
return (MGMT_FAIL);

if (status_rec—->status == MGMT_WARN) {
printf ("\nThe following updates failed: ");
if (status_rec->trap_status_rec_u.data_warn.entity_type ==
MGMT_FAIL)
printf ("\n entity_type not found or invalid");
if (status_rec->trap_status_rec_u.data_warn.param_to_trap ==
MGMT_FAIL)

printf ("\n param not found or invalid");

if (status_rec->trap_status_rec_u.data_warn.min == MGMT_FAIL)
printf ("\n min invalid");

if (status_rec->trap_status_rec_u.data_warn.max == MGMT_FAIL)

204

Chapter 8. Management APIs

printf ("\n max invalid");
if (status_rec->trap_status_rec_u.data_warn.severity == MGMT_FAIL)
printf ("\n severity invalid");
}
else 1f (status_rec—>status != MGMT_SUCCESS) {

printf ("\nCall to modify trap failed with status %d",
status_rec->trap_status_rec_u.rc);
xdr_free (xdr_trap_status_rec, status_rec);
free(status_rec);
return (MGMT_FAIL);
}

else
printf ("\nCall to modify trap was executed");
xdr_free (xdr_trap_status_rec, status_rec);
free(status_rec);
return(0);

}

In the preceding example, the acmsmgmt_set_trap_1 procedure is called to set the trap_min field to 1,
the trap_max field to -1, and the trap severity to FATAL for a trap based on an entity_type of ACC, an
entity_name of * (all), and a trap parameter of EXISTS. The effect of this change is to cause a fatal-
level trap to be generated if the ACC on the target node is stopped. If the call succeeds, the trap is
reconfigured in the Trap table in memory. Otherwise, an error message is displayed. The example in
Section 6.3.1 shows how to declare and initialize the input arguments to this procedure.

ACMSMGMT_SET_TSC_2

ACMSMGMT_SET_TSC_2 — This procedure modifies Terminal Subsystem Controller (TSC) Config
class attributes.

Format

tsc_status_rec_2 *acnsngnt_set _tsc_2(tsc_config rec_2 *set_struct, CLI ENT *cl)

Parameters
set_struct
Type: Tsc_config_rec
Access: Read
Mechanism: By reference
Usage: Structure that contains the following client identification and TSC
table fields.
client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is being
used, a valid client ID must be
provided. If the value of client_id

205

Chapter 8. Management APIs

is 0, proxy access is used.
Client_id is obtained by calling
the acms$mgmt_get_creds
procedure.

active_sw

Type: Integer

Access: Read

Mechanism: By value

Usage: Indicates whether active variables
should be updated (active_sw =
1). Active variables are currently
in use by the ACMS system;
updates to active variables
take effect immediately but
are not durable (that is, they
do not survive a restart of
the ACMS system). Not all
variables are dynamic, however.
Refer to Section 9.15, and to
the field descriptions in this
section, to determine whether a
particular variable can be updated
dynamically.

current_sw

Type: Integer

Access: Read

Mechanism: By value

Usage: Indicates whether current

variables should be updated
(current_sw = 1). Current
variables are those stored in the
ACMSGEN file currently in use
by the ACMS system and are
durable (that is, they survive a
restart of the ACMS system).
Updates to current variables take
effect when the ACMS system is
restarted.

tsc_priority, cp_priority, cp_slots, max_logins, max_tts_cp, perm_cps,

min_cpis

Type: Integer
Access: Read
Mechanism: By value

206

Chapter 8. Management APIs

Usage:

Values to be updated. These
fields correspond to fields of
the same names in the TSC
table, depending on the value
of active_sw and current_sw
in this record (for example,
tsc_priority will update the
tsc_priority_stored field if
current_sw is equal to 1). See
Section 9.15 for a discussion
of these fields. Note that

not all fields can be updated
dynamically.

Isc_username, cp_username

Type:

Null-terminated string

Access:

Read

Mechanism:

By reference

Usage:

Values to be updated. These
fields correspond to fields of
the same names in the TSC
table, depending on the value
of active_sw and current_sw

in this record (for example,
tsc_username will update the
tsc_username_stored field if
current_sw is equal to 1). See
Section 9.15 for a discussion
of these fields. Note that

not all fields can be updated
dynamically. In order to have any
of these fields set to null (that
is, ""), set the field to the string
"NULL".

cl

Type:

CLIENT *

Access:

Read

Mechanism:

By value

Usage:

RPC routine CLNT_CREATE.

Pointer to an RPC client handle previously obtained by calling the

Return Value

Type: Struct tsc_status_rec
Access: Write
Mechanism: By reference

207

Chapter 8. Management APIs

Usage:

Pointer to a union. The union contains either a failure code or a structure of type
tsc_config_rec_out, which contains status codes for each field, as well as a linked
list of status messages associated with the update. See the Description section for
a discussion of how to determine the update status for any field. The following are
the contents of this union:

status

Type: Integer

Access: Write

Mechanism: By value

Usage: Failure return code.

data, data_warn

Type: Tsc_config_rec_out

Access: Write

Mechanism: By value

Usage: Structure containing fields corresponding to the fields in the

acc_config_rec structure, as well as a linked list of status
messages associated with the update. See the Description
section for a discussion of how to determine the update status
for any field. The following are the contents of this structure:

tsc_priority, cp_priority, cp_slots, max_logins, max_tts_cp,
perm_cps, min_cpis

Type: Integer

Access: Write

Mechanism: By value

Usage: Status fields corresponding to the fields
in the input argument.

isc_username, cp_username

Type: Null-terminated string

Access: Write

Mechanism: By reference

Usage: These fields contain the values that were
supplied in the input argument, and can
be ignored.

cmd_output

Type: Dcl_list

Access: Write

Mechanism: By reference

208

Chapter 8. Management APIs

Usage:

Pointer to a linked list of records
containing status messages related to the
failure of any updates. This structure
contains the following fields:

dcl_msg

Type: Null-terminated
string

Access: Write

Mechanism: By reference

Usage: The status message.

pNext

Type: Dcl_list

Access: Write

Mechanism: By reference

Usage: Pointer to the next

node in the linked
list.

Description

This procedure requests updates to ACMS TSC Config class fields contained in the TSC table (see
Section 9.15). Note that the TSC table contains both active and stored values. The active_sw field and
current_sw field control which fields are attempted to be updated.

Attempting to update an active field that is nondynamic is essentially useless, since the active field
value will not change. For instance, calling this procedure with the active_sw field set to 1 and the
tsc_username field populated does not result in any change to the system.

Setting the current_sw field to 1 causes updates to be written to the current ACMSGEN file. These
updates are durable, that is, they survive a restart of the ACMS sytem, but do not affect the active system

until the system is restarted.

Both current_sw and active_sw may be set on a given call. In this case, both the active and stored values

for any nonnegative or nonnull fields will be updated.

For any nonnegative integer fields, the completion status of the update is returned in the corresponding
field in the return structure. For string fields, the string field value is returned, regardless of the status of

the call.

In order to have one of the string fields set to a null string, that is,

"NULL". To have one of the string fields ignored, pass in a null string.

Example

int set_tsc_data(int client_id,CLIENT *cl)

{

static char c_name_all([2]
static char c_null_str[2]

LU [
’

mww,
4

, populate the field with value

209

Chapter 8. Management APIs

static tsc_config_rec set_struct;
tsc_status_rec *ret_struct;
dcl_link *nl;

memset (&set_struct, -1, sizeof (set_struct));

set_struct.client_id client_id;
set_struct.active_sw = 1;
set_struct.current_sw = 0;
set_struct.max_logins 61;

/* Have to provide a pointer for string conversions by XDR
or it will tscess vio. RM will ignore any fields with
strlen of 0 */

set_struct.tsc_username = c_null_str;

set_struct.cp_username c_null_str;

ret_struct = acmsmgmt_set_tsc_2 (&set_struct,cl);

if (!ret_struct) {
printf ("\n Call to modify TSC failed");
return (MGMT_FAIL);

if (ret_struct->status != MGMT_SUCCESS)
printf ("\n Call to modify TSC returned the following warnings or
errors\n");
else
printf ("\n Call to modify TSC completed\n");
for (nl = ret_struct->tsc_status_rec_2_u.data.cmd_output; nl != NULL;
nl = nl->pNext)
printf ("\n %s",nl->dcl_msqg);
xdr_free (xdr_tsc_status_rec_2, ret_struct);
free (ret_struct);
return(0);

}

In the preceding example, the acmsmgmt_set_tsc_1 procedure is called to set the ACMSGEN

parameter max_logins to 61. If the call succeeds, only the active value is modified; the stored value is
unchanged, and a success message is displayed. Otherwise, an error message is displayed. The example in
Section 6.3.1 shows how to declare and initialize the input arguments to this procedure

ACMSMGMT_START_ACC_1

ACMSMGMT_START_ACC_1 — This procedure requests that the Remote Manager start the ACMS
system.

Format
cnd_out put _rec *acnsngnt _start _acc_l(acc_startup_rec *start_struct, CLI ENT *cl)
Parameters

start_struct

Type: Acc_startup_rec

210

Chapter 8. Management APIs

Access: Read
Mechanism: By reference
Usage: Structure that contains the following client identification and Trap

table fields.

client_id

Type: Integer

Access: Read

Mechanism: By value

Usage: If explicit authentication is
being used, a valid client
ID must be provided. If the
value for client_id is O, proxy
access is used. Client_id is
obtained by calling the acms
$mgmt_get_creds procedure.

audit_sw

Type: Integer

Access: Read

Mechanism: By value

Usage: Indicates whether system auditing
should be enabled (audit_sw =
1), or disabled (audit_sw =0).

qti_sw

Type: Integer

Access: Read

Mechanism: By value

Usage: Indicates whether the Queued

Task Initiator (QTT) should be
started (qti_sw = 1), or not
(qti_sw=0).

terminals_sw

Type: Integer

Access: Read

Mechanism: By value

Usage: Indicates whether the Terminal

Subsystem Controller (TSC)
should be started (terminals_sw =
1), or not (terminals_sw =0).

211

Chapter 8. Management APIs

cl

Type: CLIENT *

Access: Read

Mechanism: By value

Usage: Pointer to an RPC client handle previously obtained by calling the
RPC routine CLNT_CREATE.

Return Value

Type: Cmd_output_rec

Access: Write

Mechanism: By reference

Usage: Pointer to a union. The union contains either a failure code or a structure of type

cmd_rec_r, which points to a linked list containing status messages. The following
are the contents of this union:

status

Type: Integer

Access: Write

Mechanism: By value

Usage: Failure return code.
rc

Type: Integer

Access: Write

Mechanism: By value

Usage: Failure return code.

data, data_warn

Type: Cmd_rec

Access: Write

Mechanism: By value

Usage: Structure containing the first node in a linked list of status

messages (type dcl_list). The following are the contents of
this structure:

cmd_output

Type: Decl_list
Access: Write
Mechanism: By reference

212

Chapter 8. Management APIs

Usage: Pointer to a linked list of records
containing status messages related to the
failure of any updates. This structure
contains the following fields:
dcl_msg
Type: Null-terminated

string
Access: Write
Mechanism: By reference
Usage: The status message.
pNext
Type: Dcl_list
Access: Write
Mechanism: By reference
Usage: Pointer to the next
node in the linked
list.

Description

This procedure requests startup of the ACMS run-time system on the same node that the Remote
Manager is running on. Fields in the input argument determine how the ACMS system will be started
(that is, with or without auditing, terminals or QTI).

This call executes synchronously. It does not return to the caller until the attempt to start the system
is complete. Any messages associated with an unsuccessful start of the system are returned in the
cmd_output linked list.

The data and data_warn structures contain identical data. If the operation fails, the status field of both
structures will be MGMT_WARN; in this case, use the data_warn structure to fetch the status messages
from the cmd_output linked list.

If the operation is successful, the status field of both structures will be MGMT_SUCCESS. There are
no status messages associated with a successful call. If the status field contains MGMT_FAIL, the call
failed. No status messages are returned; instead, the reason for the failure is contained in the rc field.

Example

int start_acc(int client_id, CLIENT *cl)
{
dcl_link *nl;
static acc_startup_rec start_struct;
cmd_output_rec *ret_struct;

start_struct.client_id = client_id;
start_struct.audit_sw = 1;
start_struct.gti_sw = 1;

213

Chapter 8. Management APIs

start_struct.terminals_sw = 1;
ret_struct = acmsmgmt_start_acc_1 (&start_struct,cl);
if (!ret_struct) {

printf("\n Call to start system failed");
return (MGMT_FAIL);

if (ret_struct->status != MGMT_SUCCESS) {

if (ret_struct->status != MGMT_WARN) {
printf ("\nCall to start ACMS system failed with status %d",
ret_struct->status);
xdr_free (xdr_cmd_output_rec, ret_struct);
free (ret_struct);
return (MGMT_FAIL);

printf ("\n Call to start ACMS system completed with warnings or
errors");

for (nl = ret_struct->cmd_output_rec_u.data.cmd_output; nl != NULL;
nl nl->pNext)
printf ("\n %s",nl->dcl_msqg);
xdr_free (xdr_cmd_output_rec, ret_struct);
free(ret_struct);
return (MGMT_FAIL);

else {
printf ("\nCall to start ACMS system was executed");
for (nl = ret_struct->cmd_output_rec_u.data.cmd_output; nl != NULL;

nl = nl->pNext)
printf ("\n %s",nl->dcl_msqg);

xdr_free (xdr_cmd_output_rec, ret_struct);
free (ret_struct);
return(0);

}

In the preceding example, the acmsmgmt_start_acc_1 procedure is called to start the ACMS run-
time system on the target node. The system is started with system auditing enabled, the QTI started,
and terminals started. If the call succeeds, the ACMS run-time system is started on the target node.
Otherwise, any error messages associated with the failure are displayed. The example in Section 6.3.1
shows how to declare and initialize the input arguments to this procedure.

ACMSMGMT_START_EXC_1

ACMSMGMT_START_EXC_1 — This procedure requests that the Remote Manager start an ACMS
application on the same node on which the Remote Manager is running,.

Format

cnd_out put _rec *acnsngnt _start_exc_l(exc_startup_rec *start_struct, CLI ENT *cl)

214

Chapter 8. Management APIs

Parameters

start_struct

RPC routine CLNT_CREATE.

Type: Exc_startup_rec
Access: Read
Mechanism: By reference
Usage: Structure that contains the following client identification and Trap
table fields.
client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is
being used, a valid client
ID must be provided. If the
value for client_id is O, proxy
access is used. Client_id is
obtained by calling the acms
$mgmt_get_creds procedure.
appl_name
Type: Null-terminated string
Access: Read
Mechanism: By reference
Usage: Pointer to the application name
of the application to be started.
cl
Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling the

Return Value

Type: Cmd_output_rec

Access: Write

Mechanism: By reference

Usage: Pointer to a union. The union contains either a failure code or a structure of type

cmd_rec_r, which points to a linked list containing status messages. The following
are the contents of this union:

215

Chapter 8. Management APIs

status

Type: Integer

Access: Write

Mechanism: By value

Usage: Failure return code.
rc

Type: Integer

Access: Write

Mechanism: By value

Usage: Failure return code.

data, data_warn

Type: Cmd_rec

Access: Write

Mechanism: By value

Usage: Structure containing the first node in a linked list of status

messages (type dcl_list). The following are the contents of

this structure:

cmd_output

Type: Dcl_list

Access: Write

Mechanism: By reference

Usage: Pointer to a linked list of records

containing status messages related to the
failure of any updates. This structure
contains the following fields:

dcl_msg

Type: Null-terminated
string

Access: Write

Mechanism: By reference

Usage: The status message.

pNext

Type: Dcl_list

Access: Write

Mechanism: By reference

216

Chapter 8. Management APIs

Usage: Pointer to the next
node in the linked
list.

Description

This procedure starts an ACMS application on the same node on which the Remote Manager is running.
The appl_name field in the input record determines which application will be started.

This call executes synchronously. It does not return to the caller until the attempt to start the application
is complete. Any messages associated with an unsuccessful start of the application are returned in the
cmd_output linked list.

The data and data_warn structures contain identical data. If the operation fails, the status field of either
structure will be MGMT_WARN; in this case, use the data_warn structure to fetch the status messages
from the cmd_output linked list.

If the operation is successful, the status field of either structure will be MGMT_SUCCESS. No status
messages are associated with a successful call.

If the status field contains MGMT_FAIL, the call failed. No status messages are returned; instead, the
reason for the failure is contained in the rc field.

Example

int start_exc(int client_id, CLIENT *cl)

{
dcl_link *nl;
static char c_appl_name[] = "VR_APPL";
static exc_startup_rec start_struct;
cmd_output_rec *ret_struct;

start_struct.client_id = client_id;
start_struct.appl_name c_appl_name;

ret_struct = acmsmgmt_start_exc_1 (&start_struct,cl);

if (!ret_struct) {
printf ("\n Call to start EXC failed");
return (MGMT_FAIL) ;

if (ret_struct->status != MGMT_SUCCESS) {

if (ret_struct->status != MGMT_WARN) {
printf ("\nCall to start ACMS EXC failed with status %d4d",
ret_struct->status);
xdr_free (xdr_cmd_output_rec, ret_struct);
free (ret_struct);
return (MGMT_FAIL) ;

printf ("\n Call to start ACMS EXC completed with warnings or
errors");

217

Chapter 8. Management APIs

for (nl ret_struct->cmd_output_rec_u.data.cmd_output; nl != NULL;
nl = nl->pNext)
printf ("\n %s",nl->dcl_msqg);
xdr_free (xdr_cmd_output_rec, ret_struct);
free (ret_struct);
return (MGMT_FAIL);
}

else {
printf ("\nCall to start ACMS EXC was executed");
for (nl = ret_struct->cmd_output_rec_u.data.cmd_output; nl != NULL;

nl = nl->pNext)
printf ("\n %s",nl->dcl_msqg);

xdr_free (xdr_cmd_output_rec, ret_struct);
free (ret_struct);
return(0);

}

In the preceding example, the acmsmgmt_start_exc_1 procedure is called to start an application
named VR_APPL on the target node. If the call succeeds, the VR_APPL application is started on the
target node. Otherwise, any error messages associated with the failure are displayed. The example in
Section 6.3.1 shows how to declare and initialize the input arguments to this procedure.

ACMSMGMT_START_QTI_1

ACMSMGMT_START_QTI_1 — This procedure requests that the Remote Manager start a Queued
Task Initiator (QTI) on the same node on which the Remote Manager is running.

Format

cnd_out put _rec *acnsngnt _start_qti_1(sub_id_struct *sub_rec, CLI ENT *cl)

Parameters
sub_rec
Type: Sub_id_struct *
Access: Read
Mechanism: By reference
Usage: Structure that contains the following client authorization
information.
client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is
being used, a valid client
ID must be provided. If the

218

Chapter 8. Management APIs

value for client_id is O, proxy
access is used. Client_id is
obtained by calling the acms
$mgmt_get_creds procedure.

cl

Type: CLIENT *

Access: Read

Mechanism: By value

Usage: Pointer to an RPC client handle previously obtained by calling the

RPC routine CLNT_CREATE.

Return Value

Type: Cmd_output_rec

Access: Write

Mechanism: By reference

Usage: Pointer to a union. The union contains either a failure code or a structure of type

cmd_rec_r, which points to a linked list containing status messages. The following
are the contents of this union:

status

Type: Integer

Access: Write

Mechanism: By value

Usage: Failure return code.
rc

Type: Integer

Access: Write

Mechanism: By value

Usage: Failure return code.

data, data_warn

Type: Cmd_rec

Access: Write

Mechanism: By value

Usage: Structure containing the first node in a linked list of status

this structure:

messages (type dcl_list). The following are the contents of

219

Chapter 8. Management APIs

cmd_output
Type: Dcl_list
Access: Write
Mechanism: By reference
Usage: Pointer to a linked list of records
containing status messages related to the
failure of any updates. This structure
contains the following fields:
dcl_msg
Type: Null-terminated
string
Access: Write
Mechanism: By reference
Usage: The status message.
pNext
Type: Dcl_list
Access: Write
Mechanism: By reference
Usage: Pointer to the next
node in the linked
list.

Description
This procedure starts an ACMS QTTI on the same node on which the Remote Manager is running.

This call executes synchronously. It does not return to the caller until the attempt to start the QTI is
complete. Any messages associated with an unsuccessful start of the QTT are returned in the cmd_output
linked list.

The data and data_warn structures contain identical data. If the operation fails, the status field of both
structures will be MGMT_WARN; in this case, use the data_warn structure to fetch the status messages
from the cmd_output linked list.

If the operation is successful, the status field of both structures will be MGMT_SUCCESS. No status
messages are associated with a successful call.

If the status field contains MGMT_FAIL, the call failed. No status messages are returned; instead, the
reason for the failure is contained in the rc field.

Example

int start_gti(int client_id, CLIENT *cl)
{
dcl_link *nl;

220

Chapter 8. Management APIs

static struct sub_id_struct sub_rec;
cmd_output_rec *ret_struct;

sub_rec.client_id = client_id;
ret_struct = acmsmgmt_start_gti_1 (&sub_rec,cl);

if (!ret_struct) {
printf ("\n Call to start QTI failed");
return (MGMT_FAIL);

if (ret_struct->status != MGMT_SUCCESS) {

if (ret_struct->status != MGMT_WARN) {
printf ("\nCall to start ACMS QTI failed with status %d",
ret_struct->status);
xdr_free (xdr_cmd_output_rec, ret_struct);
free (ret_struct);
return (MGMT_FAIL);

printf ("\n Call to start ACMS QTI completed with warnings or
errors");

for (nl = ret_struct->cmd_output_rec_u.data.cmd_output; nl != NULL;
nl = nl->pNext)
printf ("\n %s",nl->dcl_msqg);
xdr_free (xdr_cmd_output_rec, ret_struct);
free (ret_struct);
return (MGMT_FAIL);

else {
printf ("\nCall to start ACMS QTI was executed");
for (nl = ret_struct->cmd_output_rec_u.data.cmd_output; nl != NULL;

nl = nl->pNext)
printf ("\n %s",nl->dcl_msqg);

xdr_free (xdr_cmd_output_rec, ret_struct);
free(ret_struct);
return(0);

In the preceding example, the acmsmgmt_start_qti_1 procedure is called to start the Queued Task
Initiator (QTI) on the target node. If the call succeeds, the QTI is started on the target node. Otherwise,
any error messages associated with the failure are displayed. The example in Section 6.3.1 shows how to
declare and initialize the input arguments to this procedure.

ACMSMGMT_START TRACE_MONITOR 1

ACMSMGMT_START_TRACE_MONITOR_1 — This procedure requests that the Remote Manager
start the ACMS$TRACE_MONITOR process. The ACMS$TRACE_MONITOR process is an
intermediate process used by the Remote Manager to communicate with ACMS run-time processes to
enable and disable collections.

221

Chapter 8. Management APIs

Format

int *acnmsngnt _start_trace_nonitor_1(sub_id_struct

Parameters
sub_rec
Type: Sub_id_struct
Access: Read
Mechanism: By reference
Usage: Structure that contains the following client authorization
information.
client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is
being used, a valid client
ID must be provided. If the
value for client_id is O, proxy
access is used. Client_id is
obtained by calling the acms
$mgmt_get_creds procedure.
cl
Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling the
RPC routine CLNT_CREATE.

Return Value

Type: Integer

Access: Write

Mechanism: By reference

Usage: Pointer to status value returned. If the value

is NULL or MGMT_SUCCESS, the RPC has
succeeded. If the value is neither NULL nor
MGMT_SUCCESS, the call failed and the value
pointed to is the reason for failure.

222

*sub_rec, CLI ENT *cl)

Chapter 8. Management APIs

Description

This procedure requests that the Remote Manager start the ACMS$TRACE_MONITOR process on the
target node. The ACMS$TRACE_MONITOR process is an intermediate process used by the Remote
Manager to communicate with ACMS run-time processes to enable and disable collections.

In general, external entities do not require a startup and shutdown request of the trace monitor process.
The Remote Manager starts the trace monitor during process initialization and stops it during process
shutdown. Additionally, the Remote Manager starts the trace monitor anytime it is needed if it is not
already started. Once started, the trace monitor continues to run until the Remote Manager shuts down.

After issuing the start command to the trace monitor, the Remote Manager waits for a period of up to
trace_start_wait_time, a Parameter table parameter that is dynamic and expressed in seconds. If the trace
monitor fails to start during that period, the Remote Manager returns an error to the caller.

Example

int start_trace(int client_id, CLIENT *cl)
{

int *status;
static struct sub_id_struct sub_rec;

sub_rec.client_id = client_id;
status = acmsmgmt_start_trace_monitor_1 (&sub_rec,cl);

if (!status) {
printf ("\nStartup of Trace Monitor has failed");
return (MGMT_FAIL);

if (*status != MGMT_SUCCESS) {
printf ("\nStartup of Trace Monitor has failed with return code %d",
*status);
return (*status);

}

printf ("\nTrace Monitor has been started ");
free(status);
return (MGMT_SUCCESS) ;
}

In the preceding example, the acmsmgmt_start_trace_monitor_1 procedure is called to start the ACMS
$TRACE_MON process on the target node. If the call succeeds, the process is started. Otherwise, any
error messages associated with the failure are displayed. The example in Section 6.3.1 shows how to
declare and initialize the input arguments to this procedure.

ACMSMGMT_START_TSC _1

ACMSMGMT_START_TSC_1 — This procedure requests that the Remote Manager start a Terminal
Subsystem Controller (TSC) on the same node on which it is running.

Format

cnd_out put _rec *acnsngnt _start_tsc_1(sub_id_struct *sub_rec, CLI ENT *cl)

223

Chapter 8. Management APIs

Parameters
sub_rec
Type: Sub_id_struct *
Access: Read
Mechanism: By reference
Usage: Structure that contains the following client authorization
information.
client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is
being used, a valid client
ID must be provided. If the
value for client_id is O, proxy
access is used. Client_id is
obtained by calling the acms
$mgmt_get_creds procedure.
cl
Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling the
RPC routine CLNT_CREATE.

Return Value

Type: Cmd_output_rec

Access: Write

Mechanism: By reference

Usage: Pointer to a union. The union contains either a failure code or a structure of type

cmd_rec_r, which points to a linked list containing status messages. The following
are the contents of this union:

status

Type: Integer

Access: Write

Mechanism: By value

Usage: Failure return code.

224

Chapter 8. Management APIs

rc
Type: Integer

Access: Write

Mechanism: By value

Usage: Failure return code.

data, data_warn

Type: Cmd_rec

Access: Write

Mechanism: By value

Usage: Structure containing the first node in a linked list of status

messages (type dcl_list). The following are the contents of

this structure:

cmd_output

Type: Dcl_list

Access: Write

Mechanism: By reference

Usage: Pointer to a linked list of records

containing status messages related to the
failure of any updates. This structure
contains the following fields:

dcl_msg

Type: Null-terminated
string

Access: Write

Mechanism: By reference

Usage: The status message.

pNext

Type: Decl_list

Access: Write

Mechanism: By reference

Usage: Pointer to the next

node in the linked
list.

Description

This procedure requests that an ACMS TSC be started on the same node on which the Remote Manager

is running.

225

Chapter 8. Management APIs

This call executes synchronously. It does not return to the caller until the attempt to start the TSC is
complete. Any messages associated with an unsuccessful start of the TSC are returned in the cmd_output
linked list.

The data and data_warn structures contain identical data. If the operation fails, the status field of both
structures will be MGMT_WARN; in this case, use the data_warn structure to fetch the status messages
from the cmd_output linked list.

If the operation is successful, the status field of both structures will be MGMT_SUCCESS. No status
messages are associated with a successful call.

If the status field contains MGMT_FAIL, the call failed. No status messages are returned; instead, the
reason for the failure is contained in the rc field.

Example

int start_tsc(int client_id, CLIENT *cl)
{
dcl_link *nl;
static struct sub_id_struct sub_rec;
cmd_output_rec *ret_struct;

sub_rec.client_id = client_id;
ret_struct = acmsmgmt_start_tsc_1 (&sub_rec,cl);

if (!ret_struct) {
printf ("\n Call to start TSC failed");
return (MGMT_FAIL);

if (ret_struct->status != MGMT_SUCCESS) {

if (ret_struct->status != MGMT_WARN) {
printf ("\nCall to start ACMS TSC failed with status %d4d",
ret_struct->status);
xdr_free (xdr_cmd_output_rec, ret_struct);
free (ret_struct);
return (MGMT_FAIL);

printf ("\n Call to start ACMS TSC completed with warnings or
errors");

for (nl = ret_struct->cmd_output_rec_u.data.cmd_output; nl != NULL;
nl = nl->pNext)
printf ("\n %s",nl->dcl_msqg);
xdr_free (xdr_cmd_output_rec, ret_struct);
free (ret_struct);
return (MGMT_FAIL);

else {
printf ("\nCall to start ACMS TSC was executed");
for (nl = ret_struct->cmd_output_rec_u.data.cmd_output; nl != NULL;

nl = nl->pNext)
printf ("\n %s",nl->dcl_msqg);

226

Chapter 8. Management APIs

xdr_free (xdr_cmd_output_rec, ret_struct);
free (ret_struct);
return(0);

}

In the preceding example, the acmsmgmt_start_tsc_1 procedure is called to start the terminal subsystem
on the target node. If the call succeeds, the terminal subsystem is started on the target node. Otherwise,
any error messages associated with the failure are displayed. The example in Section 6.3.1 shows how to

declare and initialize the input arguments to this procedure.

ACMSMGMT_STOP_1

ACMSMGMT_STOP_1 — This procedure initiates shutdown of the Remote Manager server on a
particular node.

Format

int *acnmsngnt stop 1(sub_id struct *sub rec, CLI ENT *cl)

Parameters
sub_rec
Type: Sub_id_struct *
Access: Read
Mechanism: By reference
Usage: Structure that contains the following client authorization
information.
client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is
being used, a valid client
ID must be provided. If the
value for client_id is O, proxy
access is used. Client_id is
obtained by calling the acms
$mgmt_get_creds procedure.
cl
Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling the
RPC routine CLNT_CREATE.

227

Chapter 8. Management APIs

Return Value

Type: Integer

Access: Write

Mechanism: By reference

Usage: Pointer to status value returned. If the value

is NULL or MGMT_SUCCESS, the RPC

has succeeded. If the value is neither null nor
MGMT_SUCCESS, the call failed and the value
pointed to is the reason for failure.

Description

This procedure shuts down the Remote Manager server on the target node. As part of shutdown, the
RPC interface is stopped, which may result in a NULL pointer being returned to the caller. A NULL
pointer in this case signals success of the shutdown request.

Note that the success of this procedure does not guarantee that the Remote Manager server has actually
shut down. It guarantees only that the shutdown has been requested.

Example

int stop_manager (int client_id, CLIENT *cl)
{
static int *status;
static struct sub_id_struct sub_rec;
sub_rec.client_id = client_id;

status = acmsmgmt_stop_1 (&sub_rec,cl);

if (!status) {
printf ("\nServer shutdown has been requested");
return (0);

}

if (*status != MGMT_SUCCESS) {
printf ("\n Call to stop server failed with status %d", *status);
return (MGMT_FAIL) ;

}

printf ("\n Server shutdown has been requested");

return(0) ;

}

In the preceding example, the acmsmgmt_stop_1 procedure is called to request shutdown of the ACMS
Remote Manager. A message is displayed indicating the success or failure of the operation. The example
in Section 6.3.1 shows how to declare and initialize the input arguments to this procedure.

ACMSMGMT_STOP_ACC_1

ACMSMGMT_STOP_ACC_1 — This procedure requests that the Remote Manager stop the ACMS
system.

228

Chapter 8. Management APIs

Format
cnd_out put _rec *acnmsnmgm stop_acc_l(acc_shutdown rec *stop_struct, CLI ENT *cl)
Parameters

stop_struct

Type: Acc_shutdown_rec
Access: Read
Mechanism: By reference
Usage: Structure that contains the following client identification and ACC
control fields.
client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is
being used, a valid client
ID must be provided. If the
value for client_id is O, proxy
access is used. Client_id is
obtained by calling the acms
$mgmt_get_creds procedure.
cancel_sw
Type: Integer
Access: Read
Mechanism: By value
Usage: Indicates whether the system
should be stopped immediately
(cancel_sw = 1), or whether
currently executing tasks should
be allowed to complete first
(cancel_sw =0).
cl
Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling the
RPC routine CLNT_CREATE.

229

Chapter 8. Management APIs

Return Value

Type: Cmd_output_rec

Access: Write

Mechanism: By reference

Usage: Pointer to a union. The union contains either a failure code or a structure of type

cmd_rec_r, which points to a linked list containing status messages. The following
are the contents of this union:

status

Type: Integer

Access: Write

Mechanism: By value

Usage: Failure return code.
rc

Type: Integer

Access: Write

Mechanism: By value

Usage: Failure return code.

data, data_warn

Type: Cmd_rec

Access: Write

Mechanism: By value

Usage: Structure containing the first node in a linked list of status

messages (type dcl_list). The following are the contents of
this structure:

cmd_output

Type: Dcl_list

Access: Write

Mechanism: By reference

Usage: Pointer to a linked list of records

containing status messages related to the
failure of any updates. This structure
contains the following fields:

dcl_msg

Type: Null-terminated
string

Access: Write

230

Chapter 8. Management APIs

Mechanism: By reference

Usage: The status message.

pNext

Type: Dcl_list

Access: Write

Mechanism: By reference

Usage: Pointer to the next
node in the linked
list.

Description

This procedure shuts down the ACMS run-time system on the same node on which the Remote Manager
is running. Fields in the input argument determine how the ACMS system will be stopped. If the value
for cancel_sw is 1, currently executing tasks are cancelled, and the system is stopped. If the value for
cancel_sw is 0, currently executing tasks are allowed to complete before the system is shut down.

This call executes synchronously. It does not return to the caller until the attempt to stop the system
is complete. Any messages associated with an unsuccessful stop of the system are returned in the
cmd_output linked list.

The data and data_warn structures contain identical data. If the operation fails, the status field of both
structures will be MGMT_WARN; in this case, use the data_warn structure to fetch the status messages
from the cmd_output linked list.

If the operation is successful, the status field of both structures will be MGMT_SUCCESS. No status
messages are associated with a successful call.

If the status field contains MGMT_FAIL, the call failed. No status messages are returned; instead, the
reason for the failure is contained in the rc field.

Example

int stop_acc(int client_id, CLIENT *cl)
{
dcl_link *nl;
static acc_shutdown_rec stop_struct;
cmd_output_rec *ret_struct;

stop_struct.client_id = client_id;
stop_struct.cancel_sw = 1;

ret_struct = acmsmgmt_stop_acc_1 (&stop_struct,cl);

if (!ret_struct) {
printf ("\n Call to stop ACC failed");
return (MGMT_FAIL) ;

if (ret_struct->status != MGMT_SUCCESS) {
if (ret_struct->status != MGMT_WARN) {
printf ("\nCall to stop ACMS ACC failed with status %d",
ret_struct->status);

231

Chapter 8. Management APIs

xdr_free (xdr_cmd_output_rec, ret_struct);
free (ret_struct);
return (MGMT_FAIL) ;

printf ("\n Call to stop ACMS ACC completed with warnings or
errors");

for (nl = ret_struct->cmd_output_rec_u.data.cmd_output; nl != NULL;
nl = nl->pNext)
printf ("\n %s",nl->dcl_msqg);
xdr_free (xdr_cmd_output_rec, ret_struct);
free (ret_struct);
return (MGMT_FAIL);
}

else {
printf ("\nCall to stop ACMS ACC was executed");
for (nl = ret_struct->cmd_output_rec_u.data.cmd_output; nl != NULL;
nl nl->pNext)

printf ("\n %s",nl->dcl_msqg);
}
xdr_free (xdr_cmd_output_rec, ret_struct);
free (ret_struct);
return(0);

}

In the preceding example, the acmsmgmt_stop_acc_1 procedure is called to stop the ACMS run-time
system on the target node. The system is stopped abruptly (/CANCEL), terminating any in-process tasks.
If the call succeeds, the ACMS system is stopped on the target node. Otherwise, any error messages
associated with the failure are displayed. The example in Section 6.3.1 shows how to declare and
initialize the input arguments to this procedure.

ACMSMGMT_STOP_EXC_1

ACMSMGMT_STOP_EXC_1 — This procedure requests that the Remote Manager stop the ACMS
system.

Format
cnd_out put _rec *acnsngnt _stop_exc_1(exc_shutdown_rec *stop_struct, CLI ENT *cl)
Parameters

stop_struct

Type: Exc_shutdown_rec

Access: Read

Mechanism: By reference

Usage: Structure that contains the following client identification and

Application Execution Controller (EXC) control fields.

client_id

Type: Integer

232

Chapter 8. Management APIs

Access: Read
Mechanism: By value
Usage: If explicit authentication is
being used, a valid client
ID must be provided. If the
value for client_id is O, proxy
access is used. Client_id is
obtained by calling the acms
$mgmt_get_creds procedure.
cancel_sw
Type: Integer
Access: Read
Mechanism: By value
Usage: Indicates whether the application
should be stopped immediately
(cancel_sw = 1), or whether
currently executing tasks should
be allowed to complete first
(cancel_sw =0).
appl_name
Type: Null-terminated string
Access: Read
Mechanism: By reference
Usage: Name of the application to be
stopped.
cl
Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling the

RPC routine CLNT_CREATE.

Return Value

Type: Cmd_output_rec

Access: Write

Mechanism: By reference

Usage: Pointer to a union. The union contains either a failure code or a structure of type

cmd_rec_r, which points to a linked list containing status messages. The following
are the contents of this union:

233

Chapter 8. Management APIs

status

Type: Integer

Access: Write

Mechanism: By value

Usage: Failure return code.
rc

Type: Integer

Access: Write

Mechanism: By value

Usage: Failure return code.

data, data_warn

Type: Cmd_rec

Access: Write

Mechanism: By value

Usage: Structure containing the first node in a linked list of status

messages (type dcl_list). The following are the contents of

this structure:

cmd_output

Type: Dcl_list

Access: Write

Mechanism: By reference

Usage: Pointer to a linked list of records

containing status messages related to the
failure of any updates. This structure
contains the following fields:

dcl_msg

Type: Null-terminated
string

Access: Write

Mechanism: By reference

Usage: The status message.

pNext

Type: Dcl_list

Access: Write

Mechanism: By reference

234

Chapter 8. Management APIs

Usage: Pointer to the next
node in the linked
list.

Description

This procedure shuts down an ACMS application on the same node on which the Remote Manager is
running. Fields in the input argument determine which application to stop (appl_name) and how the
application will be stopped. If the value for cancel_sw is 1, currently executing tasks are cancelled,
and the application is stopped. If the value for cancel_sw is 0, currently executing tasks are allowed to
complete before the application is shut down.

This call executes synchronously. It does not return to the caller until the attempt to stop the application
is complete. Any messages associated with an unsuccessful stop of the system are returned in the
cmd_output linked list.

The data and data_warn structures contain identical data. If the operation fails, the status field of both
structure will be MGMT_WARN; in this case, use the data_warn structure to fetch the status messages
from the cmd_output linked list.

If the operation is successful, the status field of both structures will be MGMT_SUCCESS. No status
messages are associated with a successful call.

If the status field contains MGMT_FAIL, the call failed. No status messages are returned; instead, the
reason for the failure is contained in the rc field.

Example

int stop_exc(int client_id, CLIENT *cl)

{
dcl_link *nl;
static char c_appl_name[] = "VR_APPL";
static exc_shutdown_rec stop_struct;
cmd_output_rec *ret_struct;

stop_struct.client_id = client_id;
stop_struct.cancel_sw = 1;
stop_struct.appl_name c_appl_name;

ret_struct = acmsmgmt_stop_exc_1 (&stop_struct,cl);

if (!ret_struct) {
printf ("\n Call to stop EXC failed");
return (MGMT_FAIL);

if (ret_struct->status != MGMT_SUCCESS) {

if (ret_struct->status != MGMT_WARN) {
printf ("\nCall to stop ACMS EXC failed with status %d",
ret_struct->status);
xdr_free (xdr_cmd_output_rec, ret_struct);
free (ret_struct);
return (MGMT_FAIL);

235

Chapter 8. Management APIs

printf ("\n Call to stop ACMS EXC completed with warnings or errors");

for (nl ret_struct->cmd_output_rec_u.data.cmd_output; nl != NULL;
nl = nl->pNext)
printf ("\n %s",nl->dcl_msqg);
xdr_free (xdr_cmd_output_rec, ret_struct);
free (ret_struct);
return (MGMT_FAIL);

else {
printf ("\nCall to stop ACMS EXC was executed");
for (nl = ret_struct->cmd_output_rec_u.data.cmd_output; nl != NULL;
nl nl->pNext)

printf ("\n %s",nl->dcl_msqg);
}
xdr_free (xdr_cmd_output_rec, ret_struct);
free (ret_struct);

return(0);

}

In the preceding example, the acmsmgmt_stop_exc_1 procedure is called to stop an application
named VR_APPL on the target node. If the call succeeds, the VR_APPL application is stopped on the
target node. Otherwise, any error messages associated with the failure are displayed. The example in
Section 6.3.1 shows how to declare and initialize the input arguments to this procedure.

ACMSMGMT_STOP_QTI_1

ACMSMGMT_STOP_QTI_1 — This procedure requests that the Remote Manager stop a Queued Task
Initiator (QTI) on the same node on which the Remote Manager is running.

Format

cnd_out put _rec *acnsngm _stop_qti _1(sub_id_struct *sub_rec, CLI ENT *cl)

Parameters
sub_rec
Type: Sub_id_struct *
Access: Read
Mechanism: By reference
Usage: Structure that contains the following client authorization
information.
client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is
being used, a valid client
ID must be provided. If the

236

Chapter 8. Management APIs

value for client_id is O, proxy
access is used. Client_id is
obtained by calling the acms
$mgmt_get_creds procedure.

cl

Type: CLIENT *

Access: Read

Mechanism: By value

Usage: Pointer to an RPC client handle previously obtained by calling the

RPC routine CLNT_CREATE.

Return Value

Type: Cmd_output_rec

Access: Write

Mechanism: By reference

Usage: Pointer to a union. The union contains either a failure code or a structure of type

cmd_rec_r, which points to a linked list containing status messages. The following
are the contents of this union:

status

Type: Integer

Access: Write

Mechanism: By value

Usage: Failure return code.
rc

Type: Integer

Access: Write

Mechanism: By value

Usage: Failure return code.

data, data_warn

Type: Cmd_rec

Access: Write

Mechanism: By value

Usage: Structure containing the first node in a linked list of status

messages (type dcl_list). The following are the contents of

this structure:

cmd_output

Type:

Dcl_list

237

Chapter 8. Management APIs

Access: Write
Mechanism: By reference
Usage: Pointer to a linked list of records
containing status messages related to the
failure of any updates. This structure
contains the following fields:
dcl_msg
Type: Null-terminated
string
Access: Write
Mechanism: By reference
Usage: The status message.
pNext
Type: Dcl_list
Access: Write
Mechanism: By reference
Usage: Pointer to the next
node in the linked
list.

Description

This procedure requests to stop an ACMS QTI on the same node on which the Remote Manager is
running.

This call executes synchronously. It does not return to the caller until the attempt to stop the QTI is
complete. Any messages associated with an unsuccessful stop of the QTI are returned in the cmd_output
linked list.

The data and data_warn structures contain identical data. If the operation fails, the status field of both
structures will be MGMT_WARN; in this case, use the data_warn structure to fetch the status messages
from the cmd_output linked list.

If the operation is successful, the status field of both structures will be MGMT_SUCCESS. No status
messages are associated with a successful call.

If the status field contains MGMT_FAIL, the call failed. No status messages are returned; instead, the
reason for the failure is contained in the rc field.

Example

int stop_gti(int client_id,CLIENT *cl)
{
dcl_link *nl;
static struct sub_id_struct sub_rec;
cmd_output_rec *ret_struct;

238

Chapter 8. Management APIs

sub_rec.client_id = client_id;
ret_struct = acmsmgmt_stop_gti_1 (&sub_rec,cl);

if (!ret_struct) {
printf ("\n Call to stop gti failed");
return (MGMT_FAIL);

if (ret_struct->status != MGMT_SUCCESS) {

if (ret_struct->status != MGMT_WARN) {
printf ("\nCall to stop ACMS QTI failed with status %d",
ret_struct->status);
xdr_free (xdr_cmd_output_rec, ret_struct);
free (ret_struct);
return (MGMT_FAIL);

printf ("\n Call to stop ACMS QTI completed with warnings or
errors");

for (nl = ret_struct->cmd_output_rec_u.data.cmd_output; nl != NULL;
nl = nl->pNext)
printf ("\n %s",nl->dcl_msqg);
xdr_free (xdr_cmd_output_rec, ret_struct);
free (ret_struct);
return (MGMT_FAIL);

else {
printf ("\nCall to stop ACMS QTI was executed");
for (nl = ret_struct->cmd_output_rec_u.data.cmd_output; nl != NULL;

nl = nl->pNext)
printf ("\n %s",nl->dcl_msqg);

xdr_free (xdr_cmd_output_rec, ret_struct);
free (ret_struct);
return(0);

}

In the preceding example, the acmsmgmt_stop_qti_1 procedure is called to stop the Queued Task
Initiator (QTI) on the target node. If the call succeeds, the QTI is stopped on the target node. Otherwise,
any error messages associated with the failure are displayed. The example in Section 6.3.1 shows how to
declare and initialize the input arguments to this procedure.

ACMSMGMT_STOP TRACE_MONITOR 1

ACMSMGMT_STOP_TRACE_MONITOR_1 — This procedure requests that the Remote Manager
stop the ACMS$TRACE_MONITOR process. The ACMS$STRACE_MONITOR process is an
intermediate process used by the Remote Manager to communicate with ACMS run-time processes to
enable and disable collections.

Format

int *acnmsngnt _stop_trace_nonitor_1(sub_id _struct *sub_rec, CLI ENT *cl)

239

Chapter 8. Management APIs

Parameters
sub_rec
Type: Sub_id_struct
Access: Read
Mechanism: By reference
Usage: Structure that contains the following client authorization
information.
client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is
being used, a valid client
ID must be provided. If the
value for client_id is O, proxy
access is used. Client_id is
obtained by calling the acms
$mgmt_get_creds procedure.
cl
Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling the
RPC routine CLNT_CREATE.

Return Value

Type: Integer

Access: Write

Mechanism: By reference

Usage: Pointer to status value returned. If the value

is NULL or MGMT_SUCCESS, the RPC has
succeeded. If the value is neither NULL nor
MGMT_SUCCESS, the call failed and the value
pointed to is the reason for failure.

Description

This procedure requests that the Remote Manager stop the ACMS$TRACE_MONITOR process on the
target node. The ACMS$TRACE_MONITOR process is an intermediate process used by the Remote
Manager to communicate with ACMS run-time processes to enable and disable collections.

240

Chapter 8. Management APIs

In general, external entities do not require a startup and shutdown request of the trace monitor process.
The Remote Manager starts the trace monitor during process initialization and stops it during process
shutdown. Additionally, the Remote Manager starts the trace monitor anytime it is needed if it is not
already started. Once started, the trace monitor continues to run until the Remote Manager shuts down.

After issuing the stop command to the trace monitor, the Remote Manager waits for a period of up to
trace_start_wait_time, a Parameter table parameter that is dynamic and expressed in seconds. If the trace
monitor fails to stop during that period, the Remote Manager returns an error to the caller.

Example

int stop_trace(int client_id, CLIENT *cl)
{

int *status;

static struct sub_id_struct sub_rec;

sub_rec.client_id = client_id;
status = acmsmgmt_stop_trace_monitor_1 (&sub_rec,cl);

if (!status) {
printf ("\nShutdown of Trace Monitor has failed");
return (MGMT_FAIL) ;

if (*status != MGMT_SUCCESS) {
printf ("\nShutdown of Trace Monitor has failed with return code %d",
*status) ;
free(status);
return (MGMT_FAIL) ;

printf ("\nTrace Monitor has been stopped ");
free (status);
return (MGMT_SUCCESS) ;
}

In the preceding example, the acmsmgmt_stop_trace_monitor_1 procedure is called to stop the ACMS
$TRACE_MON process on the target node. If the call succeeds, the process is stopped. Otherwise, any
error messages associated with the failure are displayed. The example in Section 6.3.1 shows how to
declare and initialize the input arguments to this procedure.

241

Chapter 8. Management APIs

242

Chapter 9. Remote Manager
Reference Tables

This chapter contains information about data types that the Remote Manager implements and the
reference tables for the Remote Manager. The Remote Manager reference tables include the following:

* ACC table

* Agent table

* Collection table

* (P table

* EXC table

* Interfaces table

* Manager status table
* Parameter table

e QTI table

* Server table

* Task Group table
* Trap table

* TSC table

e Users table

Note

The following sections describe the records and fields in each Remote Manager reference table. Many
of these tables now contain a subset of fields intended solely for use on or by systems running ACMS
Version 4.4 or higher.

9.1. Data Types

The ACMS Remote Manager implements the following data types:
* Gauge and Min Gauge

Gauge fields are structures containing the following fields:

* current_value

The value of the object when last observed. Represents the most current known value.

243

Chapter 9. Remote Manager Reference Tables

* max_value or min_value
The largest or smallest observed value for the object.
* time_max_seen or time_min_seen
The date and time the max_value or min_value was set.
* Integer
Integer fields are 32-bit signed integers.
* State 1
State 1 fields are integers with two possible values:
* MGMTS$K_STATE_DISABLED
* MGMTS$SK_STATE_ENABLED
» State 2
State 2 fields are integers with the following possible values:
* MGMTS$K_STATE_INITED
* MGMTS$K_STATE_INITING
* MGMTS$SK_STATE_LOAD_DONE
* MGMTS$K_STATE_LOADING
* MGMTS$K_STATE_STARTED
* MGMTS$K_STATE_STARTING
* MGMTS$K_STATE_STOPPED
* MGMTS$K_STATE_STOPPING
* String
String fields are null-terminated ASCII strings.
e Time
Time fields are stored internally in OpenVMS internal time format and are generally displayed as
DD-MMM-YYY HH:MM:SS.hh. When present in a record supplied by the Remote Manager (that

is, from either an RPC or SNMP call, or in a file), time is always an ASCII value in the default
OpenVMS format (DD-MMM-YYYY HH:MM:SS.hh) and is stored as a null-terminated string.

9.2. ACC Table

Chapter 9. Remote Manager Reference Tables

Table 9.1. ACC Table

Class Field Data Type SNMP Access |RPC Access Dynamic
ID record_state integer R R

ID id_coll_state integer R R

ID process_name |string R R

ID pid integer R R

ID username_active| string R R

ID username_stored string R R

1D start_time time R R

ID end_time time R R

1D acms_version string R R

CONFIG config_coll_state integer R R

CONFIG acms_state integer RW R D
CONFIG acc_priority_actinateger R R

CONFIG acc_priority_stor¢dteger RW RwW

CONFIG max_appl_active|integer R R

CONFIG max_appl_stored integer RW RwW

CONFIG mss_maxobj_actjveteger R R

CONFIG mss_maxobj_storatteger RW RwW

CONFIG mss_maxbuf_actiueteger R R

CONFIG mss_maxbuf_stormteger RW RW

CONFIG mss_poolsize_actinteger R R

CONFIG mss_poolsize_stoimtbger RW RW

CONFIG mss_process_poointegteve R R

CONFIG mss_process_poolngtgeed RW RwW

CONFIG mss_net_retry_tip‘rme@rtive RW RW D
CONFIG mss_net_retry_tilhﬁbgnred RW RwW

CONFIG audit_state integer RW RwW D
CONFIG username_defau]{ti_rﬁeg'w RW RW D
CONFIG username_defaulfirtewe! RW RW

CONFIG node_name_actiymteger R R

CONFIG node_name_storedhteger RW RwW

CONFIG ws_poolsize_activateger R R

CONFIG ws_poolsize_storgdteger RW RW

Key to Access Modes

R - Read Access

RW - Read/Write Access
Blank — Not available to the interface
D - Field is dynamic.

245

Chapter 9. Remote Manager Reference Tables

Class Field Data Type SNMP Access |RPC Access Dynamic
CONFIG wsc_poolsize_actimeeger R R
CONFIG wsc_poolsize_stoimtbger RW RwW
CONFIG tws_poolsize_actingeger R R
CONFIG tws_poolsize_storiedeger RW RW
CONFIG twsc_poolsize_aciiteger R R
CONFIG twsc_poolsize_stantdger RW RwW
RUNTIME runtime_coll_statenteger R R
RUNTIME current_appls |gauge R R
RUNTIME current_users | gauge R R
RUNTIME current_local_usegauge R R
RUNTIME current_remote_{isange R R
RUNTIME appl_starts integer R R
RUNTIME decnet_object |integer R R
POOL pool_coll_state |integer R R
POOL mss_shared_totalinteger R R
POOL mss_shared_free| min gauge R R
POOL mss_shared_largestin gauge R R
POOL mss_shared_failyraseger R R
POOL mss_shared_garbageeger R R
POOL mss_process_totalnteger R R
POOL mss_process_freemin gauge R R
POOL mss_process_largasin gauge R R
POOL mss_process_failundsger R R
POOL mss_process_garhageger R R
POOL mss_objects gauge R R
Key to Access Modes

R - Read Access

RW - Read/Write Access

Blank — Not available to the interface
D - Field is dynamic.

9.2.1. Field Descriptions

Following are descriptions of the fields in Table 9.1.
* record_state

The current state of this table entry. Valid states are VALID (the process is currently running and
maintaining this table entry) or INACTIVE (the process is no longer running). Inactive rows are
subject to reuse.

e id_coll_state

246

Chapter 9. Remote Manager Reference Tables

The current collection state for this class and this process. Collection states can be modified by
modifying entries in the Collection table. See Section 5.1 and Section 9.4 for discussions of data
collection.

process_name
The OpenVMS process name for the process.
pid

The OpenVMS process identifier for the process.
username_active

The OpenVMS user name under which the process is currently running. This is the value that was in
the ACMSGEN file when the process was started.

username_stored

The OpenVMS process name currently stored in the ACMSGEN file for this process.
start_time

Date and time the process was started.

end_time

Date and time the process ended. If the process has not yet ended, this field will be null.
acms_version

Current version of the ACC.

config_coll_state

The current collection state for this class and this process. Collection states can be modified by
modifying entries in the Collection table. See Section 5.1 and Section 9.4 for discussions of data
collection.

acc_priority_active

The base priority for this process. This is the value of the ACMSGEN field when the process was
started.

acc_priority_stored
The base priority currently stored in the ACMSGEN file for this process.
max_appl_active

The maximum number of ACMS applications that can be started simultaneously on this node. This is
the value of the ACMSGEN field when the ACC process was started.

max_appl_stored

The value of the max_appl field currently stored in the ACMSGEN file.

247

Chapter 9. Remote Manager Reference Tables

* mss_maxobj_active
The maximum number of ACMS message switch objects that can be started simultaneously on this
node. This is the value of the ACMSGEN field when the ACC process was started. See the MSS
class field mss_objects for a count of the current and maximum number of MSS objects instantiated
on the system.

* mss_maxobj_stored
The value of the mss_maxobj field currently stored in the ACMSGEN file.

e mss_maxbuf active

The maximum size of a message segment of an ACMS message switch message. This is the value of
the ACMSGEN field when the ACC process was started.

e mss_maxbuf_stored
The value of the mss_maxbuf field currently stored in the ACMSGEN file.
* mss_poolsize_active

The size of the MSS shared pool. This is the value of the ACMSGEN field when the ACC process
was started.

* mss_poolsize_stored
The value of the mss_poolsize field currently stored in the ACMSGEN file.
* mss_process_pool_active

The default size of the MSS pool allocated for each ACMS process. This is the value of the
ACMSGEN field when the ACC process was started.

* mss_process_pool_stored
The value of the mss_process_pool field currently stored in the ACMSGEN file.
* mss_net_retry_active

The time ACMS processes will wait before retrying an MSS network operation. This field can be
modified dynamically.

* mss_net_retry_timer_stored

The value of the mss_net_retry_timer field currently stored in the ACMSGEN file.
e audit_state

The current system auditing state.
e username_default_active

The default user name for remote users. This is the value of the ACMSGEN field when the ACC
process was started

248

Chapter 9. Remote Manager Reference Tables

username_default_stored
The value of the username_default field currently stored in the ACMSGEN file.
node_name_active

The node name for the current node. This is the value of the ACMSGEN field when the ACC
process was started.

node_name_stored
The value of the node_name field currently stored in the ACMSGEN file.
ws_poolsize_active

The default size for WS pools. This is the value of the ACMSGEN field when the ACC process was
started.

ws_poolsize_stored
The value of the ws_poolsize field currently stored in the ACMSGEN file.
Wwsc_poolsize_active

The default size for WSC pools. This is the value of the ACMSGEN field when the ACC process
was started.

wsc_poolsize_stored
The value of the wsc_poolsize field currently stored in the ACMSGEN file.
tws_poolsize_active

The default size for TWS pools. This is the value of the ACMSGEN field when the ACC process
was started.

tws_poolsize_stored
The value of the twsc_poolsize field currently stored in the ACMSGEN file.
twsc_poolsize_active

The default size for TWSC pools. This is the value of the ACMSGEN field when the ACC process
was started.

twsc_poolsize_stored

The value of the twsc_poolsize field currently stored in the ACMSGEN file.

acms_state

Current ACMS state of the process. This field can be set (to DISABLED or to 0) by the SNMP
interface only. RPC users use the ACMSMGMT_STOP_ACC_1 procedure described in
ACMSMGMT_STOP_ACC_1. ACMSMGR users use the STOP SYSTEM command.

runtime_coll_state

249

Chapter 9. Remote Manager Reference Tables

The current collection state for this class and this process. Collection states can be modified by
modifying entries in the Collection table. See Section 5.1 and Section 9.4 for discussions of data
collection.

If this field is set to DISABLED, the process is not currently collecting data for the fields in this
class. Any field values reflect activity during a prior period when collection was enabled.

* current_appls
The number of applications currently running on the node.

* current_users
The number of users currently logged in to the node.

* current_local_users
The number of current users logged in to ACMS locally.

* current_Remote_users
The number of current users who are logged in to ACMS remotely.

* appl_starts
The number of applications that have been started on the node since the system was started.

* decnet_object
If the process has a current DECnet object, the value of this field is STARTED. Otherwise, the
value is STOPPED. If the DECnet object is stopped (and the runtime_coll_state is enabled for this
process), either distributed processing has not been enabled (that is, the node_name parameter in
the ACMSGEN file is NULL) or there is currently a problem with DECnet. Also, check the ACC
CONFIG parameters node_name_active and node_name_stored to determine the current status of
the ACMSGEN node_name field.

* pool_coll_state
The current collection state for this class and this process. Collection states can be modified by
modifying entries in the Collection table. See Section 5.1 and Section 9.4 for discussions of data

collection.

If this field is set to DISABLED, the process is not currently collecting data for the fields in this
class. Any field values reflect activity during a prior period when collection was enabled.

e mss_shared_total

The total size (in bytes) of the MSS shared pool on this node. The frequency with which this field is
updated is based on the value of the Parameter table field mss_coll_interval (see Table 9.8).

e mss_shared_free

The amount (in bytes) of unused MSS shared pool. The frequency with which this field is updated is
based on the value of the Parameter table field mss_coll_interval (see Table 9.8).

250

Chapter 9. Remote Manager Reference Tables

mss_shared_largest

The largest unused block (in bytes) available in the MSS shared pool. The frequency with which this
field is updated is based on the value of the Parameter table field mss_coll_interval (see Table 9.8).

mss_shared_failures

The number of failed attempts to allocate space from the MSS shared pool. The frequency with
which this field is updated is based on the value of the Parameter table field mss_coll_interval (see
Table 9.8).

mss_shared_garbage

The number of garbage collections that have been run to reclaim space in the MSS shared pool.
The frequency with which this field is updated is based on the value of the Parameter table field
mss_coll_interval (see Table 9.8).

mss_process_total

The total size (in bytes) of the MSS process pool allocated for this process. The frequency with
which this field is updated is based on the value of the Parameter table field mss_coll_interval (see
Table 9.8).

mss_process_free

The amount of unused MSS process pool (in bytes) for this process. The frequency with which this
field is updated is based on the value of the Parameter table field mss_coll_interval (see Table 9.8).

mss_process_largest

The largest unused block (in bytes) available in the MSS process pool for this process. The frequency
with which this field is updated is based on the value of the Parameter table field mss_coll_interval
(see Table 9.8).

mss_process_failures

The number of failed attempts to allocate space in the MSS process pool for this process. The
frequency with which this field is updated is based on the value of the Parameter table field
mss_coll_interval (see Table 9.8).

mss_process_garbage

The number of garbage collections for this process that have been run to reclaim space in the MSS
process pool. The frequency with which this field is updated is based on the value of the Parameter
table field mss_coll_interval (see Table 9.8).

mss_objects

The number of MSS objects currently instantiated on the node. The frequency with which this field
is updated is based on the value of the Parameter table field mss_coll_interval (see Table 9.8).

251

Chapter 9. Remote Manager Reference Tables

9.3. Agent Table

Table 9.2. Agent Table
Class Field Data Type |SNMP RPC Access | Dynamic
Access
ID record_state |integer R R
ID id_coll_state |integer R R
1D process_name | string R R
ID pid integer R R
1D start_time time R R
1D end_time time R R
ID user_name string R R
ID acms_state integer R R
CONFIG cfg_coll_state |integer R R
CONFIG astlm_active} |integer R R
CONFIG astlm_stored: |integer RW RwW
CONFIG biolm_actived |integer R R
CONFIG biolm_stored:|integer RW RW
CONFIG bytlm_actived |integer R R
CONFIG bytlm_stored:|integer RW RwW
CONFIG diolm_activef |integer R R
CONFIG diolm_storedi |integer RW RW
CONFIG englm_actived|integer R R
CONFIG enqlm_stored: integer RW RwW
CONFIG fillm_active® |integer R R
CONFIG fillm_storedi |integer RW RW
CONFIG pgflquota_actiyaiteger R R
CONFIG pgflquota_storpaieger RW RwW
CONFIG tgelm_active} |integer R R
CONFIG tgelm_storedf | integer RW RW
CONFIG wsdefault_activaiteger R R
CONFIG wsdefault_storedifeger RW RwW
CONFIG wsextent_activehteger R R
CONFIG wsextent_storedrfteger RW RW
CONFIG wsquota_activeinteger R R
Key to Access Modes

R - Read Access

RW - Read/Write Access

Blank — Not available to the interface
D - Field is dynamic.

252

Chapter 9. Remote Manager Reference Tables

Class Field Data Type |SNMP RPC Access | Dynamic

Access
CONFIG wsquota_storedipteger RW RwW
RUNTIME rt_coll_state |integer R R
RUNTIME decnet_object |integer R R
RUNTIME active_task_callsauge R R
RUNTIME current_attach¢dagems R R
RUNTIME active_tdms_meaugeeqs R R
RUNTIME total_tdms_mennteggys R R
RUNTIME active_tdms_regauge R R
RUNTIME active_tdms_mgguie R R
RUNTIME active_tdms_njgzwge R R
RUNTIME active_tdms_capagke R R
RUNTIME total_tdms_reqinteger R R
RUNTIME total_tdms_msgndeger R R
RUNTIME total_tdms_msgunteger R R
RUNTIME total_tdms_canaeleger R R
RUNTIME active_vf_menparegp R R
RUNTIME total_vf_menu|irgqger R R
RUNTIME active_vf_reqs| gauge R R
RUNTIME active_vf_enablgauge R R
RUNTIME active_vf_disabfauge R R
RUNTIME active_vf_canggauge R R
RUNTIME active_vf_send gauge R R
RUNTIME active_vf_recejgauge R R
RUNTIME active_vf_xceiygauge R R
RUNTIME total_vf_reqs |integer R R
RUNTIME total_vf_enableinteger R R
RUNTIME total_vf_disablanteger R R
RUNTIME total_vf_cancelinteger R R
RUNTIME total_vf_send |integer R R
RUNTIME total_vf_receivénteger R R
RUNTIME total_vf_xceiveinteger R R
RUNTIME total _tasks_exeoutiegbr R R
RUNTIME userl_time time RW RW
Key to Access Modes

R - Read Access
RW - Read/Write Access

Blank — Not available to the interface

D - Field is dynamic.

253

Chapter 9. Remote Manager Reference Tables

Class Field Data Type |SNMP RPC Access | Dynamic

Access
RUNTIME user2_time time RW RW
RUNTIME user3_time time RW RW
RUNTIME userl_data |integer RW RwW
RUNTIME user2_data |integer RW RwW
RUNTIME user3_data |integer RW RwW
RUNTIME user4_data |integer RW RW
RUNTIME user5_data |integer RW RwW
RUNTIME user6_data |integer RW RW
RUNTIME astlm_current3 gauge R R
RUNTIME biolm_currentfgauge R R
RUNTIME bytlm_current{gauge R R
RUNTIME diolm_current{gauge R R
RUNTIME englm_currentjgauge R R
RUNTIME fillm_current}| gauge R R
RUNTIME pgflquota_curregiize R R
RUNTIME tgelm_current} gauge R R
RUNTIME wssize_currentfgauge R R
RUNTIME channelcnt_curngntge R R
POOL pool_coll_stateinteger R R
POOL mss_process_taaleger R R
POOL mss_process_frawn gauge (R R
POOL mss_process_langesgauge (R R
POOL mss_process_fhihieesr R R
POOL mss_process_ganiager R R
ERROR err_coll_stated integer R R
ERROR err_countf |integer R R
ERROR last_err_msg |string R R
ERROR time_of_last_elmimé R R
Key to Access Modes

R - Read Access

RW - Read/Write Access

Blank — Not available to the interface
D - Field is dynamic.

Note

Items marked with } are only valid for use with systems running ACMS Version 4.4 or higher.

254

Chapter 9. Remote Manager Reference Tables

9.3.1. Field Descriptions

Following are descriptions of the fields in the table above.

* record_state
The current state of this table entry. Valid states are VALID (the process is currently running and
maintaining this table entry) or INACTIVE (the process is no longer running). Inactive rows are
subject to reuse.

e id_coll_state
The current collection state for this class and this process. Collection states can be modified by
modifying entries in the Collection table. If this field is set to DISABLED, the process is not
currently collecting data for the fields in this class. Any field values reflect activity during a prior
period when collection was enabled.

* process_name
The OpenVMS process name for the process.

* pid
The OpenVMS process identifier for the process.

e start_time
Date and time the process was started.

e end_time
Date and time the process ended. If the process has not yet ended, this field is null.

* user_name
The OpenVMS account under which the process is running.

* acms_state
The ACMS state of the process.

» cfg_coll_state
Collection states can be modified by modifying entries in the Collection table. If this field is set to
DISABLED, the process is not currently collecting data for the fields in this class. Any field values

reflect activity during a prior period when collection was enabled.

» astlm_active, biolm_active, bytlm_active, diolm_active, enqlm_active, fillm_ active, pgflquota_active,
tgelm_active, wsdefault_active, wsextent_active, wsquota_active

The default value of the related OpenVMS process quota. This is the value of the quota when the
Agent process was started.

* astlm_stored, biolm_stored, bytlm_stored, diolm_stored, enqlm_stored, fillm__ stored,
pgflquota_stored, tqelm_stored, wsdefault_stored, wsextent_stored, wsquota_stored

255

Chapter 9. Remote Manager Reference Tables

The value of the related process quota currently stored in the OpenVMS system user authorization
file (SYSUAF.DAT).

rt_coll_state

The current collection state for this class and this process. Collection states can be modified by
modifying entries in the Collection table. If this field is set to DISABLED, the process is not
currently collecting data for the fields in this class. Any field values reflect activity during a prior
period when collection was enabled.

decnet_object

If the process has a current DECnet object, the value of this field is STARTED. Otherwise, the
value is STOPPED. If the DECnet object is stopped (and the runtime_coll_state is enabled for this
process), either distributed processing has not been enabled (that is, the node_name parameter in
the ACMSGEN file is NULL) or there is currently a problem with DECnet. Also, check the ACC
CONFIG parameters node_name_active and node_name_ stored to determine the current status of
the ACMSGEN node_name field.

active_task_calls

The number of task calls currently being executed by all users of the Agent.
current_attached_terms

The number of terminals currently attached to the Agent.

active_tdms_menu_reqs

The number of TDMS menu requests currently being executed by all users of the Agent.
total_tdms_menu_reqs

The total number of TDMS menu requests executed by all users of the Agent since the Agent was
started.

active_tdms_reqs

The number of TDMS requests of all types currently being executed by all users of the Agent.
active_tdms_msgrd

The number of TDMS read messages currently being executed by all users of the Agent.
active_tdms_msgwt

The number of TDMS write messages currently being executed by all users of the Agent.
active_tdms_cancel

The number of TDMS cancels currently being executed by all users of the Agent.
total_tdms_reqs

The total number of TDMS requests (menu and exchange) executed by all users of the Agent since
the Agent was started.

256

Chapter 9. Remote Manager Reference Tables

total_tdms_msgrd

The total number of TDMS read messages executed by all users of the Agent since the Agent was
started.

total_tdms_msgwt

The total number of TDMS write messages executed by all users of the Agent since the Agent was
started.

total_tdms_cancel

The total number of TDMS cancels executed by all users of the Agent since the Agent was started.
active_vf_menu_reqs

The number of VSI DECforms menu requests currently being executed by all users of the Agent.
total_vf_menu_reqs

The total number of VSI DECforms menu requests executed by all users of the Agent since the
Agent was started.

active_vf_reqs

The number of VSI DECforms requests of all types currently being executed by all users of the
Agent.

active_vf enable

The number of VSI DECforms enable requests currently being executed by all users of the Agent.
active_vf disable

The number of VSI DECforms disable requests currently being executed by all users of the Agent.
active_vf cancel

The number of VSI DECforms cancel requests currently being executed by all users of the Agent.
active_vf send

The number of VSI DECforms requests currently being executed by all users of the Agent.
active_vf_receive

The number of VSI DECforms receive requests currently being executed by all users of the Agent.
active_vf_xceive

The number of VSI DECforms enable transceives currently being executed by all users of the Agent.
total_vf_reqs

The total number of VSI DECforms requests of all types executed by all users of the Agent since the
Agent was started.

total_vf enable

257

Chapter 9. Remote Manager Reference Tables

The total number of VSI DECforms enable requests executed by all users of the Agent since the
Agent was started.

total_vf disable

The total number of VSI DECforms disable requests executed by all users of the Agent since the
Agent was started.

total_vf cancel

The total number of VSI DECforms cancel requests executed by all users of the Agent since the
Agent was started.

total_vf send

The total number of VSI DECforms send requests executed by all users of the Agent since the Agent
was started.

total_vf receive

The total number of VSI DECforms receive requests executed by all users of the Agent since the
Agent was started.

total_vf xceive

The total number of VSI DECforms transceive requests executed by all users of the Agent since the
Agent was started.

total_tasks_executed
The total number of tasks started in the Agent since the Agent was started.

userl_time, user2_time, user3_time, userl data, user2_data, user3_data, user4_data, user5_data,
user6_data

Additional generic runtime fields that are available to programmers and Agent developers.

astlm_current, biolm_current, bytlm_current, diolm_current, enqlm_current, fillm_current,
peflquota_current, tqelm_current, wssize_current, channelent_ current

The actual amount of the related OpenVMS process or system resource that is being consumed by
the Agent process. The frequency with which these fields are updated is based on the value of the
vms_coll_interval field in the Parameter table.

pool_coll_state

The current collection state for this class and this process. Collection states can be modified by
modifying entries in the Collection table. If this field is set to DISABLED, the process is not
currently collecting data for the fields in this class. Any field values reflect activity during a prior
period when collection was enabled.

mss_process_total

The total size of the MSS process pool allocated for this process. The frequency with which this field
is updated is based on the value of the Parameter table field mss_coll_interval.

258

Chapter 9. Remote Manager Reference Tables

mss_process_free

The amount of unused MSS process pool for this process. The frequency with which this field is
updated is based on the value of the Parameter table field mss_coll_interval.

mss_process_largest

The largest unused block available in the MSS process pool for this process. The frequency with
which this field is updated is based on the value of the Parameter table field mss_coll_interval.

mss_process_failures

The number of failed attempts to allocate space in the MSS process pool for this process. The
frequency with which this field is updated is based on the value of the Parameter table field
mss_coll_interval.

mss_process_garbage

The number of garbage collections that have been run to reclaim space in this processes MSS process
pool. The frequency with which this field is updated is based on the value of the Parameter table
field mss_coll_interval.

error_coll_state

The current collection state for this class and this process. Collection states can be modified by
modifying entries in the Collection table. Errors for this process are only sent to the Remote Manager
if this field is set to ENABLED. If this field is set to DISABLED, the process will not collect data for
the fields in this class; existing field values reflect activity during a prior period when collection was
enabled.

error_count

The total number of errors related to this process that were sent to the Remote Manager.

last_er ror_message

The text of the most recent error message related to this process that was sent to the Remote
Manager.

time_of_last_error

Date and time of the most recent error message related to this process that was sent to the Remote
Manager.

9.4. Collection Table

The Collection table is populated from the configuration file maintained by the user on the local system
(or in a cluster common area) when the ACMS run-time system is started.

This table can be used at run time to enable or disable data collection by entity and class. The primary
key to this table is the combination of entity, class, and name. Duplicate rows are not allowed.

259

Chapter 9. Remote Manager Reference Tables

Table 9.3. Collection Table

Field Data Type SNMP Access |RPC Access Configuration |Dynamic
Access

entity string R RW RW D

class string R RwW RW D

name string R RW RW D

coll_state state 1 RW RW RW D

Key to Access Modes

R - Read Access

RW - Read/Write Access

Blank — Not available to the interface
D - Field is dynamic.

9.4.1. Field Descriptions

Following are descriptions of the fields in Table 9.3.
* entity
Name or type of the entity. Valid values are ACC, CP, EXC, GROUP, QTI, SERVER, and TSC.
* class
Class of data to be collected. Valid values are CONFIG, ID, POOL, and RUNTIME.
* name

A name for the entity that helps to uniquely identify an instance of the entity type. Possible entity
names are:

* ACC, CP, QTI, TSC (process name)
* EXC (application name)
* GROUP (task group name
¢ SERVER (server name)
Name can include the following wildcard values:
e asterisk (*) (matches all characters)
* exclamation point (!) (negation)
* coll_state

Current state as configured, either from the configuration file or by a user at run time. Valid values
are ENABLED or DISABLED. A change to this field causes collection to be initiated or terminated.

Note

The trap table has not been implemented. The following is subject to change.

260

Chapter 9. Remote Manager Reference Tables

The event notification table is used to configure event notifications. The ACMS Management process
populates this table from the configuration file at system startup. Thereafter, users make modifications to
this table through either the SNMP interface, or the ACMSMGT interface.

It will be possible to disable thresholds by using any negative value (e.g. - 1). No monitoring is
performed for a disabled threshold.

A consistency check is performed between this table, the Threshold Monitor table, and the entity/
collection table. Parameters are monitored only if there is an active entry in the Threshold Monitor table,
and only if the entity being monitored is actively collecting data.

A special parameter (RETURN_CODE) will be provided to allow alarms and notifications to be
generated based on Error class data. When an entry is made in this table with the RETURN_CODE
parameter type, the min and max thresholds determine which return codes will result in a trap.

By definition, only non-successful return codes will be monitored. For example, to specify that

an error level trap should be generated when any server procedure returns a fatal return code,

the entry would be ENTITY=SERVER_PROC, NAME = *, PARAMETER=RETURN_CODE,
MIN_ERROR_THRESHOLD=FATAL.

9.5. CP Table

The CP table contains a row for each terminal Command Process (CP) running on the node.

Table 9.4. CP Table

Collection Field Data Type SNMP Access |RPC Access Dynamic
Class

ID record_state integer

ID id_coll_state integer

ID process_name |string

ID pid integer

ID start_time time

ID end_time time

ID user_name string

RUNTIME runtime_coll_stafenteger

RUNTIME acms_state integer

RUNTIME decnet_object |integer

RUNTIME current_attached| ganggnals

RUNTIME active_task_calls| gauge

RUNTIME active_tdms_mengauggs

RUNTIME total_tdms_menyinteger

AR AR AR ANRAAA AR AR
ANARAAR AR AR ANRA AR AR

RUNTIME active_tdms_reqsgauge

Key to Access Modes

R - Read Access

RW - Read/Write Access

Blank — Not available to the interface
D - Field is dynamic

261

Chapter 9. Remote Manager Reference Tables

Collection Field Data Type SNMP Access |RPC Access Dynamic
Class

RUNTIME active_tdms_readgmges R R
RUNTIME active_tdms_wrif@anges R R
RUNTIME active_tdms_cangghuge R R
RUNTIME total_tdms_reqs |integer R R
RUNTIME total_tdms_read |imsgger R R
RUNTIME total_tdms_write| integer R R
RUNTIME total_tdms_canceisteger R R
RUNTIME active_df_menu_|gaqme R R
RUNTIME total_df_menu_rpageger R R
RUNTIME active_df_reqs |gauge R R
RUNTIME active_df_enablesgauge R R
RUNTIME active_df_disablegauge R R
RUNTIME active_df_cancelsgauge R R
RUNTIME active_df_sends |gauge R R
RUNTIME active_df_receivegauge R R
RUNTIME active_df_transcepasge R R
RUNTIME total_df_reqs integer R R
RUNTIME total_df_enables |integer R R
RUNTIME total_df_disables|integer R R
RUNTIME total_df_cancels |integer R R
RUNTIME total_df_sends |integer R R
RUNTIME total_df_receivedinteger R R
RUNTIME total_df_transceiMeseger R R
RUNTIME data_set_hangupginteger R R
POOL pool_coll_state |integer R R
POOL mss_process_totalnteger R R
POOL mss_process_freemin gauge R R
POOL mss_process_largasin gauge R R
POOL mss_process_failunteger R R
POOL mss_process_gatbageger R R
Key to Access Modes

R - Read Access

RW - Read/Write Access
Blank — Not available to the interface
D - Field is dynamic

9.5.1. Field Descriptions

Following are descriptions of the fields in Table 9.4.

262

Chapter 9. Remote Manager Reference Tables

* record_state
The current state of this table entry. Valid states are VALID (the process is currently running and
maintaining this table entry) or INACTIVE (the process is no longer running). Inactive rows are
subject to reuse.

e id_coll_state
The current collection state for this class and this process. Collection states can be modified by
modifying entries in the Collection table. See Section 5.1 and Section 9.4 for discussions of data
collection.

* process_name
The OpenVMS process name for the process.

* user_name
The OpenVMS account under which the process is running.

* pid
The OpenVMS process identifier for the process.

* start_time
Date and time the process was started.

e end_time
Date and time the process ended. If the process has not yet ended, this field is null.

e link_time
Date and time the image was linked.

e runtime_coll_state
The current collection state for this class and this process. Collection states can be modified by
modifying entries in the Collection table. See Section 5.1 and Section 9.4 for discussions of data

collection.

If this field is set to DISABLED, the process is not currently collecting data for the fields in this
class. Any field values reflect activity during a prior period when collection was enabled.

* acms_state
The ACMS state of the process.
* decnet_object

If the process has a current DECnet object, the value of this field is STARTED. Otherwise, the
value is STOPPED. If the DECnet object is stopped (and the runtime_coll_state is enabled for this
process), either distributed processing has not been enabled (that is, the node_name parameter in

the ACMSGEN file is NULL) or there is currently a problem with DECnet. Also, check the ACC
263

Chapter 9. Remote Manager Reference Tables

CONFIG parameters node_name_active and node_name_stored to determine the current status of
the ACMSGEN node_name field.

current_attached_terminals

The number of terminals currently attached to the CP.

active_task_calls

The number of task calls currently being executed by all users of the CP.
active_tdms_menu_reqs

The number of TDMS menu requests currently being executed by all users of the CP.
total_tdms_menu_reqs

The total number of TDMS menu requests executed by all users of the CP since the CP was started.
active_tdms_reqs

The number of TDMS requests of all types currently being executed by all users of the CP.
active_tdms_read_msgs

The number of TDMS read messages currently being executed by all users of the CP.
active_tdms_write_msgs

The number of TDMS write messages currently being executed by all users of the CP.
active_tdms_cancels

The number of TDMS cancels currently being executed by all users of the CP.
total_tdms_reqs

The total number of TDMS requests (menu and exchange) executed by all users of the CP since the
CP was started.

total_tdms_read_msgs

The total number of TDMS read messages executed by all users of the CP since the CP was started.
total_tdms_write_msgs

The total number of TDMS write messages executed by all users of the CP since the CP was started.
total_tdms_cancels

The total number of TDMS cancels executed by all users of the CP since the CP was started.
active_df_menu_reqs

The number of DECforms menu requests currently being executed by all users of the CP.

total_df_menu_reqs

264

Chapter 9. Remote Manager Reference Tables

The total number of DECforms menu requests executed by all users of the CP since the CP was
started.

active_df_reqs

The number of DECforms requests of all types currently being executed by all users of the CP.
active_df enables

The number of DECforms enable requests currently being executed by all users of the CP.
active_df_disables

The number of DECforms disable requests currently being executed by all users of the CP.
active_df_cancels

The number of DECforms cancel requests currently being executed by all users of the CP.
active_df_sends

The number of DECforms requests currently being executed by all users of the CP.

active_df receives

The number of DECforms receive requests currently being executed by all users of the CP.
active_df transceives

The number of DECforms enable transceives currently being executed by all users of the CP.
total_df_reqgs

The total number of DECforms requests of all types executed by all users of the CP since the CP was
started.

total_df enables

The total number of DECforms enable requests executed by all users of the CP since the CP was
started.

total_df disables

The total number of DECforms disable requests executed by all users of the CP since the CP was
started.

total_df cancels

The total number of DECforms cancel requests executed by all users of the CP since the CP was
started.

total_df sends

The total number of DECforms send requests executed by all users of the CP since the CP was
started.

265

Chapter 9. Remote Manager Reference Tables

e total_df receives

The total number of DECforms receive requests executed by all users of the CP since the CP was
started.

e total_df transceives

The total number of DECforms transceive requests executed by all users of the CP since the CP was
started.

» data_set_hangups
The total number of data set hangups detected by the CP since the CP was started.

* pool_coll_state
The current collection state for this class and this process. Collection states can be modified by
modifying entries in the Collection table. See Section 9.4 and Section 5.1 for discussions of data

collection.

If this field is set to DISABLED, the process is not currently collecting data for the fields in this
class. Any field values reflect activity during a prior period when collection was enabled.

* mss_process_total

The total size of the MSS process pool allocated for this process. The frequency with which this field
is updated is based on the value of the Parameter table field mss_coll_interval (see Table 9.8).

¢ ImSS_pr ocess_free

The amount of unused MSS process pool for this process. The frequency with which this field is
updated is based on the value of the Parameter table field mss_coll_interval (see Table 9.8).

* mss_process_largest
The largest unused block available in the MSS process pool for this process. The frequency with
which this field is updated is based on the value of the Parameter table field mss_coll_interval (see
Table 9.8).

* mss_process_{failures
The number of failed attempts to allocate space in the MSS process pool for this process. The
frequency with which this field is updated is based on the value of the Parameter table field
mss_coll_interval (see Table 9.8).

* mss_process_garbage
The number of garbage collections that have been run to reclaim space in this processes MSS process

pool. The frequency with which this field is updated is based on the value of the Parameter table
field mss_coll_interval (see Table 9.8).

9.6. EXC Table

The EXC table is sized according the MAX_APPLS ACMSGEN parameter.
266

Chapter 9. Remote Manager Reference Tables

Table 9.5. EXC Table

Collection Field Data Type SNMP Access |RPC Acess Dynamic
Class

ID record_state integer R R

ID id_coll_state integer R R

ID process_name |string R R

ID user_name string R R

ID pid integer R R

ID start_time time R R

ID end_time time R R

ID appl_name string R R

1D build_time time R R

ID exc_appl_tbl_statinteger R

ID exc_server_typedinteger R

ID exc_task_groups|integer R

CONFIG config_coll_state integer R R

CONFIG acms _state integer RW R D
CONFIG audit_state_activenteger RW RW D
CONFIG audit_state_storedtate 1 R R

CONFIG max_tasks_activginteger RW RW D
CONFIG max_tasks_storedinteger R R

CONFIG sp_monitoring_intetagdr active RW RwW D
CONFIG sp_monitoring_inseateal_stored |R R

CONFIG max_servers_actjueteger RW RwW D
CONFIG max_servers_storateger R R

CONFIG transaction_timepmtegetive RW RwW D
CONFIG transaction_timeomtegemred R R

RUNTIME runtime_coll_stafenteger R R

RUNTIME decnet_object |integer R R

RUNTIME current_servers |gauge R R

RUNTIME current_submittergauge R R

RUNTIME current_tasks |gauge R R

RUNTIME total_tasks_execuintbger R R

RUNTIME total_submitters |integer R R

Key to Access Modes

R — Read Access

RW - Read/Write Access
Blank — Not available to the interface
D - Field is dynamic

267

Chapter 9. Remote Manager Reference Tables

Collection Field Data Type SNMP Access |RPC Acess Dynamic
Class
RUNTIME current gauge R R
active_servers
RUNTIME current_free_serygasige R R
RUNTIME current_waiting_{tgakige R R
RUNTIME server_start_counmteger R R
RUNTIME server_failure_coumteger R R
RUNTIME task_failures integer R R
RUNTIME task_start_failurginteger R R
RUNTIME task_security_failimeger R R
RUNTIME task_cancels integer R R
RUNTIME active_tdms_requigatsge R R
RUNTIME active_tdms_readganggsages R R
RUNTIME active_tdms_wrif@angsssages R R
RUNTIME active_tdms_cancghuge R R
RUNTIME total_tdms_requestteger R R
RUNTIME total_tdms_read_ | mesgages R R
RUNTIME total_tdms_write| integeages R R
RUNTIME total_tdms_cance¢lnteger R R
RUNTIME total_dataset_hanmtpger R R
POOL pool_coll_state |integer R R
POOL mss_process_totalnteger R R
POOL mss_process_freemin gauge R R
POOL mss_process_largasin gauge R R
POOL mss_process_failundsger R R
POOL mss_process_garhageger R R
POOL ws_pool_total |integer R R
POOL ws_pool_free |min gauge R R
POOL ws_pool_largest | min gauge R R
POOL ws_pool_failureq integer R R
POOL ws_pool_garbageinteger R R
POOL wsc_pool_total |integer R R
POOL wsc_pool_free |min gauge R R
POOL wsc_pool_largestmin gauge R R
Key to Access Modes

R - Read Access

RW - Read/Write Access
Blank — Not available to the interface
D - Field is dynamic

268

Chapter 9. Remote Manager Reference Tables

Collection Field Data Type SNMP Access |RPC Acess Dynamic
Class

POOL wsc_pool_failurginteger R R
POOL wsc_pool_garbagmteger R R
POOL tws_pool_total |integer R R
POOL twsc_pool_total |integer R R
Key to Access Modes

R - Read Access

RW - Read/Write Access

Blank — Not available to the interface

D - Field is dynamic

9.6.1. Field Descriptions

Following are descriptions of the fields in Table 9.5.

record_state

The current state of this table entry. Valid states are VALID (the process is currently running and
maintaining this table entry) or INACTIVE (the process is no longer running). Inactive rows are
subject to reuse.

id_coll_state

The current collection state for this class and this process. Collection states can be modified by
modifying entries in the Collection table. See Section 5.1 and Section 9.4 for discussions of data
collection.

process_name
The OpenVMS process name for the process.

user_name

The OpenVMS account under which the process is running.

pid

The OpenVMS process identifier of the process.

start_time

Date and time the process was started.

end_time

Date and time the process ended. If the process has not yet ended, this field will be null.
appl_name

Name of the application.

build_time

269

Chapter 9. Remote Manager Reference Tables

Date and time the application database (ADB) was built.
exc_appl_tbl_state

This field is available to the SNMP interface only. It contains the state of the application global
section for this EXC. When EXCs have completed their startup, they construct global sections
containing server and task group tables. If this field is not MGMT$K_VALID (2), the Server and
Task Group tables are not available.

exc_server_types

This field is available to the SNMP interface only. It contains the number of server types contained in
the application, which is also the number of rows in the Server table for this EXC.

exc_task_groups

This field is available to the SNMP interface only. It contains the number of task groups contained in
the application, which is also the number of rows in the Task Group table for this EXC.

config_coll_state

The current collection state for this class and this process. Collection states can be modified by
modifying entries in the Collection table. See Section 5.1 and Section 9.4 for discussions of data
collection.

audit_state_active
Current auditing state of the application.
audit_state_stored

Value of the auditing state of the application as specified in the ACMS application database (.ADB
file).

max_tasks_active
The current maximum number of executing tasks allowed.
max_tasks_stored

The maximum number of executing tasks allowed as specified in the ACMS application database
(.ADB file).

sp_monitoring_interval_active
The current server process monitoring interval for the application.
sp_monitoring_interval_stored

The server process monitoring interval for the application as specified in the ACMS application
database (.ADB file).

max_servers_active
The current maximum number of started server instances for the application.

max_servers_stored

270

Chapter 9. Remote Manager Reference Tables

The maximum number of started server instances for the application as specified in the ACMS
application database (.ADB file).

transaction_timeout_active
The current default task timeout for the application.
transaction_timeout_stored

The default task timeout for the application as specified in the ACMS application database (.ADB
file).

acms_state
The current ACMS state of this process.
runtime_coll_state

The current collection state for this class and this process. Collection states can be modified by
modifying entries in the Collection table. See Section 5.1 and Section 9.4 for discussions of data
collection.

If this field is set to DISABLED, the process is not currently collecting data for the fields in this
class. Any field values reflect activity during a prior period when collection was enabled.

decnet_object

If the process has a current DECnet object, the value of this field is STARTED. Otherwise, the
value is STOPPED. If the DECnet object is stopped (and the runtime_coll_state is enabled for this
process), either distributed processing has not been enabled (that is, the node_name parameter in
the ACMSGEN file is NULL) or there is currently a problem with DECnet. Also, check the ACC
CONFIG parameters node_name_active and node_name_stored to determine the current status of
the ACMSGEN node_name field.

current_servers

The number of server instances currently started in this application.
current_submitters

The number of submitters currently logged in to this application.

current_tasks

The number of tasks currently started in the application.

total_tasks_executed

The total number of tasks started in the application since the application was started.
total_submitters

The total number of submitters who have submitted tasks to this application since the application was
started.

current_active_servers

271

Chapter 9. Remote Manager Reference Tables

The currrent number of active servers (that is, those servers peforming processing steps).
* current_free_servers

The number of started servers which are not currently active (that is, not currently executing
processing steps).

* current_waiting_tasks
The number of tasks that are not executing, waiting for a procedure server to become available.
e gserver_start_count
The number of times servers have been started in this application.
e gserver_failure_count
The number of times servers have been stopped in this application.
* task_failures
The number of tasks in this application that have failed to complete successfully.
* task_start_failures
The number of tasks in this application that have failed to start.
* task_security_failures
The number of tasks in this application that have failed to start because of security violations.
» task_cancels
The number of tasks in this application that have been cancelled.
* active_tdms_requests

The number of TDMS requests (both exchange and menu) that are currently executing for this
process.

* active_tdms_read_messages

The number of TDMS read messages currently outstanding for this process.
* active_tdms_write_messages

The number of TDMS write messages currently outstanding for this process.
* active_tdms_cancels

The number of TDMS cancels currently outstanding for this process.
e total_tdms_requests

The total number of TDMS requests (both exchange and menu) processed by this process while the
runtime_coll_state has been ENABLED.

* total_tdms_read_messages

272

Chapter 9. Remote Manager Reference Tables

The total number of TDMS read messages processed by this process while the runtime_coll_state
has been ENABLED.

total_tdms_write_messages

The total number of TDMS write messages processed by this process while the runtime_coll_state
has been ENABLED.

total_tdms_cancels

The total number of TDMS cancels processed by this process while the runtime_coll_state has been
ENABLED.

total_dataset_hangups

The total number of TDMS dataset hangups (unexpected session interruptions) processed by this
process while the runtime_coll_state has been ENABLED.

pool_coll_state

The current collection state for this class and this process. Collection states can be modified by
modifying entries in the Collection table. See Section 5.1 and Section 9.4 for discussions of data
collection.

If this field is set to DISABLED, the process is not currently collecting data for the fields in this
class. Any field values reflect activity during a prior period when collection was enabled.

mss_process_total

The total size of the MSS process pool allocated for this process. The frequency with which this field
is updated is based on the value of the Parameter table field mss_coll_interval (see Table 9.8).

mss_process_{free

The amount of unused MSS process pool for this process. The frequency with which this field is
updated is based on the value of the Parameter table field mss_coll_interval (see Table 9.8).

mss_process_largest

The largest unused block available in the MSS process pool for this process. The frequency with
which this field is updated is based on the value of the Parameter table field mss_coll_interval (see
Table 9.8).

mss_process_failures

The number of failed attempts to allocate space in the MSS process pool for this process. The
frequency with which this field is updated is based on the value of the Parameter table field
mss_coll_interval (see Table 9.8).

mss_process_garbage

The number of garbage collections for this process that have been run to reclaim space in the MSS
process pool for this process. The frequency with which this field is updated is based on the value of
the Parameter table field mss_coll_interval (see Table 9.8).

ws_pool_total

273

Chapter 9. Remote Manager Reference Tables

The total size of the WS pool allocated for this application. The frequency with which this field is
updated is based on the value of the Parameter table field wksp_coll_interval (see Table 9.8).

ws_pool_free

The amount of unused WS pool for this application. The frequency with which this field is updated
is based on the value of the Parameter table field wksp_coll_interval (see Table 9.8).

ws_pool_largest

The largest unused block available in this application's WS pool. The frequency with which this field
is updated is based on the value of the Parameter table field wksp_coll_interval (see Table 9.8).

ws_pool_failures

The number of failed attempts to allocate space in the WS pool for this application. The frequency
with which this field is updated is based on the value of the Parameter table field wksp_coll_interval
(see Table 9.8).

ws_pool_garbage

The number of garbage collections that have been run to reclaim space in this application's WS pool.
The frequency with which this field is updated is based on the value of the Parameter table field
wksp_coll_interval (see Table 9.8).

wsc_pool_total

The total size of the WSC pool allocated for this application. The frequency with which this field is
updated is based on the value of the Parameter table field wksp_coll_interval (see Table 9.8).

wsc_pool_free

The amount of unused WSC pool for this application. The frequency with which this field is updated
is based on the value of the Parameter table field wksp_coll_interval (see Table 9.8).

wsc_pool_largest

The largest unused block available in this application's WSC pool. The frequency with which this
field is updated is based on the value of the Parameter table field wksp_coll_interval (see Table 9.8).

wsc_pool_failures

The number of failed attempts to allocate space in this application's WSC pool. The frequency with
which this field is updated is based on the value of the Parameter table field wksp_coll_interval (see
Table 9.8).

wsc_pool_garbage

The number of garbage collections that have been run to reclaim space in this application's WSC
pool. The frequency with which this field is updated is based on the value of the Parameter table
field wksp_coll_interval (see Table 9.8).

tws_pool_total
The default size for TWS pools (in pagelets) allocated for this application.

twsc_pool_total

274

Chapter 9. Remote Manager Reference Tables

The default size for TWSC pools (in pagelets) allocated for this application.

9.7. Interfaces Table

The Interfaces table is populated from the configuration file by the ACMS Remote Manager process
during process startup. This table specifies which interfaces are active and contains parameters associated
with each interface. By default, the RPC interface is started; SNMP is not started.

Table 9.6. Interfaces Table

Field Data Type SNMP Access |RPC Access Configuration |Dynamic
Access

interface string R R R

state statel RW RW RW D

running_state |state2 R

get_request_couninteger

set_request_cour fmteger

alarms_sent integer

AR R
AR NIRANA

time_alarm_last | seteger

Key to Access Modes

R - Read Access

RW - Read/Write Access

Blank — Not available to the interface
D - Field is dynamic.

9.7.1. Field Descriptions

Following are descriptions of the fields in Table 9.6.
* interface

Name or type of the interface. Valid values are RPC or SNMP.
* state

Current state as configured, either from the configuration file or by a user at run time. Valid values
are ENABLED or DISABLED. Note that state and acms_state are not always the same because of
potential run-time failures in a thread. For instance, if a thread fails to start, state may be ENABLED,
but acms_state may be STOPPED.

A thread can be enabled only if the acms_state value is STOPPED. A thread can be disabled only if
the acms_state value is not STOPPED.

* acms_state
Actual execution state. Interfaces go through the following states:
* INITING

The Remote Manager is in the process of creating the interface thread.

275

Chapter 9. Remote Manager Reference Tables

* STARTING
The interface thread has been created and is initializing.
* STARTED
The interface thread has completed initializing and is now running.
* STOPPING
The thread is starting shutdown, as the result of either a stop request or a fatal error.
* STOPPED

The thread is no longer executing.

e get_request_count

The number of read requests submitted to the interface. This includes requests that are rejected
because of authorization failures.

* set_request_count

The number of write requests submitted to the interface. This includes requests that are rejected
because of authorization failures.

e alarms_sent

The number of alarms that have been sent by this interface. For SNMP, these are SNMP traps. For
RPC, this field is undefined.

e time_alarm_last_sent

The time the most recent alarm was sent by this interface. For SNMP, this is the time the last SNMP
trap was sent. For RPC, this field is undefined.

9.8. Manager Status Table

The Manager Status table contains run-time values that reflect Remote Manager activity. This table is
maintained internally by the Remote Manager and is read only to all external entities. Values in the
table can be accessed through one of the supported interfaces. No changes can be made to the table by

external users.

In general, the values in this table are informational only.

Table 9.7. Manager Status Table

R - Read Access

RW - Read/Write Access

Blank — Not available to the interface
D - Field is dynamic

Field Name Data Type SNMP Access RPC Access Dynamic
collection_count |integer R R
Key to Access Modes

276

Chapter 9. Remote Manager Reference Tables

Field Name Data Type SNMP Access RPC Access Dynamic
interfaces_count integer R R
timer_count integer R R
trap_count integer R R
rpc_udp_state statel R R
rpc_tcp_state statel R R
Key to Access Modes

R - Read Access

RW - Read/Write Access

Blank — Not available to the interface

D - Field is dynamic

9.8.1. Field Descriptions

Following are descriptions of the fields in Table 9.7.
e collection_count

Current number of Collection table entries.
* interfaces_count

Current number of entries in the Interfaces table.
e timer_count

Current number of entries in the Timer table.
* trap_count

Current number of entries in the Trap table.
* rpc_udp_state

Current state of the RPC interface using the UDP protocol. A value of 1 means that the UDP
protocol is active. A value of 0 means that the UDP protocol is inactive.

* rpc_tcp_state

Current state of the RPC interface using the TCP protocol. A value of 1 means that the UDP
protocol is active. A value of 0 means that the UDP protocol is inactive.

9.9. Parameter Table

The Parameter table contains values that control the operation of the ACMS Remote Manager and that
are not directly related to any ACMS entity. This table is populated initially from the ACMSCEFG file.
The Remote Manager maintains the table internally at run time; users can access data in the table only
through one of the supported interfaces. Changes made to the table at run time are lost when the Remote
Manager is stopped.

In general, the values in this table should be modified for fine tuning only, and only if a demonstrated
need exists.

277

Chapter 9. Remote Manager Reference Tables

Note

All the fields in Table 9.8 are of type integer, and all fields have read and write access.

Table 9.8. Parameter Table

Field Default Value |Minimum Maximum Dynamic Interface
Value Value
dcl_audit_level |E 0 F D S,R,F
dcl_mgr_priority 5 1 10 S.R,F
dcl_stacksize 300 1 2147483647 S,R,F
event_log_prioritp 1 10 S,R,F
log_stacksize 300 1 2147483647 S,R,F
login_creds_lifetiti® 1 14399999 D S.R.F
max_logins 20 1 2147483647 D S,R,F
max_rpc_return_| s 1 2147483647 S,R,F
mgr_audit_level |E 0 F D S,R,F
msg_proc_audit | EEvel 0 F D S,R,F
msg_proc_priorit$ 1 10 S,R,F
msg_proc_stackdgiz80 1 2147483647 S,R,F
mss_coll_interval10 1 863999999 D S,R,F
proc_mon_audit| evel 0 F S,R,F
proc_mon_interval0 1 14399999 D S,R,F
proc_mon_priority 1 10 S,R,F
proc_mon_stacksB@0 1 2147483647 S,R,F
proxy_creds_lifethile 1 14399999 D S.R.F
rpc_audit_level |E 0 F D S,R,F
rpc_priority 5 1 10 S,R,F
rpc_stacksize 300 1 2147483647 S,R,F
security_audit_lewel 0 F D S,R,F
snmp_agent_timel Gut 1 863999999 D S,R,F
snmp_audit_levelE 0 F D S,R,F
snmp_are_you_th¥0 1 863999999 S.R.F
snmp_priority |5 1 10 S.R,F
snmp_sel_time_oht 0 863999999 S,R,F
snmp_stacksize |300 1 2147483647 S.R,F
Key to Interface
S - SNMP

R - RPC (API and ACMSMGR utility)
F - File (configuration file)
D - Field is dynamic.

278

Chapter 9. Remote Manager Reference Tables

Field Default Value |Minimum Maximum Dynamic Interface
Value Value
timer_audit_level E 0 F D S,R,F
timer_interval |30 1 863999999 D S.R,F
timer_priority |5 1 10 S,R,F
timer_stacksize |300 1 2147483647 S.R,F
total_entity_slotg 20 1 2147483647 S,R,F
trace_msg_wait_|thme 1 14399999 D S.R,F
trace_start_wait_|ttme 1 14399999 D S,R,F
trap_audit_level |E 0 F D S,R,F
trap_priority 5 1 10 S,R,F
trap_stacksize 300 1 2147483647 S.R,F
wksp_coll_intervdlO 1 863999999 D S.R.F
Key to Interface
S - SNMP

R - RPC (API and ACMSMGR utility)
F - File (configuration file)
D - Field is dynamic.

9.9.1. Field Descriptions

Following are descriptions of the fields in Table 9.8.

e dcl_audit_level, mgr_audit_level, msg_audit_level,proc_mon_audit_level, rpc_audit_level,
security_audit_level, snmp_audit_level, timer_audit_level, trap_audit_level

Audit levels determine the amount of auditing information written for a given facility. Audit levels
are specified using a hexidecimal value from O (none) to F (all). The integer values are a logical
ORing of the following:

INFO
WARN
ERROR
FATAL

o S| 0| =

For example, to specify auditing of both error and fatal information, specify a value of C. For more
information about auditing and audit levels see Section 4.7.

* dcl_mgr_priority
Relative priority of the DCL manager thread. The DCL manager is used to send ACMS run-time
changes to the ACMS system. Priority is specified as a whole number between 1 and 10, where 1 is

the lowest priority and 10 is the highest. This value should be left at the default.

* dcl_stacksize, log_stacksize, msg_proc_stacksize, proc_mon_stacksize, rpc_stacksize,
snmp_stacksize, timer_stacksize, trap_stacksize,

279

Chapter 9. Remote Manager Reference Tables

These values determine the internal stack sizes for each thread. Stack sizes are set during thread
creation and are not adjusted after the thread has been started. Restartable threads, such as RPC and
SNMP, can be adjusted while the Remote Manager is running by disabling the interface, modifying
the parameter, and then reenabling the interface.

event_log_priority

Relative priority of the event log thread. The event log thread writes audit messages to the audit log.
Priority is specified as a whole number between 1 and 10, where 1 is the lowest priority and 10 is
the highest. This value should be left at the default.

login_creds_lifetime

The amount of time (in minutes) that explict logins are valid. When a user logs in to a Remote
Manager process using a valid OpenVMS account and password, a login is created for the user, and
the expiration of that login is calculated and stored based on this parameter. When the current time is
greater than the expiration time, the user is logged out and must log in again using the ACMSMGR
LOGIN command. A change to this parameter takes effect for any login that takes place after the
change is made. A change to this parameter does not take effect for any login that took place before
the change was made.

max_logins

Maximum number of external processes allowed to concurrently connect to the Remote Manager.
Starting the SNMP interface counts as one login. Each RPC client counts as one login. RPCs are
serviced serially.

max_rpc_return_recs

The maximum number of records to be returned to any given request for data. This parameter allows
network bandwidth to be conserved by sending data in user-managed chunks.

msg_proc_priority

Relative priority of the message processor thread. The message processor is responsible for removing
messages sent by ACMS processes to the Remote Manager from the error input queue and for
processing messages according to configuration values specified in the Collection and Trap tables.
This value should be left at the default. Priority is specified as a whole number between 1 and 10,
where 1 is the lowest priority and 10 is the highest.

mss_coll_interval

Controls the frequency (in seconds) at which MSS values are collected. A lower value causes MSS
values to be collected more often; a higher value causes MSS values to be collected less often. MSS
values are collected by all ACMS run-time processes except SWL, ATR, and procedure servers.

proc_mon_interval

The frequency (in seconds) at which the process monitor thread should run. The process monitor
thread checks for the existence of the ACC and other ACMS run-time processes in order to map the
MGMT global section and to send alarms.

proc_mon_priority

Relative priority of the process monitor thread. The process monitor thread periodically checks for
the existence of the ACC process in order to map the MGMT global section and to send alarms.

280

Chapter 9. Remote Manager Reference Tables

Priority is specified as a whole number between 1 and 10, where 1 is the lowest priority and 10 is
the highest. This value should be left at the default.

proxy_creds_lifetime

The amount of time (in minutes) that proxy logins are valid. When a user first accesses a Remote
Manager process using an ACMS proxy, a login is created for the user, and the expiration of that
login is calculated and stored based on this parameter. When the current time is greater than the
expiration time, the user's proxy information is refreshed. A change to this parameter takes effect for
any login that takes place after the change is made. A change to this parameter does not take effect
for any login that took place before the change was made.

rpc_priority

Relative priority of the RPC management thread. The RPC management thread responds to RPC
requests to get or set data values. Priority is specified as a whole number between 1 and 10, where 1
is the lowest priority and 10 is the highest.

snmp_agent_time_out

Number of seconds that the SNMP Master agent waits for a response from the Remote Manager.
The maximum is 10 seconds for Compaq TCP/IP Services Version 4.2. For Compaq TCP/IP
Services Version 5.0 and higher, the maximum is 60 seconds.

snmp_are_you_there

Controls how often are you there messages are sent by the Remote Manager to the SNMP Master
agent. This value should be entered as a multiple of the snmp_sel_time_out value. Each time a
timeout occurs, a timeout counter is incremented. The product of the timeout counter and the
snmp_sel_timeout are then compared to the snmp_are_you_there value. If the product is greater
than the snmp_are_you_there value, an are_you_there message is sent.

snmp_priority

Relative priority of the SNMP management thread. The SNMP management thread responds to
SNMP requests to get or set data values. Priority is specified as a whole number between 1 and 10,
where 1 is the lowest and 10 is the highest.

snmp_sel_time_out

Controls how long the Remote Manager waits for a response from the SNMP master agent. If the
timeout valueis reached and no messages are expected, the snmp_are_you_there interval is checked
(see snmp_are_you_there) . If a message is expected and is not received before the select times out,
the connection to the master agent is assumed to have been lost and an attempt is made to reregister.
There is a hard coded 2 second wait prior to reregistration.

This value also controls how long it takes to begin disabling this interface. Requests to disable

the interface do not interrupt the socket select — they wait for it to either timeout or end naturally
(that is, when a message is received). At worse case, a request to disable the interface has to wait
snmp_sel_time_out seconds before the shutdown of the interface begins. Once it begins, it usually
shuts down quickly — within a second or two.

timer_interval

The Remote Manager runs one internal timer that controls the operation of all other timers. The
interval of this timer effectively sets the smallest timer interval for the process. The interval is set in

281

Chapter 9. Remote Manager Reference Tables

seconds. If the value is too small, the timer will run frequently with no work to do. This value should
be set to smallest desired timer interval.

* timer_priority

Relative priority of the timer thread. The timer thread manages all internal timers. Priority is
specified as a whole number between 1 and 10, where 1 is the lowest priority and 10 is the highest.
This value should be left at the default.

* total_entity_slots

The total number of Collection table entries to allow. When this number is reached, additional
ACMSMGR ADD COLLECTION requests are rejected. Slots are allocated when the ACMS run-
time system is started.

* trace_msg_wait_time

The number of seconds the Remote Manager should wait for updates to the mss_coll_interval and
wksp_coll_interval parameters to become effective (processed by the ACC). Updates to the ACC are
sent by means of the trace monitor. The Remote Manager will poll the value being changed for up

to trace_msg_wait_time seconds to see whether the value was in fact changed. If it is not changed
within this timeframe, the Remote Manager logs an error and returns an error to the caller.

e trace_start_wait_time

The number of seconds the Remote Manager should wait for the trace monitor to be started. The
Remote Manager communicates to ACMS process through the trace monitor. The Remote Manager
attempts to start the trace monitor if the Remote Manager needs to send a message and the trace
monitor is not already running. This value controls how long the Remote Manager will wait for the
trace monitor to start before aborting the message send. Messages that are not sent are discarded
(lost).

* trap_priority
Relative priority of the trap sender thread. The trap sender thread dispatches trap messages to SNMP
and RPC receivers. Priority is specified as a whole number between 1 and 10, where 1 is the lowest
priority and 10 is the highest. This value should be left at the default.

* wksp_coll_interval
Controls the frequency (in seconds) at which workspace (WS, WSC, TWS, TWSC) pool values are
collected. A lower value causes workspace values to be collected more often; a higher value causes

workspace pool values to be collected less often. Workspace pool values are collected only by ACC
and EXC.

9.10. QTI Table

The QTI table contains a single entry for QTT management information.

282

Chapter 9. Remote Manager Reference Tables

Table 9.9. QTI Table

Collection Field Data Type SNMP Access |RPC Access Dynamic
Class

ID record_state integer R R

ID id_coll_state integer R R

ID process_name |string R R

ID pid integer R R

ID start_time time R R

1D end_time time R R

CONFIG config_coll_state integer R R

CONFIG acms _state integer RW R D
CONFIG gti_username_actstkng R R

CONFIG gti_username_stpstidng RW RwW

CONFIG qti_priority_activenteger R R

CONFIG qgti_priority_storethteger RW RW

CONFIG max_threads integer RwW RW

CONFIG sub_timeout_activeteger RW RwW D
CONFIG sub_timeout_storadteger RW RW

CONFIG retry_timer_actiyenteger RW RW D
CONFIG retry_timer_storgdhteger RW RW

CONFIG polling_timer_actinteger RW RW D
CONFIG polling_timer_stonetbger RW RwW

RUNTIME runtime_coll_statenteger R R

RUNTIME started_ queues |gauge R R

RUNTIME current_tasks |gauge R R

RUNTIME current_submitteygauge R R

RUNTIME task_successes |integer R R

RUNTIME task_failures integer R R

RUNTIME task_retries integer R R

RUNTIME errors_queued |integer R R

POOL pool_coll_state |integer R R

POOL mss_process_totalnteger R R

POOL mss_process_fregmin gauge R R

POOL mss_process_largasin gauge R R

Key to Access Modes

R — Read Access

RW - Read/Write Access
Blank — Not available to the interface
D - Field is dynamic.

283

Chapter 9. Remote Manager Reference Tables

Collection Field Data Type SNMP Access |RPC Access Dynamic
Class

POOL mss_process_failunteger R R

POOL mss_process_gatbageger R R

Key to Access Modes

R - Read Access

RW - Read/Write Access

Blank — Not available to the interface
D - Field is dynamic.

9.10.1. Field Descriptions

Following are descriptions of the fields in Table 9.9.

record_state

The current state of this table entry. Valid states are VALID (the process is currently running and
maintaining this table entry) or INACTIVE (the process is no longer running). Inactive rows are
subject to reuse.

id_coll_state

The current collection state for this class and this process. Collection states can be modified by
modifying entries in the Collection table. See Section 5.1 and Section 9.4 for discussions of data
collection.

process_name
The OpenVMS process name for the process.

pid

The OpenVMS process identifier for the process.

start_time

Date and time the process was started.

end_time

Date and time the process ended. If the process has not yet ended, this field will be null.
config_coll_state

The current collection state for this class and this process. Collection states can be modified by
modifying entries in the Collection table. See Section 5.1 and Section 9.4 for discussions of data
collection.

gti_username_active

The OpenVMS account under which the QTI will run. This is the value of the ACMSGEN field
when the process was started.

qti_username_stored

284

Chapter 9. Remote Manager Reference Tables

The value of the qti_username field currently stored in the ACMSGEN file.

qti_priority_active

The base priority for this process. This is the value of the ACMSGEN field when the process was

started.

qti_priority_stored

The base priority currently stored in the ACMSGEN file for this process.
max_threads

The maximum number of threads allowed.

sub_timeout_active

The current value of the QTI submitter timeout.

sub_timeout_stored

The value of the gti_sub_timeout field in the current ACMSGEN file.
retry_timer_active

The current value of the QTI retry timer.

retry_timer_stored

The value of the qti_retry_timer field in the current ACMSGEN file.
polling_timer_active

The current value of the QTI polling timer.

polling_timer_stored

The value of the gti_polling_timer field in the current ACMSGEN file.
acms_state

The current ACMS state of this process.

runtime_coll_state

The current collection state for this class and this process. Collection states can be modified by
modifying entries in the Collection table. See Section 5.1 and Section 9.4 for discussions of data
collection.

If this field is set to DISABLED, the process is not currently collecting data for the fields in this
class. Any field values reflect activity during a prior period when collection was enabled.

started_queues

The number of queues currently started on the node.

285

Chapter 9. Remote Manager Reference Tables

current_tasks

The number of tasks currently executed that were submitted by the QTL.

current_submitters

The number of submitters currently logged in by the QTL

task_successes

The number of tasks successfully submitted and executed by the QTL

task_failures

The number of tasks that failed to complete successfully after being submitted by the QTIL.
task_retries

The number of times the QTI has attempted to re-run a task that is currently failed.
errors_queued

The number of tasks queued to error queues by the QTIL.

pool_coll_state

The current collection state for this class and this process. Collection states can be modified by
modifying entries in the Collection table. See Section 5.1 and Section 9.4 for discussions of data

collection.

If this field is set to DISABLED, the process is not currently collecting data for the fields in this
class. Any field values reflect activity during a prior period when collection was enabled.

mss_process_total

The total size of the MSS process pool allocated for this process. The frequency with which this field
is updated is based on the value of the Parameter table field mss_coll_interval (see Table 9.8).

mss_process_{free

The amount of MSS process pool for this process that is currently unused. The frequency with
which this field is updated is based on the value of the Parameter table field mss_coll_interval (see
Table 9.8).

mss_process_largest

The largest unused block available in the MSS process pool for this process. The frequency with
which this field is updated is based on the value of the Parameter table field mss_coll_interval (see
Table 9.8).

mss_process_failures

The number of failed attempts to allocate space in the MSS process pool for this process. The

frequency with which this field is updated is based on the value of the Parameter table field
mss_coll_interval (see Table 9.8).

286

Chapter 9. Remote Manager Reference Tables

* mss_process_garbage

The number of garbage collections for this process that have been run to reclaim space in the MSS

process pool. The frequency with which this field is updated is based on the value of the Parameter

table field mss_coll_interval (see Table 9.8).

9.11. Server Table

The Server table contains a separate row for each server type (not server instance) in the application.

Totals are for all instances of the server type.

Table 9.10. Server Table

Collection Field Data Type SNMP Access |RPC Access Dynamic
Class
ID record_state integer R R
1D id_coll_state integer R R
ID appl_name string R R
1D server_name string R R
CONFIG config_coll_state integer R R
CONFIG creation_delay_aatnteger RW RwW D
CONFIG creation_interval| iacemer RW RW D
CONFIG deletion_delay_agnteger RW RW D
CONFIG deletion_interval| inteiyer RW RW D
CONFIG server_process_dumnggefilag_active| RW RwW D
CONFIG server_replace_flagteger RW RW D
CONFIG minimum_instangegegetive RW RW D
CONFIG maximum_instandetegative RW RW D
RUNTIME runtime_coll_stafenteger R R
RUNTIME current_servers |gauge R R
RUNTIME current_waiting |gauge R R

tasks
RUNTIME server_start_couninteger R R
RUNTIME server_failures |integer R R

Key to Access Modes

R - Read Access

RW - Read/Write Access

Blank — Not available to the interface
D - Field is dynamic.

9.11.1. Field Descriptions

Following are descriptions of the fields in Table 9.10.

e record_state

287

Chapter 9. Remote Manager Reference Tables

The current state of this table entry. Valid states are VALID (the process is currently running and
maintaining this table entry) or INACTIVE (the process is no longer running). Inactive rows are
subject to reuse.

e id_coll_state

The current collection state for this class and this process. Collection states can be modified by
modifying entries in the Collection table. See Section 5.1 and Section 9.4 for discussions of data
collection.

e appl_name

Name of the application to which this server type belongs.
* server_name

Name of this server type.
* config_coll_state

The current collection state for this class and this process. Collection states can be modified by
modifying entries in the Collection table. See Section 5.1 and Section 9.4 for discussions of data
collection.

* creation_delay_active

The current creation delay for this server type.
* creation_interval_active

The current creation interval for this server type.
* deletion_delay_active

The current deletion delay for this server type.
* deletion_interval_active

The current deletion interval for this server type.
* server_process_dump_flag_active

The current server process dump flag for this server type.
* server_replace_flag

This field provides the ability for SNMP users to replace a server type by setting this value to 1. This
field is available only to the SNMP interface.

* minimum_instances_active
The current minimum number of started instances for this server type.
* maximum_instances_active

The current maximum number of started instances for this server type.

288

Chapter 9. Remote Manager Reference Tables

e runtime_coll_state

The current collection state for this class and this process. Collection states can be modified by
modifying entries in the Collection table. See Section 5.1 and Section 9.4 for discussions of data

collection.

If this field is set to DISABLED, the process is not currently collecting data for the fields in this

class. Any field values reflect activity during a prior period when collection was enabled.

* current_servers

The current number of started servers of this type in the application.

* current_waiting_tasks

The current number of tasks waiting to execute processing steps that call servers of this type in this

application.

e server_start_count

The number of times a server instance has been created for servers of this type in this application.

9.12. Task Group Table

The Task Group table contains a row for each task group in the application.

Table 9.11. Task Group Table

Collection Field Data Type SNMP Access |RPC Access Dynamic
Class

ID record_state integer R R
1D 1d_coll_state integer R R
ID appl_name string R R
ID task_group_namestring R R
1D build_time time R R
POOL pool_coll_state |integer R R
POOL tws_pool_total |integer R R
POOL tws_pool_free |min gauge R R
POOL tws_pool_largest{ min gauge R R
POOL tws_pool_failuresinteger R R
POOL tws_pool_garbagénteger R R
POOL twsc_pool_total |integer R R
POOL twsc_pool_free |min gauge R R
Key to Access Modes

R - Read Access

RW - Read/Write Access
Blank — Not available to the interface
D - Field is dynamic

289

Chapter 9. Remote Manager Reference Tables

Collection Field Data Type SNMP Access |RPC Access Dynamic
Class

POOL twsc_pool_largesimin gauge R R

POOL twsc_pool_failurpmteger R R

POOL twsc_pool_garbagateger R R

Key to Access Modes

R - Read Access

RW - Read/Write Access

Blank — Not available to the interface
D - Field is dynamic

9.12.1. Field Descriptions

Following are descriptions of the fields in Table 9.11.
e record_state

The current state of this table entry. Valid states are VALID (the process is currently running and
maintaining this table entry) or INACTIVE (the process is no longer running). Inactive rows are
subject to reuse.

e id_coll_state

The current collection state for this class and this process. Collection states can be modified by
modifying entries in the Collection table. See Section 5.1 and Section 9.4 for discussions of data
collection.

* appl_name
Name of the application to which this server type belongs.
* task_group_name
Name of this task group.
¢ build_time
The date and time the task group database (TDB) was built.
* pool_coll_state

The current collection state for this class and this process. Collection states can be modified by
modifying entries in the Collection table. See Section 5.1 and Section 9.4 for discussions of data
collection.

If this field is set to DISABLED, the process is not currently collecting data for the fields in this
class. Any field values reflect activity during a prior period when collection was enabled.

* tws_pool_total

The total size of the TWS pool allocated for this task group. The frequency with which this field is
updated is based on the value of the Parameter table field wksp_coll_interval (see Table 9.8).

290

Chapter 9. Remote Manager Reference Tables

* tws_pool_free

The amount of unused TWS pool this task group. The frequency with which this field is updated is
based on the value of the Parameter table field wksp_coll_interval (see Table 9.8).

* tws_pool_largest

The largest unused block available in this task group's TWS pool. The frequency with which this
field is updated is based on the value of the Parameter table field wksp_coll_interval (see Table 9.8).

* tws_pool_failures

The number of failed attempts to allocate space in the TWS pool for this task group, The frequency
with which this field is updated is based on the value of the Parameter table field wksp_coll_interval
(see Table 9.8).

* tws_pool_garbage

The number of garbage collections that have been run to reclaim space in this task group's TWS
pool. The frequency with which this field is updated is based on the value of the Parameter table
field wksp_coll_interval (see Table 9.8).

* twsc_pool_total

The total size of the TWSC pool allocated for this task group. The frequency with which this field is
updated is based on the value of the Parameter table field wksp_coll_interval (see Table 9.8).

* twsc_pool_free

The amount of unused TWSC Pool for this task group. The frequency with which this field is
updated is based on the value of the Parameter table field wksp_coll_interval (see Table 9.8).

* twsc_pool_largest

The largest unused block available in this task group's TWSC pool. The frequency with which this
field is updated is based on the value of the Parameter table field wksp_coll_interval (see Table 9.8).

* twsc_pool_failures

The number of failed attempts to allocate space in this task group's TWSC pool. The frequency with
which this field is updated is based on the value of the Parameter table field wksp_coll_interval (see
Table 9.8).

* twsc_pool_garbage

The number of garbage collections that have been run to reclaim space in this task group's TWSC
pool. The frequency with which this field is updated is based on the value of the Parameter table
field wksp_coll_interval (see Table 9.8).

9.13. Trap Table

The Trap table is used to control which events trigger the Remote Manager to generate an SNMP

trap. The ACMS Remote Manager populates this table from the configuration file at system startup.
Thereafter, users make modifications to this table through either the SNMP interface or the ACMSMGR
interface.

291

Chapter 9. Remote Manager Reference Tables

The primary key to this table is the combination of entity, name, and parameter. Duplicate rows are not
allowed.

Table 9.12. Trap Table

Field Data Type SNMP Access |RPC Access Configuration |Dynamic
Access

entity integer R RW RwW D

name string R RW RW D

parameter integer R RW RW D

min_value integer RW RW RW D

max_value integer RwW RW RwW D

severity integer RW RW RW D

alarms_sent integer R R

alarm_last_sent |integer R R

trap_delete integer RwW D

Key to Access Modes

R — Read Access

RW - Read/Write Access

Blank — Not available to the interface
D - Field is dynamic

9.13.1. Field Descriptions

Following are descriptions of the fields in Table 9.12.
* entity

Name or type of the entity. Valid values are ACC, CP, EXC, MGR, QTI, and TSC. Symbolic values
for the RPC interface are defined in Section 8.1.4. This value for entity cannot be changed from the
SNMP interface.

¢ name

A name for the entity that helps to uniquely identify an instance of the entity type. This value cannot
be changed from the SNMP interface. Possible entity names are:

* ACC, CP, QTI, TSC (process name)

* EXC (application name)

* GROUP (task group name)

* MGR: Must be *

* SERVER (server name): One of the following wildcard values:
e asterisk (*) (matches all characters)

* exclamation point (!) (negation)

292

Chapter 9. Remote Manager Reference Tables

parameter

Parameter specifies the value or condition to be monitored for potential alarms. This value cannot be
changed from the SNMP interface.

Not all parameters are valid for all entity types (see Table 9.13). Valid values are:
* EVENT_SEVERITY

This parameter causes a test to be performed each time an auditable event is raised in the
Remote Manager. Remote Manager events are filtered using the fields in the Parameter table (see
Section 9.9) and are stored in the Remote Manager log (see Section 4.7). Events are monitored
for traps even if the event is not currently being logged.

* EXISTS

This parameter causes a test to be performed each time the Remote Manager detects that a
process has started or stopped.

min_value

The minimum allowable value for the parameter. Valid minimums are parameter dependent (see
Table 9.13). If the field or condition being monitored is less than the value specified, an alarm is
generated. A value of -1 is used when this field is not to be evaluated.

max_value

The maximum allowable value for the parameter. Valid maximums are parameter dependent (see
Table 9.13). If the field or condition being monitored is greater than the value specified, an alarm is
generated. A value of -1 is used when this field is not to be evaluated.

severity

A severity to be associated with the trap. Severity codes are embedded in the trap message (see
Section 9.14.3) and must be parsed by the trap receiver. Valid values are:

* INFO

* WARN
* ERROR
* FATAL
alarms_sent

A count of the number of alarms that have been sent.
alarm_last_sent

The date and time the last alarm was sent.
trap_delete

This field is available only through the SNMP interface. Set this field to 1 to delete the table row.
RPC users call the procedure shown in ACMSMGMT_DELETE_TRAP_1. ACMSMGR and
ACMSCEFG each provide a DELETE TRAP command for this purpose.

293

Chapter 9. Remote Manager Reference Tables

9.14. Valid Trap Minimums and Maximums

Table 9.13 lists the values that can be specified as the minimum or maximum for each parameter type.

Table 9.13. Trap Minimums and Maximums

Parameter Value Meaning Valid for These
Entities
EVENT_SEVERITY ! Informational MGR
! Warning MGR
: Error MGR
! Fatal MGR
2 Ignore this field. MGR
EXISTS 3 Stopped ACC, CP, EXC, QTI,
TSC
4 Started ACC, CP, EXC, QTI,
TSC
2 Ignore this field. ACC, CP, EXC, QTI,
TSC

'When configuring alarms for event severities, remember how the values are evaluated. For example, specifying the value 8 (FATAL) as a
minimum results in an alarm being generated by all lesser severities. Simlarly, specifying the value 1 (INFO) as a maximum results in an alarm
being generated by all greater severities.

“The value of -1 causes the field to be ignored. When configuring traps, it is not always desirable to specify both minimum and maximum
values. The value -1 can be used as a null placeholder when either value is to be ignored.

3When specified as a maximum, this value causes an alarm to be generated whenever the associated entity type and name is started. This value
can be used, for example, to signal when the QTI has been started on a node on which it should not run.

“When specified as a minimum, this value causes an alarm to be generated whenever the associated entity type and name is stopped. This value
can be used, for example, to signal when a particular application has been stopped.

9.14.1. Field Descriptions

Following are descriptions of the fields in the table above:
* entity

Name or type of the entity. Valid values are ACC, CP, EXC, MGR, QTI, and TSC. Symbolic values
for the RPC interface are defined in Section 8.1.4. This value for entity cannot be changed from the
SNMP interface.

¢ name

A name for the entity that helps to uniquely identify an instance of the entity type. This value cannot
be changed from the SNMP interface. Possible entity names are:

* ACC, CP, QTI, TSC (process name)

EXC (application name)

GROUP (task group name)

MGR: Must be *

SERVER (server name): One of the following wildcard values:

294

Chapter 9. Remote Manager Reference Tables

e asterisk (*) (matches all characters)
* exclamation point (!) (negation)
parameter

Parameter specifies the value or condition to be monitored for potential alarms. This value cannot be
changed from the SNMP interface.

Not all parameters are valid for all entity types. Valid values are:
* EVENT_SEVERITY

This parameter causes a test to be performed each time an auditable event is raised in the
Remote Manager. Remote Manager events are filtered using the fields in the Parameter table and
are stored in the Remote Manager log. Events are monitored for traps even if the event is not
currently being logged.

* EXISTS

This parameter causes a test to be performed each time the Remote Manager detects that a
process has started or stopped.

min_value

The minimum allowable value for the parameter. Valid minimums are parameter dependent. If the
field or condition being monitored is less than the va