
VSI BASIC
Reference Manual

Document Number: DO-DBAREF-01A

Publication Date: April 2024

Operating System and Version: VSI OpenVMS IA-64 Version 8.4-1H1 or higher
VSI OpenVMS Alpha Version 8.4-2L1 or higher

Software Version: VSI BASIC Version 1.8-4 for OpenVMS I64
VSI BASIC Version 1.8-5 for OpenVMS Alpha

VMS Software, Inc. (VSI)
Boston, Massachusetts, USA

VSI BASIC Reference Manual

Copyright © 2024 VMS Software, Inc. (VSI), Boston, Massachusetts, USA

Legal Notice

Confidential computer software. Valid license from VSI required for possession, use or copying. Consistent with FAR 12.211 and 12.212,
Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

The information contained herein is subject to change without notice. The only warranties for VSI products and services are set forth in the
express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional
warranty. VSI shall not be liable for technical or editorial errors or omissions contained herein.

HPE, HPE Integrity, HPE Alpha, and HPE Proliant are trademarks or registered trademarks of Hewlett Packard Enterprise.

Intel, Itanium and IA64 are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

Oracle is a registered trademark of Oracle and/or its affiliates.

ii

VSI BASIC Reference Manual

Preface .. ix
1. About VSI ... ix
2. Intended Audience .. ix
3. Document Structure .. ix
4. Related Documents ... ix
5. OpenVMS Documentation ... x
6. VSI Encourages Your Comments .. x
7. Conventions .. x

Chapter 1. Program Elements and Structure .. 1
1.1. Building Blocks .. 1
1.2. Components of Program Lines ... 1

1.2.1. Line Numbers .. 1
1.2.1.1. Programs with Line Numbers ... 1
1.2.1.2. Programs Without Line Numbers .. 2

1.2.2. Labels ... 2
1.2.3. Statements ... 3

1.2.3.1. Keywords ... 3
1.2.3.2. Single-Statement Lines and Continued Statements 4
1.2.3.3. Multistatement Lines .. 5

1.2.4. Compiler Directives .. 5
1.3. BASIC Character Set .. 6
1.4. BASIC Data Types ... 7

1.4.1. Implicit Data Typing .. 9
1.4.2. Explicit Data Typing ... 10
1.4.3. QUAD and IEEE Floating-Point Data Types for 64-Bit Support 10

1.5. Variables .. 12
1.5.1. Variable Names .. 12
1.5.2. Implicitly Declared Variables ... 13
1.5.3. Explicitly Declared Variables ... 14
1.5.4. Subscripted Variables and Arrays ... 15
1.5.5. Initialization of Variables .. 16

1.6. Constants .. 17
1.6.1. Numeric Constants ... 17

1.6.1.1. Floating-Point Constants ... 18
1.6.1.2. Integer Constants ... 19
1.6.1.3. Packed Decimal Constants .. 19

1.6.2. String Constants ... 20
1.6.3. Named Constants ... 21

1.6.3.1. Naming Constants Within a Program Unit ... 21
1.6.3.2. Naming Constants External to a Program Unit ... 22

1.6.4. Explicit Literal Notation .. 22
1.6.5. Predefined Constants .. 25

1.7. Expressions ... 26
1.7.1. Numeric Expressions .. 26

1.7.1.1. Floating-Point and Integer Promotion Rules ... 27
1.7.1.2. DECIMAL Promotion Rules .. 28

1.7.2. String Expressions .. 29
1.7.3. Conditional Expressions .. 29

1.7.3.1. Numeric Relational Expressions .. 30
1.7.3.2. String Relational Expressions .. 31
1.7.3.3. Logical Expressions ... 32

1.7.4. Evaluating Expressions .. 35

iii

VSI BASIC Reference Manual

1.8. Program Documentation .. 36
1.8.1. Comment Fields ... 37
1.8.2. REM Statements .. 37

Chapter 2. Compiler Directives ... 39
%ABORT ... 39
%CROSS .. 39
%DECLARED .. 40
%DEFINE ... 40
%IDENT ... 42
%IF-%THEN-%ELSE-%END %IF ... 43
%INCLUDE .. 44
%LET ... 47
%LIST .. 48
%NOCROSS ... 48
%NOLIST ... 49
%PAGE .. 49
%PRINT ... 50
%REPORT .. 51
%SBTTL ... 51
%TITLE ... 53
%UNDEFINE ... 54
%VARIANT ... 55

Chapter 3. Statements and Functions ... 57
ABS .. 57
ABS% .. 58
ASCII ... 58
ATN ... 59
BUFSIZ .. 60
CALL ... 60
CAUSE ERROR .. 62
CCPOS ... 63
CHAIN ... 63
CHANGE ... 64
CHR$... 66
CLOSE ... 66
COMMON .. 67
COMP% ... 70
CONTINUE .. 71
COS .. 72
CTRLC ... 72
CVT$$... 73
CVTxx .. 74
DATA ... 76
DATE$... 77
DATE4$.. 78
DECIMAL .. 79
DECLARE .. 79
DEF .. 83
DEF* .. 86
DELETE ... 90
DET ... 91

iv

VSI BASIC Reference Manual

DIF$... 92
DIMENSION ... 93
ECHO ... 96
EDIT$.. 97
END ... 98
ERL .. 100
ERN$.. 101
ERR .. 101
ERT$.. 102
EXIT .. 103
EXP .. 104
EXTERNAL .. 105
FIELD .. 108
FIND .. 110
FIX ... 114
FNEND .. 115
FNEXIT .. 115
FOR .. 115
FORMAT$.. 118
FREE .. 118
FSP$... 119
FUNCTION ... 120
FUNCTIONEND ... 122
FUNCTIONEXIT .. 122
GET .. 123
GETRFA ... 127
GOSUB .. 128
GOTO ... 129
HANDLER ... 130
IF ... 131
INKEY$... 132
INPUT .. 135
INPUT LINE .. 137
INSTR .. 139
INT .. 140
INTEGER ... 141
ITERATE .. 142
KILL .. 142
LBOUND .. 143
LEFT$.. 144
LEN .. 145
LET .. 145
LINPUT .. 146
LOC ... 147
LOG ... 148
LOG10 ... 149
LSET .. 149
MAG .. 150
MAGTAPE .. 151
MAP ... 152
MAP DYNAMIC .. 154
MAR .. 156

v

VSI BASIC Reference Manual

MARGIN .. 157
MAT ... 158
MAT INPUT ... 161
MAT LINPUT ... 163
MAT PRINT ... 164
MAT READ .. 166
MAX .. 167
MID$.. 168
MIN ... 170
MOD .. 170
MOVE .. 171
NAME...AS ... 173
NEXT ... 174
NOECHO .. 175
NOMARGIN ... 176
NUM .. 176
NUM2 .. 177
NUM$.. 178
NUM1$.. 179
ON ERROR GO BACK ... 180
ON ERROR GOTO ... 181
ON ERROR GOTO 0 .. 182
ON...GOSUB ... 183
ON...GOTO ... 185
OPEN ... 186
OPTION .. 195
PLACE$.. 198
POS .. 200
PRINT .. 201
PRINT USING .. 204
PROD$... 209
PROGRAM ... 210
PUT .. 211
QUO$... 213
RAD$... 214
RANDOMIZE ... 215
RCTRLC ... 216
RCTRLO .. 216
READ ... 217
REAL ... 218
RECORD .. 219
RECOUNT .. 222
REM ... 223
REMAP .. 224
RESET .. 227
RESTORE ... 228
RESUME .. 228
RETRY ... 230
RETURN .. 231
RIGHT$.. 231
RMSSTATUS .. 232
RND ... 234

vi

VSI BASIC Reference Manual

RSET .. 235
SCRATCH .. 235
SEG$.. 236
SELECT .. 237
SET PROMPT ... 239
SGN ... 240
SIN ... 240
SLEEP .. 241
SPACE$.. 241
SQR .. 242
STATUS .. 243
STOP .. 244
STR$.. 245
STRING$.. 245
SUB .. 246
SUBEND .. 248
SUBEXIT ... 248
SUM$... 248
SWAP% .. 249
TAB .. 250
TAN ... 251
TIME .. 251
TIME$.. 252
TRM$... 253
UBOUND ... 253
UNLESS ... 254
UNLOCK .. 255
UNTIL .. 255
UPDATE ... 256
VAL ... 258
VAL% .. 258
VMSSTATUS .. 259
WAIT ... 260
WHEN ERROR ... 261
WHILE ... 264
XLATE$... 265

Appendix A. ASCII Character Codes ... 267
Appendix B. VSI BASIC Keywords ... 273
Appendix C. Differences Between Variations of BASIC .. 283

C.1. Differences Between I64 BASIC and Alpha BASIC ... 283
C.2. Differences Between VAX BASIC and I64 BASIC/ Alpha BASIC 283

C.2.1. VAX BASIC Features Not Available in I64 BASIC/ Alpha BASIC 283
C.2.2. I64 BASIC/Alpha BASIC Features Not Available in VAX BASIC 284
C.2.3. Behavior Differences .. 284

C.2.3.1. Optimization ... 284
C.2.3.2. Data Types ... 285
C.2.3.3. Passing Parameters by Value .. 286
C.2.3.4. Array Parameters .. 286

C.2.4. DEF* Routines .. 288
C.2.4.1. /LINES Qualifier ... 288
C.2.4.2. Appending Files at the DCL Command Line ... 288

vii

VSI BASIC Reference Manual

C.2.4.3. Unreachable Code Error .. 289
C.2.4.4. Line Numbers ... 289
C.2.4.5. Error Handling Semantics .. 289
C.2.4.6. Generation of Object Modules .. 289
C.2.4.7. RESUME and DEF ... 290
C.2.4.8. Exceptions .. 290
C.2.4.9. Compiler Message Differences .. 290
C.2.4.10. Error Status Returned to DCL .. 290
C.2.4.11. SYS$INPUT ... 290
C.2.4.12. FSS$ Function .. 290
C.2.4.13. BAS$K_FAC_NO Constant ... 291
C.2.4.14. Math Functions with Different Results ... 291
C.2.4.15. Floating-Point Errors ... 291
C.2.4.16. Error Detection on Illegal MAT Operations ... 292
C.2.4.17. Debugging Differences ... 292
C.2.4.18. Listing File Differences .. 293

C.2.5. Common Language Environment Differences ... 293
C.2.5.1. Creating PSECTs with COMMON and MAP Statements 293
C.2.5.2. 64-Bit Floating-Point Data ... 294

C.2.6. LIB$ROUTINES and BASIC$STARLET.TLB Routines Unsupported by I64
BASIC/Alpha BASIC .. 294

viii

Preface
This manual describes VSI BASIC language elements and syntax.

Note

In this manual, the term OpenVMS refers to both OpenVMS I64 and OpenVMS Alpha systems. If there
are differences in the behavior of the VSI BASIC for OpenVMS compiler on the two operating systems,
those differences are noted in the text.

The term I64 BASIC refers to VSI BASIC on OpenVMS I64 systems.

Alpha BASIC refers to VSI BASIC on OpenVMS Alpha systems.

VAX BASIC refers to VAX BASIC on OpenVMS VAX systems.

1. About VSI
VMS Software, Inc. (VSI) is an independent software company licensed by Hewlett Packard Enterprise
to develop and support the OpenVMS operating system.

2. Intended Audience
This manual is intended for experienced applications programmers who have a fundamental
understanding of the BASIC language. Some familiarity with your operating system is also
recommended. This is not a tutorial manual.

3. Document Structure
This manual contains the following chapters and appendixes:

• Chapter 1 summarizes VSI BASIC program elements and structure.

• Chapter 2 describes the compiler directives.

• Chapter 3 describes the statements and functions.

• Appendix A lists the ASCII codes.

• Appendix B lists the VSI BASIC keywords.

• Appendix C discusses differences between VSI BASIC for OpenVMS on OpenVMS I64 and Alpha
systems and differences between VSI BASIC for OpenVMS on OpenVMS I64/Alpha systems and
OpenVMS VAX systems.

4. Related Documents
For detailed information about developing, compiling, linking, and running BASIC programs, see the VSI
BASIC User Manual.

ix

Preface

5. OpenVMS Documentation
The full VSI OpenVMS documentation set can be found on the VMS Software Documentation webpage
at https://docs.vmssoftware.com.

6. VSI Encourages Your Comments
You may send comments or suggestions regarding this manual or any VSI document by sending
electronic mail to the following Internet address: <docinfo@vmssoftware.com>. Users who have
VSI OpenVMS support contracts through VSI can contact <support@vmssoftware.com> for
help with this product.

7. Conventions
The following product names may appear in this manual:

• OpenVMS Industry Standard 64 for Integrity Servers

• OpenVMS I64

• I64

All three names—the longer form and the two abbreviated forms—refer to the version of the OpenVMS
operating system that runs on the Intel ® Itanium ® architecture.

The following typographic conventions might be used in this manual:

Convention Meaning

Ctrl/x A sequence such as Ctrl/x indicates that you must hold down the key labeled
Ctrl while you press another key or a pointing device button.

PF1 x A sequence such as PF1 x indicates that you must first press and release the
key labeled PF1 and then press and release another key or a pointing device
button.

... A horizontal ellipsis in examples indicates one of the following possibilities:

• Additional optional arguments in a statement have been omitted.

• The preceding item or items can be repeated one or more times.

Additional parameters, values, or other information can be entered.
.
.
.

A vertical ellipsis indicates the omission of items from a code example or
command format; the items are omitted because they are not important to the
topic being discussed.

() In command format descriptions, parentheses indicate that you must enclose
choices in parentheses if you specify more than one.

[] In command format descriptions, brackets indicate optional choices. You
can choose one or more items or no items. Do not type the brackets on the
command line. However,you must include the brackets in the syntax for
OpenVMS directory specifications and for a substring specification in an
assignment statement.

x

https://docs.vmssoftware.com

Preface

Convention Meaning

| In command format descriptions, vertical bars separate choices within
brackets or braces. Within brackets, the choices are optional; within braces,
at least one choice is required. Do not type the vertical bars on the command
line.

{ } In command format descriptions, braces indicate required choices; you
must choose at least one of the items listed. Do not type the braces on the
command line.

bold type Bold type represents the name of an argument, an attribute, or a reason.
italic type Italic type indicates important information, complete titles of manuals, or

variables. Variables include information that varies in system output (Internal
error number), in command lines (/PRODUCER=name), and in command
parameters in text (where dd represents the predefined code for the device
type).

UPPERCASE TYPE Uppercase type indicates a command, the name of a routine, the name of a
file, or the abbreviation for a system privilege.

- A hyphen at the end of a command format description, command line, or
code line indicates that the command or statement continues on the following
line.

numbers All numbers in text are assumed to be decimal unless otherwise noted.
Nondecimal radixes – binary, octal, or hexadecimal – are explicitly indicated.

xi

Preface

xii

Chapter 1. Program Elements and
Structure
This chapter discusses BASIC program elements and structure.

1.1. Building Blocks
The building blocks of a BASIC program are:

• Program lines and their components

• The BASIC character set

• BASIC data types

• Variables and constants

• Expressions

• Program documentation

1.2. Components of Program Lines
A BASIC program is a series of program lines that contain instructions for the compiler.

All BASIC program lines can contain the following:

• Line numbers or labels

• Statements

• Compiler directives

• Comment fields

• A line terminator (carriage return)

Only a line terminator is required in a program line. The other elements are optional.

A program line can contain any number of text lines. A text line cannot exceed 255 characters.

1.2.1. Line Numbers
Line numbers are not required in programs; you can compile, link, and execute a program with or
without line numbers. There are, however, different rules for writing programs with line numbers and for
writing programs without line numbers. These differences are described in the following sections.

1.2.1.1. Programs with Line Numbers
A line number must be a unique integer from 1 through 32767, and must be terminated by a space or
tab. Leading spaces, tabs, and zeros in line numbers are ignored. Embedded spaces, tabs, and commas

1

Chapter 1. Program Elements and Structure

cause BASIC to signal an error. Programs that use line numbers must have a line number associated with
the first program line.

1.2.1.2. Programs Without Line Numbers
BASIC searches for a line number on the first line of program text.

If no line number is found, then the following rules apply:

• No line numbers are allowed in that program module.

• References to the ERL function are not allowed.

• A subroutine will signal the same errors as it would if it were compiled with the /NOLINES qualifier.
If an error is resignaled back to the caller, ERL gives the line number of the calling site, rather than
the line number of the actual error in the subprogram.

• The REM statement is not allowed.

If your program contains multiple units, the point at which BASIC breaks each program unit is
determined by the placement of the statement that terminates each program unit. Any text that follows
the program terminator becomes associated with the the following program unit. A program terminator
can be END, END PROGRAM, END FUNCTION, or END SUB.

Note that program statements can begin in the first column.

Instead of line numbers, you can use labels to identify and reference program lines.

1.2.2. Labels
A label is a 1- to 31-character name that identifies a statement or block of statements. The label name
must begin with a letter; the remaining characters, if any, can be any combination of letters, digits, dollar
signs ($), underscores (_), or periods (.).

A label name must be separated from the statement it identifies with a colon (:). For example:

Yes_routine: PRINT "Your answer is YES."

The colon is not part of the label name; it informs BASIC that the label is being defined rather than
referenced. Consequently, the colon is not allowed when you use a label to reference a statement. For
example:

 200 GOTO Yes_routine

You can reference a label almost anywhere you can reference a line number. However, there are the
following exceptions:

• You cannot compare a label with the value returned by the ERL function.

• You cannot reference a label in an IF...THEN...ELSE statement without using the keyword GOTO or
GO TO. You can use the implied GOTO form only to reference a line number. In Example 1.1, the
GOTO keyword is not required in statement 100 because the reference is to a line number. However,
the GOTO keyword is required in statement 200 because the references are to labels.

2

Chapter 1. Program Elements and Structure

Example 1.1. Referencing Label Names in BASIC Programs

100 IF A% = B%
 THEN 1000 ELSE 1050

200 IF A$ = "YES"
 THEN GOTO Yes ELSE GOTO No

1.2.3. Statements
A BASIC statement generally consists of a statement keyword and optional operators and operands. For
example, both of the following statements are valid:

LET A% = 534% + (SUM% - DIF%)
PRINT A%

BASIC statements can be either executable or nonexecutable:

• Executable statements perform operations (for example, PRINT, GOTO, and READ).

• Nonexecutable statements describe the characteristics and arrangement of data, specify usage
information, and serve as comments in the source program (for example, DATA, DECLARE, and
REM).

BASIC can accept and process one statement on a line of text, several statements on a line of text,
multiple statements on multiple lines of text, and single statements continued over several lines of text.

1.2.3.1. Keywords
Every BASIC statement except LET1 and empty statements must begin with a keyword. Most keywords
are reserved in the BASIC language. The keywords are listed in Appendix B, and the unreserved
keywords are footnoted. Keywords are used to do the following:

• Define data and user identifiers

• Perform operations

• Invoke built-in functions

Reserved keywords cannot be used as user identifiers, such as variable names, labels, or names for
MAP or COMMON areas. Reserved keywords cannot be used in any context other than as BASIC
keywords. The assignment STRING$ = “YES”, for example, is invalid because STRING$ is a reserved
BASIC keyword and, therefore, cannot be used as a variable. See Appendix B for a list of all the BASIC
keywords.

A BASIC keyword cannot be split across lines of text. There must be a space, tab, or special character
such as a comma between the keyword and any other variable or operator.

Some keywords use two words, and some can be combined with other keywords. Their spacing
requirements vary, as shown in Table 1.1.

Table 1.1. Keyword Space Requirements

Optional Space Required Space No Space

GO TO BY DESC FNEND

1The LET keyword is optional.

3

Chapter 1. Program Elements and Structure

Optional Space Required Space No Space

GO SUB BY REF FNEXIT
BY VALUE FUNCTIONEND
END DEF FUNCTIONEXIT
END FUNCTION NOECHO
END GROUP NOMARGIN
END IF SUBEND
END PROGRAM SUBEXIT
END RECORD
END SELECT
END SUB
EXIT DEF
EXIT FUNCTION
EXIT SUB
INPUT LINE
MAP DYNAMIC
MAT INPUT
MAT LINPUT
MAT PRINT

ON ERROR

MAT READ

1.2.3.2. Single-Statement Lines and Continued Statements
A single-statement line consists of one statement on one text line, or one statement continued over two or
more text lines. For example:

30 PRINT B * C / 12

This single-statement line has a line number, the keyword (PRINT), the operators (*, /), and the
operands (B, C, 12).

You can have a single statement span several text lines by typing an ampersand (&) and pressing the
Return key. Note that only spaces or tabs are valid between the ampersand and the carriage return. For
example:

OPEN "SAMPLE.DAT" AS FILE 2%, &
 SEQUENTIAL VARIABLE, &
 MAP ABC

The ampersand continuation character may be used but is not required for continued REM statements.
The following example is valid:

REM This is a remark
 And this is also a remark

You can continue any BASIC statement, but you cannot continue a string literal or BASIC keyword. The
following example generates the error message “Unterminated string literal”:

4

Chapter 1. Program Elements and Structure

PRINT "IF-THEN-ELSE- &
 END-IF"

This example is valid:

PRINT "IF-"; &
 "THEN-"; &
 "ELSE-"; &
 "END-"; &
 "IF"

1.2.3.3. Multistatement Lines
Multistatement lines contain several statements on one line of text or multiple statements on separate
lines of text.

Multiple statements on one line of text must be separated by a backslash (\) character. For example:

40 PRINT A \ PRINT V \ PRINT G

You can also write a multistatement program line that associates all statements with a single line number
by placing each statement on a separate line. BASIC assumes that such an unnumbered line of text is
either a new statement or an IF statement clause.

In the following example, each line of text begins with a BASIC statement and each statement is
associated with line number 400:

400 PRINT A
 PRINT B
 PRINT "FINISHED"

BASIC also recognizes IF statement keywords on a new line of text and associates such keywords with
the preceding IF statement. For example:

100 REM Determine if the user's response
 was YES or NO.
200 IF (A$ = "YES") OR (A$ = "Y")
 THEN PRINT "You typed YES"
 ELSE PRINT "You typed NO"
 STOP
 END IF

You can use any BASIC statement in a multistatement line. Because the compiler ignores all text
following a REM keyword until it reaches a new line number, a REM statement must be the last
statement on a multistatement line. REM statements are disallowed in programs without line numbers.

1.2.4. Compiler Directives
Compiler directives are instructions for the compiler. These instructions cause the compiler to perform
certain operations as it compiles the program.

By including compiler directives in a program, you can do the following:

• Place program titles and subtitles in the header that appears on each page of the listing file.

• Place a program version identification string in both the listing file and object module.

5

Chapter 1. Program Elements and Structure

• Start or stop the inclusion of listing information for selected parts of a program.

• Start or stop the inclusion of cross reference information for selected parts of a program.

• Include BASIC code from another source file or a text library.

• Conditionally compile parts of a program.

• Terminate compilation.

• Include CDD record definitions in a BASIC program.

• Display messages during the compilation.

Follow these rules when using compiler directives:

• Compiler directives must begin with a percent sign (%).

• Compiler directives must be the only text on the line (except for %IF-%THEN-%ELSE-%END-
%IF).

• Compiler directives cannot appear within a quoted string.

• Compiler directives can be preceded by an optional line number.

For more information about compiler directives, see the VSI BASIC User Manual.

1.3. BASIC Character Set
BASIC uses the full ASCII character set. This includes the following:

• The letters A to Z, both uppercase and lowercase

• The digits 0 to 9

• Special characters

Appendix A lists the full ASCII character set and character values.

The compiler does not distinguish between uppercase and lowercase letters except in string literals or
within a DATA statement. The compiler does not process characters in REM statements or comment
fields, nor does it process nonprinting characters unless they are part of a string literal.

In string literals, BASIC processes:

• Lowercase letters as lowercase

• Nonprinting characters

The ASCII character NUL (ASCII code 0) and line terminators cannot appear in a string literal. Use the
CHR$ function or explicit literal notation to use these characters and terminators.

You can use nonprinting characters in your program, for example, in string constants, but to do so you
must use one of the following:

• A predefined constant such as ESC or DEL

6

Chapter 1. Program Elements and Structure

• The CHR$ function to specify an ASCII value

• Explicit literal notation

See Section 1.6.4 for more information about explicit literal notation.

1.4. BASIC Data Types
Each unit of data in a BASIC program has a specific data type that determines how that unit of data is to
be interpreted and manipulated by the compiler. This data type also determines how many storage bits
make up the unit of data.

BASIC recognizes the following primary data types:

• Integer

• Floating-point

• Character string

• Packed decimal

• Record file address

Integer data is stored as binary values in a byte, word, longword, or quadword. These values correspond
to the BASIC data type keywords BYTE, WORD, LONG, and QUAD; these are all subtypes of the type
INTEGER.

Floating-point values are stored using a signed exponent and a binary fraction. BASIC allows the
floating-point formats F_floating, D_floating, G_floating, S_floating, T_floating, and X_floating.
These formats correspond to the BASIC data type keywords SINGLE, DOUBLE, GFLOAT, SFLOAT,
TFLOAT, and XFLOAT. These are all subtypes of the type REAL. (See Section 1.4.3.)

Character data consists of strings of bytes containing ASCII code as binary data. The first character in
the string is stored in the first byte, the second character is stored in the second byte, and so on. BASIC
allows up to 65,535 characters for a STRING data element.

For the DECIMAL(d,s) data type, you can specify the total number of digits (d) in the data type and the
number of digits to the right of the decimal point (s). For example, DECIMAL(10,3) specifies decimal
data with a total of 10 digits, 3 of which are to the right of the decimal point.

BASIC also recognizes a special RFA data type to provide information about a record's file address. An
RFA uniquely specifies a record in a file: you can access RMS files of any organization by a record's
file address. By specifying the address of a record, RMS retrieves the record at that address. Accessing
records by RFA is more efficient and faster than other forms of random record access. The RFA data
type can only be used for the following:

• RFA operations (the GETRFA function and the GET and FIND statements)

• Assignments to other variables of the RFA data type

• Comparisons with other variables of the RFA data type with the equal to (=) and not equal to (<>)
relational operators

• Formal and actual parameters

7

Chapter 1. Program Elements and Structure

• DEF and function results

You cannot declare a constant of the RFA data type, nor can you use RFA variables for any arithmetic
operations.

The RFA data type requires 6 bytes of information. See the VSI BASIC User Manual for more
information about Record File Addresses and the RFA data type.

BASIC packed decimal data is stored in a string of bytes. See the VSI BASIC User Manual for more
information about the storage of packed decimal data.

Table 1.2 summarizes VSI BASIC for OpenVMS data types.

Table 1.2. VSI BASIC for OpenVMS Data Types

Data Type Keyword Size Range Precision
(Decimal Digits)

Integer
BYTE 8 bits (1 byte) -128 to +127 3
WORD 16 bits (2 bytes) -32768 to +32767 5
LONG 32 bits (4 bytes) -2147483648 to

+2147483647
10

QUAD 64 bits (8 bytes) -9223372036854775808 to
+9223372036854775807

19

Real
SINGLE 32 bits 0.29E-38 to 1.70E38 6
DOUBLE 64 bits 0.29E-38 to 1.70E38 16
GFLOAT 64 bits 0.56E-308 to 0.90E308 15
HFLOAT 128 bits 0.84E-4932 to 0.59E4932 33
SFLOAT 32 bits 1.18E-38 to 3.40E38 6
TFLOAT 64 bits 2.23E-308 to 1.80E308 15
XFLOAT 128 bits 6.48E-4966 to 1.19E4932 33
SINGLE 32 bits (4 bytes) 0.29E-38 to 1.70E38 6
DOUBLE 64 bits (8 bytes) 0.29E-38 to 1.70E38 16
GFLOAT 64 bits (8 bytes) 0.56E-308 to 0.90E308 15
SFLOAT 32 bits (4 bytes) 1.18E-38 to 3.40E38 6
TFLOAT 64 bits (8 bytes) 2.23E-308 to 1.80E308 15
XFLOAT 128 bits (16 bytes) 6.48E-4966 to 1.19E4932 33
Decimal
DECIMAL(d,s) 0 to 16 bytes 1 * 10 -31 to 1 * 10 31 d
DECIMAL(d,s) 0 to 16 bytes ((d+1)/2

bytes)
1 * 10 -31 to 1 *10 31 d

String
STRING One character per byte

(default is 16 bytes)
Max = 65535 NA

8

Chapter 1. Program Elements and Structure

Data Type Keyword Size Range Precision
(Decimal Digits)

RFA
RFA 6 bytes NA NA

In Table 1.2, REAL and INTEGER are generic data type keywords that specify floating-point and
integer storage, respectively. If you use the REAL or INTEGER keywords to type data, the actual data
type used (SINGLE, DOUBLE, GFLOAT, SFLOAT, TFLOAT, XFLOAT, BYTE, WORD, LONG, or
QUAD) depends on the current default.

You can specify data type defaults by doing the following:

• Use the BASIC command at the DCL level.

• Use the OPTION statement within the source program being compiled.

You can also specify whether program values are to be typed implicitly or explicitly. The following
sections discuss data type defaults and implicit and explicit data typing.

1.4.1. Implicit Data Typing
You can implicitly assign a data type to program values by adding a suffix to the variable name or
constant value. If you do not specify any suffix, the variable or constant is assigned the current default
data type. The following rules apply for implicit data typing:

• A dollar sign suffix ($) specifies STRING storage.

• A percent sign suffix (%) specifies INTEGER storage.

• No special suffix character specifies storage of the default type, which can be INTEGER, REAL, or
DECIMAL.

With implicit data typing, the range and precision for program values are determined by the following
corresponding default data sizes or subtypes:

• BYTE, WORD, LONG, or QUAD for INTEGER values

• SINGLE, DOUBLE, GFLOAT, SFLOAT, TFLOAT, or XFLOAT for REAL values

• The default (d,s) values for DECIMAL values

If you do not specify a value for the default data type, REAL will be assigned.

The qualifiers for the BASIC DCL command are listed in the VSI BASIC User Manual.

9

Chapter 1. Program Elements and Structure

1.4.2. Explicit Data Typing
Explicit data typing means that you use a declarative statement to specify the data type, range, and
precision of your program variables and named constants.

In the following example, the first DECLARE statement associates the string constant value 03060 and
the STRING data type with a constant named zip_code. The second DECLARE statement associates
the STRING data type with emp_name, the DOUBLE data type with with_tax, and the SINGLE data
type with int_rate. No constant values are associated with identifiers in the second DECLARE statement
because they are variable names.

DECLARE STRING CONSTANT zip_code = "03060"
DECLARE STRING emp_name, DOUBLE with_tax, SINGLE int_rate

With explicit data typing, each program variable within a program can have a different data type. You
can explicitly assign data types to variables, constants, arrays, parameters, and functions; therefore,
integer data does not have to take the compilation default types. Explicit data typing gives you more
control over your program.

Using the REAL and INTEGER keywords to explicitly type program values allows you to write
programs that are more flexible, because these data type keywords specify that floating-point and integer
data take the current defaults for REAL and INTEGER. The data type INTEGER, for example, specifies
only that the constant or variable is an integer. The actual subtype (BYTE, WORD, LONG, or QUAD)
depends on the default set with the BASIC DCL command or with the OPTION statement.

1.4.3. QUAD and IEEE Floating-Point Data Types for 64-
Bit Support
For 64-bit support, VSI BASIC for OpenVMS provides the QUAD data type for 64-bit integers as
well as three IEEE floating-point types: SFLOAT, TFLOAT, and XFLOAT, which correspond to the
S_floating, T_floating, and X_floating formats, respectively. QUAD and the IEEE data types are
available wherever the other VSI BASIC for OpenVMS formats are available, as detailed in the following
sections.

The three formats S_floating, T_floating, and X_floating are for finite values with normal rounding and
standard exception handling only.

Qualifiers
The QUAD keyword is one of the allowed values of the /INTEGER_SIZE qualifier, and the SFLOAT,
TFLOAT, and XFLOAT keywords are three of the allowed values of the /REAL_SIZE qualifier.

Statements, Expressions, Functions, and Operators
QUAD, SFLOAT, TFLOAT, and XFLOAT can be used in the following statements wherever a data type
is supplied:

Statement Elements to Which Data Type Is Applied

COMMON Variables and FILL elements
DECLARE Variables, CONSTANTs, and FUNCTION parameters and value
DEF, DEF* Parameters and value

10

Chapter 1. Program Elements and Structure

Statement Elements to Which Data Type Is Applied

DIMENSION Variables
EXTERNAL Variables, CONSTANTs, and SUB/FUNCTION parameters and value
FUNCTION Parameters and value
MAP Variables and FILL elements
MAP DYNAMIC Variables
MOVE FILL elements
OPTION Integer and real clauses
RECORD/GROUP Record components
REMAP FILL elements
SUB Parameters

Expressions with values of these data types can be used in the following statements wherever numeric
values are accepted:

CAUSE ERROR, DATA, DET, END, EXIT, FIELD, FIND, FNEND, FNEXIT, FOR, FUNCTIONEND,
FUNCTIONEXIT, GET, IF, INPUT, LET, MAT +, MAT -, MAT *, MAT CON, MAT IDN, MAT
INPUT, MAT INV, MAT LINPUT, MAT NUL$, MAT PRINT, MAT READ, MAT TRN, MAT ZER,
NEXT, ON GOSUB, ON GOTO, OPEN, PRINT, PRINT USING, PUT, READ, RESET, RESTORE,
SELECT, SLEEP, UNLESS, UNTIL, UPDATE, WAIT, WHILE

The channel number expression for the following I/O statements and functions is extended to include
these data types:

BUFSIZ, CCPOS, CLOSE, DELETE, ECHO, FIELD, FIND, FREE, FSP$, GET, GETRFA, INKEY$,
INPUT, INPUT LINE, LINPUT, MAGTAPE, MAR, MARGIN, MAT INPUT, MAT LINPUT, MAT
PRINT, NOECHO, NOMARGIN, OPEN, PRINT, PRINT USING, PUT, RCTRLO, RESET, RESTORE,
RMSSTATUS, SCRATCH, UNLOCK, UPDATE

In Alpha BASIC, the function INTEGER, besides accepting either a numeric string or any numeric
data type expression for the first argument, includes QUAD in the possible data types for the second
argument. The function REAL has SFLOAT, TFLOAT, and XFLOAT added to possible data types for its
second argument. QUAD, SFLOAT, TFLOAT, and XFLOAT can be used in VSI BASIC for OpenVMS
statements wherever a data type is supplied.

The INTEGER function, besides accepting either a numeric string or any numeric data type expression
for the first argument, includes QUAD in the possible data types for the second argument. The REAL
function has SFLOAT, TFLOAT, and XFLOAT added to possible data types for its second argument.

All the built-in functions that accept and/or return numerical values allow QUAD and the IEEE data
types as appropriate. These include the standard mathematical functions:

ABS, ABS%, ATN, COS, EXP, LOG, LOG10, MAG, MAX, MIN, MOD, SGN, SIN, SQR, TAN

They also include the following miscellaneous functions:

ASCII, CCPOS, CHR$, COMP%, CTRLC, CVT$$ (EDIT$), DATE$, DATE4$, DECIMAL, ECHO,
ERT$, FIX, FORMAT$, INKEY$, INSTR, INT, INTEGER, LBOUND, LEFT$, MAGTAPE,
MARGIN, MID$, NOECHO, NUM, NUM2, NUM$, NUM1$, PLACE$, POS, PROD$, QUO$, RAD
$, RCTRLC, RCTRLO, REAL, RIGHT$, SEG$, SPACE$, STR$, STRING$, SWAP%, TAB, TIME,
TIME$, UBOUND, VAL, VAL%

11

Chapter 1. Program Elements and Structure

All operators that accept numeric arguments allow the new data types. These include:

unary: +, -
binary: +, -, *, /, ^, <, =, >, =<, =>, <>, == (fuzzy equals)

Constants
The explicit literal notation is extended to allow representation of constants of the new data types. See
Section 1.6.4.

Data Type Results in Expressions with Operands of Different
Types
See Section 1.7.1.1 and Section 1.7.1.2 for the rules determining the data types of results in expressions
with operands of different data types.

Array Subscripts
Array subscripts may be of any numeric data type, but must evaluate to an integer value at run time.

1.5. Variables
A variable is a named quantity whose value can change during program execution. Each variable name
refers to a location in the program's storage area. Each location can hold only one value at a time.
Variables of all data types can have subscripts that indicate their position in an array. You can declare
variables implicitly or explicitly.

Depending on the program operations specified, the value of a variable can change from statement
to statement. VSI BASIC for OpenVMS uses the most recently assigned value when performing
calculations. This value remains in effect until a new value is assigned to the variable.

VSI BASIC for OpenVMS accepts the following general types of variables:

• Floating-point

• Integer

• String

• RFA

• Packed decimal

• Record

1.5.1. Variable Names
The name given to a variable depends on whether the variable is internal or external to the program and
whether the variable is implicitly or explicitly declared.

All variable names must conform to the following rules:

• The name can have from 1 to 31 characters.

12

Chapter 1. Program Elements and Structure

• The name has no embedded spaces.

• The first character of the name must be an uppercase or lowercase alphabetic character (A to Z).

• The last character of the name can be a dollar sign ($) to indicate a string variable or a percent sign
(%) to indicate an integer variable. If the last character is neither a dollar sign nor a percent sign, the
name indicates a variable of the default type.

• The remaining characters, if present, can be any combination of uppercase or lowercase letters (A
to Z), numbers (0 to 9), dollar signs ($), underscores (_), or periods (.). The use of underscores in
variable names helps improve readability and is preferred to the use of periods.

1.5.2. Implicitly Declared Variables
VSI BASIC for OpenVMS accepts the following implicitly declared variables:

• Integer

• String

• Floating-point (or the default data type)

The name of an implicitly declared variable defines its data type. Integer variables end with a percent
sign (%), string variables end with a dollar sign ($), and variables of the default type (usually floating-
point) end with any allowable character except a percent sign or dollar sign. All three types of variables
must conform to the rules listed in Section 1.5.1 for naming variables. The current data type default
(INTEGER, REAL, or DECIMAL) determines the data type of implicitly declared variables that do not
end in a percent sign or dollar sign.

A floating-point variable is a named location that stores a floating-point value. The current default
size for floating-point numbers (SINGLE, DOUBLE, GFLOAT, SFLOAT, TFLOAT, or XFLOAT)
determines the data type of the floating-point variable.

Following are some examples of valid floating_point variable names:

C
M1
F67T_J
L …5
BIG47
Z2.
ID_NUMBER
STORAGE_LOCATION_FOR_XX
STRESS_VALUE

If a numeric value of a different data type is assigned to a floating-point variable, BASIC converts the
value to a floating-point number.

An integer variable is a named location that stores an integer value. The current default size for integers
(BYTE, WORD, LONG, or QUAD) determines the data type of an integer variable.

Following are some examples of valid integer variable names:

ABCDEFG%

13

Chapter 1. Program Elements and Structure

B%
C_8%
D6E7%
RECORD_NUMBER%
THE_VALUE_I_WANT%

If the default or explicitly declared data type is INTEGER, the percent suffix (%) is not necessary.

If you assign a floating-point or decimal value to an integer variable, BASIC truncates the fractional
portion of the value. It does not round to the nearest integer. For example:

B% = -5.7

BASIC assigns the value -5 to the integer variable, not -6.

A string variable is a named location that stores strings.

Following are some examples of valid string variable names:

C1$
L_6$
ABC1$
M$
F34G$
T..$
EMPLOYEE_NAME$
TARGET_RECORD$
STORAGE_SHELF_IDENTIFIER$

If the default or explicitly declared data type is STRING, the dollar suffix ($) is not necessary.

Strings have both value and length. BASIC sets all string variables to a default length of zero before
program execution begins, with the exception of those variables in a COMMON, MAP, virtual array, or
record definition. See the COMMON statement and the MAP statement in Chapter 3 for information
about string length in COMMON and MAP areas. See the VSI BASIC User Manual for information
about default string length in virtual arrays.

During execution, the length of a character string associated with a string variable can vary from zero
(signifying a null or empty string) to 65,535 characters.

1.5.3. Explicitly Declared Variables
BASIC lets you explicitly assign a data type to a variable or an array. For example:

DECLARE DOUBLE Interest_rate

Data type keywords are described in Section 1.4. For more information about explicit declaration of
variables, see the COMMON, DECLARE, DIMENSION, DEF, FUNCTION, EXTERNAL, MAP, and
SUB statements in Chapter 3.

14

Chapter 1. Program Elements and Structure

1.5.4. Subscripted Variables and Arrays
A subscripted variable references part of an array. Arrays can be of any valid data type. Subscripted
variables and arrays follow the same naming conventions as unsubscripted variables. Subscripts follow
the variable name in parentheses and define the variable's position in the array. When you create an
array, you specify the maximum size of the array (the bounds) in parentheses following the array name.

In Example 1.2, the DECLARE statement sets the bounds of the array emp_name to 1000. Therefore,
the maximum value for an emp_name subscript is 1000. The bounds of the array define the maximum
value for a subscript of that array.

Example 1.2. Using the DECLARE Statement to Set Array Boundaries

DECLARE STRING emp_name(1000)
FOR I% = 0% TO 1000%
 INPUT "Employee name";emp_name(I%)
NEXT I%

Subscripts can be any positive LONG integer value between 0 and 2147483647.

An array is a set of data ordered in one or more dimensions. A one-dimensional array, like
emp_name(1000), is called a list or vector. A two-dimensional array, like payroll_data(5,5), is called a
matrix. An array of more than two dimensions, like big_array(15,9,2), is called a tensor.

As a default, BASIC arrays are always zero-based. The number of elements in any dimension includes
element number zero. For example, the array emp_name contains 1001 elements because BASIC
allocates element zero. Payroll_data(5,5) contains 36 elements because BASIC allocates row and column
zero.

Often, however, applications call for arrays that are not zero-based. In BASIC, you can define arrays that
are not zero-based by specifying a lower bound, as well as an upper bound, for the subscripts. In this
way, you can create an array with arbitrary starting and ending points. For example, you might want to
create array birth_rate that holds the annual birth rate statistics for the years 1950 to 1985:

DECLARE birth_rate(1950 TO 1985)

Lower bounds are not allowed with virtual arrays or arrays used in MAT statements. If a
multidimensional array is declared with lower bounds specified for some dimensions and not others, zero
will be used for those dimensions without lower bounds.

You can use the UBOUND and LBOUND functions to determine the upper and lower bounds of an
array. For a description of these functions, see Chapter 3.

For all arrays except virtual arrays, the total number of array elements cannot exceed 2147483647.
Note, however, that this is a theoretical value; the actual maximum size of an array that you can declare
depends on the configuration of your system.

BASIC arrays can have up to 32 dimensions. You can specify the type of data the array contains with
data type keywords. See Table 1.2 for a list of BASIC data types.

An element in a one-dimensional array has a variable name followed by one subscript in parentheses.
You may optionally use a space between the array name and the subscript. For example:

15

Chapter 1. Program Elements and Structure

A(6%)

B (6%)

C$ (6%)

A(6%) refers to the seventh item in this list:

A(0%) A(1%) A(2%) A(3%) A(4%) A(5%) A(6%)

An element in a two-dimensional array has two subscripts, in parentheses, following the variable name.
The first subscript specifies the row number and the second subscript specifies the column number. Use
a comma to separate the subscripts. You may optionally put a space between the array name and the
subscripts. For example:

A (7%,2%) A%(4%,6%) A$ (10%,10%)

In Figure 1.1, the arrow points to the element specified by the subscripted variable A%(4%,6%).

Figure 1.1. Representation of the Subscript Variable A%(4%,6%)

Although a program can contain a variable and an array with the same name, this is poor programming
practice. Variable A and the array A(3%,3%) are separate entities and are stored in completely separate
locations, so it is a good idea to give them different names.

Note that a program cannot contain two arrays with the same name but a different number of subscripts.
For example, the arrays A(3%) and A(3%,3%) are invalid in the same program.

BASIC arrays can be redimensioned at run time. See the VSI BASIC User Manual for more information
about arrays.

1.5.5. Initialization of Variables
BASIC generally sets variables to zero or null values at the start of program execution. Variables
initialized by BASIC include:

• Numeric variables and in-storage array elements (except those in MAP or COMMON statements).

• String variables (except those in MAP or COMMON statements).

• Variables in subprograms. Subprogram variables are initialized to zero or the null string each time the
subprogram is called.

BASIC does not initialize the following:

16

Chapter 1. Program Elements and Structure

• Virtual arrays

• Variables in MAP and COMMON areas

• Variables declared as EXTERNAL

• Variables in routines that contain the option INACTIVE=SETUP

1.6. Constants
A constant is a numeric or character literal that does not change during program execution. A constant
may optionally be named and associated with a data type. BASIC allows the following types of
constants:

• Numeric:

• Floating-point

• Integer

• Packed decimal

• String (ASCII characters enclosed in quotation marks)

A constant of any of the above data types can be named with the DECLARE CONSTANT statement.
You can then refer to the constant by name in your program. See Section 1.6.3 for information about
naming constants.

You can use the OPTION statement to declare a default data type for all constants in your program. This
statement allows you to specify a data type for only the constants in your program; you can specify a
different data type for variables. You can also use a special numeric literal notation to specify the value
and data type of a numeric literal. Numeric literal notation is discussed in Section 1.6.4.

If you do not specify a data type for a numeric constant with the DECLARE CONSTANT statement
or with numeric literal notation, the type and size of the constant is determined by the default REAL,
INTEGER, or DECIMAL type set with the BASIC DCL command or the OPTION statement.

To simplify the representation of certain ASCII characters and mathematical values, BASIC also supplies
some predefined constants.

The following sections discuss numeric and string constants, named constants, numeric literal notation,
and predefined constants.

1.6.1. Numeric Constants
A numeric constant is a literal or named constant whose value never changes. In BASIC, a numeric
constant can be a floating-point number, an integer, or a packed decimal number. The type and size of a
numeric constant is determined by the following:

• System default values

• Defaults set by the qualifiers for the BASIC DCL command

• Data type specified in a DECLARE CONSTANT or OPTION statement

17

Chapter 1. Program Elements and Structure

• Numeric literal notation

If you use a declarative statement to name and declare the data type of a numeric constant, the constant
is of the type and size specified in the statement. For example:

DECLARE BYTE CONSTANT age = 12

This example associates the numeric literal 12 and the BYTE data type with the identifier age. To
specify a data type for an unnamed numeric constant, you must use the numeric literal notation format
described in Section 1.6.4.

1.6.1.1. Floating-Point Constants
A floating-point constant is a literal or named constant with one or more decimal digits, either positive or
negative, with an optional decimal point and an optional exponent (E notation). If the default data type
is integer, BASIC will treat the literal as an INTEGER unless it contains a decimal point or the character
E. If the default data type is DECIMAL, an E is required or BASIC treats the literal as a packed decimal
value.

Table 1.3 contains examples of floating-point literals with REAL, INTEGER, and DECIMAL default
data types.

Table 1.3. Specifying Floating-Point Constants

REAL Default Type INTEGER Default Type DECIMAL Default Type

-8.738 -8.738 -8.738E
239.21E-6 239.21E-6 239.21E-6
.79 .79 .79E
299 299E 299E

Very large and very small numbers can be represented in E (exponential) notation. To indicate E
notation, a number must be followed by the letter E (or e). It also must be followed by an exponent
sign and an exponent. The exponent sign indicates whether the exponent is positive or negative and is
optional only if you are specifying a positive exponent. The exponent is an integer constant (the power of
10).

See Table 1.2 for decimal-place precision of floating-point keywords.

Table 1.4 compares numbers in standard and E notation.

Table 1.4. Numbers in E Notation

Standard Notation
E Notation

.0000001 .1E-06
1,000,000 .1E+07
–10,000,000 –.1E+08
100,000,000 .1E+09
1,000,000,000,000 .1E+13

The range and precision of floating-point constants are determined by the current default data types or
the explicit data type used in the DECLARE CONSTANT statement. However, there are limits to the

18

Chapter 1. Program Elements and Structure

range allowed for numeric data types. See Table 1.2 for a list of BASIC data types and ranges. BASIC
signals the fatal error “Floating point error or overflow” (ERR=48) when your program attempts to
specify a constant value outside of the allowable range for a floating-point data type.

1.6.1.2. Integer Constants
An integer constant is a literal or named constant, either positive or negative, with no fractional digits and
an optional trailing percent sign (%). The percent sign is required for integer literals only if the default
type is not INTEGER.

In Table 1.5, the values are all integer constants. The presence of the percent sign varies depending on
the default data type.

Table 1.5. Specifying Integer Constants

INTEGER Default
Type

REAL or DECIMAL Default Type

81257 81257%
–3477 –3477%
79 79%

The range of allowable values for integer constants is determined by either the current default data type
or the explicit data type used in the DECLARE CONSTANT statement. Table 1.2 lists BASIC data types
and ranges. BASIC signals an error for a number outside the applicable range.

If you want BASIC to treat numeric literals as integer numbers, you must do one of the following:

• Set the default data type to INTEGER.

• Make sure the literal has a percent sign suffix.

• Use explicit literal notation.

Note

You cannot use percent signs in integer constants that appear in DATA statements. Doing so causes
BASIC to signal “Data format error” (ERR=50).

1.6.1.3. Packed Decimal Constants
A packed decimal constant is a number, either positive or negative, that has a specified number of digits
and a specified decimal point position (scale). You specify the number of digits (d) and the position of
the decimal point (s) when you declare the constant as a DECIMAL(d,s). If the constant is not declared,
the number of digits and the position of the decimal is determined by the representation of the constant.

For example, when the default data type is DECIMAL, 1.234 is a DECIMAL(4,3) constant, regardless
of the default decimal size. Likewise, using numeric literal notation, "1.234 "P is a DECIMAL(4,3)
constant, regardless of the default data type and default DECIMAL size. Numeric literal notation is
described in Section 1.6.4.

19

Chapter 1. Program Elements and Structure

1.6.2. String Constants
String constants are either string literals or named constants. A string literal is a series of characters
enclosed in string delimiters. Valid string delimiters are as follows:

• Double quotation marks ("text ")

• Single quotation marks (’text ’)

You can embed double quotation marks within single quotation marks (’this is a "text " string ’) and vice
versa ("this is a ’text ’ string "). Note, however, that BASIC does not accept incorrectly paired quotation
marks and that only the outer quotation marks must be paired. For example, the following character
strings are valid:

"The record number does not exist."
"I'm here!"
"The terminating 'condition' is equal to 10."
"REPORT 543"

However, the following strings are not valid:

"Quotation marks that do not match'
"No closing quotation mark

Characters in string constants can be letters, numbers, spaces, tabs, 8-bit data characters, or the
NUL character (ASCII code 0). If you need a string constant that contains a NUL, you should use
CHR$(NUL). See Section 1.6.4 for information about explicit literal notation.

Note that NUL is a predefined integer constant. See Section 1.6.5.

The compiler determines the value of the string constant by scanning all its characters. For example,
because of the number of spaces between the delimiters and the characters, these two string constants are
not the same:

" END-OF-FILE REACHED "
"END-OF-FILE REACHED"

BASIC stores every character between delimiters exactly as you type it into the source program,
including:

• Lowercase letters (a to z)

• Leading, trailing, and embedded spaces

• Tabs

• Special characters

The delimiting quotation marks are not printed when the program is executing. The value of the string
constant does not include the delimiting quotation marks. For example:

PRINT "END-OF-FILE REACHED"

END

Output

20

Chapter 1. Program Elements and Structure

END-OF-FILE REACHED

BASIC does, however, print double or single quotation marks when they are enclosed in a second paired
set. For example:

PRINT 'FAILURE CONDITION: "RECORD LENGTH"'

END

Output

FAILURE CONDITION: "RECORD LENGTH"

1.6.3. Named Constants
BASIC allows you to name constants. You can assign a name to a constant that is either internal or
external to your program and refer to the constant by name throughout the program. This naming feature
is useful for the following reasons:

• If a commonly used constant must be changed, you need to make only one change in your program.

• A logically named constant makes your program easier to understand.

You can use named constants anywhere you can use a constant, for example, to specify the number of
elements in an array.

You cannot change the value of an explicitly named constant during program execution.

1.6.3.1. Naming Constants Within a Program Unit
You name constants within a program unit with the DECLARE statement, as is shown in Example 1.3.

Example 1.3. Naming Constants Within a Program Unit

DECLARE DOUBLE CONSTANT preferred_rate = .147
DECLARE SINGLE CONSTANT normal_rate = .162
DECLARE DOUBLE CONSTANT risky_rate = .175
 .
 .
 .
new_bal = old_bal * (1 + preferred_rate)^years_payment

When interest rates change, only three lines have to be changed rather than every line that contains an
interest rate constant.

Constant names must conform to the rules for naming internal, explicitly declared variables listed in
Section 1.5.1.

The value associated with a named constant can be a compile-time expression as well as a literal value,
as shown in Example 1.4.

21

Chapter 1. Program Elements and Structure

Example 1.4. Associating Values with Named Constants

DECLARE STRING CONSTANT Congrats = &
 "+--------------------+" + LF + CR + &
 "| Congratulations! |" + CR + CR + &
 "+--------------------+"
 .
 .
 .
PRINT Congrats
 .
 .
 .
PRINT Congrats

Named constants can save you programming time because you do not have to retype the value every
time you want to display it.

Valid operators in DECLARE CONSTANT expressions include string concatenations and all valid
arithmetic, relational, and logical operators except exponentiation. You cannot use built-in functions in
DECLARE CONSTANT expressions.

BASIC allows constants of all data types except RFA to be named constants. Because you cannot declare
a constant of the RFA data type, you cannot name a constant of that type.

You can specify only one data type in a DECLARE CONSTANT statement. To declare a constant of a
different data type, you must use a second DECLARE CONSTANT statement.

1.6.3.2. Naming Constants External to a Program Unit
To declare constants outside the program unit, use the EXTERNAL statement, as shown in Example 1.5.

Example 1.5. Declaring Constants Outside the Program Unit

EXTERNAL LONG CONSTANT SS$_NORMAL
EXTERNAL WORD CONSTANT IS_SUCCESS

The first line declares the OpenVMS status code SS$_NORMAL to be an external LONG constant. The
second line declares IS_SUCCESS, a success code, to be an external WORD constant. Note that BASIC
allows only external BYTE, WORD, LONG, QUAD, and SINGLE constants. The OpenVMS Linker
supplies the values for the constants specified in EXTERNAL statements.

In BASIC, the named constant might be a system status code or a global constant declared in another
OpenVMS layered product.

1.6.4. Explicit Literal Notation
You can specify the value and data type of numeric literals by using a special notation called explicit
literal notation. The format of this notation is as follows:

[radix] "num-str-lit" [data-type]

Radix specifies an optional base, which can be any of the following:

D Decimal (base 10)

22

Chapter 1. Program Elements and Structure

B Binary (base 2)
O Octal (base 8)
X Hexadecimal (base 16)
A ASCII

The BASIC default radix is decimal. Binary, octal, and hexadecimal notation allow you to set or
clear individual bits in the representation of an integer. This feature is useful in forming conditional
expressions and in using logical operations. The ASCII radix causes BASIC to translate a single ASCII
character to its decimal equivalent. This decimal equivalent is an INTEGER value; you specify whether
the INTEGER subtype should be BYTE, WORD, LONG, or QUAD.

Num-str-lit is a numeric string literal. It can be the digits 0 and 1 when the radix is binary, the digits 0 to
7 when the radix is octal, the digits 0 to F when the radix is hexadecimal, and the digits 0 to 9 when the
radix is decimal. When the radix is ASCII, num-str-lit can be any valid ASCII character.

Data-type is an optional single letter that corresponds to one of the data type keywords that follow:

B BYTE
W WORD
L LONG
Q QUAD
F SINGLE
D DOUBLE
G GFLOAT
S SFLOAT
T TFLOAT
X XFLOAT
P DECIMAL
C CHARACTER

The following are examples of explicit literals:

D "255"L Specifies a LONG decimal constant with a value of 255
"4000"F Specifies a SINGLE decimal constant with a value of 4000
A "M"L Specifies a LONG integer constant with a value of 77
A "m"B Specifies a BYTE integer constant with a value of 109

A quoted numeric string alone, without a radix and a data type, is a string literal, not a numeric literal.
For

"255" Is a string literal
"255"W Specifies a WORD decimal constant with a value of 255

23

Chapter 1. Program Elements and Structure

If you specify a binary, octal, ASCII, or hexadecimal radix, data-type must be an integer. If you do not
specify a data type, BASIC uses the default integer data type. For example:

B"11111111"B Specifies a BYTE binary constant with a value of -1
B "11111111"W Specifies a WORD binary constant with a value of 255
B"11111111" Specifies a binary constant of the default data type (BYTE, WORD, LONG,

or QUAD)
B"11111111"F Is illegal because F is not an integer data type
X"FF"B Specifies a BYTE hexadecimal constant with a value of -1
X"FF"W Specifies a WORD hexadecimal constant with a value of 255
X"FF"D Is illegal because D is not an integer data type
O"377"B Specifies a BYTE octal constant with a value of -1
O"377 W Specifies a WORD octal constant with a value of 255
O"377 G Is illegal because G is not an integer data type

When you specify a radix other than decimal, overflow checking is performed as if the numeric string
were an unsigned integer. However, when this value is assigned to a variable or used in an expression, the
compiler treats it as a signed integer.

In the following example, BASIC sets all 8 bits in storage location A. Because A is a BYTE integer, it
has only 8 bits of storage. Because the 8-bit two's complement of 1 is 11111111, its value is -1. If the
data type is W (WORD), BASIC sets the bits to 0000000011111111, and its value is 255.

DECLARE BYTE A
A = B"11111111"B
PRINT A

Output

-1

Note

In BASIC, D can appear in both the radix position and the data type position. D in the radix position
specifies that the numeric string is treated as a decimal number (base 10). D in the data type position
specifies that the value is treated as a double-precision, floating-point constant. P in the data type
position specifies a packed decimal constant. For example:

"255"D Specifies a double-precision constant with a value of 255
"255.55"P Specifies a DECIMAL constant with a value of 255.55

You can use explicit literal notation to represent a single-character string in terms of its 8-bit ASCII
value:

[radix] "num-str-lit" C

The letter C is an abbreviation for CHARACTER. The value of the numeric string must be from 0
to 255. This feature lets you create your own compile-time string constants containing nonprinting
characters.

24

Chapter 1. Program Elements and Structure

The following example declares a string constant named control_g (ASCII decimal value 7). When
BASIC executes the PRINT statement, the terminal bell sounds:

DECLARE STRING CONSTANT control_g = "7"C
PRINT control_g

1.6.5. Predefined Constants
Predefined constants are symbolic representations of either ASCII characters or mathematical values.
They are also called compile-time constants because their value is known at compilation rather than at
run time.

Predefined constants help you to:

• Format program output to improve readability

• Make source code easier to understand

Table 1.6 lists the predefined constants supplied by BASIC, their ASCII values, and their functions.

Table 1.6. Predefined Constants

Constant Decimal/ ASCII
Value

Function

NUL 0 Integer value zero
BEL (Bell) 7 Sounds the terminal bell
BS (Backspace) 8 Moves the cursor one position to the left
HT (Horizontal Tab) 9 Moves the cursor to the next horizontal tab stop
LF (Line Feed) 10 Moves the cursor to the next line
VT (Vertical Tab) 11 Moves the cursor to the next vertical tab stop
FF (Form Feed) 12 Moves the cursor to the start of the next page
CR (Carriage Return) 13 Moves the cursor to the beginning of the current line
SO (Shift Out) 14 Shifts out for communications networking, screen

formatting, and alternate graphics
SI (Shift In) 15 Shifts in for communications networking, screen

formatting, and alternate graphics
ESC (Escape) 27 Marks the beginning of an escape sequence
SP (Space) 32 Inserts one blank space in program output
DEL (Delete) 127 Deletes the last character entered
PI None Represents the number PI with the precision of the

default floating-point data type

You can use predefined constants in many ways. The following example shows how to print and
underline a word on a hardcopy display:

PRINT "NAME:" + BS + BS + BS + BS + BS + "_____"
END

Output

25

Chapter 1. Program Elements and Structure

NAME:

The following example shows how to print and underline a word on a video display terminal:

 PRINT ESC + "[4mNAME:" + ESC + "[0m"
END

Output

NAME:

Note that in the previous example, m must be lowercase.

1.7. Expressions
BASIC expressions consist of operands (constants, variables, and functions) separated by arithmetic,
string, relational, and logical operators.

The following are types of BASIC expressions:

• Numeric expressions

• String expressions

• Conditional expressions

BASIC evaluates expressions according to operator precedence and uses the results in program execution.
Parentheses can be used to group operands and operators, thus controlling the order of evaluation.

The following sections explain the types of expressions you can create and the way BASIC evaluates
expressions.

1.7.1. Numeric Expressions
Numeric expressions consist of floating-point, integer, or packed decimal operands separated by
arithmetic operators and optionally grouped by parentheses. Table 1.7 shows how numeric operators
work in numeric expressions.

Table 1.7. Arithmetic Operators

Operator Example Use

+ A + B Add B to A
– A – B Subtract B from A
* A * B Multiply A by B
/ A / B Divide A by B
^ A^B Raise A to the power B
** A**B Raise A to the power B

In general, two arithmetic operators cannot occur consecutively in the same expression. Exceptions are
the unary plus and unary minus. The following expressions are valid:

26

Chapter 1. Program Elements and Structure

A * + B

A * - B

A * (-B)

A * + - + - B

The following expression is not valid:

A - * B

An operation on two numeric operands of the same data type yields a result of that type. For example:

A% + B% Yields an integer value of the default type
G3 * M5 Yields a floating-point value if the default type is REAL

If the result of the operation exceeds the range of the data type, BASIC signals an overflow error
message.

The following example causes BASIC to signal the error “Integer error or overflow” because the sum of
A and B (254) exceeds the range of -128 to +127 for BYTE integers. Similar overflow errors occur for
REAL and DECIMAL data types whenever the result of a numeric operation is outside the range of the
corresponding data type.

DECLARE BYTE A, B
A = 127
B = 127
PRINT A + B
END

It is possible to assign a value of one data type to a variable of a different data type. When this occurs,
the data type of the variable overrides the data type of the assigned value. The following example assigns
the value 32 to the integer variable A% even though the floating-point value of the expression is 32.13:

A% = 5.1 * 6.3

1.7.1.1. Floating-Point and Integer Promotion Rules
When an expression contains operands with different data types, the data type of the result is determined
by BASIC data type promotion rules:

• With one exception, BASIC promotes operands with different data types to the lowest common data
type that can hold the largest and most precise possible value of either operand's data type. BASIC
then performs the operation using that data type, and yields a result of that data type.

• The exception is that when an operation involves SINGLE and LONG data types, BASIC promotes
the LONG data type to SINGLE rather than DOUBLE, performs the operation, and yields a result of
the SINGLE data type.

Note that BASIC performs sign extension when converting BYTE, WORD, and LONG integers to a
higher INTEGER data type (WORD, LONG, or QUAD). The high order bit (the sign bit) determines
how the additional bits are set when the BYTE, WORD, or LONG is converted to WORD, LONG, or
QUAD. If the high order bit is zero (positive), all higher-order bits in the converted integer are set to
zero. If the high order bit is 1 (negative), all higher-order bits in the converted integer are set to 1.

27

Chapter 1. Program Elements and Structure

Data Type Results

Figure 1.2 shows the data type of the result of an operation that combines arguments of differing data
types. BASIC first promotes, if necessary, the arguments to the result data type, and then performs the
operation.

Figure 1.2. Result Data Types in Expressions

1.7.1.2. DECIMAL Promotion Rules
BASIC allows the DECIMAL(d,s) data type. The number of digits (d) and the scale or position of the
decimal point (s) in the result of DECIMAL operations depends on the data type of the other operand. If
one operand is DECIMAL and the other is DECIMAL or INTEGER, the d and s values of the result are
determined as follows:

• If both operands are typed DECIMAL, and if both operands have the same digit (d) and scale (s)
values, no conversions occur and the result of the operation has exactly the same d and s values as
the operands. Note, however, that overflow can occur if the result exceeds the range specified by the
d value.

• If both operands are DECIMAL but have different digit and scale values, BASIC uses the larger
number of specified digits for the result.

In the following example, variable A allows three digits to the left of the decimal point and two digits
to the right. Variable B allows one digit to the left of the decimal point and three digits to the right.

DECLARE DECIMAL(5,2) A
DECLARE DECIMAL(4,3) B

The result allows three digits to the left of the decimal point and three digits to the right.

• If one operand is DECIMAL and one is INTEGER, the INTEGER value is converted to a
DECIMAL(d,s) data type as follows:

• BYTE is converted to DECIMAL(3,0).

• WORD is converted to DECIMAL(5,0).

• LONG is converted to DECIMAL(10,0).

• QUAD is converted to DECIMAL(19,0).

28

Chapter 1. Program Elements and Structure

BASIC then determines the d and s values of the result by evaluating the d and s values of the
operands as described above.

Note that only INTEGER data types are converted to the DECIMAL data type. If one operand is
DECIMAL and one is floating-point, the DECIMAL value is converted to a floating-point value. The
total number of digits in (d) in the DECIMAL value determines its new data type, as shown in Table 1.8.

If one argument is DECIMAL data type and one is a floating point data type, the DECIMAL data type
argument is first converted to a floating point data type as follows in Table 1.8.

Table 1.8. Result Data Types for DECIMAL Data

Floating-Point OperandsNumber of
DECIMAL
Digits in
Operand

SINGLE DOUBLE GFLOAT SFLOAT TFLOAT XFLOAT

1-6 SINGLE DOUBLE GFLOAT SFLOAT TFLOAT XFLOAT
7-15 DOUBLE DOUBLE GFLOAT TFLOAT TFLOAT XFLOAT
16 DOUBLE DOUBLE GFLOAT XFLOAT XFLOAT XFLOAT
17-31 GFLOAT GFLOAT GFLOAT XFLOAT XFLOAT XFLOAT

GFLOAT maintains up to 15 digits of precision. Mixing DECIMAL items containing 16 or more bits
with GFLOAT items may cause a loss of precision.

Operations performed on DOUBLE operands are performed in GFLOAT. When the operation is
complete, the GFLOAT result is converted to DOUBLE. Therefore, it is possible to lose three binary
digits of precision in arithmetic operations using DOUBLE.

1.7.2. String Expressions
String expressions are string entities separated by a plus sign (+). When used in a string expression, the
plus sign concatenates strings. For example:

INPUT "Type two words to be combined";A$, B$
C$ = A$ + B$
PRINT C$
END

Output

Type two words to be combined? long
? word
longword

1.7.3. Conditional Expressions
Conditional expressions can be either relational or logical expressions. Numeric relational expressions
compare numeric operands to determine whether the expression is true or false. String relational
expressions compare string operands to determine which string expression occurs first in the ASCII
collating sequence.

Logical expressions contain integer operands and logical operators. BASIC determines whether the
specified logical expression is true or false by testing the numeric result of the expression. Note that in

29

Chapter 1. Program Elements and Structure

conditional expressions, as in any numeric expression, when BYTE, WORD, and LONG operands are
compared to WORD, LONG, and QUAD, the specified operation is performed in the higher data type,
and the result returned is also of the higher data type. When one of the operands is a negative value,
this conversion will produce accurate but perhaps confusing results, because BASIC performs a sign
extension when converting BYTE and WORD integers to a higher integer data type. See Section 1.7.1.1
for information about integer conversion rules.

1.7.3.1. Numeric Relational Expressions
Operators in numeric relational expressions compare the values of two operands and return either -1 if
the relation is true (as shown in Example 1), or zero if the relation is false (as shown in Example 2). The
data type of the result is the default integer type.

Example 1

A = 10
B = 15
X% = (A <> B)
IF X% = -1%
THEN PRINT 'Relationship is true'
ELSE PRINT 'Relationship is false'

END IF

Output

Relationship is true

Example 2

A = 10
B = 15
X% = A = B
IF X% = -1%
THEN PRINT 'Relationship is true'
ELSE
 PRINT 'Relationship is false'

END IF

Output

Relationship is false

Table 1.9 shows how relational operators work in numeric relational expressions.

Table 1.9. Numeric Relational Operators

Operator Example Meaning

= A = B A is equal to B.
< A < B A is less than B.
> A > B A is greater than B.
<= or = < A <= B A is less than or equal to B.
>= or => A >= B A is greater than or equal to B.

30

Chapter 1. Program Elements and Structure

Operator Example Meaning

<> or > < A <> B A is not equal to B.
== A == B A and B will PRINT the same if they are equal to six significant digits.

However, if one value prints in explicit notation and the other value prints in
E format notation, the relation will always be false.

1.7.3.2. String Relational Expressions
Operators in string relational expressions determine how BASIC compares strings. BASIC determines
the value of each character in the string by converting it to its ASCII value. ASCII values are listed in
Appendix A. BASIC compares the strings character by character, left to right, until it finds a difference
in ASCII value.

In the following example, BASIC compares A$ and B$ character by character. The strings are identical
up to the third character. Because the ASCII value of Z (90) is greater than the ASCII value of C (67),
A$ is less than B$. BASIC evaluates the expression A$ < B$ as true (–1) and prints “ABC comes before
ABZ”.

A$ = 'ABC'
B$ = 'ABZ'
IF A$ < B$
THEN PRINT 'ABC comes before ABZ'
ELSE IF A$ == B$
 THEN PRINT 'The strings are identical'
 ELSE IF A$ > B$
 THEN PRINT 'ABC comes after ABZ'
 ELSE PRINT 'Strings are equal but not identical'
 END IF
 END IF
END IF
END

If two strings of differing lengths are identical up to the last character in the shorter string, BASIC pads
the shorter string with spaces (ASCII value 32) to generate strings of equal length, unless the operator
is the double equal sign (==). If the operator is the double equal sign, BASIC does not pad the shorter
string.

In the following example, BASIC compares "ABCDE" to “ABC@” to determine which string comes first
in the collating sequence. “ABC@” appears before “ABCDE” because the ASCII value for space (32) is
lower than the ASCII value of D (68). Then BASIC compares “ABC@” with “ABC” using the double
equal sign and determines that the strings do not match exactly without padding. The third comparison
uses the single equal sign. BASIC pads “ABC” with spaces and determines that the two strings match
with padding.

A$ = 'ABCDE'
B$ = 'ABC'
PRINT 'B$ comes before A$' IF B$ < A$
PRINT 'A$ comes before B$' IF A$ < B$
C$ = 'ABC '
IF B$ == C$
 THEN PRINT 'B$ exactly matches C$'
 ELSE PRINT 'B$ does not exactly match C$'
END IF
IF B$ = C$
 THEN PRINT 'B$ matches C$ with padding'

31

Chapter 1. Program Elements and Structure

 ELSE PRINT 'B$ does not match C$'
END IF

Output

B$ comes before A$
B$ does not exactly match C$
B$ matches C$ with padding

Table 1.10 shows how relational operators work in string relational expressions.

Table 1.10. String Relational Operators

Operator Example Meaning

= A$ = B$ Strings A$ and B$ are equal after the shorter string has been padded with
spaces to equal the length of the longer string.

< A$ < B$ String A$ occurs before string B$ in ASCII sequence.
> A$ > B$ String A$ occurs after string B$ in ASCII sequence.
<= or = < A$ <= B$ String A$ is equal to or precedes string B$ in ASCII sequence.
>= or => A$ >= B$ String A$ is equal to or follows string B$ in ASCII sequence.
<> or > < A$ <> B$ String A$ is not equal to string B$.
== A$ == B$ Strings A$ and B$ are identical in composition and length, without

padding.

1.7.3.3. Logical Expressions
A logical expression can have one of the following formats:

• A unary logical operator and one integer operand

• Two integer operands separated by a binary logical operator

• One integer operand

Logical expressions are valid only when the operands are integers. If the expression contains two integer
operands of differing data types, the resulting integer has the same data type as the higher integer
operand. For example, the result of an expression that contains a BYTE integer and a WORD integer
would be a WORD integer. Table 1.11 lists the logical operators.

Table 1.11. Logical Operators

Operator Example Meaning

NOT NOT A% The bit-by-bit complement of A%. If A% is true (–1), NOT
A% is false (0).

AND A% AND B% The logical product of A% and B%. A% AND B% is true
only if both A% and B% are true.

OR A% OR B% The logical sum of A% and B%. A% OR B% is false only if
both A% and B% are false; otherwise, A% OR B% is true.

XOR A% XOR B% The logical exclusive OR of A% and B%. A% XOR B% is
true if either A% or B% is true but not if both are true.

32

Chapter 1. Program Elements and Structure

Operator Example Meaning

EQV A% EQV B% The logical equivalence of A% and B%. A% EQV B% is
true if A% and B% are both true or both false; otherwise the
value is false.

IMP A% IMP B% The logical implication of A% and B%. A% IMP B% is false
only if A% is true and B% is false; otherwise, the value is
true.

The truth tables in Figure 1.3 summarize the results of these logical operations. Zero is false; –1 is true.

Figure 1.3. Truth Tables

The operators XOR and EQV are logical complements.

BASIC determines whether the condition is true or false by testing the result of the logical expression to
see whether any bits are set. If no bits are set, the value of the expression is zero and it is evaluated as
false; if any bits are set, the value of the expression is nonzero, and the expression is evaluated as true.
However, logical operators can return unanticipated results unless –1 is specified for true values and zero
for false.

In the following example, the values of A% and B% both test as true because they are nonzero values.
However, the logical AND of these two variables returns an unanticipated result of false.

33

Chapter 1. Program Elements and Structure

A% = 2%
B% = 4%
IF A% THEN PRINT 'A% IS TRUE'
IF B% THEN PRINT 'B% IS TRUE'
IF A% AND B% THEN PRINT 'A% AND B% IS TRUE'
 ELSE PRINT 'A% AND B% IS FALSE'
END

Output

A% IS TRUE
B% IS TRUE
A% AND B% IS FALSE

The program returns this seemingly contradictory result because logical operators work on the individual
bits of the operands. The 8-bit binary representation of 2% is as follows:

0 0 0 0 0 0 1 0

The 8-bit binary representation of 4% is as follows:

0 0 0 0 0 1 0 0

Each value tests as true because it is nonzero. However, the AND operation on these two values sets a
bit in the result only if the corresponding bit is set in both operands. Therefore, the result of the AND
operation on 4% and 2% is as follows:

0 0 0 0 0 0 0 0

No bits are set in the result, so the value tests as false (zero).

If the value of B% is changed to 6%, the resulting value tests as true (nonzero) because both 6% and 2%
have the second bit set. Therefore, BASIC sets the second bit in the result and the value tests as nonzero
and true.

The 8-bit binary representation of –1 is as follows:

1 1 1 1 1 1 1 1

The result of –1% AND –1% is –1% because BASIC sets bits in the result for each corresponding bit
that is set in the operands. The result tests as true because it is a nonzero value, as shown in the following
example:

A% = -1%
B% = -1%
IF A% THEN PRINT 'A% IS TRUE'
IF B% THEN PRINT 'B% IS TRUE'
IF A% AND B% THEN PRINT 'A% AND B% IS TRUE'
 ELSE PRINT 'A% AND B% IS FALSE'
END

Output

A% IS TRUE
B% IS TRUE
A% AND B% IS TRUE

Your program may also return unanticipated results if you use the NOT operator with a nonzero operand
that is not –1.

34

Chapter 1. Program Elements and Structure

In the following example, BASIC evaluates both A% and B% as true because they are nonzero. NOT A
% is evaluated as false (zero) because the binary complement of –1 is zero. NOT B% is evaluated as true
because the binary complement of 2 has bits set and is therefore a nonzero value.

A%=-1%
B%=2
IF A% THEN PRINT 'A% IS TRUE'
 ELSE PRINT 'A% IS FALSE'
IF B% THEN PRINT 'B% IS TRUE'
 ELSE PRINT 'B% IS FALSE'
IF NOT A% THEN PRINT 'NOT A% IS TRUE'
 ELSE PRINT 'NOT A% IS FALSE'
IF NOT B% THEN PRINT 'NOT B% IS TRUE'
 ELSE PRINT 'NOT B% IS FALSE'
END

Output

A% IS TRUE
B% IS TRUE
NOT A% IS FALSE
NOT B% IS TRUE

1.7.4. Evaluating Expressions
BASIC evaluates expressions according to operator precedence. Each arithmetic, relational, and string
operator in an expression has a position in the hierarchy of operators. The operator's position informs
BASIC of the order in which to perform the operation. Parentheses can change the order of precedence.

Table 1.12 lists all operators as BASIC evaluates them. Note the following:

• Operators with equal precedence are evaluated logically from left to right.

• BASIC evaluates expressions enclosed in parentheses first, even when the operator in parentheses has
a lower precedence than that outside the parentheses.

Table 1.12. Numeric Operator Precedence

Operator Precedence

** or ^ 1
– (unary minus) or + (unary plus) 2
* or / 3
+ or – 4
+ (concatenation) 5
all relational operators 6
NOT 7
AND 8
OR, XOR 9
IMP 10
EQV 11

For example, BASIC evaluates the following expression in five steps:

35

Chapter 1. Program Elements and Structure

A = 15^2 + 12^2 - (35 * 8)

1. (35 * 8) = 280 Multiplication
2. 15^2 = 225 Exponentiation (leftmost expression)
3. 12^2 = 144 Exponentiation
4. 225 + 144 = 369 Addition
5. 369 – 280 = 89 Subtraction

There is one exception to this order of precedence: when an operator that does not require operands on
either side of it (such as NOT) immediately follows an operator that does require operands on both sides
(such as the addition operator (+)), BASIC evaluates the second operator first. For example:

A% + NOT B% + C%

This expression is evaluated as follows:

(A% + (NOT B%)) + C%

BASIC evaluates the expression NOT B before it evaluates the expression A + NOT B. When the NOT
expression does not follow the addition (+) expression, the normal order of precedence is followed. For
example:

NOT A% + B% + C%

This expression is evaluated as:

NOT ((A% + B%) + C %)

BASIC evaluates the two expressions (A% + B%) and ((A% + B%) + C%) because the + operator has a
higher precedence than the NOT operator.

BASIC evaluates nested parenthetical expressions from the inside out.

In the following example, BASIC evaluates the parenthetical expression A quite differently from
expression B. For expression A, BASIC evaluates the innermost parenthetical expression (25 + 5) first,
then the second inner expression (30 / 5), then (6 * 7), and finally (42 + 3). For expression B, VSI
BASIC evaluates (5 / 5) first, then (1 * 7), B, BASIC evaluates (5 / 5) first, then (1 * 7), then (25 + 7 +
3) to obtain a different value.

A = ((((25 + 5) / 5) * 7) + 3)
PRINT A
B = 25 + 5 / 5 * 7 + 3
PRINT B

Output

45
35

1.8. Program Documentation
Documentation within a program clarifies and explains source program structure. These explanations,
or comments, can be combined with code to create a more readable program without affecting program
execution. Comments can appear in two forms:

36

Chapter 1. Program Elements and Structure

• Comment fields (including empty statements)

• REM statements

1.8.1. Comment Fields
A comment field begins with an exclamation point (!) and ends with a carriage return. You supply text
after the exclamation point to document your program. You can specify comment fields while creating
BASIC programs at DCL level. BASIC does not execute text in a comment field. Example 1.6 shows
how to specify a comment field.

Example 1.6. Specifying a Comment Field

! FOR loop to initialize list Q
FOR I = 1 TO 10
 Q(I) = 0 ! This is a comment
NEXT I
! List now initialized

BASIC executes only the FOR...NEXT loop. The comment fields, preceded by exclamation points, are
not executed.

Example 1.7 shows how you can use comment fields to help make your program more readable and
allow you to format your program into readily visible logical blocks. Example 1.7 also shows how
comment fields can be used as target lines for GOTO and GOSUB statements.

Example 1.7. Using Comment Fields to Format a Program

!
! Square root program
!
INPUT 'Enter a number';A
PRINT 'SQR of ';A;'is ';SQR(A)
!
! More square roots?
!
INPUT 'Type "Y" to continue, press RETURN to quit';ANS$
GOTO 10 IF ANS$ = "Y"
!
END

You can also use an exclamation point to terminate a comment field, but this practice is not
recommended. You should make sure that there are no exclamation points in the comment field itself;
otherwise, BASIC treats the text remaining on the line as source code.

Note

Comment fields in DATA statements are invalid; the compiler treats the comments as additional data.

1.8.2. REM Statements
A REM statement begins with the REM keyword and ends when BASIC encounters a new line number.
The text you supply between the REM keyword and the next line number documents your program. Like
comment fields, REM statements do not affect program execution. BASIC ignores all characters between

37

Chapter 1. Program Elements and Structure

the keyword REM and the next line number. Therefore, the REM statement can be continued without
the ampersand continuation character and should be the only statement on the line or the last of several
statements in a multistatement line. Example 1.8 shows the use of the REM statement.

Example 1.8. Using REM Statements in BASIC Programs

 5 REM This is an example
 A=5
 B=10
 REM A equals 5
 B equals 10
 10 PRINT A, B

Output
0 0

Note that because line 5 began with a REM statement, all the statements in line 5 were ignored.

The REM statement is nonexecutable. When you transfer control to a REM statement, BASIC executes
the next executable statement that lexically follows the referenced statement.

Note

Because BASIC treats all text between the REM statement and the next line number as commentary,
REM should be used very carefully in programs that follow the implied continuation rules. REM
statements are disallowed in programs without line numbers.

In the following example, the conditional GOTO statement in line 20 transfers program control to line
10. BASIC ignores the REM comment on line 10 and continues program execution at line 20.

10 REM ** Square root program
20 INPUT 'Enter a number';A
 PRINT 'SQR of ';A;'is ';SQR(A)
 INPUT 'Type "Y" to continue, press RETURN to quit';ANS$
 GOTO 10 IF ANS$ = "Y"
40 END

38

Chapter 2. Compiler Directives
Compiler directives are instructions that cause VSI BASIC to perform certain operations as it translates
the source program. This chapter describes all of the compiler directives supported by VSI BASIC. The
directives are listed and discussed alphabetically.

%ABORT
%ABORT — The %ABORT directive terminates program compilation and displays a fatal error
message that you can supply.

Format
%ABORT [str-lit]

Syntax Rules
None

Remarks
1. Only a line number or a comment field can appear on the same physical line as the %ABORT

directive.

2. VSI BASIC stops the compilation and terminates the listing file as soon as it encounters a %ABORT
directive. An optional str-lit is displayed on the terminal screen and in the compilation listing, if a
listing has been requested.

Example
%IF %VARIANT = 2 %THEN
 %ABORT "Cannot compile with variant 2"
%END %IF

%CROSS
%CROSS — The %CROSS directive causes VSI BASIC to begin or resume accumulating cross-
reference information for the listing file.

Format
%CROSS

Syntax Rules
None

39

Chapter 2. Compiler Directives

Remarks
1. Only a line number or a comment field can appear on the same physical line as the %CROSS

directive.

2. The %CROSS directive has no effect unless you request both a listing file and a cross-reference. For
more information about listing file format, see the VSI BASIC User Manual.

3. When a cross-reference is requested, the VSI BASIC compiler starts or resumes accumulating cross-
reference information immediately after encountering the %CROSS directive.

Example
%CROSS

%DECLARED
%DECLARED — The %DECLARED directive is a built-in lexical function that allows you to
determine whether a lexical variable has been defined with the %LET directive. If the lexical variable
named in the %DECLARED function is defined in a previous %LET directive, the %DECLARED
function returns the value -1. If the lexical variable is not defined in a previous %LET directive, the
%DECLARED function returns the value 0.

Format
%DECLARED (lex-var)

Syntax Rules
1. The %DECLARED function can appear only in a lexical expression.

2. Lex-var is the name of a lexical variable. Lexical variables are always LONG integers.

3. Lex-var must be enclosed in parentheses.

Remarks
None

Example
! +
! Use the following code in %INCLUDE files
! which reference constants that may be already ! -
%IF %DECLARED (%TRUE_FALSE_DEFINED) = 0
%THEN
 DECLARE LONG CONSTANT True = -1, False = 0
 %LET %TRUE_FALSE_%END %IF

40

Chapter 2. Compiler Directives

%DEFINE
%DEFINE — The %DEFINE directive lets you define a user-defined identifier as another identifier or
keyword.

Format
%DEFINE macro-id replacement-token

Syntax Rules
1. Macro-id is a user identifier that follows the rules for BASIC identifiers. It must not be a keyword or

a compiler directive.

2. Replacement-token may be an identifier, a keyword, a compiler directive, a literal constant, or an
operator.

3. The "&" line continuation character may be used after the macro-id to continue the %DEFINE
directive on the next line.

4. The "\" statement separator cannot be used with the %DEFINE directive.

5. "!" comments and line numbers used with the %DEFINE directive behave in the same manner as
they do with other compiler directives.

Remarks
1. The replacement-token is substituted for every subsequent occurrence of the macro identifier in the

program text.

2. Macro-identifiers in REM or "!" comments, string literals, or DATA statements are not replaced.

3. A macro-id cannot be used as a line number.

4. A macro definition is in effect from the %DEFINE directive that defines it until either a
corresponding %UNDEFINE directive or the end of the source module is encountered. This applies
to any included code that occurs after the definition.

5. A previously defined macro identifier may be redefined by using the %DEFINE directive.

6. A previously defined macro may be canceled by using the %UNDEFINE directive.

7. Macros may not be nested. For example, if the replacement-token is an identifier that is defined by
itself or some other %DEFINE directive, it is not replaced.

8. Macro-identifiers are not known to the Debugger.

9. The %DEFINE directive can be used within conditionally compiled code.

Example
 %DEFINE widget LONG
 DECLARE widget X
 X = 3.75

41

Chapter 2. Compiler Directives

 PRINT "X squared :"; X*X

Output

 X squared : 9

%IDENT
%IDENT — The %IDENT directive lets you identify the version of a program module. The
identification text is placed in the object module and printed in the listing header.

Format
%INDENT str-lit

Syntax Rules
Str-lit is the identification text. str-lit can consist of up to 31 ASCII characters. If it has more than 31
characters, VSI BASIC truncates the extra characters and signals a warning message.

Remarks
1. Only a line number or a comment field can appear on the same physical line as the %IDENT

directive.

2. The VSI BASIC compiler inserts the identification text in the first 31 character positions of the
second line on each listing page. VSI BASIC also includes the identification text in the object
module, if the compilation produces one, and in the map file created by the OpenVMS Linker.

3. The %IDENT directive should appear at the beginning of your program if you want the
identification text to appear on the first page of your listing. If the %IDENT directive appears after
the first program statement, the text will appear on the next page of the listing file.

4. You can use the %IDENT directive only once in a module. If you specify more than one %IDENT
directive in a module, VSI BASIC signals a warning and uses the identification text specified in the
first directive.

5. No default identification text is provided.

Example
%IDENT "Version 10"
 .
 .
 .

42

Chapter 2. Compiler Directives

Output

TIME$MAIN
Version 10

 1 10 %IDENT "Version 10"
 .
 .
 .

%IF-%THEN-%ELSE-%END %IF
%IF-%THEN-%ELSE-%END %IF — The %IF-%THEN-%ELSE-%END %IF directive lets you
conditionally include source code or execute another compiler directive.

Format
%IF lex-exp %THEN code [%ELSE code] %END %IF

Syntax Rules
1. Lex-exp is always a LONG integer.

2. Lex-exp can be any of the following:

• A lexical constant named in a %LET directive.

• An integer literal, with or without the percent sign suffix.

• A lexical built-in function.

• Any combination of the above, separated by valid lexical operators. Lexical operators include
logical operators, relational operators, and the arithmetic operators for addition (+), subtraction
(-), multiplication (*), and division (/).

3. Code is VSI BASIC program code. It can be any VSI BASIC statement or another compiler directive,
including another %IF directive. You can nest %IF directives to eight levels.

Remarks
1. The %IF directive can appear anywhere in a program where a space is allowed, except within a

quoted string. This means that you can use the %IF directive to make a whole statement, part of a
statement, or a block of statements conditional.

2. %THEN, %ELSE, and %END %IF do not have to be on the same physical line as %IF.

3. If lex-exp is true, VSI BASIC processes the %THEN clause. If lex-exp is false, VSI BASIC processes
the %ELSE clause. If there is no %ELSE clause, VSI BASIC processes the %END %IF clause. The
VSI BASIC compiler includes statements in the %THEN or %ELSE clause in the source program
and executes directives in order of occurrence.

4. You must include the %END %IF clause. Otherwise, VSI BASIC assumes the remainder of the
program is part of the last %THEN or %ELSE clause and signals the error “MISENDIF, missing
END IF directive” when compilation ends.

43

Chapter 2. Compiler Directives

Example
%IF (%VARIANT = 2)
%THEN DECLARE SINGLE hourly_pay(100)
%ELSE %IF (%VARIANT = 1)
 %THEN DECLARE DOUBLE salary_pay(100)
 %ELSE %ABORT "Can't compile with specified variant"
 %END %IF
%END %IF
 .
 .
 .
PRINT %IF (%VARIANT = 2)
 %THEN 'Hourly Wage Chart'
 GOTO Hourly_routine
 %ELSE 'Salaried Wage Chart'
 GOTO Salary_routine
 %END %IF

%INCLUDE
%INCLUDE — The %INCLUDE directive lets you include VSI BASIC source text from another
program file in the current program compilation. VSI BASIC also lets you access Oracle CDD/
Repository record definitions from the Common Data Dictionary (CDD) and access commonly used
routines from text libraries.

Format
Including a File
%INCLUDE str-lit

Including a CDD Definition
%INCLUDE %FROM %CDD str-lit

Including a File from a Text Library
%INCLUDE str-lit %FROM %LIBRARY [str-lit]

Syntax Rules
1. Including a File

Str-lit must be a valid file specification for the file to be included.

2. Including a CDD Definition

Str-lit specifies a CDD path name enclosed in quotation marks. The path name can be in either DMU
or CDO format. This directive lets you extract a RECORD definition from the dictionary.

3. Including a File from a Text Library

44

Chapter 2. Compiler Directives

• Str-lit specifies a particular module to be included.

• The optional str-lit identifies a specific text library in which the included module resides.
If the library name is not specified, BASIC uses the logical name BASIC$LIBRARY with
a default file specification of BASIC.TLB. If BASIC$LIBRARY is undefined, BASIC uses
SYS$LIBRARY:BASIC$STARLET.TLB.

Remarks
1. Any statement that appears after an END statement inside an included file causes VSI BASIC to

signal an error.

2. Only a line number or a comment field can appear on the same physical line as the %INCLUDE
directive.

3. The VSI BASIC compiler includes the specified source file in the program compilation at the
point of the %INCLUDE directive and prints the included code in the program listing file if the
compilation produces one.

4. The included file cannot contain line numbers. If it does, VSI BASIC signals the error “Line number
may not appear in %INCLUDE file.”

5. All statements in the accessed file are associated with the line number of the program line that
contains the %INCLUDE directive. This means that a %INCLUDE directive cannot appear before
the first line number in a source program if you are using line numbers.

6. A file accessed by %INCLUDE can itself contain a %INCLUDE directive.

7. All %IF directives in an included file must have a matching %END %IF directive in the file.

8. You can control whether or not included text appears in the compilation listing with
the /[NO]SHOW=INCLUDE qualifier. When you specify /SHOW=INCLUDE, the compilation
listing file identifies any text obtained from an included file by placing a mnemonic in the first
character position of the line on which the text appears. The “n” specifies that the text was either
accessed from a source file or from a text library. The “I” tells you that the text was accessed with
the %INCLUDE directive and n is a number that tells you the nesting level of the included text. See
the VSI BASIC User Manual for more information about listing mnemonics.

9. Including a File

If you do not specify a complete file specification, VSI BASIC uses the default device and directory
and the file type .BAS.

10. Including a CDD Definition

• There are two types of CDD path names: full and relative. A full path name begins with CDD
$TOP and specifies the complete path to the record definition. A relative path name begins with
any string other than CDD$TOP and is appended to the current CDD$DEFAULT.

• In Oracle CDD/Repository, the path names described previously are known as DMU path names,
as distinct from CDO path names. You can specify either a full DMU path name, a full CDO
path name, or a relative path name. A full path name consists of a dictionary origin followed by
a dictionary path. A full DMU path name has CDD$TOP as its origin. A full CDO path name

45

Chapter 2. Compiler Directives

has an anchor as its origin. See Oracle CDD/Repository documentation for detailed information
about path names.

• If the record definition being accessed is in a CDO-format dictionary, you can create a
dependency relationship in the dictionary between a dictionary representation of your program
and the record definitions that you include in the program. The dictionary representation of the
program is called a compiled module entity.

• If you specify the /DEPENDENCY_DATA qualifier to the compiler and your CDD$DEFAULT
points to a CDO-format dictionary, a compiled module entity is created for each compilation unit
at compile time in CDD$DEFAULT. No compiled module entity is created if both conditions are
not true.

• If a compiled module entity exists for the program, an %INCLUDE %FROM %CDD directive
specifying a record description in a CDO-format dictionary creates a relationship between the
compiled module entity and the CDO-format record definition.

• If the record description specified in the path name exists, it is copied to the program, whether a
compiled module entity can be created or not.

• When you use the %INCLUDE directive to extract a record definition from the CDD, VSI
BASIC translates the CDD definition to the syntax of the VSI BASIC RECORD statement.

• You can use the /SHOW=CDD_DEFINITIONS qualifier to specify that translated CDD
definitions (in RECORD statement syntax) are included in the compilation listing file. VSI
BASIC places a “C” in column 1 when the translated RECORD statement appears in the listing
file.

• When you specify /SHOW=NOCDD_DEFINITIONS, VSI BASIC does not include the CDD
definition in the listing file. However, BASIC still includes the names, data types, and offsets of
the CDD record components in the program listing's allocation map.

• See the VSI BASIC User Manual and the Oracle CDD/Repository documentation for more
information about dictionary data definitions.

11. Including a File from a Text Library

• The VSI BASIC compiler searches through the specified text library for the module named and
compiles the module upon encountering the %INCLUDE directive.

• VSI BASIC allows only 16 text libraries to be opened at one time; therefore, you cannot have
%INCLUDE directives from a text library nested more than 16 levels deep. If you exceed this
maximum, VSI BASIC signals an error message.

• If you do not specify a directory name and file type, VSI BASIC uses the default device and
directory and the file type .TLB.

• VSI BASIC provides the text library BASIC$STARLET. BASIC$STARLET contains condition
codes and other symbols defined in the system object and shareable image libraries. Using the
definitions from BASIC$STARLET allows you to reference condition codes and other system-
defined symbols as local, rather than global symbols. To create your own text libraries using the
OpenVMS Librarian utility, see the VSI OpenVMS Command Definition, Librarian, and Message
Utilities Manual.

46

Chapter 2. Compiler Directives

Examples
Example 1
!Including a File
%INCLUDE "YESNO"

Example 2
!Including a CDD Definition
%INCLUDE %FROM %CDD "CDD$TOP.EMPLOYEE"

Example 3
!Including a CDD Definition with a CDO-format path name
%INCLUDE %FROM %CDD "MYNODE::MY$DISK:[MY_DIR]PERSONNEL.EMPLOYEE"
!The anchor is MYNODE::MY$DISK:[MY_DIR]

Example 4
!Including a File from a Text Library
%INCLUDE "EOF_CHECK" %FROM %LIBRARY "SYS$LIBRARY:BASIC_LIB.TLB"

%LET
%LET — The %LET directive declares and provides values for lexical variables. You can use lexical
variables only in conditional expressions in the %IF-%THEN-%ELSE directive and in lexical expressions
in subsequent %LET directives.

Format
%LET %lex-var = lex-exp

Syntax Rules
1. Lex-var is the name of a lexical variable. Lexical variables are always LONG integers.

2. Lex-var must be preceded by a percent sign (%) and cannot end with a dollar sign ($) or percent sign.

3. Lex-exp can be any of the following:

• A lexical variable named in a previous %LET directive.

• An integer literal, with or without the percent sign suffix.

• A lexical built-in function.

• Any combination of the above, separated by valid lexical operators. Lexical operators can be
logical operators, relational operators, and the arithmetic operators for addition (+), subtraction
(-), multiplication (*), and division (/).

Remarks
1. Only a line number or a comment field can appear on the same physical line as the %LET directive.

47

Chapter 2. Compiler Directives

2. You cannot change the value of lex-var within a program unit once it has been named in a %LET
directive. For more information about coding conventions, see the VSI BASIC User Manual.

Example
%LET %DEBUG_ON = 1%

%LIST
%LIST — The %LIST directive causes the VSI BASIC compiler to start or resume accumulating
compilation information for the program listing file.

Format
%LIST

Syntax Rules
None

Remarks
1. Only a line number or a comment field can appear on the same physical line as the %LIST directive.

2. The %LIST directive has no effect unless you requested a listing file. For more information about
listing file format, see the VSI BASIC User Manual.

3. As soon as it encounters the %LIST directive, the VSI BASIC compiler starts or resumes
accumulating information for the program listing file. Thus, the directive itself appears as the next
line in the listing file.

Example
%LIST

%NOCROSS
%NOCROSS — The %NOCROSS directive causes the VSI BASIC compiler to stop accumulating cross-
reference information for the program listing file.

Format
%NOCROSS

Syntax Rules
None

48

Chapter 2. Compiler Directives

Remarks
1. Only a line number or a comment field can appear on the same physical line as the %NOCROSS

directive.

2. The VSI BASIC compiler stops accumulating cross-reference information for the program listing file
immediately after encountering the %NOCROSS directive.

3. The %NOCROSS directive has no effect unless you request a listing file and cross-reference
information.

4. It is recommended that you do not embed a %NOCROSS directive within a statement. Embedding
a %NOCROSS directive within a statement makes the accumulation of cross-reference information
unpredictable. For more information about listing file format, see the VSI BASIC User Manual.

Example
%NOCROSS

%NOLIST
%NOLIST — The %NOLIST directive causes the VSI BASIC compiler to stop accumulating
compilation information for the program listing file.

Format
%NOLIST

Syntax Rules
None

Remarks
1. Only a line number or a comment field can appear on the same physical line as the %NOLIST

directive.

2. As soon as it encounters the %NOLIST directive, the VSI BASIC compiler stops accumulating
information for the program listing file. Thus, the directive itself does not appear in the listing file.

3. The %NOLIST directive has no effect unless you requested a listing file.

4. In VSI BASIC, you can override all %NOLIST directives in a program with
the /SHOW=OVERRIDE qualifier. For more information about listing file format, see the VSI
BASIC User Manual.

Example
%NOLIST

49

Chapter 2. Compiler Directives

%PAGE
%PAGE — The %PAGE directive causes VSI BASIC to begin a new page in the program listing file.

Format
%PAGE

Syntax Rules
None

Remarks
1. Only a line number or a comment field can appear on the same physical line as the %PAGE

directive.

2. The %PAGE directive has no effect unless you request a listing file.

Example
%PAGE

%PRINT
%PRINT — The %PRINT directive lets you insert a message into your source code that the VSI BASIC
compiler prints during compilation.

Format
%PRINT str-lit

Syntax Rules
None

Remarks
1. Only a line number or a comment field can appear on the same physical line as the %PRINT

directive.

2. VSI BASIC will print the message specified as soon as it encounters a %PRINT directive. Str-lit is
displayed on the terminal screen and in the compilation listing.

Example
%IF %DEBUG = 1% %THEN
%PRINT "This is a debug compilation"

Output

50

Chapter 2. Compiler Directives

%BASIC-S-USERPRINT, This is a debug compilation

%REPORT
%REPORT — The %REPORT directive lets you record a dependency relationship between the
compiled module entity for your program and the data definitions in Oracle CDD/Repository
dictionaries. The data definitions are not copied into the program.

Format
%REPORT %DEPENDENCY str-lit [relationship-type]

Syntax Rules
1. Str-lit specifies a path name in a CDO-format dictionary. It can be either a DMU-format path name

or a CDO-format path name, enclosed in quotation marks. This specifies a dictionary entity, such as
a form definition or an Rdb/VMS database, that the program references.

2. Relationship-type specifies a valid Oracle CDD/Repository protocol; it must be enclosed in quotation
marks if specified. The default relationship-type is CDD$COMPILED_DEPENDS_ON.

Remarks
1. For this directive to be meaningful, you must specify the /DEPENDENCY_DATA qualifier at

compile time. If /DEPENDENCY is not specified, the compiler will simply check the syntax and
otherwise ignore the %REPORT directive.

2. Your current CDD$DEFAULT and str-lit must refer to CDO-format dictionaries (not necessarily the
same one).

3. If you specify the /DEPENDENCY_DATA qualifier to the compiler, and if CDD$DEFAULT points
to a CDO-format dictionary, a compiled module entity is created in CDD$DEFAULT for each
compilation unit. No compiled module entity is created if both conditions are not true.

4. The %REPORT %DEPENDENCY directive creates a dependency relationship in the dictionary
between the compiled module entity for the program and the CDO-format dictionary entity to which
it refers.

Example
!Establish access to the form PINK_SLIP in a dictionary
!on a specified node, and report the program's dependency
!relationship with the form.
%REPORT %DEPENDENCY "MYNODE::MY$DISK:[MYDIR]PERSONNEL.FORMS.PINK_SLIP"
!Relationship is CDD$COMPILED_DEPENDS_ON, the default.

%SBTTL
%SBTTL — The %SBTTL directive lets you specify a subtitle for the program listing file.

51

Chapter 2. Compiler Directives

Format
%SBTTL str-lit

Syntax Rules
Str-lit can contain up to 31 characters.

Remarks
1. VSI BASIC truncates extra characters from str-lit and does not signal a warning or error. Str-lit is

truncated at 31 characters.

2. Only a line number or a comment field can appear on the same physical line as the %SBTTL
directive.

3. The specified subtitle appears underneath the title on the second line of all pages of source code in
the listing file until the VSI BASIC compiler encounters another %SBTTL or %TITLE directive. VSI
BASIC clears the subtitle field before the allocation map section of the listing is generated. This way,
you only get a subtitle on the listing pages that contain source code.

4. Because VSI BASIC associates a subtitle with a title, a new %TITLE directive sets the current
subtitle to the null string. In this case, no subtitle appears in the listing until VSI BASIC encounters
another %SBTTL directive.

5. If you want a subtitle to appear on the first page of your listing, the %SBTTL directive should appear
at the beginning of your program, immediately after the %TITLE directive. Otherwise, the subtitle
will start to appear only on the second page of the listing.

6. If you want the subtitle to appear on the page of the listing that contains the %SBTTL directive,
the %SBTTL directive should immediately follow a %PAGE directive or a %TITLE directive that
follows a %PAGE directive.

7. The %SBTTL directive has no effect unless you request a listing file.

Example
100 %TITLE "Learning to Program in VSI BASIC"
 %SBTTL "Using FOR-NEXT Loops"
 REM THIS PROGRAM IS A SIMPLE TEST
200 DATA 1, 2, 3, 4
 .
 .
 .
 NEXT I%
300 END

52

Chapter 2. Compiler Directives

Output

TEST$MAIN Learning to Program in VSI BASIC
 Using FOR-NEXT Loops

 1 100 %TITLE "Learning to Program in VSI BASIC"
 2 %SBTTL "Using FOR-NEXT Loops"
 3 REM THIS PROGRAM IS A SIMPLE TEST
 4 200 DATA 1, 2, 3, 4
 .
 .
 .
 10 NEXT I%
 11 300 END

%TITLE
%TITLE — The %TITLE directive lets you specify a title for the program listing file.

Format
%TITLE str-lit

Syntax Rules
Str-lit can contain up to 31 characters.

Remarks
1. VSI BASIC truncates extra characters from str-lit and does not signal a warning or error. Str-lit is

truncated at 31 characters.

2. Only a line number or a comment field can appear on the same physical line as the %TITLE
directive.

3. The specified title appears on the first line of every page of the listing file until VSI BASIC
encounters another %TITLE directive in the program.

4. The %TITLE directive should appear on the first line of your program, before the first statement, if
you want the specified title to appear on the first page of your listing.

5. If you want the specified title to appear on the page that contains the %TITLE directive, the
%TITLE directive should immediately follow a %PAGE directive.

6. Because VSI BASIC associates a subtitle with a title, a new %TITLE directive sets the current
subtitle to the null string.

7. The %TITLE directive has no effect unless you request a listing file.

Example
100 %TITLE "Learning to Program in VSI BASIC"
 REM THIS PROGRAM IS A SIMPLE TEST

53

Chapter 2. Compiler Directives

200 DATA 1, 2, 3, 4
 .
 .
 .
 NEXT I%
300 END

Output

TEST$MAIN Learning to Program in VSI BASIC

 1 100 %TITLE "Learning to Program in VSI BASIC"
 2 %SBTTL "Using FOR-NEXT Loops"
 3 REM THIS PROGRAM IS A SIMPLE TEST
 4 200 DATA 1, 2, 3, 4
 .
 .
 .

 10 NEXT I%
 11 300 END

%UNDEFINE
%UNDEFINE — The %UNDEFINE directive causes VSI BASIC to undefine an identifier that was
previously defined with the %DEFINE directive.

Format
%UNDEFINE macro-id

Syntax Rules
Macro-id is a user identifier that follows the rules for a BASIC identifier.

Remarks
1. The %UNDEFINE directive cancels a previous definition of macro-id by a %DEFINE.

2. The %UNDEFINE directive may appear with included code and will cancel the definition of an
identifier that was previously defined.

Example
 G = 6%
 PRINT "G ="; G
 %DEFINE G "anything"
 PRINT "G = "; G
 %UNDEFINE G
 PRINT "G ="; G

54

Chapter 2. Compiler Directives

Output

 G = 6
 G = anything
 G = 6

%VARIANT
%VARIANT — The %VARIANT directive is a built-in lexical function that allows you to conditionally
control program compilation. %VARIANT returns an integer value when you reference it in a lexical
expression. You set the variant value with the /VARIANT qualifier when you compile the program or
with the SET VARIANT command. If the /VARIANT qualifier or the SET VARIANT command is not
used, the value of %VARIANT is 0.

Format
%VARIANT

Syntax Rules
None

Remarks
1. The %VARIANT function can appear only in a lexical expression.

2. The %VARIANT function returns the integer value specified either with the COMPILE /VARIANT
command, the SET /VARIANT command, or the BASIC DCL command. The returned integer
always has a data type of LONG.

Example
%LET %VMS = 0
%LET %RSX = 1
%LET %RSTS = 2

%IF %VARIANT = %VMS
 %THEN
 .
 .
 .

%ELSE %IF %VARIANT = %RSX OR %VARIANT = %RSTS
 %THEN
 .
 .
 .

 %ELSE %ABORT "Illegal compilation variant"
 %END %IF

%END %IF

55

Chapter 2. Compiler Directives

56

Chapter 3. Statements and Functions
This chapter provides reference material on all of the VSI BASIC statements and functions.

The statements and functions are listed in alphabetical order and each description contains the following
format:

Definition A description of what the statement does.
Format The required syntax for the statement.
Syntax Rules Any rules governing the use of parameters, separators, or other syntax items.
Remarks Explanatory remarks concerning the effect of the statement on program execution

and any restrictions governing its use.
Example One or more examples of the statement in a BASIC program. Where appropriate,

sample output is also shown.

ABS
ABS — The ABS function returns a floating-point number that equals the absolute value of a specified
floating-point expression.

Format
real-var = ABS (real-exp)

Syntax Rules
None

Remarks
1. The argument of the ABS function must be a real expression. When the argument is a real

expression, VSI BASIC returns a value of the same floating-point size. When the argument is not
a real expression, VSI BASIC converts the argument to the default floating-point size and returns a
value of the default floating-point size.

2. The returned floating-point value is always greater than or equal to zero. The absolute value of 0 is
zero. The absolute value of a positive number equals that number. The absolute value of a negative
number equals that number multiplied by –1.

Example
G = 5.1273
A = ABS(-100 * G)
B = -39
PRINT ABS(B), A

Output

57

Chapter 3. Statements and Functions

 39 512.73

ABS%
ABS% — The ABS% function returns an integer that equals the absolute value of a specified integer
expression.

Format
int-var = ABS% (int-exp)

Syntax Rules
None

Remarks
1. If you specify a floating-point expression for int-exp, VSI BASIC truncates it to an integer.

2. The returned value is always greater than or equal to zero. The absolute value of 0 is zero. The
absolute value of a positive number equals that number. The absolute value of a negative number
equals that number multiplied by –1.

Example
G% = 5.1273
A = ABS%(-100% * G%)
B = -39
PRINT ABS%(B), A

Output

 39 500

ASCII
ASCII — The ASCII function returns the ASCII value in decimal of a string's first character.

Format
int-var = {ASC | ASCII} (str-exp)

Syntax Rules
None

Remarks
1. The ASCII value of a null string is zero.

58

Chapter 3. Statements and Functions

2. The ASCII function returns an integer value of the default size from 0 to 255.

Example
DECLARE STRING time_out
time_out = "Friday"
PRINT ASCII(time_out)

Output

 70

ATN
ATN — The ATN function returns the arctangent (that is, angular value) of a specified tangent in radians
or degrees.

Format
real-var = ATN (real-exp)

Syntax Rules
None

Remarks
1. The returned angle is expressed in radians or degrees, depending on which angle clause you choose

with the OPTION statement.

2. ATN returns a value from –PI/2 to PI/2 when you request the result in radians via the OPTION
statement. It returns a value from –90 to 90 when you request the result in degrees.

3. The argument of the ATN function must be a real expression. When the argument is a real
expression, VSI BASIC returns a value of the same floating-point size. When the argument is not
a real expression, VSI BASIC converts the argument to the default floating-point size and returns a
value of the default floating-point size.

Example
OPTION ANGLE = RADIANS
DECLARE SINGLE angle_rad, angle_deg, T
INPUT "Tangent value";T
angle_rad = ATN(T)
PRINT "The smallest angle with that tangent is" ;angle_rad; "radians"
angle_deg = angle_rad/(PI/180)
PRINT "and"; angle_deg; "degrees"

Output

Tangent value? 2
The smallest angle with that tangent is 1.10715 radians

59

Chapter 3. Statements and Functions

and 63.435 degrees

BUFSIZ
BUFSIZ — The BUFSIZ function returns the record buffer size, in bytes, of a specified channel.

Format
int-var = BUFSIZ (chnl-exp)

Syntax Rules
1. Chnl-exp is a numeric expression that specifies a channel number.

2. The value assigned to int-var is a LONG integer.

Remarks
• If the specified channel is closed, BUFSIZ returns a value of zero.

• BUFSIZ of channel #0 always returns the value 132.

Example
DECLARE LONG buffer_size
buffer_size = BUFSIZ(0)
PRINT "Buffer size equals";buffer_size

Output

Buffer size equals 132

CALL
CALL — The CALL statement transfers control to a subprogram, external function, or other callable
routine. You can pass arguments to the routine and can optionally specify passing mechanisms. When
the called routine finishes executing, control returns to the calling program.

Format
CALL routine [pass-mech] [(actual-param ,…)]

routine: {sub-name | any-callable-routine}

pass-mech: {BY VALUE | BY REF | BY DESC}

actual-param: {exp | array ([,]...)} [pass-mech]

Syntax Rules

60

Chapter 3. Statements and Functions

1. Routine is the name of a SUB subprogram or any other callable procedure, such as a system service
or an RTL routine you want to call. It cannot be a variable name. See the VSI BASIC User Manual
for more information about using system services, RTL routines, and other procedures.

2. You should use parameter-passing mechanisms only when calling non BASIC routines or when a
subprogram expects to receive a string or entire array by reference.

For more information about parameter-passing mechanisms, see the VSI BASIC User Manual.

3. When pass-mech appears before the parameter list, it applies to all arguments passed to the called
routine. You can override this passing mechanism by specifying a pass-mech for individual arguments
in the actual-param list.

4. Actual-param lists the arguments to be passed to the called routine.

5. You can pass expressions or entire arrays. Optional commas in parentheses after the array name
specify the dimensions of the array. The number of commas is equal to the number of dimensions –
1. Thus, no comma specifies a one-dimensional array, one comma specifies a two-dimensional array,
two commas specify a three-dimensional array, and so on.

6. You cannot pass entire virtual arrays.

7. The name of the routine can be from 1 to 31 characters and must conform to the following rules:

• The first character of an unquoted name must be an alphabetic character (A to Z). The remaining
characters, if present, can be any combination of letters, digits (0 to 9), dollar signs ($), periods
(.), or underscores (_).

• A quoted name can consist of any combination of printable ASCII characters.

8. VSI BASIC allows you to pass up to 255 parameters.

Remarks
1. You can specify a null argument as an actual-param for non BASIC routines by omitting the

argument and the pass-mech, but not the commas or parentheses. This forces VSI BASIC to pass a
null argument and allows you to access system routines from VSI BASIC.

2. Arguments in the actual-param list must agree in data type and number with the formal parameters
specified in the subprogram.

3. An argument is modifiable when changes to it are evident in the calling program. Changing a
modifiable parameter in a subprogram means the parameter is changed for the calling program as
well. Variables and entire arrays passed by descriptor or by reference are modifiable.

4. An argument is nonmodifiable when changes to it are not evident in the calling program. Changing
a nonmodifiable argument in a subprogram does not affect the value of that argument in the
calling program. Arguments passed by value, constants, and expressions are nonmodifiable. Passing
an argument as an expression (by placing it in parentheses) changes it from a modifiable to a
nonmodifiable argument. Virtual array elements passed as parameters are nonmodifiable.

5. VSI BASIC will automatically convert numeric actual parameters to match the declared data type.
If the actual parameter is a variable, VSI BASIC signals the informational message “Mode for
parameter <n> of routine <name> changed to match declaration” and passes the argument by local
copy. This prevents the called routine from modifying the contents of the variable.

61

Chapter 3. Statements and Functions

6. For expressions and virtual array elements passed by reference, VSI BASIC makes a local copy of
the value, and passes the address of this local copy. For dynamic string arrays, VSI BASIC passes a
descriptor of the array of string descriptors. The compiler passes the address of the argument's actual
value for all other arguments passed by reference.

7. You can pass BYTE, WORD, LONG, QUAD, DOUBLE, GFLOAT, SINGLE, SFLOAT, and
TFLOAT values by value.

8. If you attempt to call an external function, VSI BASIC treats the function as if it were invoked
normally and validates all parameters. Note that you cannot call a STRING, HFLOAT, or RFA
function. See the EXTERNAL statement for more information about how to invoke functions.

Example
EXTERNAL SUB LIB$PUT_OUTPUT (string)
DECLARE STRING msg_str
msg_str = "Successful call to LIB$PUT_OUTPUT!"
CALL LIB$PUT_OUTPUT (msg_str)

Output

Successful call to LIB$PUT_OUTPUT!

CAUSE ERROR
CAUSE ERROR — The CAUSE ERROR statement allows you to artificially generate an VSI BASIC
run-time error and transfer program control to an VSI BASIC error handler.

Format
CAUSE ERROR err-num

Syntax Rules
Err-num should be a valid VSI BASIC run-time error number.

Remarks
All error numbers are listed in the VSI BASIC User Manual. Any error outside the valid range of BASIC
Run-Time Library errors results in the following error message: “NOTBASIC, Not a BASIC error”
(ERR=194).

Example
WHEN ERROR IN
 .
 .
 .
CAUSE ERROR 11%
 .
 .
 .

62

Chapter 3. Statements and Functions

USE
 SELECT ERR
 CASE = 11
 PRINT "End of file"
 CONTINUE
 CASE ELSE
 EXIT HANDLER
 END SELECT
END WHEN

CCPOS
CCPOS — The CCPOS function returns the current character or cursor position of the output record on
a specified channel.

Format
int-var = CCPOS (chnl-exp)

Syntax Rules
Chnl-exp must specify an open file or terminal.

Remarks
1. If chnl-exp is zero, CCPOS returns the current character position of the controlling terminal.

2. The int-var returned by the CCPOS function is of the default integer size.

3. The CCPOS function counts only characters. If you use cursor addressing sequences such as escape
sequences, the value returned will not be the cursor position.

4. The first character position on a line is zero.

Example
DECLARE LONG curs_pos
PRINT "Hello";
curs_pos = CCPOS (0)
PRINT curs_pos

Output

Hello 5

CHAIN
CHAIN — The CHAIN statement transfers control from the current program to another executable
image. CHAIN closes all files, then requests that the new program begin execution. Control does not
return to the original program when the new image finishes executing. The CHAIN statement is not

63

Chapter 3. Statements and Functions

recommended for new program development. It is recommended that you use subprograms and external
functions for program segmentation.

Fomat
CHAIN str-exp

Syntax Rules
Str-exp represents the file specification of the program to which control is passed.

Remarks
1. Str-exp must refer to an executable image or VSI BASIC signals an error.

2. If you do not specify a file type, VSI BASIC searches for an .EXE file type.

3. You cannot chain to a program on another node.

4. Execution starts at the beginning of the specified program.

5. Before chaining takes place, all active output buffers are written, all open files are closed, and all
storage is released.

6. Because a CHAIN statement passes control from the executing image, the values of any program
variables are lost. This means that you can pass parameters to a chained program only by using files
or a system-specific feature such as LIB$GET_COMMON and LIB$PUT_COMMON.

Example
DECLARE STRING time_out
time_out = "Friday"
PRINT ASCII(time_out)
CHAIN "CCPOS"

Output

 70
The current cursor position is 0

In this example, the executing image ASCII.EXE passes control to the chained program, CCPOS.EXE.
The value that results from ASCII.EXE is 70. The second line of output reflects the value that results
from CCPOS.EXE.

CHANGE
CHANGE — The CHANGE statement either converts a string of characters to their ASCII integer
values or converts a list of numbers to a string of ASCII characters.

Format
String Variable to Array
CHANGE str-exp TO num-array-name

64

Chapter 3. Statements and Functions

Array to String Variable
CHANGE num-array-name TO str-var

Syntax Rules
1. Str-exp is a string expression.

2. Num-array-name should be a one-dimensional array. If you specify a two-dimensional array, VSI
BASIC converts only the first row of that array. VSI BASIC does not support conversion to or from
arrays of more than two dimensions.

3. Str-var is a string variable.

Remarks
1. VSI BASIC does not support RECORD elements as a destination string or as a source or destination

array for the CHANGE statement.

2. String Variable to Array

• This format converts each character in the string to its ASCII value.

• VSI BASIC assigns the value of the string's length to element zero (0) of the array.

• VSI BASIC assigns the ASCII value of the first character in the string to element one, (1) or
(0,1), of the array, the ASCII value of the second character to element two, (2) or (0,2), and so
on.

• If the string is longer than the bounds of the array, VSI BASIC does not translate the excess
characters, and signals the error “Subscript out of range” (ERR=55). The first element of array
still contains the length of the string.

3. Array to String Variable

• This format converts the elements of the array to a string of characters.

• The length of the string is determined by the value in element zero, (0) or (0,0), of the array.
If the value of element zero is greater than the array bounds, VSI BASIC signals the error
“Subscript out of range” (ERR=55).

• VSI BASIC changes element one, (1) or (0,1), of array to its ASCII character equivalent,
element two, (2) or (0,2), to its ASCII equivalent, and so on. The length of the returned string is
determined by the value in element zero of the array. For example, if the array is dimensioned as
(10), but the zero element (0) contains the value 5, VSI BASIC changes only elements (1), (2),
(3), (4), and (5) to string characters.

• VSI BASIC truncates floating-point values to integers before converting them to characters.

• Values in array elements are treated as modulo 256.

Example
DECLARE STRING ABCD, A
DIM INTEGER array_changes(6)

65

Chapter 3. Statements and Functions

ABCD = "ABCD"
CHANGE ABCD TO array_changes
FOR I% = 0 TO 4
PRINT array_changes(I%)
NEXT I%
CHANGE array_changes TO A
PRINT A

Output

 4
 65
 66
 67
 68
ABCD

CHR$
CHR$ — The CHR$ function returns a 1-character string that corresponds to the ASCII value you
specify.

Format
str-var = CHR$ (int-exp)

Syntax Rules
None

Remarks
1. CHR$ returns the character whose ASCII value equals int-exp. If int-exp is greater than 255, VSI

BASIC treats it as modulo 256. For example, CHR$(325) is the same as CHR$(69).

2. If you specify a floating-point expression for int-exp, VSI BASIC truncates it to an integer of the
default size.

Example
DECLARE INTEGER num_exp
INPUT "Enter the ASCII value you wish to be converted";num_exp
PRINT "The equivalent character is ";CHR$(num_exp)

Output

Enter the ASCII value you wish to be converted? 89
The equivalent character is Y

CLOSE
CLOSE — The CLOSE statement ends I/O processing to a device or file on the specified channel.

66

Chapter 3. Statements and Functions

Format
CLOSE [#]chnl-exp,...

Syntax Rules
Chnl-exp is a numeric expression that specifies a channel number associated with a file. It can be
preceded by an optional number sign (#).

Remarks
1. VSI BASIC writes the contents of any active output buffers to the file or device before it closes that

file or device.

2. Channel #0 (the controlling terminal) cannot be closed. An attempt to do so has no effect.

3. If you close a magnetic tape file that is open for output, VSI BASIC writes an end-of-file on the
magnetic tape.

4. If you try to close a channel that is not currently open, VSI BASIC does not signal an error and the
CLOSE statement has no effect.

Example
OPEN "COURSE_REC.DAT" FOR INPUT AS #2
INPUT #2, course_nam, course_num, course_desc, course_instr
 .
 .
 .
CLOSE #2

In this example, COURSE_REC.DAT is opened for input. After you have retrieved all of the required
information, the file is closed.

COMMON
COMMON — The COMMON statement defines a named, shared storage area called a COMMON
block or program section (PSECT). VSI BASIC program modules can access the values stored in the
COMMON block by specifying a COMMON block with the same name.

Format
{COM | COMMON} [(com-name)] {[data-type] com-item}, ...

com-item: {num-unsubs-var |
 num-array-name([int-const1 TO]int-const2,...) |
 str-unsubs-var [= int-const] |
 str-array-name([int-const1 TO] int-const2,...) [=int-const] |
 record-var |
 FILL[(rep-cnt)] |
 FILL%[(rep-cnt) |

67

Chapter 3. Statements and Functions

 FILL$[(rep-cnt)] [= int-const]}

Syntax Rules
1. A COMMON block can have the same name as a program variable.

2. A COMMON block and a map in the same program module cannot have the same name.

3. Com-name is optional. If you specify a com-name, it must be in parentheses. If you do not specify a
com-name, the default is $BLANK.

4. Com-name can be from 1 to 31 characters. The first character of the name must be an alphabetic
character (A to Z). The remaining characters, if present, can be any combination of letters, digits (0
to 9), dollar signs ($), periods (.), or underscores (_).

5. Data-type can be any VSI BASIC data type keyword or a data type defined by a RECORD
statement. Data type keywords, size, range, and precision are listed in Table 1.2.

6. When you specify a data type, all following com-items, including FILL items, are of that data type
until you specify a new data type.

7. If you do not specify any data type, com-items without a suffix character (% or $) take the current
default data type and size.

8. Variable names, array names, and FILL items following a data type other than STRING cannot end
with a dollar sign. Likewise, names and FILL items following a data type other than BYTE, WORD,
LONG, QUAD, or INTEGER cannot end with a percent sign.

9. Com-item declares the name and format of the data to be stored.

• Num-unsubs-var and num-array-name specify a numeric variable or a numeric array.

• Record-var specifies a record instance.

• Str-unsubs-var and str-array-name specify a fixed-length string variable or array. You can specify
the number of bytes to be reserved for the variable with the =int-const clause. The default string
length is 16.

• When you declare an array, VSI BASIC allows you to specify both lower and upper bounds. The
upper bounds is required; the lower bounds is optional.

• Int-const1 specifies the lower bounds of the array.

• Int-const2 specifies the upper bounds of the array and, when accompanied by int-const1,
must be preceded by the keyword TO.

• Int-const1 must be less than or equal to int-const2.

• If you do not specify int-const1, VSI BASIC uses zero as the default lower bounds.

• Int-const1 and int-const2 can be any combination of negative and/or positive values.

• The FILL, FILL%, and FILL$ keywords allow you to reserve parts of the record buffer within
or between data elements and to define the format of the storage. Rep-cnt specifies the number of

68

Chapter 3. Statements and Functions

FILL items to be reserved. The =int-const clause allows you to specify the number of bytes to be
reserved for string FILL items. Table 3.1 describes FILL item format and storage allocation.

• In the applicable formats of FILL, (rep-cnt) represents a repeat count, not an array subscript.
FILL (n) represents n elements, not n + 1.

Table 3.1. FILL Item Formats and Storage Allocations

FILL Format Storage Allocation

FILL Allocates storage for one element of the default data type unless
preceded by a data-type. The number of bytes allocated depends
on the default or the specified data type.

FILL(rep-cnt) Allocates storage for the number of the default data type
elements specified by rep-cnt unless preceded by a data type.
The number of bytes allocated for each element depends on the
default floating-point data size or the specified data type.

FILL% Allocates storage for one integer element. The number of bytes
allocated depends on the default integer size.

FILL%(rep-cnt) Allocates storage for the number of integer elements specified
by rep-cnt. The number of bytes allocated for each element
depends on the default integer size.

FILL$ Allocates 16 bytes of storage for a string element.
FILL$(rep-cnt) Allocates 16 bytes of storage for the number of string elements

specified by rep-cnt.
FILL$=int-const Allocates the number of bytes of storage specified by int-const

for a string element.
FILL$(rep-cnt)= int-const Allocates the number of bytes of storage specified by int-const

for the number of string elements specified by rep-cnt.

Remarks
1. Variables in a COMMON area are not initialized by VSI BASIC.

2. VSI BASIC does not execute COMMON statements. The COMMON statement allocates and defines
the data storage area at compilation time.

3. When you link your program, the size of the COMMON area is the size of the largest COMMON
area with that name. VSI BASIC concatenates COMMON statements with the same com-name
within a single program module into a single PSECT. The total space allocated is the sum of the
space allocated in the concatenated COMMON statements.

If you specify the same com-name in several program modules, the size of the PSECT will
be determined by the program module that has the greatest amount of space allocated in the
concatenated COMMON statements.

4. The COMMON statement must lexically precede any reference to variables declared in it.

5. A COMMON area can be accessed by more than one program module, as long as you define the
com-name in each module that references the COMMON area.

69

Chapter 3. Statements and Functions

6. A COMMON area and a MAP area with the same name specify the same storage area and are
not allowed in the same program module. However, a COMMON in one module can reference the
storage declared by a MAP or COMMON in another module.

7. Variable names in a COMMON statement in one program module need not match those in another
program module.

8. Variables and arrays declared in a COMMON statement cannot be declared elsewhere in the
program by any other declarative statements.

9. The data type specified for com-items or the default data type and size determines the amount of
storage reserved in a COMMON block. See Table 1.2.

Example
COMMON (sales_rec) DECIMAL net_sales (1965 TO 1975), &
 STRING row = 2, &
 report_name = 24, &
 DOUBLE FILL, &
 LONG part_bins

COMP%
COMP% — The COMP% function compares two numeric strings and returns –1, 0, or 1, depending on
the results of the comparison.

Format
int-var = COMP% (str-exp1, str-exp2)

Syntax Rules
Str-exp1 and str-exp2 are numeric strings with an optional minus sign (–), ASCII digits, and an optional
decimal point (.).

Remarks
1. If str-exp1 is greater than str-exp2, COMP% returns 1.

2. If the string expressions are equal, COMP% returns 0.

3. If str-exp1 is less than str-exp2, COMP% returns –1.

4. The value returned by the COMP% function is an integer of the default size.

5. The COMP% function does not support E-format notation.

Example
DECLARE STRING num_string, old_num_string, &
 INTEGER result

70

Chapter 3. Statements and Functions

num_string = "-24.5"
old_num_string = "33"
result = COMP%(num_string, old_num_string)
PRINT "The value is ";result

Output

The value is -1

CONTINUE
CONTINUE — The CONTINUE statement causes VSI BASIC to clear an error condition and resume
execution at the statement following the statement that caused the error or at the specified target.

Format
CONTINUE [target]

Syntax Rules
If you specify a target, it must be a label or line number that appears either inside the associated
protected region, inside a WHEN block protected region that surrounds the current protected region, or
in an unprotected region of code.

Remarks
1. CONTINUE with no target causes VSI BASIC to transfer control to the statement immediately

following the statement that caused the error. The next remark is an exception to this rule.

2. If an error occurs on a FOR, NEXT, WHILE, UNTIL, SELECT or CASE statement, control is
transferred to the statement immediately following the corresponding NEXT or END SELECT
statement, as in the following code:

10 WHEN ERROR IN
 A=10
 B=1
20 FOR I=A TO B STEP 2
30 GET #1
40 C=1
 NEXT I
50 C=0
 USE
 .
 .
 .
 CONTINUE
 END WHEN

If an error occurs on line 20, the CONTINUE statement transfers control to line 50. If an error
occurs on line 30, program control resumes at line 40.

3. The CONTINUE statement must be lexically inside of a handler.

4. If you specify a CONTINUE statement within a detached handler, you cannot specify a target.

71

Chapter 3. Statements and Functions

Example
WHEN ERROR USE err_handler
 .
 .
 .
END WHEN
 .
 .
 .
HANDLER err_handler
 SELECT ERR
 CASE = 50
 PRINT "Insufficient data"
 CONTINUE
 CASE ELSE
 EXIT HANDLER
 END SELECT
END HANDLER

COS
COS — The COS function returns the cosine of an angle in radians or degrees.

Format
real-var = COS (real-exp)

Syntax Rules
None

Remarks
1. The returned value is from –1 to 1. The parameter value is expressed in either radians or degrees

depending on which angle clause you choose with the OPTION statement.

2. VSI BASIC expects the argument of the COS function to be a real expression. When the argument is
a real expression, VSI BASIC returns a value of the same floating-point size. When the argument is
not a real expression, VSI BASIC converts the argument to the default floating-point size and returns
a value of the default floating-point size.

Example
DECLARE SINGLE cos_value
cos_value = 26
PRINT COS(cos_value)

Output

 .646919

72

Chapter 3. Statements and Functions

CTRLC
CTRLC — The CTRLC function enables Ctrl/C trapping. When Ctrl/C trapping is enabled, a Ctrl/C
typed at the terminal causes control to be transferred to the error handler currently in effect.

Format
int-var = CTRLC

Syntax Rules
None

Remarks
1. When VSI BASIC encounters a Ctrl/C, control passes to the error handler currently in effect. If there

is no error handler in a program, the program aborts.

2. In a series of linked subprograms, setting Ctrl/C for one subprogram enables Ctrl/C trapping for all
subprograms.

3. When you trap a Ctrl/C with an error handler, your program may be in an inconsistent state;
therefore, you should handle the Ctrl/C error and exit the program as quickly as possible.

4. Ctrl/C trapping is asynchronous; that is, VSI BASIC suspends execution and signals “Programmable
^C trap” (ERR=28) as soon as it detects a Ctrl/C. Consequently, a statement can be interrupted while
it is executing. A statement so interrupted may be only partially executed and variables may be left in
an undefined state.

5. VSI BASIC can trap more than one Ctrl/C error in a program as long as the error does not occur
while the error handler is executing. If a second Ctrl/C is detected while the error handler is
processing the first Ctrl/C, the program aborts.

6. The CTRLC function always returns a value of zero.

7. The function RCTRLC disables Ctrl/C trapping. See the description of the RCTRLC function for
further details.

Example
WHEN ERROR USE repair_work
Y% = CTRLC
 .
 .
 .
END WHEN
HANDLER repair_work
IF (ERR=28) THEN PRINT "Interrupted by CTRLC!"
 .
 .
 .
END HANDLER

73

Chapter 3. Statements and Functions

CVT$$
CVT$$ — The CVT$$ function is a synonym for the EDIT$ function. See the EDIT$ function for more
information. It is recommended that you use the EDIT$ function rather than the CVT$$ function for
new program development.

Format
str-var = CVT$$ (str-exp, int-exp)

CVTxx
CVTxx — The CVT$% function maps the first two characters of a string into a 16-bit integer. The CVT
%$ function translates a 16-bit integer into a 2-character string. The CVT$F function maps a 4- or 8-
character string into a floating-point variable. The CVTF$ function translates a floating-point number
into a 4- or 8-byte character string. The number of characters translated depends on whether the floating-
point variable is single- or double-precision. CVT functions are supported only for compatibility with
BASIC-PLUS. It is recommended that you use the VSI BASIC dynamic mapping feature or multiple
MAP statements for new program development.

Format
int-var = CVT$% (str-var)

real-var = CVT$F (str-var)

str-var = CVT%$ (int-var)

str-var = CVTF$ (real-var)

Syntax Rules
CVT functions reverse the order of the bytes when moving them to or from a string. Therefore, you can
mix MAP and MOVE statements, but you cannot use FIELD and CVT functions on a file if you also
plan to use MAP or MOVE statements.

Remarks
1. CVT$%

• If the CVT$% str-var has fewer than two characters, VSI BASIC pads the string with nulls.

• If the default data type is LONG, only 2 bytes of data are extracted from str-var; the high-order
byte is sign-extended into a longword.

• The value returned by the CVT$% function is an integer of the default size.

2. CVT%$

• Only 2 bytes of data are inserted into str-var.

• If you specify a floating-point variable for int-var, VSI BASIC truncates it to an integer of the
default size. If the default size is BYTE and the value of int-var exceeds 127, VSI BASIC signals
an error.

74

Chapter 3. Statements and Functions

3. CVT$F

• CVT$F maps four characters when the program is compiled with /SINGLE and eight characters
when the program is compiled with /DOUBLE.

• If str-var has fewer than four or eight characters, VSI BASIC pads the string with nulls.

• The real-var returned by the CVT$F function is the default floating-point size. If the default size
is not SINGLE or DOUBLE, VSI BASIC signals the error “Floating CVT valid only for SINGLE
or DOUBLE.”

4. CVTF$

• The CVTF$ function maps single-precision numbers to a 4-character string and double-precision
numbers to an 8-character string.

• VSI BASIC expects the argument of the CVTF$ function to be a real expression. When the
argument is a real expression, VSI BASIC returns a value of the same floating-point size. When
the argument is not a real expression, VSI BASIC converts the argument to the default floating-
point size and returns a value of the default floating-point size. If the default floating-point size is
not SINGLE or DOUBLE, VSI BASIC signals the error “Floating CVT valid only for SINGLE
or DOUBLE.”

Examples
Example 1
DECLARE STRING test_string, another_string
DECLARE LONG first_number, next_number
test_string = "AT"
PRINT CVT$%(test_string)
another_string = "at"
PRINT CVT$%(another_string)
first_number = 16724
PRINT CVT%$(first_number)
next_number = 24948
PRINT CVT%$(next_number)
END

Output

 16724
 24948
AT
at

Example 2
DECLARE STRING test_string, another_string
DECLARE SINGLE first_num, second_num
test_string = "DESK"
first_num = CVT$F(test_string)
PRINT first_num
another_string = "desk"
second_num = CVT$F(another_string)
PRINT second_num

75

Chapter 3. Statements and Functions

PRINT CVTF$(first_num)
PRINT CVTF$(second_num)
END

$ BASIC/SINGLE CVTF
$ LINK CVTF
$ RUN CVTF

Output

 .218256E+12
 .466242E+31
DESK
desk

DATA
DATA — The DATA statement creates a data block for the READ statement.

Format
DATA [num-lit | str-lit | unq-str] ,...

Syntax Rules
1. Num-lit specifies a numeric literal.

2. Str-lit is a character string that starts and ends with double or single quotation marks. The quotation
marks must match.

3. Unq-str is a character sequence that does not start or end with double quotation marks and does not
contain a comma.

4. Commas separate data elements. If a comma is part of a data item, the entire item must be enclosed
in quotation marks.

Remarks

1. Because VSI BASIC treats comment fields in DATA statements as part of the DATA sequence, you
should not include comments.

2. A DATA statement must be the last or the only statement on a physical line.

3. DATA statements must end with a line terminator.

4. When a DATA statement is continued with an ampersand (&), VSI BASIC interprets all characters
between the keyword DATA and the ampersand as part of the data. Any code that appears on a
noncontinued line is considered a new statement.

5. You cannot use the percent sign suffix for integer constants that appear in DATA statements. An
attempt to do so causes VSI BASIC to signal the error, “Data format error” (ERR=50).

6. DATA statements are local to a program module.

76

Chapter 3. Statements and Functions

7. VSI BASIC does not execute DATA statements. Instead, control is passed to the next executable
statement.

8. A program can have more than one DATA statement. VSI BASIC assembles data from all DATA
statements in a single program unit into a lexically ordered single data block.

9. VSI BASIC ignores leading and trailing blanks and tabs unless they are in a string literal.

10. Commas are the only valid data delimiters. You must use a quoted string literal if a comma is to be
part of a string.

11. VSI BASIC ignores DATA statements without an accompanying READ statement.

12. VSI BASIC signals the error “Data format error” if the DATA item does not match the data type of
the variable specified in the READ statement or if a data element that is to be read into an integer
variable ends with a percent sign (%). If a string data element ends with a dollar sign ($), VSI BASIC
treats the dollar sign as part of the string.

Example
10 DECLARE INTEGER A,B,C
 READ A,B,C
 DATA 1,2,3
 PRINT A + B + C

Output

 6

DATE$
DATE$ — The DATE$ function returns a string containing a day, month, and year in the form dd-mmm-
yy.

Format
str-var = DATE$ (int-exp)

Syntax Rules
1. Int-exp can have up to 6 digits in the form yyyddd, where the characters yyy specify the number of

years since 1970 and the characters ddd specify the day of that year. The day of year must be a value
between 1 and the number of days in the specified year.

2. You must fill all three of the d positions with digits or zeros before you can fill the y positions. For
example:

• DATE$(121) returns the date 01–May–70, day 121 of the year 1970.

• DATE$(1201) returns the date 20–Jul–71, day 201 of the year 1971.

• DATE$(12001) returns the date 01–Jan–82, day one of the year 1982.

• DATE$(10202) returns the date 20–Jul–80, day 202 of the year 1980.

77

Chapter 3. Statements and Functions

Remarks
1. If int-exp equals zero, DATE$ returns the current date.

2. The str-var returned by the DATE$ function consists of nine characters and expresses the day,
month, and year in the form dd-mmm-yy.

3. If you specify an invalid date, such as day 385, results are unpredictable.

4. If you specify a floating-point expression for int-exp, VSI BASIC truncates it to an integer of the
default size.

Example
DECLARE STRING todays_date
todays_date = DATE$(0)
PRINT todays_date

Output

09-Oct-99

The DATE4$ function is strongly recommended as replacement for the DATE$ function to avoid
problems in the year 2000 and beyond. It functions the same as the DATE$ function except that the year
portion of the result string contains two more digits indicating the century. For example:

PRINT 32150, DATE$ (32150), DATE4$ (32150)

This produces the following output:

32150 30-May-02 30-May-2002

DATE4$
DATE4$ — The DATE4$ function returns a string containing a day, month, and year in the form dd-
mmm-yyyy.

Format
str-var = DATE4$ (int-exp)

Syntax Rules
1. Int-exp can have up to 6 digits in the form yyyddd, where the characters yyy specify the number of

years since 1970 and the characters ddd specify the day of that year. The day of year must be a value
between 1 and the number of days in the specified year.

2. You must fill all three of the d positions with digits or zeros before you can fill the y positions.

Remarks
The DATE4$ function is strongly recommended as replacement for the DATE$ function to avoid
problems in the year 2000 and beyond. It functions the same as the DATE$ function except that the year
portion of the result string contains two more digits indicating the century. For example:

78

Chapter 3. Statements and Functions

PRINT 32150, DATE$ (32150), DATE4$ (32150)

Produces the following output:

32150 30-May-02 30-May-2002

See the description of the DATE$ function for more information.

DECIMAL
DECIMAL — The DECIMAL function converts a numeric expression or numeric string to the
DECIMAL data type.

Format
decimal-var = DECIMAL (exp [, int-const1, int-const2])

Syntax Rules
1. Int-const1 specifies the total number of digits (the precision) and int-const2 specifies the number of

digits to the right of the decimal point (the scale). If you do not specify these values, VSI BASIC
uses the d (digits) and s (scale) defaults for the DECIMAL data type.

2. Int-const1 and int-const2 must be positive integers from 1 to 31. Int-const2 cannot exceed the value
of int-const1.

3. Exp can be either numeric or numeric string. If a numeric string, it can contain the ASCII digits 0 to
9, a plus sign (+), a minus sign (–), and a period (.).

Remarks
1. If exp is a string, VSI BASIC ignores leading and trailing spaces and tabs.

2. The DECIMAL function returns a zero when a string argument contains only spaces and tabs, or
when it is null.

Example
DECLARE STRING CONSTANT format_string = "##.###"
DECLARE STRING num_value, DECIMAL(5,3) B
INPUT "Enter a numeric value";num_value
B = DECIMAL(num_value,5,3)
PRINT USING format_string, B

Output

Enter a numeric value? 6
 6.000

DECLARE
DECLARE — The DECLARE statement explicitly assigns a name and a data type to a variable, an
entire array, a function, or a constant.

79

Chapter 3. Statements and Functions

Format
Variables
DECLARE data-type {decl-item [,[data-type] decl-item]} ,...

DEF Functions
DECLARE data-type FUNCTION {def-name [([def-param],...)]},...

Named Constants
DECLARE data-type CONSTANT {const-name = const-exp},...

decl-item: {array-name ([int-const1 TO] int-const2 ,… | record-var |
 unsubs-var}

def-param: data-type

Syntax Rules
1. Data-type can be any VSI BASIC data type keyword or a data type defined by a RECORD

statement. Data type keywords, size, range, and precision are listed in Table 1.2.

2. Variables

• Decl-item names an array, a record, or a variable.

• A decl-item named in a DECLARE statement cannot be named in another DECLARE statement,
or in a DEF, EXTERNAL, FUNCTION, SUB, COMMON, MAP, DIM, HANDLER, or
PICTURE statement.

• Each decl-item is associated with the preceding data type. A data type is required for the first
decl-item.

• Decl-items of data type STRING are dynamic strings.

• When you declare an array, VSI BASIC allows you to specify both lower and upper bounds for
each dimension of the array. The upper bounds is required; the lower bounds is optional.

• Int-const1 specifies the lower bounds of the array.

• Int-const2 specifies the upper bounds of the array and, when accompanied by int-const1,
must be preceded by the keyword TO.

• Int-const1 must be less than or equal to int-const2.

• If you do not specify int-const1, VSI BASIC uses zero as the default lower bounds.

• Int-const1 and int-const2 can be any combination of negative or positive values or zero.

3. DEF Functions

• Def-name names the DEF function.

• Data-type specifies the data type of the value the function returns.

80

Chapter 3. Statements and Functions

• Def-params specify the number and, optionally, the data type of the DEF parameters. Parameters
define the arguments the DEF expects to receive when invoked.

• When you specify a data type, all following parameters are of that data type until you specify
a new data type.

• If you do not specify any data type, parameters take the current default data type and size.

• The number of parameters equals the number of commas plus 1. For example, empty
parentheses specify one parameter of the default type and size; one comma inside the
parentheses specifies two parameters of the default type and size; and so on. One data type
inside the parentheses specifies one parameter of the specified data type; two data types
separated by one comma specifies two parameters of the specified type, and so on.

4. Named Constants

• Const-name is the name you assign to the constant.

• Data-type specifies the data type of the constant. The value of the const must be numeric if the
data type is numeric and string if the data type is STRING. If the data type is STRING, const
must be a quoted string or another string constant.

• Const-exp cannot be a data type that was defined with the RECORD statement.

• Data-type cannot be a data type defined by a record statment.

• String constants cannot exceed 498 characters.

• VSI BASIC allows const-exp to be an expression for all data types except DECIMAL.
Expressions are not allowed as values when you name DECIMAL constants.

• Allowable operators in DECLARE CONSTANT expressions include all valid arithmetic,
relational, and logical operators except exponentiation. Built-in functions cannot be used in
DECLARE CONSTANT expressions. The following examples use valid expressions as values:

DECLARE DOUBLE CONSTANT max_value = (PI/2)
DECLARE STRING CONSTANT left_arrow = "<-----" + LF + CR

Remarks
1. The DECLARE statement is not executable.

2. The DECLARE statement must lexically precede any reference to the variables, functions, or
constants named in it.

3. To declare a virtual or run-time array, use the DIMENSION statement.

4. Variables

• Subsequent decl-items are associated with the specified data type until you specify another data
type.

• All variables named in a DECLARE statement are initialized to zero if numeric or to the null
string if string.

81

Chapter 3. Statements and Functions

5. DEF Functions

• The DECLARE FUNCTION statement allows you to name a function defined in a DEF or
DEF* statement, specify the data type of the value the function returns, and declare the number
and data type of the parameters.

• Data type keywords must be separated by commas.

• The first specification of a data type for a def-param is the default for subsequent arguments until
you specify another def-param. For example:

DECLARE DOUBLE FUNCTION interest(DOUBLE,SINGLE,,)

This example declares two parameters of the default type and size, one DOUBLE parameter, and
three SINGLE parameters for the function named interest.

6. Named Constants

• The DECLARE CONSTANT statement allows you to name a constant value and assign a data
type to that value. Note that you can specify only one data type in a DECLARE CONSTANT
statement. To declare a constant of another data type, you must use a second DECLARE
CONSTANT statement.

• During program execution, you cannot change the value assigned to the constant.

• The specified data-type determines the data type of the constant. For example:

DECLARE LONG CONSTANT True = -1, False = 0
DECLARE REAL CONSTANT ZZZ = 123.0
DECLARE BYTE CONSTANT YYY = '123'L
PRINT True, False, ZZZ, YYY

Output

-1 0 123 123

In this example, VSI BASIC truncates the LONG value assigned to YYY to a BYTE value.

Note

Data types specified in a DECLARE statement override any defaults specified in COMPILE command
qualifiers or OPTION statements.

Examples
Example 1
!DEF Functions
DECLARE INTEGER FUNCTION amount(,,DOUBLE,BYTE,,)

Example 2
!Named Constants
DECLARE DOUBLE CONSTANT interest_rate = 15.22

82

Chapter 3. Statements and Functions

DEF
DEF — The DEF statement lets you define a single-line or multiline function.

Format
Single-line DEF
DEF [data-type] def-name [([data-type] var ,...)] = exp

multiline DEF
DEF [data-type] def-name [([data-type var],...)]
 [statement]...

{END DEF | FNEND} [exp]

Syntax Rules
1. Data-type can be any VSI BASIC data type keyword or a data type defined in the RECORD

statement. Data type keywords, size, range, and precision are listed in Table 1.2.

2. The data type that precedes the def-name specifies the data type of the value returned by the DEF
function.

3. Def-name is the name of the DEF function. The def-name can contain from 1 to 31 characters.

4. If the def-name also appears in a DECLARE FUNCTION statement, the following rules apply:

• A function data type is required.

• The first character of the def-name must be an alphabetic character (A to Z). The remaining
characters can be any combination of letters, digits (0 to 9), dollar signs ($), underscores (_), or
periods (.).

5. If the def-name does not appear in a DECLARE FUNCTION statement, but the DEF statement
appears before the first reference to the def-name, the following rules apply:

• The function data type is optional.

• The first character of the def-name must be an alphabetic letter (A to Z). The remaining
characters can be any combination of letters, digits, dollar signs, underscores, or periods.

• If a function data type is not specified, the last character in the def-name must be a percent sign
for an INTEGER function, or a dollar sign for a STRING function.

6. If the def-name does not appear in a DECLARE FUNCTION statement, and the DEF statement
appears after the first reference to the def-name, the following rules apply:

• The function data type cannot be present.

• The first two characters of the def-name must be FN. The remaining characters can be any
combination of letters, digits, dollar signs, underscores, or periods, with one restriction: the

83

Chapter 3. Statements and Functions

last character must be a percent sign for an INTEGER function, or a dollar sign for a STRING
function.

• There must be at least one character between the FN characters and the ending dollar sign or
percent character. FN$ and FN% are not valid function names.

7. Var specifies optional formal DEF parameters. Because the parameters are local to the DEF function,
any reference to these variables outside the DEF body creates a different variable.

8. You can specify the data type of DEF parameters with a data type keyword or with a data type
defined in a RECORD statement. If you do not include a data type, the parameters are of the default
type and size. Parameters that follow a data type keyword are of the specified type and size until you
specify another data type.

9. You can specify up to 255 parameters in a DEF statement.

10. Single-Line DEF

Exp specifies the operations the function performs.

11. Multiline DEF

• Statements specifies the operations the function performs.

• The END DEF or FNEND statement is required to end a multiline DEF.

• VSI BASIC does not allow you to specify any statements that indicate the beginning or end of
any SUB, FUNCTION, PICTURE, HANDLER (attached handlers are legal), PROGRAM or
DEF in a function definition.

• Exp specifies the function result. Exp must be compatible with the DEF data type.

Remarks
1. When VSI BASIC encounters a DEF statement, control of the program passes to the next executable

statement after the DEF.

2. The function is invoked when you use the function name in an expression.

3. You cannot specify how parameters are passed. When you invoke a function, VSI BASIC evaluates
parameters from left to right and passes parameters to the function so that they cannot be modified.
Numeric parameters are passed by value and string parameters are passed by descriptor, where the
descriptor points to a local copy. A DEF function can reference variables that are declared within
the compilation unit in which the function resides, but it cannot reference variables in other DEF
or DEF* functions. A DEF function can, therefore, modify other variables in the program, but not
variables within another DEF function.

4. A DEF function is local to the program, subprogram, function, or picture that defines it.

5. You can declare a DEF either by defining it, by using the DECLARE FUNCTION statement, or by
implicitly declaring it with a reference to the function in an expression.

6. If your program invokes a function with a name that does not start with FN before the DEF
statement defines the function, VSI BASIC signals an error.

84

Chapter 3. Statements and Functions

7. If the number of parameters, types of parameters, or type of result declared in the invocation disagree
with the number or types of parameters defined in the DEF statement, VSI BASIC signals an error.

8. DATA statements in a multiline DEF are not local to the function; they are local to the program
module containing the function definition.

9. The function value is initialized to zero or the null string each time you invoke the function.

10. DEF definitions cannot appear inside a protected region. However, DEF can contain one or more
protected regions.

11. DEF functions can be invoked within handlers, within DEF functions, and within DEF* functions.

12. In DEF definitions that contain handlers, the following rules apply:

• If the function was invoked from a protected region, the EXIT HANDLER statement transfers
control to the handler specified for that protected region.

• If the function was not invoked from a protected region, the EXIT HANDLER statement
transfers control to the default error handler.

13. If an exception is not handled within a DEF function, control is transferred to the module that
invoked the DEF function.

14. ON ERROR statements within a DEF function are local to the function.

15. A CONTINUE, GOTO, GOSUB, ON ERROR GOTO, or RESUME statement in a multiline
function definition must refer to a line number or label in the same function definition.

16. You cannot transfer control into a multiline DEF except by invoking the function.

17. DEF functions can be recursive. However, VSI BASIC does not detect infinitely recursive DEF
functions during compilation.

Examples
Example 1
!Single-Line DEF
DEF DOUBLE add (DOUBLE A, B, SINGLE C, D, E) = A + B + C + D + E
INPUT 'Enter five numbers to be added';V,W,X,Y,Z
PRINT 'The sum is';ADD(V,W,X,Y,Z)

Output

Enter five numbers to be added? 1,2,3,4,5
The sum is 15

85

Chapter 3. Statements and Functions

Example 2
PROGRAM I_want_a_raise

 OPTION TYPE = EXPLICIT, &
 CONSTANT TYPE = DECIMAL, &
 SIZE = DECIMAL (6,2)

 DECLARE DECIMAL CONSTANT Overtime_factor = 0.50
 DECLARE DECIMAL My_hours, My_rate, Overtime
 DECLARE DECIMAL FUNCTION Calculate_pay (DECIMAL,DECIMAL)

 INPUT "Your hours this week";My_hours
 INPUT "Your hourly rate";My_rate

 PRINT "My pay this week is"; Calculate_pay (My_hours, My_rate)

 DEF DECIMAL Calculate_pay (DECIMAL Hours, Rate)

 IF Hours = 0.0
 THEN
 EXIT DEF 0.0
 END IF

 Overtime = Hours - 40.0

 IF Overtime < 0.0
 THEN
 Overtime = 0.0
 END IF

 END DEF (Hours * Rate) + (Overtime * (Overtime_factor * Rate))

END PROGRAM

Output

Your hours this week? 45.7
Your pay rate? 20.35
Your pay for the week is 987.95

DEF*
DEF* — The DEF* statement lets you define a single- or multiline function. The DEF* statement is not
recommended for new program development. It is recommended that you use the DEF statement for
defining single- and multiline functions.

Format
Single-line DEF*
DEF* [data-type] def-name [([data-type] var ,...)] = exp

86

Chapter 3. Statements and Functions

multiline DEF*
DEF* [data-type] def-name [([data-type)] var ,...] [statement]...)
 [statement]...
{END DEF | FNEND} [exp]

Syntax Rules
1. Data-type can be any VSI BASIC data type keyword or a data type defined in the RECORD

statement. Data type keywords, size, range, and precision are listed in Table 1.2.

2. The data type that precedes the def-name specifies the data type of the value returned by the DEF*
function.

3. Def-name is the name of the DEF* function. The def-name can contain from 1 to 31 characters.

4. If the def-name also appears in a DECLARE FUNCTION statement, the following rules apply:

• A function data type is required.

• The first character of the def-name must be an alphabetic character (A to Z). The remaining
characters can be any combination of letters, digits (0 to 9), dollar signs ($), underscores (_), or
periods (.).

5. If the def-name does not appear in a DECLARE FUNCTION statement, but the DEF* statement
appears before the first reference to the def-name, the following rules apply:

• The function data type is optional.

• The first character of the def-name must be an alphabetic character (A to Z). The remaining
characters can be any combination of letters, digits, dollar signs, underscores, or periods.

• If a function data type is not specified, the last character in the def-name must be a percent sign
for an INTEGER function, or a dollar sign for a STRING function.

6. If the def-name does not appear in a DECLARE FUNCTION statement, and the DEF* statement
appears after the first reference to the def-name, the following rules apply:

• The function data type cannot be present.

• The first two characters of the def-name must be FN. The remaining characters can be any
combination of letters, digits, dollar signs, underscores, or periods, with one restriction: the
last character must be a percent sign for an INTEGER function, or a dollar sign for a STRING
function.

• There must be at least one character between the FN characters and the ending dollar sign or
percent character. FN$ and FN% are not valid function names.

7. Var specifies optional formal function parameters.

8. You can specify the data type of function parameters with a data type keyword. If you do not specify
a data type, parameters are of the default type and size. Parameters that follow a data type are of the
specified type and size until you specify another data type.

9. You can specify up to 8 parameters in a DEF* statement.

87

Chapter 3. Statements and Functions

10. Single-Line DEF*

Exp specifies the operations the function performs.

11. Multiline DEF*

• Statements specifies the operations the function performs.

• The END DEF or FNEND statement is required to end a multiline DEF*.

• VSI BASIC does not allow you to specify any statements that indicate the beginning or end of
any SUB, FUNCTION, PICTURE, HANDLER, PROGRAM or DEF in a function definition.

• Exp specifies the function result. Exp must be compatible with the DEF data type.

Remarks
1. When VSI BASIC encounters a DEF* statement, control of the program passes to

• When VSI BASIC encounters a DEF* statement, control of the program passes to the next
executable statement after the DEF*.

• A function defined by the DEF* statement is invoked when you use the function name in an
expression.

• You cannot specify how parameters are passed. When you invoke a DEF* function, VSI BASIC
evaluates parameters from left to right and passes parameters to the function so that they cannot
be modified. Numeric parameters are passed by value, and string parameters are passed by
descriptor, where the descriptor points to a local copy. A DEF* function can reference variables
in the program unit where the function is declared, but it cannot reference variables in other DEF
or DEF* functions. A DEF* function can, therefore, modify variables in its program unit, but not
variables within another DEF* function.

• The following differences exist between DEF* and DEF statements:

• You can use the GOTO, ON GOTO, GOSUB, and ON GOSUB statements to a branch
outside a multiline DEF*, but they are not recommended.

• Although other variables used within the body of a DEF* function are not local to the
DEF* function, DEF* formal parameters are. However, if you change the value of formal
parameters within a DEF* function and then transfer control out of the DEF* function
without executing the END DEF or FNEND statement, variables outside the DEF* that have
the same names as DEF* formal parameters are also changed.

• You can pass up to 255 parameters to a DEF function. DEF* functions accept a maximum of
8 parameters.

• A DEF* function value is not initialized when the DEF* function is invoked. Therefore, if a
DEF* function is invoked and no new function value is assigned, the DEF* function returns
the value of its previous invocation.

• The error handler of the program module that contains the DEF* is the default error handler
for a DEF* function. Parameters return to their original values when control passes to the
error handler.

88

Chapter 3. Statements and Functions

• A DEF* is local to the program unit or subprogram that defines it.

• You can declare a DEF* either by defining it, by using the DECLARE FUNCTION statement, or
by implicitly declaring it with a reference to the function in an expression.

• If the number of parameters, types of parameters, or type of result declared in the invocation
disagree with the number or types of parameters defined in the DEF* statement, VSI BASIC
signals an error. types of parameters defined in the DEF* statement, VSI BASIC signals an error.

• DEF* functions can be recursive.

• DATA statements in a multiline DEF* are not local to the function; they are local to the program
module containing the function definition.

• DEF* definitions cannot appear inside a protected region, but they can contain one or more
protected regions.

• DEF* functions cannot be invoked within handlers or within DEF functions.

• In DEF* functions that contain handlers, the following rules apply:

• If the function was invoked from a protected region, the EXIT HANDLER statement
transfers control to the handler specified for that protected region.

• If the function was not invoked from a protected region, the EXIT HANDLER statement
transfers control to the default error handler.

• Only in VAX BASIC can a DEF* function be invoked from within a handler or a DEF function.

• In Alpha BASIC, if a DEF* function is invoked from within a complex expression, the compiler
will generate a warning and reorder the expression to

• If a DEF* function is invoked from within a complex expression, the compiler will generate a
warning and reorder the expression to evaluate the DEF* function first. This reordering will not
effect the outcome of the expression unless the DEF* modifies one of the variables used within
the expression.

Examples
Example 1
!Single-Line DEF*
DEF* STRING CONCAT(STRING A,B) = A + B
DECLARE STRING word1,word2
INPUT "Enter two words";word1,word2
PRINT CONCAT (word1,word2)

Output

Enter two words? TO
? DAY
TODAY

Example 2
!multiline DEF*

89

Chapter 3. Statements and Functions

DEF* DOUBLE example(DOUBLE A, B, SINGLE C, D, E)
 EXIT DEF IF B = 0
 example = (A/B) + C - (D*E)
END DEF
INPUT "Enter 5 numbers";V,W,X,Y,Z
PRINT example(V,W,X,Y,Z)

Output

Enter 5 numbers? 2,4,6,8,1
-1.5

DELETE
DELETE — The DELETE statement removes a record from a relative or indexed file.

Format
DELETE #chnl-exp

Syntax Rules
Chnl-exp is a numeric expression that specifies a channel number associated with a file. It must be
immediately preceded by a number sign (#).

Remarks
1. The DELETE statement removes the current record from a file. Once the record is removed, you

cannot access it.

2. The file specified by chnl-exp must have been opened with ACCESS MODIFY or WRITE.

3. You can delete a record only if the last I/O statement executed on the specified channel was a
successful GET or FIND operation.

4. The DELETE statement leaves the current record pointer undefined and the next record pointer
unchanged.

5. VSI BASIC signals an error when the I/O channel is illegal or not open, when no current record
exists, when access is illegal or illogical, or when the operation is illegal.

Example
DECLARE STRING record_num
 .
 .
 .
OPEN "CUS.DAT" FOR INPUT AS #1, RELATIVE FIXED &
 ACCESS MODIFY, RECORDSIZE 40
 .
 .
 .

90

Chapter 3. Statements and Functions

INPUT "WHICH RECORD WOULD YOU LIKE TO EXAMINE";record_num
GET #1, RECORD record_num
DELETE #1
 .
 .
 .

In this example, the file CUS.DAT is opened for input with ACCESS MODIFY. Once you enter the
number of the record you want to retrieve and the GET statement executes successfully, the current
record number is deleted.

DET
DET — The DET function returns the value of the determinant of the last matrix inverted with the MAT
INV function.

Format
real-var = DET

Syntax Rules
None

Remarks
1. When a matrix is inverted with the MAT INV statement, VSI BASIC calculates the determinant as a

by-product of the inversion process. The DET function retrieves this value.

2. If your program does not contain a MAT INV statement, the DET function returns a value of zero.

3. The value returned by the DET function is a floating-point value of the default size.

Example
MAT INPUT first_array(3,3)
MAT PRINT first_array;
PRINT
MAT inv_array = INV (first_array)
determinant = DET
MAT PRINT inv_array;
PRINT
PRINT determinant
PRINT
MAT mult_array = first_array * inv_array
MAT PRINT mult_array;

91

Chapter 3. Statements and Functions

Output

? 1,0,0,0,1,0,0,0,1
 1 0 0
 0 1 0
 0 0 1

 1 0 0
 0 1 0
 0 0 1

 1

 1 0 0
 0 1 0
 0 0 1

DIF$
DIF$ — The DIF$ function returns a numeric string whose value is the difference between two numeric
strings.

Format
str-var = DIF$ (str-exp1, str-exp2)

Syntax Rules
Each str-exp can contain up to 60 ASCII digits, an optional decimal point, and an optional leading sign.

Remarks
1. The DIF$ function does not support E-format notation.

2. VSI BASIC subtracts str-exp2 from str-exp1 and stores the result in str-var.

3. The difference between two integers takes the precision of the larger integer.

4. The difference between two decimal fractions takes the precision of the more precise fraction, unless
trailing zeros generate that precision.

5. The difference between two floating-point numbers takes precision as follows:

• The difference of the integer parts takes the precision of the larger part.

• The difference of the decimal fraction part takes the precision of the more precise part.

6. VSI BASIC truncates leading and trailing zeros.

Example
PRINT DIF$ ("689","-231")

92

Chapter 3. Statements and Functions

Output

920

DIMENSION
DIMENSION — The DIMENSION statement creates and names a static, dynamic, or virtual array. The
array subscripts determine the dimensions and the size of the array. You can specify the data type of the
array and associate the array with an I/O channel.

Format
Nonvirtual, Nonexecutable
{DIM | DIMENSION} {[data-type] array-name ([int-const1 TO] int-
const2,...)},...

Executable
{DIM | DIMENSION} {[data-type] array-name
 ([int-var1 TO] int-var2,...)},...

Virtual
{DIM | DIMENSION} #chnl-exp, {[data-type] array-name
 (int-const,...) [=int-const]},...

Syntax Rules
1. An array name in a DIM statement cannot also appear in a COMMON, MAP, or DECLARE

statement.

2. Data-type can be any VSI BASIC data type keyword or a data type defined in a RECORD statement.
Data type keywords, size, range, and precision are listed in Table 1.2.

3. If you do specify a data type and the array name ends in a percent sign (%) or dollar sign ($) suffix
character, the variable must be a string or integer data type.

4. If you do not specify a data type, the array name determines the type of data the array holds. If the
array name ends in a percent sign, the array stores integer data of the default integer size. If the array
name ends in a dollar sign, the array stores string data. Otherwise, the array stores data of the default
type and size.

5. An array can have up to 32 dimensions. Nonvirtual array sizes are limited by the virtual memory
limits of your system.

6. When you declare a nonvirtual array, VSI BASIC allows you to specify both lower and upper
bounds. The upper bounds is required; the lower bounds is optional.

• Int-const1 or int-var1 specifies the lower bounds of the array.

• Int-const2 or int-var2 specifies the upper bounds of the array and, when accompanied by int-
const1 or int-var1, must be preceded by the keyword TO.

93

Chapter 3. Statements and Functions

• Int-const1 must be less than or equal to int-const2. Int-var1 must be less than or equal to int-var2.

• If you do not specify int-const1 or int-var1, VSI BASIC uses zero as the default lower bounds.

• Array dimensions can have either positive or negative values.

7. Nonvirtual, Nonexecutable

• When all the dimension specifications are integer constants, as in DIM A(15,10,20), the DIM
statement is nonexecutable and the array size is static. A static array cannot appear in another
DIM statement because VSI BASIC determines storage requirements at compilation time.

• A nonexecutable DIM statement must lexically precede any reference to the array it dimensions.
That is, you must dimension a static array before you can reference array elements.

8. Virtual

• The virtual array must be dimensioned and the file must be open before you can reference the
array.

• When the data type is STRING, the =int-const clause specifies the length of each array element.
The default string length is 16 characters. Virtual string array lengths are rounded to the next
higher power of 2. Therefore, specifying an element length of 12 results in an actual length of 16.
For example:

DIM #1, STRING vir_array(100) = 12
OPEN "STATS.BAS" FOR OUTPUT as #1, VIRTUAL

Output

%BASIC-W-STRLENINC, virtual array string VIR_ARRAY length increased
 from 12 to 16

9. Executable

When any of the dimension specifications are integer variables as in DIM A(10%,20%, Y%), the
DIM statement is executable and the array is dynamic. A dynamic array can be redimensioned with
a DIM statement any number of times because VSI BASIC allocates storage at run time when each
DIM statement is executed.

Remarks
1. You can create an array implicitly by referencing an array element without using a DIM statement.

This causes VSI BASIC to create an array with dimensions of (10), (10,10), (10,10,10), and so
on, depending on the number of bounds specifications in the referenced array element. You cannot
create virtual or executable arrays implicitly.

2. VSI BASIC allocates storage for arrays by row, from right to left.

3. Nonvirtual, Nonexecutable

• You can declare arrays with the COMMON, MAP, and DECLARE statements. Arrays so
declared cannot be redimensioned with the DIM statement. Furthermore, string arrays declared
with a COMMON or MAP statement are always fixed-length arrays.

94

Chapter 3. Statements and Functions

• If you reference an array element declared in an array whose subscripts are smaller than the
lower bounds or larger than the upper bounds specified in the DIM statement, VSI BASIC signals
the error “Subscript out of range” (ERR=55).

4. Virtual

• For new development, using virtual arrays is not recommended.

• When the rightmost subscript varies faster than the subscripts to the left, fewer disk accesses are
necessary to access array elements in virtual arrays.

• Using the same DIM statement for multiple virtual arrays allocates all arrays in a single disk file.
The arrays are stored in the order they were declared.

• Any program or subprogram can access a virtual array by declaring it in a virtual DIMENSION
statement. For example:

DIM #1, A(10)
DIM #1, B(10)

In this example, array B overlays array A. You must specify the same channel number, data types,
and limits in the same order as they occur in the DIM statement that created the virtual array.

• VSI BASIC stores a string in a virtual array by padding it with trailing nulls to the length of
the array element. It removes these nulls when it retrieves the string from the virtual array.
Remember that string array element sizes are always rounded to the next power of 2.

• The OPEN statement for a virtual array must include the ORGANIZATION VIRTUAL clause
for the channel specified in the DIMENSION statement.

• VSI BASIC does not initialize virtual arrays and treats them as statically allocated arrays. You
cannot redimension virtual arrays.

• See the VSI BASIC User Manual for more information about virtual arrays.

5. Executable

• You create an executable, dynamic array by using integer variables for array bounds, as in DIM
A(Y%,X%). This eliminates the need to dimension an array to its largest possible size. Array
bounds in an executable DIM statement can be constants or variables, but not expressions. At
least one bounds must be a variable.

• You cannot reference an array named in an executable DIM statement until after the DIM
statement executes.

• You can redimension a dynamic array to make the bounds of each dimension larger or smaller,
but you cannot change the number of dimensions. For example, you cannot redimension a four-
dimensional array to be a five-dimensional array.

• The executable DIM statement cannot be used to dimension virtual arrays, arrays received as
formal parameters, or arrays declared in COMMON, MAP, or nonexecutable DIM statements.

• An executable DIM statement always reinitializes the array to zero (for numeric arrays) or to the
null string if string.

95

Chapter 3. Statements and Functions

• If you reference an array element declared in an executable DIM statement whose subscripts are
not within the bounds specified in the last execution of the DIM, VSI BASIC signals the error
“Subscript out of range” (ERR=55).

Examples
Example 1
!Nonvirtual, Nonexecutable
DIM STRING name_list(20 TO 100), BYTE age(100)

Example 2
!Virtual
DIM #1%, STRING name_list(500), REAL amount(10,10)

Example 3
!Executable
DIM DOUBLE inventory(base,markup)
 .
 .
 .
DIM DOUBLE inventory (new_base,new_markup)

ECHO
ECHO — The ECHO function causes characters to be echoed at a terminal that is opened on a specified
channel.

Format
int-var = ECHO (chnl-exp)

Syntax Rules
Chnl-exp must specify a terminal.

Remarks
1. The ECHO function is the complement of the NOECHO function; each function disables the effect

of the other.

2. The ECHO function has no effect on an unopened channel.

3. The ECHO function always returns a value of zero.

Example
DECLARE INTEGER Y, &
 STRING pass_word

96

Chapter 3. Statements and Functions

Y = NOECHO(0%)
SET NO PROMPT
INPUT "Enter your password: ";pass_word
Y = ECHO(0%)
IF pass_word = "Darlene"
THEN
 PRINT CR+LF+"YOU ARE CORRECT !"
END IF

Output

Enter your password?
YOU ARE CORRECT !

EDIT$
EDIT$ — The EDIT$ function performs one or more string editing functions, depending on the value of
its integer argument.

Format
str-var = EDIT$ (str-exp, int-exp)

Syntax Rules
None

Remarks
1. VSI BASIC edits str-exp to produce str-var.

2. The editing that VSI BASIC performs depends on the value of int-exp. Table 3.2 describes EDIT$
values and functions.

3. All values are additive; for example, you can perform the editing functions of values 8, 16, and 32 by
specifying a value of 56.

4. If you specify a floating-point expression for int-exp, VSI BASIC truncates it to an integer of the
default size.

Table 3.2. EDIT$ Values

Value Edit Performed

1 Discards each character's parity bit (bit 7)
2 Discards all spaces and tabs
4 Discards all carriage returns <CR>, line feeds <LF>, form feeds <FF>, deletes ,

escapes <ESC>, and nulls <NUL>
8 Discards leading spaces and tabs
16 Converts multiple spaces and tabs to a single space
32 Converts lowercase letters to uppercase letters
64 Converts left bracket ([) to left parenthesis [(] and right bracket (]) to right parenthesis [)]

97

Chapter 3. Statements and Functions

Value Edit Performed

128 Discards trailing spaces and tabs (same as TRM$ function)
256 Suppresses all editing for characters within quotation marks; if the string has only one

quotation mark, VSI BASIC suppresses all editing for the characters following the quotation
mark

Example
DECLARE STRING old_string, new_string
old_string = "a value of 32 converts lowercase letters to uppercase"
new_string = EDIT$(old_string,32)
PRINT new_string

Output

A VALUE OF 32 CONVERTS LOWERCASE LETTERS TO UPPERCASE

END
END — The END statement marks the physical and logical end of a main program, a program module,
or a block of statements.

Format
END [block]

block: {DEF [exp] | FUNCTION [exp] | GROUP | RECORD | VARIANT | IF |
 HANDLER | PICTURE | PROGRAM [int-exp] | SELECT | WHEN | SUB}

Syntax Rules
None

Remarks
1. The END statement with no block keyword marks the end of a main program. The END or END

PROGRAM statement must be the last statement on the last lexical line of the main program.

2. The END statement followed by a block keyword marks the end of a program, a BASIC SUB,
FUNCTION, or PICTURE subprogram, a DEF, an IF, a HANDLER, a PROGRAM, a SELECT
statement block or a WHEN block.

3. END RECORD, END GROUP, and END VARIANT mark the end of a RECORD statement, or a
GROUP component or VARIANT component of a RECORD statement.

4. END DEF and END FUNCTION

• When VSI BASIC executes an END DEF or an END FUNCTION statement, it returns the
function value to the statement that invoked the function and releases all storage associated with
the DEF or FUNCTION.

98

Chapter 3. Statements and Functions

• If you specify an optional expression with the END DEF or END FUNCTION statement, the
expression must be compatible with the DEF or FUNCTION data type. The expression is the
function result unless an EXIT DEF or EXIT FUNCTION statement is executed. This expression
supersedes all function assignments.

• The END DEF statement restores the error handler in effect when the DEF was invoked (this is
not true of the DEF* statement).

• The END FUNCTION statement does not affect I/O operations or files.

5. END HANDLER

The END HANDLER statement causes VSI BASIC to transfer control to the statement following the
WHEN block with the exception cleared.

6. END PROGRAM

• The END PROGRAM statement allows you to end a program module.

• An optional integer expression specifies the exit status of the program that is reported to DCL.
This status is overridden by a status expression in an EXIT PROGRAM statement.

• You can specify an END PROGRAM statement without a matching PROGRAM statement.

7. END WHEN

• The END WHEN statement ends a WHEN block.

• If the END WHEN statement ends an attached handler, and the handler does not process an
error with an EXIT HANDLER, RETRY, or CONTINUE statement, then control is transferred
to the statement following the WHEN block with the exception cleared.

8. END SUB

• The END SUB statement does not affect I/O operations or files.

• The END SUB statement releases the storage allocated to local variables and returns control to
the calling program.

• The END SUB statement cannot be executed in an error handler unless the END SUB is in a
subprogram called by the error handler of another routine.

9. When an END or END PROGRAM statement marking the end of a main program executes, VSI
BASIC closes all files and releases all program storage.

10. If you use ON ERROR error handling, you must clear any errors with the RESUME statement
before executing an END PROGRAM, END SUB, END FUNCTION, or END PICTURE statement.

11. Except for the END PROGRAM statement, VSI BASIC signals an error when a program contains an
END block statement with no corresponding and preceding block keyword.

Example
10 DECLARE LONG int_exp
 WHEN ERROR USE error_routine

99

Chapter 3. Statements and Functions

20 INPUT "Enter an integer expression";int_exp
30 PRINT DATE$(int_exp)
 END WHEN
 HANDLER error_routine
 IF ERL = 20
 THEN
 PRINT "Invalid input...try again"
 RETRY
 ELSE
 PRINT "UNEXPECTED ERROR"
 EXIT HANDLER
 END IF
 END HANDLER
 END PROGRAM

ERL
ERL — The ERL function returns the number of the BASIC line where the last error occurred.

Format
int-var = ERL

Syntax Rules
The value of int-var returned by the ERL function is a LONG integer.

Remarks
If the ERL function is used before an error occurs or after an error is handled, the results are undefined.

Example
10 DECLARE LONG int_exp
 WHEN ERROR USE error_routine
20 INPUT "Enter an integer expression";int_exp
30 PRINT DATE$(int_exp)
 END WHEN
 HANDLER error_routine
 IF ERL = 20
 THEN
 PRINT "Invalid input...try again"
 RETRY
 ELSE
 PRINT "UNEXPECTED ERROR"
 EXIT HANDLER
 END IF
 END HANDLER
 END PROGRAM

100

Chapter 3. Statements and Functions

Output

Enter an integer expression? ABCD
Error occurred on line 20
Enter an integer expression? 0
07-Feb-00

ERN$
ERN$ — The ERN$ function returns the name of the main program, subprogram, or DEF function that
was executing when the last error occurred.

Format
str-var = ERN$

Syntax Rules
None

Example
10 DECLARE LONG int_exp
 !This module's name is DATE
 WHEN ERROR IN
 INPUT "Enter an number";int_exp
 USE
 PRINT "Error in module ";ERN$
 RETRY
 END WHEN
 PRINT Date$(int_exp)
 END

Output

Enter a number? ABCD
Error in module DATE
Enter a number? 0
07-Feb-00

ERR
ERR — The ERR function returns the error number of the current run-time error.

Format
int-var = ERR

Syntax Rules
The value of int-var returned by the ERR function is always a LONG integer.

101

Chapter 3. Statements and Functions

Remarks
If the ERR function is used before an error occurs or after an error is handled, the results are undefined.

Example
10 DECLARE LONG int_exp
 WHEN ERROR USE error_routine
20 INPUT "Enter an integer expression";int_exp
 PRINT DATE$(int_exp)
 END WHEN
 HANDLER error_routine:
 PRINT "Error number";ERR
 IF ERR = 50 THEN PRINT "DATA FORMAT ERROR"
 ELSE PRINT "UNEXPECTED ERROR"
 END IF
 RETRY
 END HANDLER
 END

Output

Enter an integer expression? ABCD
Error number 50
DATA FORMAT ERROR
Enter an integer expression? 0
07-Feb-00

ERT$
ERT$ — The ERT$ function returns explanatory text associated with an error number.

Format
str-var = ERT$ (int-exp)

Syntax Rules
Int-exp is an VSI BASIC error number. The error number should be a valid BASIC error number.

Remarks
1. The ERT$ function can be used at any time to return the text associated with a specified error

number.

2. If you specify a floating-point expression for int-exp, VSI BASIC truncates it to an integer of the
default size.

3. Any error outside the range of valid BASIC RTL errors results in the following error message:
“NOTBASIC, Not a BASIC error” (ERR=194).

Example
10 DECLARE LONG int_exp

102

Chapter 3. Statements and Functions

 WHEN ERROR USE error_routine
20 INPUT "Enter an integer expression";int_exp
 PRINT DATE$(int_exp)
 END WHEN
 HANDLER error_routine
 PRINT "Error number";ERR
 PRINT ERT$(ERR)
 RETRY
 END HANDLER
 END

Output

Enter an integer expression? ABCD
Error number 50
%Data format error
Enter an integer expression? 0
07-Feb-00

EXIT
EXIT — The EXIT statement lets you exit from a main program, a SUB, FUNCTION, or PICTURE
subprogram, a multiline DEF, a statement block, or a handler.

Format
EXIT block

block: {DEF [exp] | FUNCTION [exp] | SUB | HANDLER | PICTURE | PROGRAM
 [int-exp] | label}

Syntax Rules
1. The DEF, FUNCTION, SUB, HANDLER, and PROGRAM keywords specify the type of

subprogram, multiline DEF, or handler from which VSI BASIC is to exit.

2. If you specify an optional expression with the EXIT DEF statement or with the EXIT FUNCTION
statement, the expression becomes the function result and supersedes any function assignment. It
also overrides any expression specified on the END DEF or END FUNCTION statement. Note that
the expression must be compatible with the FUNCTION or DEF data type.

3. Label specifies a statement label for an IF, SELECT, FOR, WHILE, or UNTIL statement block.

Remarks
1. An EXIT SUB, EXIT FUNCTION, EXIT PROGRAM, EXIT DEF, or EXIT PICTURE statement

is equivalent to an unconditional branch to an equivalent END statement. Control then passes to
the statement that invoked the DEF or to the statement following the statement that called the
subprogram.

2. The EXIT HANDLER statement causes VSI BASIC to transfer control to a specified area.

• If the current WHEN block is nested, control transfers to the handler associated with the next
outer protected region.

103

Chapter 3. Statements and Functions

• If an ON ERROR statement is in effect and the current WHEN block is not nested, control
transfers to the target of the ON ERROR statement.

• If neither of the previous conditions is true, an EXIT HANDLER statement transfers control
to the calling program or DCL. This action is the equivalent of the ON ERROR GO BACK
statement.

3. The EXIT PROGRAM statement causes VSI BASIC to exit from a main program module.

• An optional integer expression on an EXIT PROGRAM statement specifies the exit status of the
program that is reported to DCL.

• The expression specified by an EXIT PROGRAM statement overrides any integer expression
specified by an END PROGRAM statement.

• VSI BASIC allows you to specify an EXIT PROGRAM statement without a matching
PROGRAM statement.

4. The EXIT label statement is equivalent to an unconditional branch to the first statement following
the end of the IF, SELECT, FOR, WHILE, or UNTIL statement labeled by the specified label.

5. An EXIT FUNCTION, EXIT SUB or EXIT PROGRAM statement cannot be used within a
multiline DEF function.

6. When the EXIT FUNCTION, EXIT SUB or EXIT PROGRAM statement executes, VSI BASIC
releases all storage allocated to local variables and returns control to the calling program.

Example
DEF emp.bonus(A)
IF A > 10
THEN
 PRINT "OUT OF RANGE"
 EXIT DEF 0
ELSE
 emp.bonus = A * 4
END IF
END DEF
INPUT A
PRINT emp.bonus(A)
END

Output

? 11
OUT OF RANGE
 0

EXP
EXP — The EXP function returns the value of the mathematical constant e raised to a specified power.

Format
real-var = EXP (real-exp)

104

Chapter 3. Statements and Functions

Syntax Rules
None

Remarks
1. The EXP function returns the value of e raised to the power of real-exp.

2. VSI BASIC expects the argument of the EXP function to be a real expression. When the argument is
a real expression, VSI BASIC returns a value of the same floating-point size. When the argument is
not a real expression, VSI BASIC converts the argument to the default floating-point size and returns
a value of the default floating-point size.

3. When the default REAL size is SINGLE, DOUBLE, or SFLOAT, EXP allows arguments from –
88 to 88. If the default REAL size is GFLOAT or TFLOAT, EXP allows arguments from -709 to
709. If the default REAL size is HFLOAT or XFLOAT, the arguments can be in the range –11356
to 11355. When the argument exceeds the upper limit of a range, VSI BASIC signals an error. When
the argument is beyond the lower limit of a range, the EXP function returns a zero and VSI BASIC
does not signal an error.

Example
DECLARE SINGLE num_val
num_val = EXP(4.6)
PRINT num_val

Output

 99.4843

EXTERNAL
EXTERNAL — The EXTERNAL statement declares constants, variables, functions, and subroutines
external to your program. You can describe parameters for external functions and subroutines.

Format
External Constants
EXTERNAL data-type CONSTANT const-name,...

External Variables
EXTERNAL data-type unsubs-var,...

External Functions
EXTERNAL data-type FUNCTION {func-name [pass-mech]
 [(external-param ,...)]},...

External Subroutines
EXTERNAL SUB {sub-name [pass-mech] [(external-param,...)]},...

105

Chapter 3. Statements and Functions

pass-mech: {BY VALUE | BY REF | BY DESC}

external-param: [OPTIONAL] [param-data-type] [DIM ([,]...)]
 [= int-const] [pass-mech]

External Pictures
EXTERNAL PICTURE pic-name [(param-list)]

Syntax Rules
1. For external constants, data-type can be BYTE, WORD, LONG, INTEGER (if default is not

QUAD), SINGLE, SFLOAT, or REAL (if default is SINGLE or SFLOAT).

2. For external variables, the data type can be any valid numeric data type.

3. For external functions and subroutines, the data type can be BYTE, WORD, LONG, QUAD,
SINGLE, DOUBLE, GFLOAT, HFLOAT, SFLOAT, TFLOAT, XFLOAT, DECIMAL, STRING,
INTEGER, REAL, RFA, or a data type defined with the RECORD statement. See Table 1.2 for
more information about data type size, range, and precision.

4. The name of an external constant, variable, function, or subroutine can be from 1 to 31 characters.

5. For all external routine declarations, the name must be a valid VSI BASIC identifier and must not be
the same as any other SUB, FUNCTION, PICTURE, or PROGRAM name.

For more information about external pictures, see Programming with VAX BASIC Graphics.

6. Param-data-type specifies the data type of a parameter. If you do not specify a data type, parameters
are of the default data type and size.

7. Param-list is identical to external-param except that no OPTIONAL parameter is allowed.

8. Parameters in the param-list must agree in number and data type with the parameters in the
invocation. Param-data-type includes ANY, BYTE, WORD, LONG, QUAD, INTEGER, SINGLE,
DOUBLE, GFLOAT, HFLOAT, SFLOAT, TFLOAT, XFLOAT, READ, a user-defined RECORD
type, STRING, or RFA.

9. A maximum of 255 parameters may be passed.

10. External Functions and Subroutines

• The data type that precedes the keyword FUNCTION defines the data type of the function result.

• Pass-mech specifies how parameters are to be passed to the function or subroutine.

• A pass-mech clause outside the parentheses applies to all parameters.

• A pass-mech clause inside the parentheses overrides the previous pass-mech and applies only
to the specific parameter.

• External-param defines the form of the arguments passed to the external function or subprogram.
Empty parentheses indicate that the subprogram expects zero parameters. Missing parentheses
indicate that the EXTERNAL statement does not define parameters.

11. Using ANY as a BASIC Data Type

106

Chapter 3. Statements and Functions

• The ANY data type should only be used for calling non-BASIC procedures. Therefore, the ANY
data type is illegal in a PICTURE declaration.

• If you specify ANY, VSI BASIC does not perform data type checking or conversions. If no
passing mechanism is specified, VSI BASIC uses the default passing mechanism for the data type
passed in a given invocation.

• When you specify a data type, all following parameters that are not specifically declared default
to the last specified data type. Similarly, when you specify ANY, all following unspecified
parameters default to the data type ANY until a new declaration is provided. For example:

EXTERNAL SUB allocate (LONG,ANY,)

12. Passing Optional Parameters

• The OPTIONAL keyword should be used only for calling non BASIC procedures.

• If you specify the keyword OPTIONAL, VSI BASIC treats all following parameters as optional.
In the following example, the last three parameters are optional:

EXTERNAL SUB queue(STRING, OPTIONAL STRING, LONG, ANY)

• VSI BASIC still performs type checking and conversion on optional parameters.

• If you want to omit an optional parameter that appears in the middle of a parameter list, VSI
BASIC requires you to insert a comma placeholder. However, if you want to omit an optional
parameter that appears at the end of a parameter list, you can omit that parameter without
inserting any placeholder.

• You can specify the keyword OPTIONAL only once in any one parameter list.

13. Declaring Array Dimensions

The DIM keyword indicates that the parameter is an array. Commas specify array dimensions. The
number of dimensions is equal to the number of commas plus 1. For example:

EXTERNAL STRING FUNCTION new (DOUBLE, STRING DIM(,), DIM())

This statement declares a function named new that has three parameters. The first is a double-
precision floating-point value, the second is a two-dimensional string array, and the third is a one-
dimensional string array. The function returns a string result.

Remarks
• The EXTERNAL statement must precede any program reference to the constant, variable, function,

subroutine or picture declared in the statement.

• The EXTERNAL statement is not executable.

• A name declared in an EXTERNAL CONSTANT statement can be used in any nondeclarative
statement as if it were a constant.

• A name declared in an EXTERNAL FUNCTION statement can be used as a function invocation in
an expression. In addition, you can invoke a function with the CALL statement unless the function
data type is DECIMAL, HFLOAT, or STRING.

107

Chapter 3. Statements and Functions

• A name declared in an EXTERNAL SUB statement can be used in a CALL statement.

• The optional pass-mech clauses in the EXTERNAL FUNCTION and EXTERNAL SUB statements
tell VSI BASIC how to pass arguments to a non BASIC function or subprogram.

• BY VALUE specifies that VSI BASIC passes the argument's value.

• BY REF specifies that VSI BASIC passes the argument's address. This is the default for all
arguments except strings and entire arrays. If you know the size of string parameters and the
dimensions of array parameters, you can improve run-time performance by passing strings and
arrays by reference.

• BY DESC specifies that VSI BASIC passes the address of a BASIC descriptor. For information
about the format of a BASIC descriptor for strings and arrays, see Appendix A.

• If you do not specify the data type ANY or declare parameters as optional, the arguments passed
to external functions and subroutines should match the external parameters declared in the
EXTERNAL FUNCTION or EXTERNAL SUB statement in number, type, and passing mechanism.
VSI BASIC forces arguments to be compatible with declared parameters. If they are not compatible,
VSI BASIC signals an error.

Examples
Example 1
!External Constant
EXTERNAL LONG CONSTANT SS$_NORMAL

Example 2
!External Variable
EXTERNAL WORD SYSNUM

Example 3
!External Function
EXTERNAL DOUBLE FUNCTION USR$2(WORD,LONG,ANY)

Example 4
!External Subroutine
EXTERNAL SUB calc BY DESC (STRING DIM(,), BYTE BY REF)

FIELD
FIELD — The FIELD statement dynamically associates string variables with all or parts of a record
buffer. FIELD statements do not move data. Instead, they permit direct access through string variables
to sections of a specified record buffer. The FIELD statement is supported only for compatibility with
BASIC-PLUS-2. Because data defined in the FIELD statement can be accessed only as string data,
you must use the CVTxx functions to process numeric data; therefore, you must convert string data to
numeric after you move it from the record buffer. Then, after processing, you must convert numeric
data back to string data before transferring it to the record buffer. It is recommended that you use the

108

Chapter 3. Statements and Functions

VSI BASIC dynamic mapping feature or multiple maps instead of the FIELD statement and CVTxx
functions.

Format
FIELD #chnl-exp,int-exp AS str-var [,int-exp AS str-var]...

Syntax Rules
1. Chnl-exp is a numeric expression that specifies a channel number associated with a file. It must be

immediately preceded by a number sign (#). A file must be open on the specified channel or VSI
BASIC signals an error.

2. Int-exp specifies the number of characters in str-var. However, a subsequent int-exp cannot depend on
the return string from a previous int-exp. For example, the following statement is illegal because the
second int-exp depends on the return string A$:

FIELD #1%, 1% AS A$, ASCII(A$) AS B$

Remarks
• A FIELD statement is executable. You can change a buffer description at any time by executing

another FIELD statement. For example:

FIELD #1%, 40% AS whole_field$
FIELD #1%, 10% AS A$, 10% AS B$, 10% AS C$, 10% AS D$

The first FIELD statement associates the first 40 characters of a buffer with the variable whole_field
$. The second FIELD statement associates the first 10 characters of the same buffer with A$, the
second 10 characters with B$, and so on. Later program statements can refer to any of the variables
named in the FIELD statements to access specific portions of the buffer.

• You cannot define virtual array strings as string variables in a FIELD statement.

• A variable named in a FIELD statement cannot be used in a COMMON or MAP statement, as a
parameter in a CALL or SUB statement, or in a MOVE statement.

• Attempting to access an element of a virtual array in a virtual file that has associated FIELD
variables, causes BASIC to signal “Illegal operation” (ERR=141).

• If you name an array in a FIELD statement, you cannot use MAT statements in the following format:

MAT array-name1 = array-name2
MAT array-name1 = NUL$

where array-name1 is named in a FIELD statement. This causes VSI BASIC to signal a compile-time
error.

109

Chapter 3. Statements and Functions

Example
FIELD #8%, 2% AS U$, 2% AS CL$, 4% AS X$, 4% AS Y$
LSET U$ = CVT%$(U%)
LSET CL$ = CVT%$(CL%)
LSET X$ = CVTF$(X)
LSET Y$ = CVTF$(Y)
U% = CVT$%(U$)
CL% = CVT$%(CL$)
X = CVT$F(X$)
Y = CVT$F(Y$)

FIND
FIND — The FIND statement locates a specified record in a disk file and makes it the current record for
a GET, UPDATE, or DELETE operation. FIND statements are valid on RMS sequential, relative, and
indexed files.

Format
FIND #chnl-exp [, position-clause] [, lock-clause]

position_clause: {RFA rfa-exp | RECORD rec-exp | KEY# key-clause}

lock-clause: {ALLOW allow-clause [, WAIT [int-exp]] | WAIT [int-exp] |
 REGARDLESS}

allow-clause: {NONE | READ | MODIFY}

key-clause: int-exp1 rel-op key-exp

rel-op: {EQ | GE | NXEQ | GT | NX}

key-exp: {int-exp2 | str-exp | decimal-exp | quadword-exp}

Syntax Rules
1. Chnl-exp is a numeric expression that specifies a channel number associated with a file. It must be

immediately preceded by a number sign (#).

2. If you specify a lock-clause, it must follow the position-clause. If the lock-clause precedes the
position-clause, VSI BASIC signals an error.

3. If you specify the REGARDLESS lock-clause, you cannot specify another lock-clause in the same
FIND statement.

Remarks
1. Position-clause

• Position-clause specifies the position of a record in a file. VSI BASIC signals an error if you
specify a position-clause and the channel is not associated with a disk file. If you do not specify a
position-clause, FIND locates records sequentially. Sequential record access is valid on all files.

110

Chapter 3. Statements and Functions

• The RFA position-clause allows you to randomly locate records by specifying the record file
address (RFA) of a record. You specify the disk address of a record, and RMS locates the record
at that address. All file organizations can be accessed by RFA.

Rfa-exp in the RFA position-clause is a variable of the RFA data type that specifies the record's
file address. Note that an RFA expression can only be a variable of the RFA data type or the
GETRFA function. Use the GETRFA function to find the RFA of a record.

• The RECORD position-clause allows you to randomly locate records in relative and sequential
fixed files by specifying the record number.

• Rec-exp in the RECORD position-clause specifies the number of the record you want to
locate. It must be between 1 and the number of the record with the highest number in the file.

• When you specify a RECORD clause, chnl-exp must be a channel associated with an open
relative or sequential fixed file.

• The KEY position-clause allows you to randomly locate records in indexed files by specifying a
key of reference, a relational test, and a key value.

• An RFA value is valid only for the life of a specific version of a file. If a new version of a file is
created, the RFA values may change.

• Attempting to access a record with an invalid RFA value results in a run-time error.

2. Lock-clause

• Lock-clause allows you to control how a record is locked to other access streams, to override lock
checking when accessing shared files that may contain locked records, or to specify what action
to take in the case of a locked record.

• The type of lock you impose on a record remains in effect until you explicitly unlock it with
a FREE or UNLOCK statement, until you close the file, or until you perform a GET, FIND,
UPDATE or DELETE on the same channel (unless you specified UNLOCK EXPLICIT).

• The REGARDLESS lock-clause specifies that the FIND statement can override lock checking
and locate a record locked by another program.

• When you specify a REGARDLESS lock-clause, VSI BASIC does not impose a lock on the
retrieved record.

• The ALLOW lock-clause lets you control how a record is locked to other users and access
streams. The file associated with the specified channel must have been opened with the
UNLOCK EXPLICIT clause or VSI BASIC signals the error “Illegal record locking clause.”

• The ALLOW allow-clause can be one of the following:

• ALLOW NONE denies access to the record. This means that other access streams cannot
retrieve the record unless they bypass lock checking with the GET REGARDLESS clause.

• ALLOW READ provides read access to the record. This means that other access streams can
retrieve the record but cannot use the DELETE or UPDATE statements on the record.

• ALLOW MODIFY provides read and write to the record. This means that other access
streams can use the GET, FIND, DELETE, and UPDATE statements on the record.

111

Chapter 3. Statements and Functions

• If you do not open a file with the ACCESS READ clause or specify an allow-clause, locking is
imposed as follows:

• If the file associated with the specified channel was opened with UNLOCK EXPLICIT, VSI
BASIC imposes the ALLOW NONE lock on the retrieved record and the next GET or FIND
operation does not unlock the previously locked record.

• If the file associated with the specified channel was not opened with UNLOCK EXPLICIT,
VSI BASIC locks the retrieved record and unlocks the previously locked record.

• The WAIT lock-clause accepts an optional int-exp. Int-exp represents a timeout value in seconds.
Int-exp must be from 0 through 255 or VSI BASIC signals a warning message.

• WAIT followed by a timeout value causes RMS to wait for a locked record for a given period
of time.

• WAIT followed by no timeout value indicates that RMS should wait indefinitely for the
record to become available.

• If you specify a timeout value and the record does not become available within that period,
VSI BASIC signals the run-time error “Keyboard wait exhausted” (ERR=15). VMSSTATUS
and RMSSTATUS then return RMS$_TMO. For more information about the RMSSTATUS
and VMSSTATUS functions, see this chapter and the VSI BASIC User Manual.

• If you attempt to wait for a record that another user has locked, and consequently that
user attempts to wait for the record you have locked, a deadlock condition occurs. When
a deadlock condition persists for a period of time (as defined by the SYSGEN parameter
DEADLOCK_WAIT), RMS signals the error “RMS$_DEADLOCK” and VSI BASIC
signals the error “Detected deadlock error while waiting for GET or FIND” (ERR=193).

• If you specify a WAIT clause followed by a timeout value that is less than the SYSGEN
parameter DEADLOCK_WAIT, VSI BASIC signals the error “Keyboard wait exhausted”
(ERR=15) even though a deadlock condition may exist.

3. Key-clause

• In a key-clause, int-exp1 is the target key of reference. It must be an integer in the range of zero
to the highest-numbered key for the file. The primary key is #0, the first alternate key is #1, the
second alternate key is #2, and so on. Int-exp1 must be preceded by a number sign (#) or VSI
BASIC signals an error.

• When you specify a key-clause, the specified channel must be a channel associated with an open
indexed file.

4. Rel-op

• Rel-op is a relational operator that specifies how key-exp is to be compared with int-exp1 in the
key-clause.

• EQ means “equal to”

• NXEQ means “next or equal to”

• GE means “greater than or next” (a synonym for NXEQ)

112

Chapter 3. Statements and Functions

• NX means “next”

• GT means “greater than” (a synonym for NX)

• A successful random FIND operation by key locates the first record whose key satisfies the key-
clause comparison:

• With an exact key match (EQ), a successful FIND locates the first record in the file that
equals the key value specified in key-exp. However, if the characters specified by a str-exp
key expression are less than the key length, characters specified by str-exp are matched
approximately rather than exactly. For example, if you specify ABC and the key length is
six characters, VSI BASIC locates the first record that begins with ABC. If you specify
ABCABC, VSI BASIC locates only a record with the key ABCABC. If no match is possible,
VSI BASIC signals the error “Record not found” (ERR=155).

• If you specify a next or equal to record key match (NXEQ), a successful FIND locates the
next record that equals the key length specified in int-exp or str-exp. If no exact match exists,
VSI BASIC locates the next record in the key sort order. If the keys are in ascending order,
the next record will have a greater key value. If the keys are in descending order, the next
record will have a lesser key value.

• If you specify a greater than or equal to key match (GE), the behavior is identical to that
of next or equal to (NXEQ). (Likewise, the behavior of GT is identical to NX.) However,
the use of GE in a descending key file may be confusing, because GE will retrieve the next
record in the key sort order, but the next record will have a lesser key value. For this reason,
it is recommended that you use NXEQ in new program development, especially if you are
using descending key files.

• If you specify a next key match (NX), a successful FIND locates the first record that follows
the relational operator in the sort order. If no such record exists, VSI BASIC signals the error
“Record not found” (ERR=155).

5. Key-exp

• Int-exp2 specifies an integer value to be compared with the key value of a record.

• Str-exp specifies a string value to be compared with the key value of a record. Str-exp can contain
fewer characters than the key of the record you want to locate, but cannot be a null string.

Str-exp cannot contain more characters than the key of the record you want to locate. If str-exp
does contain more characters than the key, BASIC signals "Key size too large" (ERR = 145).

• Decimal-exp in the key-clause specifies a packed decimal value to be compared with the key
value of a record.

• Quadword-exp in the key-clause specifies a record or group exactly 8 bytes long to be compared
with the key value of a record.

6. The file on the specified channel must have been opened with ACCESS MODIFY, ACCESS READ,
or SCRATCH before your program can execute a FIND operation.

7. FIND does not transfer any data to the record buffer. To access the contents of a record, use the
GET statement.

113

Chapter 3. Statements and Functions

8. A successful sequential FIND operation updates both the current record pointers and next record
pointers.

• For sequential files, a successful FIND operation locates the next sequential record (the record
pointed to by the next record pointer) in the file, changes the current record pointer to the record
just found, and the next record pointer to the next sequential record. If the current record pointer
points to the last record in a file, a sequential FIND operation causes VSI BASIC to signal
“Record not found” (ERR=155).

• For relative files, a successful FIND operation locates the record that exists with the next higher
record number (or cell number), makes it the current record, and changes the next record pointer
to the current record pointer plus 1.

• For indexed files, a successful FIND operation locates the next existing logical record in the
current key of reference, makes this the current record, and changes the next record pointer to the
current record pointer plus 1.

9. A successful random access FIND operation by RFA or by record changes the current record pointer
to the record specified by rfa-exp or int-exp, but leaves the next record pointer unchanged.

10. A successful random access FIND operation by key changes the current record pointer to the first
record whose key satisfies the key-clause comparison and leaves the next record pointer unchanged.

11. When a random access FIND operation by RFA, record, or key is not successful, VSI BASIC signals
“Record not found” (ERR=155). The values of the current record pointer and next record pointer are
undefined.

12. You should not use a FIND statement on a terminal-format or virtual array file.

Example
DECLARE LONG rec-num
MAP (cusrec) WORD cus_num &
 STRING cus_nam=20, cus_add=20, cus_city=10, cus_zip=9
OPEN "CUS_ACCT.DAT" FOR INPUT AS #1, &
 RELATIVE FIXED, &
 ACCESS MODIFY &
 MAP cusrec
INPUT "Which record number would you like to delete";rec_num
FIND #1, RECORD rec_num, WAIT
DELETE #1
CLOSE #1
END

FIX
FIX — The FIX function truncates a floating-point value at the decimal point and returns the integer
portion represented as a floating-point value.

Format
real-var = FIX (real-exp)

114

Chapter 3. Statements and Functions

Syntax Rules
None

Remarks
1. The FIX function returns the integer portion of a floating-point value, not an integer value.

2. VSI BASIC expects the argument of the FIX function to be a real expression. When the argument is
a real expression, VSI BASIC returns a value of the same floating-point size. When the argument is
not a real expression, VSI BASIC converts the argument to the default floating-point size and returns
a value of the default floating-point size.

3. If real-exp is negative, FIX returns the negative integer portion. For example, FIX(–5.2) returns –5.

Example
DECLARE SINGLE result
result = FIX(-3.333)
PRINT FIX(24.566), result

Output

 24 -3

FNEND
FNEND — The FNEND statement is a synonym for the END DEF statement. See the END statement
for more information.

Format
FNEND [exp]

FNEXIT
FNEXIT — The FNEXIT statement is a synonym for the EXIT DEF statement. See the EXIT
statement for more information.

Format
FNEXIT [exp]

FOR
FOR — The FOR statement repeatedly executes a block of statements, while incrementing a
specified control variable for each execution of the statement block. FOR loops can be conditional or
unconditional, and can modify other statements.

115

Chapter 3. Statements and Functions

Format
Unconditional
FOR num-unsubs-var = num-exp1 TO num-exp2 [STEP num-exp3]
 [statement]...
NEXT num-unsubs-var

Conditional
FOR num-unsubs-var = num-exp1 [STEP num-exp3] {UNTIL | WHILE} cond-exp
 [statement]...
NEXT num-unsubs-var

Unconditional Statement Modifier
statement FOR num-unsubs-var = num-exp1 TO num-exp2 [STEP num-exp3]

Conditional Statement Modifier
statement FOR num-unsubs-var = num-exp1 [STEP num-exp3] {UNTIL |
 WHILE} cond-exp

Syntax Rules
1. Num-unsubs-var must be a numeric, unsubscripted variable. Num-unsubs-var cannot be a record field.

2. Num-unsubs-var is the loop variable. It is incremented each time the loop executes.

3. In unconditional FOR loops, num-exp1 is the initial value of the loop variable; num-exp2 is the
maximum value.

4. In conditional FOR loops, num-exp1 is the initial value of the loop variable, while the cond-exp in the
WHILE or UNTIL clause is the condition that controls loop iteration.

5. Num-exp3 in the STEP clause is the value by which the loop variable is incremented after each
execution of the loop.

Remarks
1. There is a limit to the number of inner loops you can contain within a single outer loop. This number

varies according to the complexity of the loops. If you exceed the limit, VSI BASIC signals an error
message.

2. An inner loop must be entirely within an outer loop; the loops cannot overlap.

3. You cannot use the same loop variable in nested FOR loops. For example, if the outer loop uses FOR
I = 1 TO 10, you cannot use the variable I as a loop variable in an inner loop.

4. The default for num-exp3 is 1 if there is no STEP clause.

5. You can transfer control into a FOR loop only by returning from a function invocation, a subprogram
call, a subroutine call, or an error handler that was invoked in the loop.

116

Chapter 3. Statements and Functions

6. The starting, incrementing, and ending values of the loop do not change during loop execution.

7. The loop variable can be modified inside the FOR loop.

8. VSI BASIC converts num-exp1, num-exp2, and num-exp3 to the data type of the loop variable before
storing them.

9. When an unconditional FOR loop ends, the loop variable contains the value last used in the loop, not
the value that caused loop termination.

10. During each iteration of a conditional loop, VSI BASIC tests the value of cond-exp before it executes
the loop.

•

• If you specify a WHILE clause and cond-exp is false (value zero), VSI BASIC exits from the
loop. If the cond-exp is true (value nonzero), the loop executes again.

• If you specify an UNTIL clause and cond-exp is true (value nonzero), VSI BASIC exits from the
loop. If the exp is false (value zero), the loop executes again.

11. When FOR is used as a statement modifier, VSI BASIC executes the statement until the loop
variable equals or exceeds num-exp2 or until the WHILE or UNLESS condition is satisfied.

12. Each FOR statement must have a corresponding NEXT statement or VSI BASIC signals an error.
(This is not the case if the FOR statement is used as a statement modifier.)

Examples
Example 1
!Unconditional
DECLARE LONG course_num, STRING course_nam
FOR I = 3 TO 12 STEP 3
INPUT "Course number";course_num
INPUT "Course name";course_nam
NEXT I

Output

Course number? 221
Course name? Botany
Course number? 231
Course name? Organic Chemistry
Course number? 237
Course name? Life Science II
Course number? 244
Course name? Programming in BASIC

Example 2
!Unconditional Statement Modifier
DECLARE INTEGER counter
PRINT "This is an unconditional statement modifier" FOR counter = 1 TO 3
END

Output

117

Chapter 3. Statements and Functions

This is an unconditional statement modifier
This is an unconditional statement modifier
This is an unconditional statement modifier

Example 3
!Conditional Statement Modifier
DECLARE INTEGER counter, &
 STRING my_name
INPUT "Try and guess my name";my_name FOR counter = 1 UNTIL my_name =
 "BASIC"
PRINT "You guessed it!"

Output

Try and guess my name? VAX PASCAL
Try and guess my name? VAX SCAN
Try and guess my name? BASIC
You guessed it!

FORMAT$
FORMAT$ — The FORMAT$ function converts an expression to a formatted string.

Format
str-var = FORMAT$ (exp, str-exp)

Syntax Rules
The rules for building a format string are the same as those for printing numbers with the PRINT
USING statement. See the description of the PRINT USING statement for more information.

Remarks
It is recommended that you use compile-time constant expressions for string expressions whenever
possible. When you do this, the VSI BASIC compiler compiles the string at compilation time rather than
at run time, thus improving the performance of your code.

Example
DECLARE STRING result, &
 INTEGER num_exp
num_exp = 12345
result = FORMAT$(num_exp,"##,###")
PRINT result

Output

12,345

118

Chapter 3. Statements and Functions

FREE
FREE — The FREE statement unlocks all records and buckets associated with a specified channel.

Format
FREE #chnl-exp

Syntax Rules
Chnl-exp is a numeric expression that specifies a channel number associated with a file. It must be
immediately preceded by a number sign (#).

Remarks
1. The file specified by chnl-exp must be open.

2. You cannot use the FREE statement with files not on disk.

3. If there are no locked records or buckets on the specified channel, the FREE statement has no effect
and VSI BASIC does not signal an error.

4. The FREE statement does not change record buffers or pointers.

5. After a FREE statement has executed, your program must execute a GET or FIND statement before
a PUT, UPDATE, or DELETE statement can execute successfully.

Example
OPEN "CUST_ACCT.DAT" FOR INPUT AS #3
 .
 .
 .
INPUT "Enter customer record number to retrieve";cust_rec_num
FREE #3
GET #3

In this example, CUST_ACCT.DAT is opened for input. The FREE statement unlocks all records
associated with the specified channel contained in the file. Once the FREE statement successfully
executes, you can then obtain a record with either a FIND or GET statement.

FSP$
FSP$ — The FSP$ function returns a string describing an open file on a specified channel. VSI BASIC
supports the FSP$ function for compatibility with BASIC-PLUS-2. It is recommended that you use the
USEROPEN routine to identify file characteristics.

Format
str-var = FSP$ (chnl-exp)

Syntax Rules
1. A file must be open on chnl-exp.

119

Chapter 3. Statements and Functions

2. The FSP$ function must come immediately after the OPEN statement for the file.

Remarks
1. Use the FSP$ function with files opened as ORGANIZATION UNDEFINED. Then use multiple

MAP statements to interpret the returned data.

2. See the VSI BASIC User Manual and the VSI OpenVMS Record Management Services Reference
Manual for more information about FSP$ values.

Example
10 MAP (A) STRING A = 32
 MAP (A) BYTE org, rat, WORD mrs, LONG alq, &
 WORD bks_bls, num_keys,LONG mrn
 OPEN "STUDENT.DAT" FOR INPUT AS #1%, &
 ORGANIZATION UNDEFINED, &
 RECORDTYPE ANY, ACCESS READ
 A = FSP$(1%)
 PRINT "RMS organization = ";org
 PRINT "RMS record attributes = ";rat
 PRINT "RMS maximum record size = ";mrs
 PRINT "RMS allocation quantity = ";alq
 PRINT "RMS bucket size = ";bks_bls
 PRINT "Number of keys = ";num_keys
 PRINT "RMS maximum record number = ";mrn

Output

RMS organization = 2
RMS record attributes = 2
RMS maximum record size = 5
RMS allocation quantity = 1
RMS bucket size = 0
Number of keys = 0
RMS maximum record number = 0

FUNCTION
FUNCTION — The FUNCTION statement marks the beginning of a FUNCTION subprogram and
defines the subprogram's parameters.

Format
FUNCTION data-type func-name [pass-mech][([formal-param],...)]
 [statement]...
{END FUNCTION [exp | FUNCTIONEND [exp]]}

pass-mech: {BY REF | BY DESC | BY VALUE}

formal param: [data-type] {unsubs-var | array-name ([int-const],… |
 [,]...)}
 [= int-const] [pass-mech]

120

Chapter 3. Statements and Functions

Syntax Rules

1. Func-name names the FUNCTION subprogram.

2. Func-name can be from 1 through 31 characters. The first character must be an alphabetic character
(A to Z). The remaining characters, if present, can be any combination of letters, digits (0 to 9),
dollar signs ($), periods (.), or underscores (_).

3. Data-type can be any VSI BASIC data type keyword or a data type defined in the RECORD
statement. Data type keywords, size, range, and precision are listed in Table 1.2.

4. The data type that precedes the func-name specifies the data type of the value returned by the
function.

5. Formal-param specifies the number and type of parameters for the arguments the function expects to
receive when invoked.

• Empty parentheses indicate that the function has no parameters.

• Data-type specifies the data type of a parameter. If you do not specify a data type, parameters are
of the default data type and size. When you do specify a data type, all following parameters are
of that data type until you specify a new data type.

If the data type is STRING and the passing mechanism is by reference (BY REF), the =int-const
clause allows you to specify the length of the string.

• Parameters defined in formal-param must agree in number and type with the arguments specified
in the function invocation. VSI BASIC allows you to specify from 1 to 255 formal parameters.

6. Pass-mech specifies the parameter-passing mechanism by which the FUNCTION subprogram
receives arguments when invoked. A pass-mech clause should be specified only when the
FUNCTION subprogram is being called by a non BASIC program or when the FUNCTION receives
a string or array by reference.

7. A pass-mech clause outside the parentheses applies by default to all function parameters. A
pass-mech clause in the formal-param list overrides the specified default and applies only to the
immediately preceding parameter.

8. Exp specifies the function result, which supersedes any function assignment. Exp must be compatible
with the function's data type.

Remarks
1. The FUNCTION statement must be the first statement in the FUNCTION subprogram.

2. Every FUNCTION statement must have a corresponding END FUNCTION or FUNCTIONEND
statement.

3. Any VSI BASIC statement except END, PICTURE, END PICTURE, PROGRAM, END
PROGRAM, SUB, SUBEND, END SUB, or SUBEXIT can appear in a FUNCTION subprogram.

4. FUNCTION subprograms must be declared with the EXTERNAL statement before your VSI BASIC
program can invoke them.

121

Chapter 3. Statements and Functions

5. FUNCTION subprograms receive parameters by reference, by descriptor, or by value.

• BY REF specifies that the function receives the argument's address.

• BY DESC specifies that the function receives the address of a BASIC descriptor. For information
about the format of a BASIC descriptor for strings and arrays, see the VSI BASIC User Manual;
for information about other types of descriptors, see the OpenVMS Calling Standard.

• BY VALUE specifies that the function receives a copy of the argument value.

6. By default, FUNCTION subprograms receive numeric unsubscripted variables by reference, and all
other parameters by descriptor. You can override these defaults with a BY clause:

• If you specify a string length with the =int-const clause, you must also specify BY REF. If you
specify BY REF and do not specify a string length, VSI BASIC uses the default string length of
16.

• If you specify array bounds, you must also specify BY REF.

7. All variables and data, except virtual arrays, COMMON areas, MAP areas, and EXTERNAL
variables, in a FUNCTION subprogram, are local to the subprogram.

8. VSI BASIC initializes local numeric variables to zero and local string variables to the null string each
time the FUNCTION subprogram is invoked.

9. If an exception is not handled within the FUNCTION subprogram, control is transferred back to the
main program that invoked the function.

10. Functions can be recursive.

Example
FUNCTION REAL sphere_volume (REAL R)
IF R < 0 THEN EXIT FUNCTION
sphere_volume = 4/3 * PI *R **3
END FUNCTION

FUNCTIONEND
FUNCTIONEND — The FUNCTIONEND statement is a synonym for the END FUNCTION
statement. See the END statement for more information.

Format
FUNCTIONEND [exp]

FUNCTIONEXIT
FUNCTIONEXIT — The FUNCTIONEXIT statement is a synonym for the EXIT FUNCTION
statement. See the EXIT statement for more information.

122

Chapter 3. Statements and Functions

Format
FUNCTIONEXIT [exp]

GET
GET — The GET statement copies a record from a file to a record buffer and makes the data available
for processing. GET statements are valid on sequential, relative, and indexed files.

Format
GET #chnl-exp [, position-clause] [, lock-clause]

position-clause: {RFA rfa-exp | ECORD rec-exp KEY# key-clause}

lock-clause: {ALLOW allow-clause [, WAIT [int-exp]] | WAIT [int-exp] |
 REGARDLESS}

allow-clause: {NONE | READ | MODIFY}

key-clause:int-exp1 rel-op key-exp

rel-op: {EQ | GE | NXEQ | GT | NX}

key-exp: {int-exp2 | str-exp decimal-exp quadword-exp}

Syntax Rules
1. Chnl-exp is a numeric expression that specifies a channel number associated with a file. It must be

immediately preceded by a number sign (#).

2. If you specify a lock-clause, it must follow the position-clause. If the lock-clause precedes the
position-clause, VSI BASIC signals an error.

3. If you specify the REGARDLESS lock-clause, you cannot specify another lock-clause in the same
GET statement.

Remarks
1. Position-clause

• Position-clause specifies the position of a record in a file. VSI BASIC signals an error if you
specify a position-clause and chnl-exp is not associated with a disk file. If you do not specify a
position-clause, GET retrieves records sequentially. Sequential record access is valid on all files.

• The RFA position-clause allows you to randomly retrieve records by specifying the record file
address (RFA); you specify the disk address of a record, and RMS retrieves the record at that
address. All file organizations can be accessed by RFA.

Rfa-exp in the RFA position-clause is an expression of the RFA data type that specifies the
record's file address. An RFA expression must be a variable of the RFA data type or the
GETRFA function. Use the GETRFA function to obtain the RFA of a record.

• The RECORD position-clause allows you to randomly retrieve records in relative and sequential
fixed files by specifying the record number.

123

Chapter 3. Statements and Functions

• Rec-exp in the RECORD position-clause specifies the number of the record you want to
retrieve. It must be between 1 and the number of the record with the highest number in the
file.

• When you specify a RECORD clause, chnl-exp must be a channel associated with an open
relative or sequential fixed file.

• The KEY position-clause allows you to randomly retrieve records in indexed files by specifying a
key of reference, a relational test, or a key value.

• An RFA value is valid only for the life of a specific version of a file. If a new version of a file is
created, the RFA values may change.

• Attempting to access a record with an invalid RFA value results in a run-time error.

2. Lock-clause

• Lock-clause allows you to control how a record is locked to other access streams, to override lock
checking when accessing shared files that may contain locked records, or to specify what action
to take in the case of a locked record.

• The type of lock you impose on a record remains in effect until you explicitly unlock it with
a FREE or UNLOCK statement, until you close the file, or until you perform a GET, FIND,
UPDATE or DELETE on the same channel (unless you specified UNLOCK EXPLICIT).

• The REGARDLESS lock-clause specifies that the GET statement can override lock checking and
read a record locked by another program.

• When you specify a REGARDLESS lock-clause, VSI BASIC does not impose a lock on the
retrieved record.

• If you specify an ALLOW lock-clause, the file associated with chnl-exp must have been opened
with the UNLOCK EXPLICIT clause or VSI BASIC signals the error “Illegal record locking
clause.”

• The ALLOW allow-clause can be one of the following:

• ALLOW NONE denies access to the record. This means that other access streams cannot
retrieve the record unless they bypass lock checking with the REGARDLESS clause.

• ALLOW READ provides read access to the record. This means that other access streams can
retrieve the record, but cannot DELETE or UPDATE the record.

• ALLOW MODIFY provides both read and write access to the record. This means that other
access streams can GET, FIND, DELETE, or UPDATE the record.

• If you do not open a file with ACCESS READ or specify an ALLOW lock-clause, locking is
imposed as follows:

• If the file associated with chnl-exp was opened with UNLOCK EXPLICIT, VSI BASIC
imposes the ALLOW NONE lock on the retrieved record and the next GET or FIND
statement does not unlock the previously locked record.

• If the file associated with chnl-exp was not opened with UNLOCK EXPLICIT, VSI BASIC
locks the retrieved record and unlocks the previously locked record.

124

Chapter 3. Statements and Functions

• The WAIT lock-clause accepts an optional int-exp. Int-exp represents a timeout value in seconds.
Int-exp must be from 0 to 255 or VSI BASIC issues a warning message.

• WAIT followed by a timeout value causes RMS to wait for a locked record for a given period
of time.

• WAIT followed by no timeout value indicates that RMS should wait indefinitely for the
record to become available.

• If you specify a timeout value and the record does not become available within that period,
VSI BASIC signals the run-time error “Keyboard wait exhausted” (ERR=15). VMSSTATUS
and RMSSTATUS then return RMS$_TMO. For more information about these functions,
see the RMSSTATUS and VMSSTATUS functions in this chapter and the VSI BASIC User
Manual.

• If you attempt to wait for a record that another user has locked, and consequently that
user attempts to wait for the record you have locked, a deadlock condition occurs. When
a deadlock condition persists for a period of time (as defined by the SYSGEN parameter
DEADLOCK_WAIT), RMS signals the error “RMS$_DEADLOCK” and VSI BASIC
signals the error “Detected deadlock error while waiting for GET or FIND” (ERR=193).

• If you specify a WAIT clause followed by a timeout value that is less than the SYSGEN
parameter DEADLOCK_WAIT, then VSI BASIC signals the error “Keyboard wait
exhausted” (ERR=15) even though a deadlock condition may exist.

• If you specify a WAIT clause on a GET operation to a unit device, the timeout value
indicates how long to wait for the input to complete. This is equivalent to the WAIT
statement.

3. Key-clause

• In a key-clause, int-exp1 is the target key of reference. It must be an integer value in the range of
zero to the highest-numbered key for the file. The primary key is #0, the first alternate key is #1,
the second alternate key is #2, and so on. Int-exp1 must be preceded by a number sign (#) or VSI
BASIC signals an error.

• When you specify a key-clause, chnl-exp must be a channel associated with an open indexed file.

4. Rel-op

• Rel-op specifies how key-exp is to be compared with int-exp1 in the key-clause.

• EQ means “equal to”

• NXEQ means “next or equal to”

• GE means “greater than or equal to” (a synonym for NXEQ)

• NX means “next”

• GT means “greater than” (a synonym for NX)

• With an exact key match (EQ), a successful GET operation retrieves the first record in the file
that equals the key value specified in key-exp. If the key expression is a str-exp whose length is
less than the key length, characters specified by the str-exp are matched approximately rather

125

Chapter 3. Statements and Functions

than exactly. That is, if you specify a string expression ABC and the key length is six characters,
VSI BASIC matches the first record that begins with ABC. If you specify ABCABC, VSI BASIC
matches only a record with the key ABCABC. If no match is possible, VSI BASIC signals the
error “Record not found” (ERR=155).

• If you specify a next or equal to key match (NXEQ), a successful GET operation retrieves the
first record that equals the key value specified in key-exp. If no exact match exists, VSI BASIC
retrieves the next record in the key sort order. If the keys are in ascending order, the next record
will have a greater key value. If the keys are in descending order, the next record will have a
lesser key value.

• If you specify a greater than key match (GT), a successful GET operation retrieves the first
record with a value greater than key-exp. If no such record exists, VSI BASIC signals the error
“Record not found” (ERR=155).

• If you specify a next key match (NX), a successful GET operation retrieves the first record that
follows the key expression in the key sort order. If no such record exists, VSI BASIC signals the
error “Record not found” (ERR=155).

• If you specify a greater than or equal to key match (GE), the behavior is identical to that of next
or equal to (NXEQ). Likewise, the behavior of GT is identical to NX. However, the use of GE in
a descending key file may be confusing because GE will retrieve the next record in the key sort
order, but the next record will have a lesser key value. For this reason, it is recommended that
you use NXEQ in new program development, especially if you are using descending key files.

5. Key-exp

• Int-exp2 in the key-clause specifies an integer value to be compared with the key value of a
record.

• Str-exp in the key-clause specifies a string value to be compared with the key value of a record.
The string expression can contain fewer characters than the key of the record you want to retrieve
but it cannot be a null string.

Str-exp cannot contain more characters than the key of the record you want to locate. If str-exp
does contain more characters than the key, BASIC signals "Key size too large" (ERR = 145).

• Decimal-exp in the key-clause specifies a packed decimal value to be compared with the key
value of a record.

• Quadword-exp in the key-clause specifies a record or group exactly 8 bytes long to be compared
with the key value of a record.

6. The file specified by chnl-exp must be opened with ACCESS READ or ACCESS MODIFY or
SCRATCH before your program can execute a GET statement. The default ACCESS clause is
MODIFY.

7. If the last I/O operation was a successful FIND operation, a sequential GET operation retrieves the
current record located by the FIND operation and sets the next record pointer to the record logically
succeeding the pointer.

8. If the last I/O operation was not a FIND operation, a sequential GET operation retrieves the next
record and sets the record logically succeeding the record pointer to the current record.

• For sequential files, a sequential GET operation retrieves the next record in the file.

126

Chapter 3. Statements and Functions

• For relative files, a sequential GET operation retrieves the record with the next higher cell
number.

• For indexed files, a sequential GET operation retrieves the next record in the current key of
reference.

9. A successful random GET operation by RFA or by record retrieves the record specified by rfa-exp or
int-exp.

10. A successful random GET operation by key retrieves the first record whose key satisfies the key-
clause comparison.

11. A successful random GET operation by RFA, record, or key sets the value of the current record
pointer to the record just read. The next record pointer is set to the next logical record.

12. An unsuccessful GET operation leaves the record pointers and the record buffer in an undefined
state.

13. If the retrieved record is smaller than the receiving buffer, VSI BASIC fills the remaining buffer
space with nulls.

14. If the retrieved record is larger than the receiving buffer, VSI BASIC truncates the record and signals
an error.

15. A successful GET operation sets the value of the RECOUNT variable to the number of bytes
transferred from the file to the record buffer.

16. You should not use a GET statement on a terminal-format or virtual array file.

Example
 DECLARE LONG rec-num
 MAP (CUSREC) WORD cus_num &
 STRING cus_nam = 20, cus_add = 20, cus_city = 10, cus_zip = 9
 OPEN "CUS_ACCT.DAT" FOR INPUT AS #1 &
 RELATIVE FIXED, ACCESS MODIFY, &
 MAP CUSREC
 INPUT "Which record number would you like to view";rec_num
 GET #1, RECORD REC_NUM, REGARDLESS
 PRINT "The customer's number is ";CUS_NUM
 PRINT "The customer's name is ";cus_nam
 PRINT "The customer's address is ";cus_add
 PRINT "The customer's city is ";cus_city
 PRINT "The customer's zip code is ";cus_zip
 CLOSE #1
 END

GETRFA
GETRFA — The GETRFA function returns the record's file address (RFA) of the last record accessed
in an RMS file open on a specified channel.

127

Chapter 3. Statements and Functions

Format
rfa-var = GETRFA (chnl-exp)

Syntax Rules
1. Rfa-var is a variable of the RFA data type.

2. Chnl-exp is the channel number of an open RMS file. You cannot include a number sign in the
channel expression.

3. You must access a record in the file with a GET, FIND, or PUT statement before using the GETRFA
function, or VSI BASIC signals “No current record” (ERR=131).

Remarks
1. There must be a file open on the specified chnl-exp or VSI BASIC signals an error.

2. You can use the GETRFA function with RMS sequential, relative, indexed, and block I/O files.

3. The RFA value returned by the GETRFA function can be used only for assignments to and
comparisons with other variables of the RFA data type. Comparisons are limited to equal to (=) and
not equal to (<>) relational operations.

4. RFA values cannot be printed or used for any arithmetic operations.

5. If you open a file without specifying a file organization (sequential, relative, virtual, or indexed), VSI
BASIC defaults to terminal-format. See the VSI BASIC User Manual for more information.

Example
DECLARE RFA R_ARRAY(1 TO 100)
 .
 .
 .
FOR I% = 1% TO 100%
 PUT #1
 R_ARRAY(I%) = GETRFA(1)
NEXT I%

GOSUB
GOSUB — The GOSUB statement transfers control to a specified line number or label and stores the
location of the GOSUB statement for eventual return from the subroutine.

Format
{GO SUB | GOSUB} target

Syntax Rules

1. Target must refer to an existing line number or label in the same program unit as the GOSUB
statement or VSI BASIC signals an error.

128

Chapter 3. Statements and Functions

2. Target cannot be inside a block structure such as a FOR...NEXT, WHILE, or UNTIL loop or a
multiline function definition unless the GOSUB statement is also within that block or function
definition.

Remarks
1. You can use the GOSUB statement from within protected regions of a WHEN block. GOSUB

statements can also contain protected regions themselves.

2. If you fail to handle an exception that occurs while a statement contained in the body of a subroutine
is executing, the exception is handled by the default error handler. The exception is not handled by
any WHEN block surrounding the statement that invoked the subroutine.

Example
GOSUB subroutine_1
 .
 .
 .
subroutine_1:
 .
 .
 .
RETURN

GOTO
GOTO — The GOTO statement transfers control to a specified line number or label.

Format
{GO TO | GOTO} target

Syntax Rules

1. Target must refer to an existing line number or label in the same program unit as the GOTO
statement or VSI BASIC signals an error.

2. Target cannot be inside a block structure such as a FOR...NEXT, WHILE, or UNTIL loop or
a multiline function definition unless the GOTO statement is also inside that loop or function
definition.

Remarks
1. You can specify the GOTO statement inside a WHEN block if the target is in the same protected

region, an outer level protected region, or in a nonprotected region.

2. You cannot specify the GOTO statement inside a WHEN block if the target already resides in
another protected region that does not contain the innermost current protected region.

Example
IF answer = 0

129

Chapter 3. Statements and Functions

 THEN GOTO done
END IF
 .
 .
 .
done:
 EXIT PROGRAM

HANDLER
HANDLER — The handler statement marks the beginning of a detached handler.

Format
HANDLER handler-name

Syntax Rules
Handler-name must be a valid VSI BASIC identifier and must not be the same as any label, DEF, DEF*,
SUB, FUNCTION or PICTURE name.

Remarks
1. A detached handler must be delimited by a HANDLER statement and an END HANDLER

statement.

2. A detached handler can be used only with VSI BASIC's exception-handling mechanism. If you
attempt to branch into a detached handler, for example with the GOTO statement, VSI BASIC
signals a compile-time error.

3. To exit from a detached handler, you must use either END HANDLER, EXIT HANDLER, RETRY
or CONTINUE. See these statements for more information.

4. Within a handler, VSI BASIC allows you to specify user-defined function references except for DEF*
references, as well as procedure invocations and BASIC statements.

5. The following statements are illegal inside a handler:

• EXIT PROGRAM, FUNCTION, SUB, or PICTURE

• GOTO to a target outside the handler

• GOSUB to a target outside the handler

• ON ERROR

• RESUME

Example
WHEN ERROR USE err_handler
 .
 .

130

Chapter 3. Statements and Functions

 .
END WHEN
HANDLER err_handler
 IF ERR = 50 THEN PRINT "Insufficient data"
 RETRY
 ELSE EXIT HANDLER
 END IF
END HANDLER

IF
IF — The IF statement evaluates a conditional expression and transfers program control depending on
the resulting value.

Format
Conditional
IF cond-exp THEN statement... [ELSE statement...] END IF

Statement Modifier
statement IF cond-exp

Syntax Rules
1. Conditional

• Cond-exp can be any valid conditional expression.

• All statements between the THEN keyword and the next ELSE, line number, or END IF are part
of the THEN clause. All statements between the keyword ELSE and the next line number or
END IF are part of the ELSE clause.

• VSI BASIC assumes a GOTO statement when the keyword ELSE is followed by a line number.
When the target of a GOTO statement is a label, the keyword GOTO is required. The use of this
syntax is not recommended for new program development.

• The END IF statement terminates the most recent unterminated IF statement.

• A new line number terminates all unterminated IF statements.

2. Statement Modifier

• IF can modify any executable statement except a block statement such as FOR, WHILE, UNTIL,
or SELECT.

• Cond-exp can be any valid conditional expression.

Remarks
1. Conditional

131

Chapter 3. Statements and Functions

• VSI BASIC evaluates the conditional expression for truth or falsity. If true (nonzero), VSI BASIC
executes the THEN clause. If false (zero), VSI BASIC skips the THEN clause and executes the
ELSE clause, if present.

• The keyword NEXT cannot be in a THEN or ELSE clause unless the FOR or WHILE statement
associated with the keyword NEXT is also part of the THEN or ELSE clause.

• If a THEN or ELSE clause contains a block statement such as a FOR, SELECT, UNTIL, or
WHILE, then a corresponding block termination statement such as a NEXT or END, must
appear in the same THEN or ELSE clause.

• IF statements can be nested to 12 levels.

• Any executable statement is valid in the THEN or ELSE clause, including another IF statement.
You can include any number of statements in either clause.

• Execution continues at the statement following the END IF or ELSE clause. If the statement does
not contain an ELSE clause, execution continues at the next statement after the THEN clause.

2. Statement Modifier

• VSI BASIC executes the statement only if the conditional expression is true (nonzero).

Example
IF Update_flag = True
THEN
 Weekly_salary = New_rate * 40.0
 UPDATE #1
 IF Dept <> New_dept
 THEN
 GET #1, KEY #1 EQ New_dept
 Dept_employees = Dept_employees + 1
 UPDATE #1
 END IF
 PRINT "Update complete"
ELSE
 PRINT "Skipping update for this employee"
END IF

INKEY$
INKEY$ — The INKEY$ function reads a single keystroke from a terminal opened on a specified
channel and returns the typed character.

Format
string-var = INKEY$ (chnl-exp [,WAIT [int-exp]])

Syntax Rules
1. Chnl-exp must be the channel number of a terminal.

132

Chapter 3. Statements and Functions

2. Int-exp represents the timeout value in seconds and must be from 0 to 255. Values beyond this range
cause VSI BASIC to signal a compile-time or run-time error.

Remarks
1. Before using the INKEY$ function, specify the DCL command SET TERMINAL/HOSTSYNC.

This command controls whether the system can synchronize the flow of input from the terminal. If
you specify SET TERMINAL/HOSTSYNC, the system generates a Ctrl/S or a Ctrl/Q to enable or
disable the reception of input. This prevents the typeahead buffer from overflowing. If you do not
use this command and the typeahead buffer overflows, VSI BASIC signals the error “Data overflow”
(ERR=289).

2. Before using the INKEY$ function on a VT200-series terminal, set your terminal to VT200 mode
with 7 bit controls.

3. Before using the INKEY$ function, either your terminal or OpenVMS system, but not both, must
enable screen wrapping. To enable terminal screen wrapping, use the Set-Up key on your terminal's
keyboard to set the terminal to Auto Wrap. Then disable OpenVMS screen wrapping by entering
the DCL SET TERMINAL /NOWRAP command. To enable OpenVMS screen wrapping, enter the
DCL SET TERMINAL/WRAP command. Then disable terminal screen wrapping by using the Set-
Up key to set the terminal to No Auto Wrap.

4. The INKEY$ function behaves as if the terminal were in APPLICATION_KEYPAD mode. If your
terminal is set to NUMERIC_KEYPAD mode, the results may be unpredictable.

5. If the channel is not open, VSI BASIC signals the error “I/O, channel not open” (ERR=9). If a
file or a device other than a terminal is open on the channel, VSI BASIC signals the error “Illegal
operation” (ERR=141).

6. The optional WAIT clause specifies a timeout interval during which the command will await
terminal input. If you specify WAIT int-exp, the timeout period will be the specified number of
seconds. If you specify a WAIT clause followed by no timeout value, VSI BASIC waits indefinitely
for terminal input.

7. VSI BASIC always examines the typeahead buffer first and retrieves the next keystroke in the
buffer if the buffer is not empty. If the typeahead buffer is empty and an optional WAIT clause was
specified, VSI BASIC waits for a keystroke to be typed for the specified timeout interval (indefinitely
if WAIT was specified with no timeout interval). If the typeahead buffer is empty, and the waiting
period is either not specified or expired, VSI BASIC returns the error message “Keyboard wait
exhausted” (ERR=15).

8. The escape character (ASCII code 27) is not valid as INKEY$ input. If you enter an escape
character, normal program execution resumes when the INKEY$ times out. Without a specified
timeout value, the program execution cannot resume without error.

9. VSI BASIC returns the error message “Keyboard wait exhausted” (ERR=15) when any key is
pressed after the escape character if no timeout is specified or if the specified timeout has not yet
occurred.

10. INKEY$ turns off all line editing. As a result, control of all line-editing characters and the arrow
keys is passed back to the user.

11. Nonediting characters normally intercepted by the OpenVMS terminal driver are not returned. These
include the Ctrl/C, Ctrl/Y, Ctrl/S, and Ctrl/O characters (unless Ctrl/C trapping is enabled). They are
handled by the device driver just as in normal input.

133

Chapter 3. Statements and Functions

12. All ASCII characters are returned in a 1-byte string.

13. All keystrokes that result in an escape sequence are translated to mnemonic strings based on the
following key names:

• PF1–PF4

• E1–E6

• F7–F20

• LEFT

• RIGHT

• UP

• DOWN

• KP0 to KP9

• KP–

• KP,

• KP.

• ENTER

Example
 PROGRAM Inkey_demo

 DECLARE STRING KEYSTROKE
Inkey_Loop:
 WHILE 1%
 KEYSTROKE = INKEY$(0%,WAIT)

 SELECT KEYSTROKE
 CASE '26'C
 PRINT "Ctrl/Z to exit"
 EXIT Inkey_Loop
 CASE CR,LF,VT,FF
 PRINT "Line terminator"
 CASE "PF1" TO "PF4"
 PRINT "P function key"
 CASE "E1" TO "E6", "F7" TO "F9", "F10" TO "F20"
 PRINT "VT200 function key"
 CASE "KP0" TO "KP9"
 PRINT "Application keypad key"
 CASE < SP
 PRINT "Control character"
 CASE '127'C
 PRINT ""
 CASE ELSE
 PRINT 'Character is "'; KEYSTROKE; '"'
 END SELECT

134

Chapter 3. Statements and Functions

 NEXT

 END PROGRAM

INPUT
INPUT — The INPUT statement assigns values from your terminal or from a terminal-format file to
program variables.

Format
INPUT [#chnl-exp,] [str-const1 {,|;}] var1 [{,|;} [str-const2
 {,|;}] var2]...

Syntax Rules
1. You must supply an argument to the INPUT statement. Otherwise, VSI BASIC signals an error

message.

2. Chnl-exp is a numeric expression that specifies a channel number associated with a file. It must be
immediately preceded by a number sign (#).

3. You can include more than one string constant in an INPUT statement. Str-const1 is issued for var1,
str-const2 for var2, and so on.

4. Var1 and var2 cannot be a DEF function name unless the INPUT statement is inside the multiline
DEF that defines the function.

5. The separator (comma or semicolon) that directly follows var1 and var2 has no formatting effect.
VSI BASIC always advances to a new line when you terminate input by pressing Return.

6. The separator that directly follows str-const1 and str-const2 determines where the question mark
prompt (if requested) is displayed and where the cursor is positioned for input.

A comma causes VSI BASIC to skip to the next print zone and display the question mark unless a
SET NO PROMPT statement has been executed, as follows.

135

Chapter 3. Statements and Functions

DECLARE STRING your_name
INPUT "What is your name",your_name

Output

What is your name ?

A semicolon causes VSI BASIC to display the question mark next to str-const unless a SET NO
PROMPT statement has been executed. For example:

DECLARE STRING your_name
INPUT "What is your name";your_name

Output

What is your name?

7. VSI BASIC always advances to a new line when you terminate input with a carriage return.

Remarks
1. If you do not specify a channel, the default chnl-exp is #0 (the controlling terminal). If a chnl-exp is

specified, a file must be open on that channel with ACCESS READ or MODIFY before the INPUT
statement can execute.

2. If input comes from a terminal, VSI BASIC displays the contents of str-const1, if present. If the
terminal is open on channel #0, VSI BASIC also displays a question mark (?).

3. You can disable the question mark prompt by using the SET NO PROMPT statement. See the SET
PROMPT statement for more information.

4. When VSI BASIC receives a line terminator or a complete record, it checks each data element for
correct data type and range limits, then assigns the values to the corresponding variables.

5. If you specify a string variable to receive the input text, and you enter an unquoted string in response
to the prompt, VSI BASIC ignores the string's leading and trailing spaces and tabs. An unquoted
string cannot contain any commas.

6. If there is not enough data in the current record or line to satisfy the variable list, VSI BASIC takes
one of the following actions:

• If the input device is a terminal and you have not specified SET NO PROMPT, VSI BASIC
repeats the question mark, but not the str-const, on a new line until sufficient data is entered.

• If the input device is not a terminal, VSI BASIC signals “Not enough data in record” (ERR=59).

7. If there are more data items than variables in the INPUT response, VSI BASIC ignores the excess.

8. If there is an error while data is being converted or assigned (for example, string data being assigned
to a numeric variable), VSI BASIC takes one of the following actions:

• If there is no error handler in effect and the input device is a terminal, VSI BASIC signals a
warning, reexecutes the INPUT statement, and displays str-const and the input prompt.

• If there is an error handler in effect and the input device is not a terminal, VSI BASIC signals
“Illegal number” (ERR=52) or “Data format error” (ERR=50).

136

Chapter 3. Statements and Functions

9. When a RETRY, CONTINUE, or RESUME statement transfers control to an INPUT statement, the
INPUT statement retrieves a new record or line regardless of any data left in the previous record or
line.

10. After a successful INPUT statement, the RECOUNT variable contains the number of characters
transferred from the file or terminal to the record buffer.

11. If you terminate input text with Ctrl/Z, VSI BASIC assigns the value to the variable and signals “End
of file on device” (ERR=11) when the next terminal input statement executes.

Example
DECLARE STRING var_1, &
 INTEGER var_2
INPUT "The first variable";var_1, "The second variable";var_2

Output

The first variable? name
The second variable? 4

INPUT LINE
INPUT LINE — The INPUT LINE statement assigns a string value (including the line terminator in
some cases) from a terminal or terminal-format file to a string variable.

Format
INPUT LINE [#chnl-exp,] [str-const1 {,|;}] str-var1
 [statement]...[{,|;} [str-const2 {,|;}] str-const2]...

Syntax Rules
1. Chnl-exp is a numeric expression that specifies a channel number associated with a file. It must be

immediately preceded by a number sign (#).

2. Str-var1 or str-var2 cannot be a DEF function name unless the INPUT LINE statement is inside the
multiline DEF that defines the function.

3. You can include more than 1 string constant in an INPUT LINE statement. Str-const1 is issued for
str-var1, str-const2 for str-var2, and so on.

4. The separator (comma or semicolon) that directly follows str-var1 and str-var2 has no formatting
effect. VSI BASIC always advances to a new line when you terminate input with a carriage return.

5. The separator that directly follows str-const1 and str-const2 determines where the question mark (if
requested) is displayed and where the cursor is positioned for input. Specifically:

• A comma causes VSI BASIC to skip to the next print zone and display the question mark unless
a SET NO PROMPT statement has been executed. For example:

137

Chapter 3. Statements and Functions

DECLARE STRING your_name
INPUT LINE "Name",your_name

Output

Name ?

• A semicolon causes VSI BASIC to display the question mark next to str-const unless a SET NO
PROMPT statement has been executed. For example:

DECLARE STRING your_name
INPUT LINE "Name";your_name

Output

Name?

6. VSI BASIC always advances to a new line when you terminate input with a carriage return.

Remarks
1. The default chnl-exp is #0 (the controlling terminal). If a channel is specified, a file must be open on

that channel with ACCESS READ before the INPUT LINE statement can execute.

2. VSI BASIC signals an error if the INPUT LINE statement has no argument.

3. If input comes from a terminal, VSI BASIC displays the contents of str-const1, if present. If the
terminal is open on channel #0, VSI BASIC also displays a question mark (?).

4. You can disable the question mark prompt by using the SET NO PROMPT statement. See the SET
PROMPT statement for more information.

5. The INPUT LINE statement assigns all input characters to string variables. In addition, the INPUT
LINE statement places the following line terminator characters in the assigned string if they are part
of the string value:

Hex code ASCII char Character name

0A LF Line Feed
0B VT Vertical Tab
0C FF Form Feed
0D CR Carriage Return
0D0A CRLF Carriage Return/Line Feed
1B ESC Escape

Any other line terminator, such as Ctrl/D and Ctrl/F when line editing is turned off, is not included
in the assigned string.

6. When a RETRY, CONTINUE, or RESUME statement transfers control to an INPUT LINE
statement, the INPUT LINE statement retrieves a new record or line regardless of any data left in the
previous record or line.

138

Chapter 3. Statements and Functions

7. After a successful INPUT LINE statement, the RECOUNT variable contains the number of
characters transferred from the file or terminal to the record buffer.

8. If you terminate input text with Ctrl/Z, VSI BASIC assigns the value to the variable and signals “End
of file on device” (ERR=11) when the next terminal input statement executes.

Example
DECLARE STRING Z,N,record_string
INPUT LINE "Type two words", Z$,'Type your name';N$
INPUT LINE #4%, record_string$

INSTR
INSTR — The INSTR function searches for a substring within a string. It returns the position of the
substring's starting character.

Format
int-var = INSTR (int-exp, str-exp1, str-exp2)

Syntax Rules
1. Int-exp specifies the character position in the main string at which VSI BASIC starts the search.

2. Str-exp1 specifies the main string.

3. Str-exp2 specifies the substring.

Remarks
1. The INSTR function searches str-exp1, the main string, for the first occurrence of a substring, str-

exp2, and returns the position of the substring's first character.

2. INSTR returns the character position in the main string at which VSI BASIC finds the substring,
except in the following situations:

• If only the substring is null, and if int-exp is less than or equal to zero, INSTR returns a value of
1.

• If only the substring is null, and if int-exp is equal to or greater than 1 and less than or equal to
the length of the main string, INSTR returns the value of int-exp.

• If only the substring is null, and if int-exp is greater than the length of the main string, INSTR
returns the main string's length plus 1.

• If the substring is not null, and if int-exp is greater than the length of the main string, INSTR
returns a value of zero.

• If only the main string is null, INSTR returns a value of zero.

• If both the main string and the substring are null, INSTR returns a 1.

139

Chapter 3. Statements and Functions

3. If VSI BASIC cannot find the substring, INSTR returns a value of zero.

4. If int-exp does not equal 1, VSI BASIC still counts from the beginning of the main string to calculate
the starting position of the substring. That is, VSI BASIC counts character positions starting at
position 1, regardless of where you specify the start of the search. For example, if you specify 10 as
the start of the search and VSI BASIC finds the substring at position 15, INSTR returns the value 15.

5. If int-exp is less than 1, VSI BASIC assumes a starting position of 1.

6. If you specify a floating-point expression for int-exp, VSI BASIC truncates it to an integer of the
default size.

Example
DECLARE STRING alpha, &
 INTEGER result
alpha = "ABCDEF"
result = INSTR(1,alpha,"DEF")
PRINT result

Output

 4

INT
INT — The INT function returns the floating-point value of the largest whole number less than or equal
to a specified expression.

Format
real-var = INT (real-exp)

Syntax Rules
VSI BASIC expects the argument of the INT function to be a real expression. When the argument is a
real expression, VSI BASIC returns a value of the same floating-point size. When the argument is not a
real expression, VSI BASIC converts the argument to the default floating-point size and returns a value
of the default floating-point size.

Remarks
If real-exp is negative, VSI BASIC returns the largest whole number less than or equal to real-exp. For
example, INT(-5.3) is -6.

Examples
Example 1
DECLARE SINGLE any_num, result
any_num = 6.667

140

Chapter 3. Statements and Functions

result = INT(any_num)
PRINT result

Output

 6

Example 2
!This example contrasts the INT and FIX functions
DECLARE SINGLE test_num
test_num = -32.7
PRINT "INT OF -32.7 IS: "; INT(test_num)
PRINT "FIX OF -32.7 IS: "; FIX(test_num)

Output

INT OF -32.7 IS: -33
FIX OF -32.7 IS: -32

INTEGER
INTEGER — The INTEGER function converts a numeric expression or numeric string to a specified or
default INTEGER data type.

Format
int-var = INTEGER (exp {, BYTE | , WORD | , LONG | , QUAD})

Syntax Rules
Exp can be either numeric or string. A string expression can contain the ASCII digits 0 to 9, a plus sign
(+), or a minus sign (–).

Remarks
1. VSI BASIC evaluates exp, then converts it to the specified INTEGER size. If you do not specify a

size, VSI BASIC uses the default INTEGER size.

2. If exp is a string, VSI BASIC ignores leading and trailing spaces and tabs.

3. The INTEGER function returns a value of zero when a string argument contains only spaces and
tabs, or when it is null.

4. The INTEGER function truncates the decimal portion of REAL and DECIMAL numbers, or rounds
if the /ROUND_DECIMAL qualifier is used.

Example
INPUT "Enter a floating-point number";F_P
PRINT INTEGER(F_P, WORD)

141

Chapter 3. Statements and Functions

Output

Enter a floating-point number? 76.99
 76

ITERATE
ITERATE — The ITERATE statement allows you to explicitly reexecute a loop.

Format
ITERATE [label]

Syntax Rules

1. Label is the label of the first statement of a FOR...NEXT, WHILE, or UNTIL loop.

2. Label must conform to the rules for naming variables.

Remarks
1. ITERATE is equivalent to an unconditional branch to the current loop's NEXT statement. If you

supply a label, ITERATE transfers control to the NEXT statement in the specified loop. If you do not
supply a label, ITERATE transfers control to the current loop's NEXT statement.

2. The ITERATE statement can be used only within a FOR...NEXT, WHILE, or UNTIL loop.

Example
WHEN ERROR IN
Date_loop: WHILE 1% = 1%
 GET #1
 ITERATE Date_loop IF Day$ <> Today$
 ITERATE Date_loop IF Month$ <> This_month$
 ITERATE Date_loop IF Year$ <> This_year$
 PRINT Item$
 NEXT
USE
 IF ERR = 11
 THEN
 CONTINUE DONE
 ELSE
 EXIT HANDLER
 END IF
END WHEN
Done: END

KILL
KILL — The KILL statement deletes a disk file, removes the file's directory entry, and releases the file's
storage space.

142

Chapter 3. Statements and Functions

Format
KILL file-spec

Syntax Rules
File-spec can be a quoted string constant, a string variable, or a string expression. It cannot be an
unquoted string constant.

Remarks
1. The KILL statement marks a file for deletion but does not delete the file until all users have closed it.

2. If you do not specify a complete file specification, VSI BASIC uses the default device and directory.
If you do not specify a file version, VSI BASIC deletes the highest version of the file.

3. The file must exist, or VSI BASIC signals an error.

4. You can delete a file in another directory if you have access to that directory and privilege to delete
the file.

Example
KILL "TEMP.DAT"

LBOUND
LBOUND — The LBOUND function returns the lower bounds of a compile-time or run-time
dimensioned array.

Format
num-var = LBOUND (array-name [, int-exp])

Syntax Rules
1. Array-name must specify an array that has been either explicitly or implicitly declared.

2. Int-exp specifies the number of the dimension for which you have requested the lower bounds.

Remarks
1. If you do not specify a dimension, VSI BASIC automatically returns the lower bounds of the first

dimension.

2. If you specify a numeric expression that is less than or equal to zero, VSI BASIC signals an error.

3. If you specify a numeric expression that exceeds the number of dimensions, VSI BASIC signals an
error.

143

Chapter 3. Statements and Functions

Example
DECLARE INTEGER CONSTANT B = 5
DIM A(B)
account_num = 1
FOR dim_num = LBOUND (A) TO 5
 A(dim_num) = account_num
 account_num = account_num + 1
 PRINT A(dim_num)
NEXT dim_num

Output

1
2
3
4
5
6

LEFT$
LEFT$ — The LEFT$ function extracts a specified substring from a string's left side, leaving the main
string unchanged.

Format
str-var = LEFT[$] (str-exp, int-exp)

Syntax Rules
1. Int-exp specifies the number of characters to be extracted from the left side of str-exp.

2. If you specify a floating-point expression for int-exp, VSI BASIC truncates it to an integer of the
default size.

Remarks
1. The LEFT$ function extracts a substring from the left of the specified str-exp and stores it in str-var.

2. If int-exp is less than 1, LEFT$ returns a null string.

3. If int-exp is greater than the length of str-exp, LEFT$ returns the entire string.

Example
DECLARE STRING sub_string, main_string
main_string = "1234567"
sub_string = LEFT$(main_string, 4)
PRINT sub_string

Output

1234

144

Chapter 3. Statements and Functions

LEN
LEN — The LEN function returns an integer value equal to the number of characters in a specified
string.

Format
int-var = LEN (str-exp)

Syntax Rules
None

Remarks
1. If str-exp is null, LEN returns a value of zero.

2. The length of str-exp includes leading, trailing, and embedded blanks. Tabs in str-exp are treated as a
single space.

3. The value returned by the LEN function is a LONG integer.

Example
DECLARE STRING alpha, &
 INTEGER length
alpha = "ABCDEFG"
length = LEN(alpha)
PRINT length

Output

 7

LET
LET — The LET statement assigns a value to one or more variables.

Format
[LET] var,... = exp

Syntax Rules
1. Var cannot be a DEF or FUNCTION name unless the LET statement occurs inside that DEF block

or in that FUNCTION subprogram.

2. The keyword LET is optional.

Remarks

145

Chapter 3. Statements and Functions

1. You cannot assign string data to a numeric variable or unquoted numeric data to a string variable.

2. The value assigned to a numeric variable is converted to the variable's data type. For example, if you
assign a floating-point value to an integer variable, VSI BASIC truncates the value to an integer.

3. For dynamic strings, the destination string's length equals the source string's length.

4. When you assign a value to a fixed-length string variable (a variable declared in a COMMON, MAP,
or RECORD statement), the value is left-justified and padded with spaces or truncated to match the
length of the string variable.

Example
DECLARE STRING alpha, &
 INTEGER length
LET alpha = "ABCDEFG"
LET length = LEN(alpha)
PRINT length

Output

 7

LINPUT
LINPUT — The LINPUT statement assigns a string value, without line terminators, from a terminal or
terminal-format file to a string variable.

Format
LINPUT #chnl-exp,] [str-const1 {,|;}] str-var1 [{,|;} [str-const2
 {,|;}] str-var2]...

Syntax Rules
1. Chnl-exp is a numeric expression that specifies a channel number associated with a file. It must be

immediately preceded by a number sign (#).

2. Str-var1 and str-var2 cannot be DEF function names unless the LINPUT statement is inside the
multiline DEF that defines the function.

3. You can include more than one string constant in a LINPUT statement. Str-const1 is issued for str-
var1, str-const2 for str-var2, and so on.

4. The separator (comma or semicolon) that directly follows str-var1 and str-var2 has no formatting
effect. VSI BASIC always advances to a new line when you terminate input with a carriage return.

5. The separator character that directly follows str-const1 and str-const2 determines where the question
mark (if requested) is displayed and where the cursor is positioned for input.

• A comma causes VSI BASIC to skip to the next print zone to display the question mark unless a
SET NO PROMPT statement has been executed. For example:

146

Chapter 3. Statements and Functions

DECLARE STRING your_name
LINPUT "Name",your_name

Output

Name ?

• A semicolon causes VSI BASIC to display the question mark next to str-const unless a SET NO
PROMPT statement has been executed. For example:

DECLARE STRING your_name
LINPUT "What is your name";your_name

Output

What is your name?

6. VSI BASIC always advances to a new line when you terminate input with a carriage return.

Remarks
1. The default chnl-exp is #0 (the controlling terminal). If you specify a channel, the file associated with

that channel must have been opened with ACCESS READ or MODIFY.

2. VSI BASIC signals an error if the LINPUT statement has no argument.

3. If input comes from a terminal, VSI BASIC displays the contents of str-const1, if present. If the
terminal is open on channel #0, VSI BASIC also displays a question mark (?).

4. You can disable the question mark prompt by using the SET NO PROMPT statement. See the SET
PROMPT statement for more information.

5. The LINPUT statement assigns all characters except any line terminators to str-var1 and str-var2.
Single and double quotation marks, commas, tabs, leading and trailing spaces, or other special
characters in the string are part of the data.

6. If the RETRY, CONTINUE, or RESUME statement transfers control to a LINPUT statement, the
LINPUT statement retrieves a new record regardless of any data left in the previous record.

7. After a successful LINPUT statement, the RECOUNT variable contains the number of bytes
transferred from the file or terminal to the record buffer.

8. If you terminate input text with Ctrl/Z, VSI BASIC assigns the value to the variable and signals “End
of file on device” (ERR=11) when the next terminal input statement executes.

Example
DECLARE STRING last_name
LINPUT "ENTER YOUR LAST NAME";Last_name
LINPUT #2%, Last_name

LOC
LOC — The LOC function returns a longword integer specifying the virtual address of a simple or
subscripted variable, or the address of an external function. For dynamic strings, the LOC function
returns the address of the descriptor rather than the address of the data.

147

Chapter 3. Statements and Functions

Format
int-var = LOC ({var | ext-routine})

Syntax Rules
1. Var can be any local or external, simple or subscripted variable.

2. Var cannot be a virtual array element.

3. Ext-routine can be the name of an external function.

Remarks
1. The LOC function always returns a LONG value.

2. The LOC function is useful for passing the address of an external function as a parameter to a
procedure. When passing a routine address as a parameter, you should usually pass the address by
value. For example, OpenVMS system services expect to receive AST procedure entry masks by
reference; therefore, the address of the entry mask should be in the argument list on the stack.

Example
DECLARE INTEGER A, B
A = 12
B = LOC(A)
PRINT B

Output

 2146799372

LOG
LOG — The LOG function returns the natural logarithm (base e) of a specified number. The LOG
function is the inverse of the EXP function.

Format
real-var = LOG (real-exp)

Syntax Rules
None

Remarks
1. Real-exp must be greater than zero. An attempt to find the logarithm of zero or a negative number

causes VSI BASIC to signal “Illegal argument in LOG” (ERR=53).

2. The LOG function uses the mathematical constant e as a base. VSI BASIC approximates e to be
2.71828182845905.

148

Chapter 3. Statements and Functions

3. The LOG function returns the exponent to which e must be raised to equal real-exp.

4. VSI BASIC expects the argument of the LOG function to be a real expression. When the argument is
a real expression, VSI BASIC returns a value of the same floating-point size. When the argument is
not a real expression, VSI BASIC converts the argument to the default floating-point size and returns
a value of the default floating-point size.

Example
DECLARE SINGLE exponent
exponent = LOG(98.6)
PRINT exponent

Output

 4.59107

LOG10
LOG10 — The LOG10 function returns the common logarithm (base 10) of a specified number.

Format
real-var = LOG10 (real-exp)

Syntax Rules
None

Remarks
1. Real-exp must be larger than zero. An attempt to find the logarithm of zero or a negative number

causes VSI BASIC to signal “Illegal argument in LOG” (ERR=53).

2. The LOG10 function returns the exponent to which 10 must be raised to equal real-exp.

3. VSI BASIC expects the argument of the LOG10 function to be a real expression. When the argument
is a real expression, VSI BASIC returns a value of the same floating-point size. When the argument
is not a real expression, VSI BASIC converts the argument to the default floating-point size and
returns a value of the default floating-point size.

Example
DECLARE SINGLE exp_base_10
exp_base_10 = LOG10(250)
PRINT exp_base_10

Output

 2.39794

149

Chapter 3. Statements and Functions

LSET
LSET — The LSET statement assigns left-justified data to a string variable. LSET does not change the
length of the destination string variable.

Format
LSET str-var,... = str-exp

Syntax Rules
1. Str-var is the destination string. Str-exp is the string value assigned to str-var.

2. Str-var cannot be a DEF function or function name unless the LSET statement is inside the multiline
DEF or function that defines the function.

Remarks

1. The LSET statement treats all strings as fixed length. LSET neither changes the length of the
destination string nor creates new storage. Rather, it overwrites the current storage of str-var.

2. If the destination string is longer than str-exp, LSET left-justifies str-exp and pads it with spaces on
the right. If smaller, LSET truncates characters from the right of str-exp to match the length of str-
var.

Example
DECLARE STRING alpha
alpha = "ABCDE"
LSET alpha = "FGHIJKLMN"
PRINT alpha

Output

FGHIJ

MAG
MAG — The MAG function returns the absolute value of a specified expression. The returned value has
the same data type as the expression.

Format
var = MAG (exp)

Syntax Rules
None

150

Chapter 3. Statements and Functions

Remarks
1. The returned value is always greater than or equal to zero. The absolute value of 0 is zero. The

absolute value of a positive number equals that number. The absolute value of a negative number
equals that number multiplied by –1.

2. The MAG function is similar to the ABS function in that it returns the absolute value of a number.
The ABS function, however, takes a floating-point argument and returns a floating-point value. The
MAG function takes an argument of any numeric data type and returns a value of the same data
type as the argument. The use of the MAG function rather than the ABS and ABS% functions is
recommended, because the MAG function returns a value using the data type of the argument.

Example
DECLARE SINGLE A
A = -34.6
PRINT MAG(A)

Output

 34.6

MAGTAPE
MAGTAPE — The MAGTAPE function permits your program to control unformatted magnetic
tape files. The MAGTAPE function is supported only for compatibility with BASIC-PLUS-2. It is
recommended that you do not use the MAGTAPE function for new program development.

Format
int-var1 = MAGTAPE (func-code, int-var, chnl-exp)

Syntax Rules
1. Func-code specifies the integer code for the MAGTAPE function you want to perform. VSI BASIC

supports only function code 3, rewind tape. Table 3.3 explains how to perform other MAGTAPE
functions with VSI BASIC.

2. Int-var is an integer parameter for function codes 4, 5, and 6. However, because VSI BASIC supports
only function code 3, int-var is not used and always equals zero.

3. Chnl-exp is a numeric expression that specifies a channel number associated with the magnetic tape
file.

Table 3.3. MAGTAPE Features in VSI BASIC

Code Function VSI BASIC Action

2 Write EOF Close channel with the CLOSE statement.
3 Rewind tape Use the RESTORE # statement, the REWIND clause on an

OPEN statement, or the MAGTAPE function.

151

Chapter 3. Statements and Functions

Code Function VSI BASIC Action

4 Skip records Perform GET operations, ignore data until reaching desired
record.

5 Backspace Rewind tape, perform GET operations, ignore data until
reaching desired record.

6 Set density or set parity Use the DCL commands MOUNT/DENSITY and MOUNT/
FOREIGN or the $MOUNT system service.

7 Get status Use the RMSSTATUS function.

Example
I = MAGTAPE (3%,0%,2%)

MAP
MAP — The MAP statement defines a named area of statically allocated storage called a PSECT,
declares data fields in a record, and associates them with program variables.

Format
MAP (map-name){[data-type] map-item},...

map-item: {num-unsubs-var |
num-array-name ([int-const1 TO] int-const2,...) |
record-var |
str-unsubs-var [= int-const] |
str-array-name ([int-const1 TO] int-const2,...)[= int-const] |
FILL [(rep-cnt)][= int-const] |
FILL% [(rep-cnt)] |
FILL$ [(rep-cnt)] [= int-const]}

Syntax Rules

1. Map-name is global to the program and image. It cannot appear elsewhere in the program unit as a
variable name.

2. Map-name can be from 1 to 31 characters. The first character of the name must be an alphabetic
character (A to Z). The remaining characters, if present, can be any combination of letters, digits (0
to 9), dollar signs ($), periods (.), or underscores (_).

3. Data-type can be any VSI BASIC data type keyword or a data type defined by a RECORD
statement. Data type keywords, size, range, and precision are listed in Table 1.2.

4. When you specify a data type, all following map-items, including FILL items, are of that data type
until you specify a new data type.

5. If you do not specify a data type, map-items without a suffix character (% or $) take the current
default data type and size

152

Chapter 3. Statements and Functions

6. Variable names, array names, and FILL items following a data type other than STRING cannot end
with a dollar sign. Likewise, names and FILL items following a data type other than BYTE, WORD,
LONG, QUAD, or INTEGER cannot end with a percent sign.

7. Map-item declares the name and format of the data to be stored.

• Num-unsubs-var and num-array-name specify a numeric variable or a numeric array.

• Record-var specifies a record instance.

• Str-unsubs-var and str-array-name specify a fixed-length string variable or array. You can specify
the number of bytes to be reserved for the variable with the =int-const clause. The default string
length is 16.

• When you declare an array, VSI BASIC allows you to specify both lower and upper bounds. The
upper bounds is required; the lower bounds is optional.

• Int-const1 specifies the lower bounds of the array.

• Int-const2 specifies the upper bounds of the array and, when accompanied by int-const1,
must be preceded by the keyword TO.

• Int-const1 must be less than or equal to int-const2.

• If you do not specify int-const1, VSI BASIC uses zero as the default lower bounds.

• Int-const1 and int-const2 can be any combination of negative and/or positive values.

• The FILL, FILL%, and FILL$ keywords allow you to reserve parts of the record buffer within
or between data elements and to define the format of the storage. Rep-cnt specifies the number of
FILL items to be reserved. The =int-const clause allows you to specify the number of bytes to be
reserved for string FILL items. Table 3.1 describes FILL item format and storage allocation.

• In the applicable formats of FILL, (rep-cnt) represents a repeat count, not an array subscript.
FILL (n) represents n elements, not n + 1.

8. Variables and arrays declared in a MAP statement cannot be declared elsewhere in the program by
any other declarative statements.

Remarks
1. Variables in a MAP statement are not initialized by VSI BASIC.

2. VSI BASIC does not execute MAP statements. The MAP statement allocates static storage and
defines data at compilation time.

3. A program can have multiple maps with the same name. The allocation for each map overlays the
others. Thus, data is accessible in many ways. The actual size of the data area is the size of the largest
map. When you link your program, the size of the map area is the size of the largest map with that
name.

4. Map-items with the same name can appear in different MAP statements with the same map name
only if they match exactly in attributes such as data type, position, and so forth. If the attributes are
not the same, VSI BASIC signals an error. For example:

153

Chapter 3. Statements and Functions

MAP (ABC) LONG A, B
MAP (ABC) LONG A, C ! This MAP statement is valid
MAP (ABC) LONG B, A ! This MAP statement produces an error
MAP (ABC) WORD A, B ! This MAP statement produces an error

The third MAP statement causes VSI BASIC to signal the error “variable <name> not aligned
in multiple references in MAP <name>,” while the fourth MAP statement generates the error
“attributes of overlaid variable <name> don't match.”

5. The MAP statement should precede any reference to variables declared in it.

6. Storage space for map-items is allocated in order of occurrence in the MAP statement.

7. The data type specified for map-items or the default data type and size determines the amount of
storage reserved in a MAP area. See Table 1.2.

8. A MAP area can be accessed by more than one program module, as long as you define the map-
name in each module that references the MAP area.

9. A COMMON area and a MAP area with the same name specify the same storage area and are
not allowed in the same program module. However, a COMMON in one module can reference the
storage declared by a MAP or COMMON in another module.

10. A map named in an OPEN statement's MAP clause is associated with that file. The file's records and
record fields are defined by that map. The size of the map determines the record size for file I/O,
unless the OPEN statement includes a RECORDSIZE clause.

Example
MAP (BUF1) BYTE AGE, STRING emp_name = 20 &
 SINGLE emp_num

MAP (BUF1) BYTE FILL, STRING last_name (11) = 12, &
 FILL = 8, SINGLE FILL

MAP DYNAMIC
MAP DYNAMIC — The MAP DYNAMIC statement names the variables and arrays whose size and
position in a storage area can change at run time. The MAP DYNAMIC statement is used in conjunction
with the REMAP statement. The REMAP statement defines or redefines the position in the storage area
of variables named in the MAP DYNAMIC statement.

Format
MAP DYNAMIC (map-dyn-name){[data-type] map-item},..

map-dyn-name: {map-name | static-str-var}

map-item: {num-unsubs-var |
num-array-name ([int-const1 TO] int-const2,...) |
record-var |
str-unsubs-var [= int-const] |

154

Chapter 3. Statements and Functions

str-array-name ([int-const1 TO] int-const2,...)[= int-const]}

Syntax Rules
1. Map-dyn-name can either be a map name or a static string variable.

• Map-name is the storage area named in a MAP statement.

• If you specify a map name, then a MAP statement with the same name must precede both the
MAP DYNAMIC statement and the REMAP statement.

• When you specify a static string variable, the string must be declared before you can specify a
MAP DYNAMIC statement or a REMAP statement.

• Static-str-var must specify a static string variable or a string parameter variable.

• If you specify a static-str-var, the following restrictions apply:

• Static-str-var cannot be a string constant.

• Static-str-var cannot be the same as any previously declared map-item in a MAP DYNAMIC
statement.

• Static-str-var cannot be a subscripted variable.

• Static-str-var cannot be a record component.

• Static-str-var cannot be a parameter declared in a DEF or DEF* function.

2. Map-item declares the name and data type of the items to be stored in the storage area. All variable
pointers point to the beginning of the storage area until the program executes a REMAP statement.

• Num-unsubs-var and num-array-name specify a numeric variable or a numeric array.

• Record-var specifies a record instance.

• Str-unsubs-var and str-array-name specify a string variable or array. You cannot specify the
number of bytes to be reserved for the variable in the MAP DYNAMIC statement. All string
items have a fixed length of zero until the program executes a REMAP statement.

3. When you specify an array name, VSI BASIC allows you to specify both lower and upper bounds.
The upper bounds is required; the lower bounds is optional.

• Int-const1 specifies the lower bounds of the array.

• Int-const2 specifies the upper bounds of the array and, when accompanied by int-const1, must be
preceded by the keyword TO.

• Int-const1 must be less than or equal to int-const2.

• If you do not specify int-const1, VSI BASIC uses zero as the default lower bounds.

• Int-const1 and int-const2 can be either negative or positive values.

4. Data-type can be any VSI BASIC data type keyword or a data type defined with a RECORD
statement. Data type keywords, size, range, and precision are listed in Table 1.2 in this manual.

155

Chapter 3. Statements and Functions

5. When you specify a data type, all following map-items are of that data type until you specify a new
data type.

6. If you do not specify any data type, map-items take the current default data type and size.

7. Map-items must be separated with commas.

8. If you specify a dollar sign suffix, the variable must be a STRING data type.

9. If you specify a percent sign suffix, the variable must be a BYTE, WORD, LONG, or QUAD integer
data type.

Remarks

1. All variables and arrays declared in a MAP DYNAMIC statement cannot be declared elsewhere in
the program by any other declarative statements.

2. The MAP DYNAMIC statement does not affect the amount of storage allocated to the map buffer
declared in a previous MAP statement or the storage allocated to a static string. Until your program
executes a REMAP statement, all variable and array element pointers point to the beginning of the
MAP buffer or static string.

3. VSI BASIC does not execute MAP DYNAMIC statements. The MAP DYNAMIC statement names
the variables whose size and position in the MAP or static string buffer can change and defines their
data type.

4. Before you can specify a map name in a MAP DYNAMIC statement, there must be a MAP
statement in the program unit with the same map name. Otherwise, VSI BASIC signals the error
“Insufficient space for MAP DYNAMIC variables in MAP <name>.” Similarly, before you can
specify a static string variable in the MAP DYNAMIC statement, the string variable must be
declared. Otherwise, VSI BASIC signals the same error message.

5. A static string variable must be either a variable declared in a MAP or COMMON statement or a
parameter declared in a SUB, FUNCTION, or PICTURE. It cannot be a parameter declared in a
DEF or DEF* function.

6. If a static string variable is the same as a map name, VSI BASIC uses the map name if the name
appears in a MAP DYNAMIC statement.

7. The MAP DYNAMIC statement must lexically precede the REMAP statement or VSI BASIC
signals the error “MAP variable <name> referenced before declaration.”

Example
100 MAP (MY.BUF) STRING DUMMY = 512
 MAP DYNAMIC (MY.BUF) STRING LAST, FIRST, MIDDLE, &
 BYTE AGE, STRING EMPLOYER, &
 STRING CHARACTERISTICS

MAR
MAR — The MAR function returns the current margin width of a specified channel.

156

Chapter 3. Statements and Functions

Format
int-var = MAR[%] (chnl-exp)

Syntax Rules
The file associated with chnl-exp must be open.

Remarks
1. If chnl-exp specifies a terminal and you have not set a margin width with the MARGIN statement,

the MAR function returns a value of zero. If you have set a margin width, the MAR function returns
that number.

2. The value returned by the MAR function is a LONG integer.

Example
DECLARE INTEGER width
MARGIN #0, 80
width = MAR(0)
PRINT width

Output

 80

MARGIN
MARGIN — The MARGIN statement specifies the margin width for a terminal or for records in a
terminal-format file.

Format
MARGIN #chnl-exp,] int-exp

Syntax Rules
1. Chnl-exp is a numeric expression that specifies a channel number associated with a file. It must be

immediately preceded by a number sign (#).

2. Int-exp specifies the margin width.

Remarks
1. If you do not specify a channel, VSI BASIC sets the margin on the controlling terminal.

2. The file associated with chnl-exp must be an open terminal-format file or terminal.

3. VSI BASIC signals the error “Illegal operation” (ERR=141) if the file associated with chnl-exp is not
a terminal-format file.

4. If chnl-exp does not correspond to a terminal, and if int-exp is zero, VSI BASIC sets the right margin
to the size specified by the RECORDSIZE clause in the OPEN statement, if the clause is present. If

157

Chapter 3. Statements and Functions

no RECORDSIZE clause is present, VSI BASIC sets the margin to 72 (or, in the case of channel 0,
to the width of SYS$OUTPUT).

5. If chnl-exp is not present or if it corresponds to a terminal, and if int-exp is zero, VSI BASIC sets the
right margin to the size specified by the RECORDSIZE clause in the OPEN statement, if the clause
is present. If no RECORDSIZE clause is present, VSI BASIC sets the margin to 72.

6. VSI BASIC prints as much of a specified record as the margin setting allows on one line before
going to a new line. Numeric fields are never split across lines.

7. If you specify a margin larger than the channel's record size, VSI BASIC signals an error. The default
record size for a terminal or terminal format file is 132.

8. The MARGIN statement applies to the specified channel only while the channel is open. If you close
the channel and then reopen it, BASIC uses the default margin.

Example
OPEN "EMP.DAT" FOR OUTPUT AS #1
MARGIN #1, 132
 .
 .
 .

MAT
MAT — The MAT statement lets you implicitly create and manipulate one- and two-dimensional arrays.
You can use the MAT statement to assign values to array elements, or to redimension a previously
dimensioned array. You can also perform matrix arithmetic operations such as multiplication, addition,
and subtraction, and other matrix operations such as transposing and inverting matrices.

Format
Numeric Initialization
MAT num-array = {CON | IDN | ZER} [(int-exp1 [, int-exp2])]

String Initialization
MAT str-array = NUL$ [(int-exp1 [, int-exp2])]

Array Arithmetic
MAT num-array1 = num-array2 [{+|-|*} num-array3]

MAT num-array1 = num-array2 * num-array3 [* num-array4],...

Scalar Multiplication
MAT num-array4 = (num-exp) * num-array5

Inversion and Transposition
MAT num-array6 = {TRN | INV}(num-array7)

158

Chapter 3. Statements and Functions

Syntax Rules
1. Int-exp1 and int-exp2 define the upper bounds of the array being implicitly created or the new

dimensions of an existing array.

2. If you are creating an array, int-exp1 and int-exp2 cannot exceed 10.

3. If you do not specify bounds, VSI BASIC creates the array and dimensions it to (0 TO 10) or (0 TO
10, 0 TO 10).

4. If you specify bounds, VSI BASIC creates the array with the specified bounds. If the bounds exceed
(0 TO 10) or (0 TO 10, 0 TO 10), VSI BASIC signals “Redimensioned array” (ERR=105).

5. The lower bounds must be zero.

Remarks

1. To perform MAT operations on arrays larger than (10,10), create the input and output arrays with
the DIM statement.

2. When the array exists, the following rules apply:

• If you specify upper bound, VSI BASIC redimensions the array to the specified size. However,
MAT operations cannot increase the total number of array elements.

• All arrays specified with the MAT statement must have lower bounds of zero. If you supply a
nonzero value, VSI BASIC signals either a compile-time or a run-time error.

• If you do not specify bounds, VSI BASIC does not redimension the array.

• An array passed to a subprogram and redimensioned with a MAT statement remains
redimensioned when control returns to the calling program, with two exceptions:

• When the array is within a record and is passed by descriptor

• When the array is passed by reference

3. You cannot use the MAT statement on arrays of more than two dimensions.

4. You cannot use the MAT statement on arrays of data type DECIMAL or on arrays named in a
RECORD statement.

5. Unless the arrays are declared with a DIM or DECLARE statement, the data type will be the default
floating-point data type.

6. Initialization

• CON sets all elements of num-array to 1, except those in row and column zero.

• IDN creates an identity matrix from num-array. The number of rows and columns in num-array
must be identical. IDN sets all elements to zero except those in row and column zero, and those
on the diagonal from num-array(1,1) to num-array(n,n), which are set to 1.

• ZER sets all array elements to zero, except those in row and column zero.

159

Chapter 3. Statements and Functions

• NUL$ sets all elements of a string array to the null string, except those in row and column zero.

7. Array Arithmetic

• The equal sign (=) assigns the results of the specified operation to the elements in num-array1.

• If num-array3 is not specified, VSI BASIC assigns the values of num-array2's elements to
the corresponding elements of num-array1. Num-array1 must have at least as many rows and
columns as num-array2. Num-array1 is redimensioned to match num-array2.

• Use the plus sign (+) to add the elements of two arrays. Num-array2 and num-array3 must have
identical bounds.

• Use the minus sign (–) to subtract the elements of two arrays. Num-array2 and num-array3 must
have identical bounds.

• Use the asterisk (*) to perform matrix multiplication on the elements of num-array2 and num-
array3 and to assign the results to num-array1. This operation gives the dot product of num-
array2 and num-array3. All three arrays must be two-dimensional, and the number of columns
in num-array2 must equal the number of rows in num-array3. VSI BASIC redimensions num-
array1 to have the same number of rows as num-array2 and the same number of columns as
num-array3. Neither num-array2 nor num-array3 may be the same as num-array1.

• With matrix multiplication, you can specify more than two numeric arrays; however, each array
must be two-dimensional. If you specify more than two arrays, the lower bounds must be zero
and the upper bounds must be 4.

8. Scalar Multiplication

• VSI BASIC multiplies each element of num-array5 by Num-exp and stores the results in the
corresponding elements of num-array4.

9. Inversion and Transposition

• TRN transposes num-array7 and assigns the results to num-array6. If num-array7 has m rows and
n columns, num-array6 will have n rows and m columns. Both arrays must be two-dimensional.

• You cannot transpose a matrix to itself: MAT A = TRN(A) is invalid.

• INV inverts num-array7 and assigns the results to num-array6. Num-array7 must be a two-
dimensional array that can be reduced to the identity matrix with elementary row operations. The
row and column dimensions must be identical.

10. You cannot increase the number of array elements or change the number of dimensions in an array
when you redimension with the MAT statement. For example, you can redimension an array with
dimensions (5,4) to (4,5) or (3,2), but you cannot redimension that array to (5,5) or to (10). The
total number of array elements includes those in row and column zero.

11. If an array is named in both a DIM statement and a MAT statement, the DIM statement must
lexically precede the MAT statement.

12. MAT statements do not operate on elements in the zero element (one-dimensional arrays) or in the
zero row or column (two-dimensional arrays). MAT statements use these elements to store results

160

Chapter 3. Statements and Functions

of intermediate calculations. Therefore, you should not depend on values in row and column zero if
your program uses MAT statements.

Examples
Example 1
!Numeric Initialization
MAT CONVERT = zer(10,10)

Example 2
!Initialization
MAT na_me$ = NUL$(5,5)

Example 3
!Array Arithmetic
MAT new_int = old_int - rslt_int

Example 4
!Scalar Multiplication
MAT Z40 = (4.24) * Z

Example 5
!Inversion and Transposition
MAT Q% = INV (Z)

MAT INPUT
MAT INPUT — The MAT INPUT statement assigns values from a terminal or terminal-format file to
array elements.

Format
MAT INPUT [#chnl-exp,] {array [(int-exp1 [, int-exp2])]},...

Syntax Rules
1. Chnl-exp is a numeric expression that specifies a channel number associated with a file. It must be

immediately preceded by a number sign (#).

2. The file associated with chnl-exp must be an open terminal-format file or terminal. If chnl-exp is not
specified, VSI BASIC takes data from the controlling terminal.

3. Int-exp1 and int-exp2 define the upper bounds of the array being implicitly created or the dimensions
of an existing array.

4. If you are creating an array, int-exp1 and int-exp2 cannot exceed 10.

161

Chapter 3. Statements and Functions

Remarks

1. You cannot use the MAT INPUT statement on arrays of more than two dimensions.

2. You cannot use the MAT INPUT statement on arrays of data type DECIMAL or on arrays named in
a RECORD statement.

3. All arrays specified with the MAT INPUT statement must have a lower bounds of zero.

4. If you do not specify bounds, VSI BASIC creates the array and dimensions it to (10,10).

5. If you do specify upper bound, VSI BASIC creates the array with the specified bounds. If the bounds
exceed (10) or (10,10), VSI BASIC signals “Redimensioned array” (ERR=105).

6. To use the MAT INPUT statement with arrays larger than (10,10), create the input and output arrays
with the DIM statement.

7. When the array exists, the following rules apply:

• If you specify bounds, VSI BASIC redimensions the array to the specified size. However, MAT
INPUT cannot increase the total number of array elements.

• If you do not specify bounds, VSI BASIC does not redimension the array.

8. For terminals open on channel zero only, the MAT LINPUT statement prompts with a question
mark (?) unless a SET NO PROMPT statement has been executed. See the description of the SET
PROMPT statement for more information.

9. Use commas to separate data elements and a line terminator to end the input of data. Use an
ampersand (&) before the line terminator to continue data over more than one line.

10. The MAT INPUT statement assigns values by row. For example, it assigns values to all elements in
row 1 before beginning row 2.

11. The MAT INPUT statement assigns the row number of the last data element transferred into the
array to the system variable NUM.

12. The MAT INPUT statement assigns the column number of the last data element transferred into the
array to the system variable NUM2.

13. If there are fewer elements in the input data than there are array elements, VSI BASIC does not
change the remaining array elements.

14. If there are more data elements in the input stream than there are array elements, VSI BASIC ignores
the excess.

15. Row zero and column zero are not changed.

Example
MAT INPUT XYZ(5,5)
MAT PRINT XYZ;

162

Chapter 3. Statements and Functions

Output

? 1,2,3,4,5
 1 2 3 4 5
 0 0 0 0 0
 0 0 0 0 0
 0 0 0 0 0
 0 0 0 0 0

MAT LINPUT
MAT LINPUT — The MAT LINPUT statement receives string data from a terminal or terminal-format
file and assigns it to string array elements.

Format
MAT LINPUT [#chnl-exp,] {str-array [(int-exp1 [, int-exp2])]},...

Syntax Rules
1. Chnl-exp is a numeric expression that specifies a channel number associated with a file or terminal. It

must be immediately preceded by a number sign (#).

2. The file associated with chnl-exp must be an open terminal-format file or terminal. If a channel is not
specified, VSI BASIC takes data from the controlling terminal.

3. Int-exp1 and int-exp2 define the upper bounds of the array being implicitly created or the dimensions
of an existing array.

4. If you are creating an array, int-exp1 and int-exp2 cannot exceed 10.

Remarks
1. You cannot use the MAT LINPUT statement on arrays of more than two dimensions.

2. You cannot use the MAT LINPUT statement on arrays of data type other than STRING or on arrays
named in a RECORD statement.

3. If you do not specify bounds, VSI BASIC creates the array and dimensions it to (10,10).

4. If you do specify upper bounds, VSI BASIC creates the array with the specified bounds. If the
bounds exceed (10) or (10,10), VSI BASIC signals “Redimensioned array” (ERR=105).

5. All arrays specified with the MAT LINPUT statement must have lower bounds of zero.

6. To use MAT LINPUT with arrays larger than (10,10), create the input arrays with the DIM
statement.

7. When the array exists, the following rules apply:

• If you specify bounds, VSI BASIC redimensions the array to the specified size. However, MAT
LINPUT cannot increase the total number of array elements.

163

Chapter 3. Statements and Functions

• If you do not specify bounds, VSI BASIC does not redimension the array.

8. For terminals open on channel zero only, the MAT LINPUT statement prompts with a question mark
(unless a SET NO PROMPT statement has been executed) for each string array element, starting
with element (1,1). VSI BASIC assigns values to all elements of row 1 before beginning row 2.

9. The MAT LINPUT statement assigns the row number of the last data element transferred into the
array to the system variable NUM.

10. The MAT LINPUT statement assigns the column number of the last data element transferred into the
array to the system variable NUM2.

11. Typing only a line terminator in response to the question mark prompt causes VSI BASIC to assign a
null string to that string array element.

12. MAT LINPUT does not change row and column zero.

Example
DIM cus_rec$(3,3)
MAT LINPUT cus_rec$(2,2)
PRINT cus_rec$(1,1)
PRINT cus_rec$(1,2)
PRINT cus_rec$(2,1)
PRINT cus_rec$(2,2)

Output

? Babcock
? Santani
? Lloyd
? Kelly
Babcock
Santani
Lloyd
Kelly

MAT PRINT
MAT PRINT — The MAT PRINT statement prints the contents of a one- or two-dimensional array on
your terminal or assigns the value of each array element to a record in a terminal-format file.

Format
MAT PRINT [#chnl-exp,] {array [(int-exp1 [, int-exp2])] [,|;]}...

Syntax Rules
1. Chnl-exp is a numeric expression that specifies a channel number associated with a file or terminal. It

must be immediately preceded by a number sign (#).

164

Chapter 3. Statements and Functions

2. The file associated with chnl-exp must be an open terminal-format file or terminal. If you do not
specify a channel, VSI BASIC prints data on the controlling terminal.

3. Int-exp1 and int-exp2 define the upper bounds of the array being implicitly created or the dimensions
of an existing array.

4. The separator (comma or semicolon) determines the output format for the array.

• If you use a comma, BASIC prints each array element in a new print zone and starts each row on
a new line.

• If you use a semicolon, VSI BASIC separates each array element with a space and starts each
row on a new line.

• If you do not use a separator character, VSI BASIC prints each array element on its own line.

Remarks
1. You cannot use the MAT PRINT statement on arrays of more than two dimensions.

2. You cannot use the MAT PRINT statement on arrays of data type DECIMAL or on arrays named in
a RECORD statement.

3. When you use the MAT PRINT statement to print more than one array, each array name except the
last must be followed with either a comma or a semicolon. VSI BASIC prints a blank line between
arrays.

4. If the array does not exist, the following rules apply:

• If you do not specify bounds, VSI BASIC creates the array and dimensions it to (10,10).

• If you specify upper bounds, VSI BASIC creates the array with the specified bounds. If the
bounds exceed (10) or (10,10), VSI BASIC prints the elements (1) through (10) or (1,1) through
(1,10) and signals “Subscript out of range” (ERR=55).

5. All arrays specified with the MAT PRINT statement must have lower bounds of zero.

6. When the array exists, the following rules apply:

• If the specified bounds are smaller than the maximum bounds of a dimensioned array, VSI
BASIC prints a subset of the array, but does not redimension the array. For example, if you use
the DIM statement to dimension A(20,20), and then MAT PRINT A(2,2), VSI BASIC prints
elements (1,1), (1,2), (2,1), and (2,2) only; array A(20,20) does not change.

• If you do not specify bounds, VSI BASIC prints the entire array.

7. The MAT PRINT statement does not print elements in row or column zero.

8. The MAT PRINT statement cannot redimension an array.

Example
DIM cus_rec$(3,3)
MAT LINPUT cus_rec$(2,2)
MAT PRINT cus_rec$(2,2)

165

Chapter 3. Statements and Functions

Output

? Babcock
? Santani
? Lloyd
? Kelly
Babcock
Santani
Lloyd
Kelly

MAT READ
MAT READ — The MAT READ statement assigns values from DATA statements to array elements.

Format
MAT READ {array [(int-exp1 [, int-exp2])]},...

Syntax Rules
1. Int-exp1 and int-exp2 define the upper bounds of the array being implicitly created or the dimensions

of an existing array.

2. If you are creating an array, int-exp1 and int-exp2 cannot exceed 10.

Remarks

1. If you do not specify bounds, VSI BASIC creates the array and dimensions it (10,10).

2. If you specify bounds, VSI BASIC creates the array with the specified bounds. If the bounds exceed
(10) or (10,10), VSI BASIC signals “Redimensioned array” (ERR=105).

3. To read arrays larger than (10,10), create the array with the DIM statement.

4. All arrays specified with the MAT statement must have lower bounds of zero.

5. When the array exists, the following rules apply:

• If you specify upper bounds, VSI BASIC redimensions the array to the specified size. However,
MAT READ cannot increase the total number of array elements.

• If you do not specify bounds, VSI BASIC does not redimension the array.

6. All the DATA statements must be in the same program unit as the MAT READ statement.

7. The MAT READ statement assigns data items by row. For example, it assigns data items to all
elements in row 1 before beginning row 2.

8. The MAT READ statement does not read elements into row or column zero.

9. The MAT READ statement assigns the row number of the last data element transferred into the array
to the system variable, NUM.

166

Chapter 3. Statements and Functions

10. The MAT READ statement assigns the column number of the last data element transferred into the
array to the system variable, NUM2.

11. You cannot use the MAT READ statement on arrays of more than two dimensions.

12. You cannot use the MAT READ statement on arrays of data type DECIMAL or on arrays named in
a RECORD statement.

Example
MAT READ A(3,3)
MAT READ B(3,3)
PRINT
PRINT "Matrix A"
PRINT
MAT PRINT A;
PRINT
PRINT "Matrix B"
PRINT
MAT PRINT B;
DATA 1,2,3,4,5,6

Output

Matrix A

 1 2 3
 4 5 6
 0 0 0

Matrix B

 0 0 0
 0 0 0
 0 0 0

MAX
MAX — The MAX function compares the values of two or more numeric expressions and returns the
highest value.

Format
num-var = MAX (num-exp1, num-exp2 [, num-exp3,...])

Syntax Rules
VSI BASIC allows you to specify up to eight numeric expressions.

Remarks
1. If you specify values with different data types, VSI BASIC performs data type conversions to

maintain precision.

167

Chapter 3. Statements and Functions

2. VSI BASIC returns a function result whose data type is compatible with the values you supply.

Example
DECLARE REAL John_grade, &
 Bob_grade, &
 Joe_grade, &
 highest_grade
INPUT "John's grade";John_grade
INPUT "Bob's grade";Bob_grade
INPUT "Joe's grade";Joe_grade
highest_grade = MAX(John_grade, Bob_grade, Joe_grade)
PRINT "The highest grade is";highest_grade

Output

John's grade? 90
Bob's grade? 95
Joe's grade? 79
The highest grade is 95

MID$
MID$ — MID$ can be used either as a statement or as a function. The MID$ statement performs
substring insertion into a string. The MID$ function extracts a specified substring from a string
expression.

Format
MID$ statement
MID[$] (str-var, int-exp1 [, int-exp2]) = str-exp

MID$ function
str-var = MID[$] (str-exp, int-exp1, int-exp2)

Syntax Rules
1. Int-exp1 specifies the position of the substring's first character.

2. Int-exp2 specifies the length of the substring.

Remarks
1. If int-exp1 is less than 1, VSI BASIC assumes a starting character position of 1.

2. If int-exp2 is less than or equal to zero, VSI BASIC assumes a length of zero.

3. If you specify a floating-point expression for int-exp1 or int-exp2, VSI BASIC truncates it to a LONG
integer.

4. MID$ statement

168

Chapter 3. Statements and Functions

• The MID$ statement replaces a specified portion of str-var with str-exp.

• If int-exp1 is greater than the length of str-var, str-var remains unchanged.

• The length of str-var does not change regardless of the value of int-exp2.

• If the optional int-exp2 is not specified, VSI BASIC assumes int-exp2 to be the length of str-exp
minimized by the length of str-var minus int-exp1. For example:

A$ = "ABCDEFG"
MID$ (A$,3) = "123456789"
PRINT A$

Output

 "AB12345"

• If int-exp2 is less than or equal to zero, str-var remains unchanged.

• If int-exp2 is greater than the length of str-var, VSI BASIC assumes int-exp2 to be equal to the
length of str-var.

• Int-exp2 is always minimized against the length of str-var minus int-exp1.

5. MID$ function

• The MID$ function extracts a substring from str-exp and stores it in str-var.

• If int-exp1 is greater than the length of str-exp, MID$ returns a null string.

• If int-exp2 is greater than the length of str-exp, VSI BASIC returns the string that begins at int-
exp1 and includes all characters remaining in str-exp.

• If int-exp2 is less than or equal to zero, MID$ returns a null string.

Examples
Example 1
!MID$ Function
DECLARE STRING old_string, new_string
old_string = "ABCD"
new_string = MID$(old_string,1,3)
PRINT new_string

Output

 ABC

Example 2
!MID$ Statement
DECLARE STRING old_string, replace_string
old_string = "ABCD"
replace_string = "123"
PRINT old_string

169

Chapter 3. Statements and Functions

MID$(old_string,1,3) = replace_string
PRINT old_string

Output

ABCD
123D

MIN
MIN — The MIN function compares the values of two or more numeric expressions and returns the
smallest value.

Format
num-var = MIN (num-exp1, num-exp2 [, num-exp3,...])

Syntax Rules
VSI BASIC allows you to specify up to eight numeric expressions.

Remarks
1. If you specify values with different data types, VSI BASIC performs data type conversions to

maintain precision.

2. VSI BASIC returns a function result whose data type is compatible with the values you supply.

Example
DECLARE REAL John_grade, &
 Bob_grade, &
 Joe_grade, &
 lowest_grade
INPUT "John's grade";John_grade
INPUT "Bob's grade";Bob_grade
INPUT "Joe's grade";Joe_grade
lowest_grade = MIN(John_grade, Bob_grade, Joe_grade)
PRINT "The lowest grade is";lowest_grade

Output

John's grade? 95
Bob's grade? 100
Joe's grade? 84
The lowest grade is 84

MOD
MOD — The MOD function divides a numeric value by another numeric value and returns the
remainder.

170

Chapter 3. Statements and Functions

Format
num-var = MOD (num-exp1, num-exp2)

Syntax Rules
Num-exp1 is divided by num-exp2.

Remarks
1. If you specify values with different data types, VSI BASIC performs data type conversions to

maintain precision.

2. VSI BASIC returns a function result whose data type is compatible with the values you supply.

3. The function result is either a positive or negative value, depending on the value of the first numeric
expression. For example, if the first numeric expression is negative, then the function result will also
be negative.

Example
DECLARE REAL A,B
A = 500
B = MOD(A,70)
PRINT "The remainder equals";B

Output

The remainder equals 10

MOVE
MOVE — The MOVE statement transfers data between a record buffer and a list of variables.

Format
MOVE {TO | FROM} #chnl-exp, move-item,...

move-item: {num-var |
 num-array ([,]...) |
 str-var [= int-exp] |
 str-array ([,]...) [= int-exp] |
 [data-type] FILL [(rep-cnt)][= int-const] |
 FILL% [(rep-cnt)] |
 FILL$ [(rep-cnt)] [= int-exp]}

Syntax Rules
1. Chnl-exp is a numeric expression that specifies a channel number associated with a file. It must be

immediately preceded by a number sign (#).

171

Chapter 3. Statements and Functions

2. Move-item specifies the variable or array to which or from which data is to be moved.

3. Parentheses indicate the number of dimensions in a numeric array. The number of dimensions is
equal to the number of commas plus 1. Empty parentheses indicate a one-dimensional array, one
comma indicates a two-dimensional array, and so on.

4. Str-var and str-array specify a fixed length string variable or array. Parentheses indicate the number
of dimensions in a string array. The number of dimensions is equal to the number of commas plus
1. You can specify the number of bytes to be reserved for the variable or array elements with the
=int-exp clause. The default string length for a MOVE FROM statement is 16. For a MOVE TO
statement, the default is the string's length.

5. The FILL, FILL%, and FILL$ keywords allow you to transfer fill items of a specific data type.
Table 3.1 shows FILL item formats, representations, and storage requirements.

• If you specify a data type before the FILL keyword, the fill is of that data type. If you do not
specify a data type, the fill is of the default data type. Data-type can be any VSI BASIC data type
keyword or a data type defined by a RECORD statement. Data type keywords, size, range, and
precision are listed in Table 1.2.

• FILL items following a data type other than STRING cannot end with a dollar sign. FILL items
following a data type other than BYTE, WORD, LONG, QUAD, or INTEGER cannot end with a
percent sign.

• FILL% indicates integer fill. FILL$ indicates string fill. The =int-exp clause specifies the number
of bytes to be moved for string FILL items.

• Rep-cnt specifies the number of FILL items to be moved. Table 3.1 describes FILL item format
and storage allocation.

• In the applicable formats of FILL, (rep-cnt) represents a repeat count, not an array subscript.
FILL (n) represents n elements, not n + 1.

6. You cannot use an expression or function reference as a move-item.

Remarks
1. Before a MOVE FROM statement can execute, the file associated with chnl-exp must be open and

there must be a record in the record buffer.

2. A MOVE statement neither transfers data to or from external devices, nor invokes OpenVMS Record
Management Services (RMS). Instead, it transfers data between user areas. Thus, a record should
first be fetched with the GET statement before you use a MOVE FROM statement, and a MOVE TO
statement should be followed by a PUT or UPDATE statement that writes the record to a file.

3. MOVE FROM transfers data from the record buffer to the move-item.

4. MOVE TO transfers data from the move-item to the record buffer.

5. The MOVE statement does not affect the record buffer's size. If a MOVE statement partially fills a
buffer, the rest of the buffer is unchanged. If there is more data in the variable list than in the buffer,
VSI BASIC signals “MOVE overflows buffer” (ERR=161).

6. Each MOVE statement to or from a channel transfers data starting at the beginning of the buffer. For
example:

172

Chapter 3. Statements and Functions

MOVE FROM #1%, I%, A$ = I%

In this example, VSI BASIC assigns the first value in the record buffer to I%; the value of I% is then
used to determine the length of A$.

7. If a MOVE statement operates on an entire array, the following conditions apply:

• VSI BASIC transfers elements of row and column zero (in contrast to the MAT statements).

• The storage size of the array elements and the size of the array determine the amount of data
moved. A MOVE statement that transfers data from the buffer to a longword integer array
transfers the first four bytes of data into the first element (for example, (0,0)), the next four bytes
of data into element (0,1), and so on.

8. If the MOVE TO statement specifies an explicit string length, the following restrictions apply:

• If the string is equal to or longer than the explicit string length, VSI BASIC moves only the
specified number of characters into the buffer.

• If the string is shorter than the explicit string length, VSI BASIC moves the entire string and pads
it with spaces to the specified length.

9. VSI BASIC does not check the validity of data during the MOVE operation.

Example
MOVE FROM #4%, RUNS%, HITS%, ERRORS%, RBI%, BAT_AVERAGE

MOVE TO #9%, FILL$ = 10%, A$ = 10%, B$ = 30%, C$ = 2%

NAME...AS
NAME...AS — The NAME...AS statement renames the specified file.

Format
NAME file-spec1 AS file-spec2

Syntax Rules
1. File-spec1 and file-spec2 must be string expressions.

2. There is no default file type in file-spec1 or file-spec2. If the file to be renamed has a file type, file-
spec1 must include both the file name and the file type.

3. If you specify only a file name, VSI BASIC searches for a file with no file type. If you do not specify
a file type for file-spec2, VSI BASIC names the file, but does not assign a file type.

4. File-spec2 can include a directory name but not a device name. If you specify a directory name with
file-spec2, the file will be placed in the specified directory. If you do not specify a directory name,
the default is the current directory.

173

Chapter 3. Statements and Functions

5. File version numbers are optional. VSI BASIC renames the highest version of file-spec1 if you do not
specify a version number.

Remarks
1. If the file specified by file-spec1 does not exist, VSI BASIC signals “Can't find file or account”

(ERR=5).

2. If you use the NAME...AS statement on an open file, VSI BASIC does not rename the file until it is
closed.

3. You cannot use the NAME...AS statement to move a file between devices. You can only change the
directory, name, type, or version number.

Example
$ Directory USER$$DISK:[BASIC_PROG]
Directory USER$$DISK:[BASIC_PROG]

FIRST_PROG.BAS;1
Total of 1 file.
$ BASIC

BASIC V3.4
Ready

NAME "FIRST_PROG.BAS" AS "SECOND_PROG.BAS"
Ready

EXIT

$ Directory USER$$DISK:[BASIC_PROG]

Directory USER$$DISK:[BASIC_PROG]

SECOND_PROG.BAS;1

Total of 1 file.

NEXT
NEXT — The NEXT statement marks the end of a FOR, UNTIL, or WHILE loop.

Format
NEXT num-unsubs-var

Syntax Rules
1. Num-unsubs-var is required in a FOR...NEXT loop and must correspond to the num-unsubs-var

specified in the FOR statement.

2. Num-unsubs-var is not allowed in an UNTIL or WHILE loop.

174

Chapter 3. Statements and Functions

3. Num-unsubs-var must be a numeric, unsubscripted variable.

Remarks
Each NEXT statement must have a corresponding FOR, UNTIL, or WHILE statement or VSI BASIC
signals an error.

Example
PROGRAM calculating_pay
DECLARE INTEGER no_hours, &
 SINGLE weekly_pay, minimum_wage
minimum_wage = 3.65
no_hours = 40
WHILE no_hours > 0
 INPUT "Enter the number of hours you intend to work this week";no_hours
 weekly_pay = no_hours * minimum_wage
 PRINT "If you worked";no_hours;"hours, your pay would be";weekly_pay
NEXT
END PROGRAM

Output

Enter the number of hours you intend to work this week? 35
If you worked 35 hours, your pay would be 127.75
Enter the number of hours you intend to work this week? 23
If you worked 23 hours, your pay would be 83.95
Enter the number of hours you intend to work this week? 0
If you worked 0 hours your pay would be 0

NOECHO
NOECHO — The NOECHO function disables echoing of input on a terminal.

Format
int-var = NOECHO (chnl-exp)

Syntax Rules
Chnl-exp must specify a terminal.

Remarks
1. If you specify NOECHO, VSI BASIC accepts characters typed on the terminal as input, but the

characters do not echo on the terminal.

2. The NOECHO function is the complement of the ECHO function; NOECHO disables the effect of
ECHO and vice versa.

3. NOECHO always returns a value of zero.

175

Chapter 3. Statements and Functions

Example
DECLARE INTEGER Y, &
 STRING pass_word
Y = NOECHO(0)
INPUT "Enter your password";pass_word
IF pass_word = "DARLENE" THEN PRINT "Confirmed"
Y = ECHO(0)

Output

Enter your password?
Confirmed

NOMARGIN
NOMARGIN — The NOMARGIN statement removes the right margin limit set with the MARGIN
statement for a terminal or a terminal-format file.

Format
NOMARGIN [#chnl-exp]

Syntax Rules
Chnl-exp is a numeric expression that specifies a channel number associated with a file. It must be
immediately preceded by a number sign (#).

Remarks
1. When you specify NOMARGIN, the right margin is set to 132.

2. Chnl-exp, if specified, must be an open terminal-format file or a terminal.

3. If you do not specify a channel, VSI BASIC sets the margin on the controlling terminal to 132.

4. The NOMARGIN statement applies to the specified channel only while the channel is open. If you
close the channel and then reopen it, VSI BASIC uses the default margin of 72.

Example
OPEN "EMP.DAT" FOR OUTPUT AS #1
NOMARGIN #1
 .
 .
 .

NUM
NUM — The NUM function returns the row number of the last data element transferred into an array
by a MAT I/O statement.

176

Chapter 3. Statements and Functions

Format
int-var = NUM

Syntax Rules
None

Remarks
1. NUM returns a value of zero if it is invoked before VSI BASIC has executed any MAT I/O

statements.

2. For a two-dimensional array, NUM returns an integer specifying the row number of the last data
element transferred into the array. For a one-dimensional array, NUM returns the number of
elements entered.

3. The value returned by the NUM function is an integer of the default size.

Example
OPEN "STU_ACCT" FOR INPUT AS #2
DIM stu_rec$(3,3)
MAT INPUT #2, stu_rec$
PRINT "Row count =";NUM
PRINT "Column number =";NUM2

Output

Row count = 1
Column number = 1

NUM2
NUM2 — The NUM2 function returns the column number of the last data element transferred into an
array by a MAT I/O statement.

Format
int-var = NUM2

Syntax Rules
None

Remarks
1. NUM2 returns a value of zero if it is invoked before VSI BASIC has executed any MAT I/O

statements or if the last array element transferred was in a one-dimensional list.

2. The NUM2 function returns an integer specifying the column number of the last data element
transferred into an array.

177

Chapter 3. Statements and Functions

3. The value returned by the NUM2 function is an integer of the default size.

Example
OPEN "STU_ACCT" FOR INPUT AS #2
DIM stu_rec$(3,3)
MAT INPUT #2, stu_rec$
PRINT "Row count =";NUM
PRINT "Column number =";NUM2

Output

Row count = 1
Column number = 1

NUM$
NUM$ — The NUM$ function evaluates a numeric expression and returns a string of characters in
PRINT statement format, with leading and trailing spaces.

Format
str-var = NUM$ (num-exp)

Syntax Rules
None

Remarks
1. If num-exp is positive, the first character in the string expression is a space. If num-exp is negative, the

first character is a minus sign (–).

2. The NUM$ function does not include trailing zeros in the returned string. If all digits to the right of
the decimal point are zeros, NUM$ omits the decimal point as well.

3. When num-exp is a floating-point variable and has an integer portion of 6 decimal digits or less (for
example, 1234.567), VSI BASIC rounds the number to 6 digits (1234.57). If num-exp has 7 decimal
digits or more, VSI BASIC rounds the number to 6 digits and prints it in E format.

4. When num-exp is from 0.1 to 1 and contains more than 6 digits, VSI BASIC rounds it to 6 digits.
When num-exp is smaller than 0.1, VSI BASIC rounds it to 6 digits and prints it in E format.

5. If num-exp is an integer variable, the maximum number of digits in the returned string is as follows,
depending on the data type of num-exp:

Type Maximum Digits

Byte 3
Word 5
Longword 10

178

Chapter 3. Statements and Functions

Type Maximum Digits

Quadword 19

6. If num-exp is a DECIMAL value, the returned string can have up to 31 digits.

7. The last character in the returned string is a space.

Example
DECLARE STRING number
number = NUM$(34.5500/31.8)
PRINT number

Output

1.08648

NUM1$
NUM1$ — The NUM1$ function changes a numeric expression to a numeric character string without
leading and trailing spaces and without rounding.

Format
str-var = NUM1$ (num-exp)

Syntax Rules
None

Remarks
1. The NUM1$ function returns a string consisting of numeric characters and a decimal point that

corresponds to the value of num-exp. Leading and trailing spaces are not included in the returned
string.

2. The NUM1$ function returns a maximum of the following number of significant digits:

• 3 for BYTE integers

• 5 for WORD integers

• 6 for SINGLE and SFLOAT floating-point numbers

• 10 for LONG integers

• 19 for QUAD integers

• 16 for DOUBLE floating-point numbers

• 15 for GFLOAT and TFLOAT floating-point numbers

• 33 for HFLOAT and XFLOAT floating-point numbers

179

Chapter 3. Statements and Functions

• 31 for DECIMAL numbers

Alpha BASIC does not support HFLOAT.

3. The returned string does not use E-format notation.

Example
DECLARE STRING number
number = NUM1$(PI/2)
PRINT number

Output

1.5708

ON ERROR GO BACK
ON ERROR GO BACK — Under certain conditions, an ON ERROR GO BACK statement executed
in a subprogram or DEF function transfers control to the calling program. The ON ERROR GO BACK
statement is supported for compatibility with other versions of BASIC. For new program development, it
is recommended that you use WHEN blocks.

Format
{ONERROR | ON ERROR} GO BACK

Syntax Rules
The ON ERROR GO BACK statement is illegal inside a protected region or within an attached or
detached handler. Use the EXIT HANDLER statement instead.

Remarks
1. If there is no error outstanding, execution of an ON ERROR GO BACK statement causes subsequent

errors to return control to the calling program's error handler.

2. If there is an error outstanding, execution of an ON ERROR GO BACK statement immediately
transfers control to the calling program's error handler.

3. By default, DEF functions and subprograms resignal errors to the calling program.

4. The ON ERROR GO BACK statement remains in effect until the program unit completes execution,
until VSI BASIC executes another ON ERROR statement, or until VSI BASIC enters a protected
region.

5. An ON ERROR GO BACK statement executed in the main program is equivalent to an ON ERROR
GOTO 0 statement.

6. If a main program calls a subprogram named SUB1, and SUB1 calls the subprogram named SUB2,
an ON ERROR GO BACK statement executed in SUB2 transfers control to SUB1's error handler

180

Chapter 3. Statements and Functions

when an error occurs in SUB2. If SUB1 also has executed an ON ERROR GO BACK statement,
VSI BASIC transfers control to the main program's error handling routine.

7. For current program development, see the WHEN ERROR statement.

8. It is not recommended that you mix ON ERROR statements with protected regions in the same
program unit. For more information, see the VSI BASIC User Manual.

Example
IF ERR = 11
 THEN
 RESUME err_hand
 ELSE
 ON ERROR GO BACK
END IF

ON ERROR GOTO
ON ERROR GOTO — The ON ERROR GOTO statement transfers program control to a specified line
or label in the current program unit when an error occurs under certain conditions. The ON ERROR
GOTO statement is supported for compatibility with other versions of BASIC. For new program
development, it is recommended that you use WHEN blocks.

Format
{ONERROR | ON ERROR} {GO TO | GOTO} target

Syntax Rules

1. You cannot specify an ON ERROR GOTO statement within a protected region or handler.

2. Target must be a valid VSI BASIC line number or label and must exist in the same program unit as
the ON ERROR GOTO statement.

3. If an ON ERROR GOTO statement is in a DEF function, target must also be in that function
definition.

Remarks
1. VSI BASIC transfers program control to a specified line number or label under two conditions:

• If an error occurred outside a protected region of a WHEN block

• If an error occurred within the protected region of a WHEN block and was propagated by the
handler associated with the WHEN block

2. Execution of an ON ERROR GOTO statement causes subsequent errors to transfer control to the
specified target.

181

Chapter 3. Statements and Functions

3. The ON ERROR GOTO statement remains in effect until the program unit completes execution or
until VSI BASIC executes another ON ERROR statement.

4. VSI BASIC does not allow recursive error handling. If a second error occurs during execution of
an error-handling routine, control passes to the VSI BASIC error handler and the program stops
executing.

5. For current program development, see the WHEN ERROR statement.

6. It is not recommended that you mix ON ERROR statements with protected regions within the same
program unit. For more information, see the VSI BASIC User Manual.

Example
SUB LIST (STRING A)
DECLARE STRING B
ON ERROR GOTO err_block
OPEN A FOR INPUT AS FILE #1
Input_loop:
 LINPUT #1, B
 PRINT B
 .
 .
 .
 GOTO Input_loop
err_block:
 IF (ERR=11%)
 THEN
 CLOSE #1%
 RESUME done
 ELSE
 ON ERROR GOTO 0
 END IF
done:
END SUB

ON ERROR GOTO 0
ON ERROR GOTO 0 — The ON ERROR GOTO 0 statement disables ON ERROR error handling
and passes control to the VSI BASIC error handler when an error occurs. The ON ERROR GOTO 0
statement is supported for compatibility with other versions of BASIC. For new program development, it
is recommended that you use WHEN blocks.

Format
{ON ERROR | ONERROR} {GO TO | GOTO} 0

Syntax Rules
VSI BASIC does not allow you to specify an ON ERROR GOTO 0 statement within an attached or
detached handler or within a protected region.

182

Chapter 3. Statements and Functions

Remarks
1. If an error is outstanding, execution of an ON ERROR GOTO 0 statement immediately transfers

control to the VSI BASIC error handler. The VSI BASIC error handler will report the error and exit
the program.

2. If there is no error outstanding, execution of an ON ERROR GOTO 0 statement causes subsequent
errors to transfer control to the VSI BASIC error handler.

3. When an ON ERROR GOTO 0 statement is executed, control is transferred to the VSI BASIC error
handler if an error occurred outside a protected region of a WHEN block.

4. If an error occurs within the protected region of a WHEN block and was propagated by the handler
associated with the WHEN block, VSI BASIC transfers control to the specified line number or label
contained in the subprogram or DEF.

5. For current program development, see the WHEN ERROR statement.

6. It is not recommended that you mix ON ERROR statements with attached or detached handlers
within the same program unit. For more information, see the VSI BASIC User Manual.

Example
ON ERROR GOTO err_routine
FOR I = 1% TO 10%
 PRINT "Please type a number"
 INPUT A
NEXT I
err_routine:
IF ERR = 50
 THEN
 RESUME
 ELSE
 ON ERROR GOTO 0
END IF

Output

Please type a number
? Ctrl/Z

%BAS-F-ILLUSADEV, Illegal usage for device
-BAS-I-ON_CHAFIL, on channel 0 for file SYS$INPUT:[TUTTI]SYSINPUT.DAT;
 at user PC 00000632
-RMS-F-DEV, error in device name or inappropriate device type for operation
-BAS-I-FROLINMOD, from line 10 in module BADUSER

ON...GOSUB
ON...GOSUB — The ON...GOSUB statement transfers program control to one of several subroutines,
depending on the value of a control expression.

183

Chapter 3. Statements and Functions

Format
ON int-exp GOSUB target,... [OTHERWISE target]

Syntax Rules
1. Int-exp determines which target VSI BASIC selects as the GOSUB argument. If int-exp equals 1, VSI

BASIC selects the first target. If int-exp equals 2, VSI BASIC selects the second target, and so on.

2. Target must be a valid VSI BASIC line number or label and must exist in the current program unit.

Remarks
1. Control cannot be transferred into a statement block (such as FOR...NEXT, UNTIL...NEXT,

WHILE...NEXT, DEF...END DEF, SELECT...END SELECT, WHEN...END WHEN, or
HANDLER...END HANDLER).

2. If there is an OTHERWISE clause, and if int-exp is less than 1 or greater than the number of targets
in the list, VSI BASIC selects the target of the OTHERWISE clause.

3. If there is no OTHERWISE clause, and if int-exp is less than 1 or greater than the number of targets
in the list, VSI BASIC signals “ON statement out of range” (ERR=58).

4. If a target specifies a nonexecutable statement, VSI BASIC transfers control to the first executable
statement that lexically follows the target.

5. You can only use the ON...GOSUB statement inside a handler if all the targets are contained within
the handler.

6. If you fail to handle an exception that occurs while an ON...GOSUB statement in the body of a
subroutine is executing, the exception is handled by the default error handler. The exception is not
handled by any WHEN block surrounding the ON...GOSUB statement that invoked the subroutine.

7. You can specify the ON...GOSUB statement inside a WHEN block if the ON...GOSUB target is in
the same protected region, an outer protected region, or in a nonprotected region.

8. You cannot specify an ON...GOSUB statement inside a WHEN block if the ON...GOSUB target
already resides in another protected region that does not contain the most current protected region.

9. The target cannot be more than 32,767 bytes away from the ON...GOSUB statement.

Example
100 INPUT "Please enter 1, 2 or 3"; A%
 ON A% GOSUB 1000, 2000, 3000 OTHERWISE err_routine
 GOTO done

1000 PRINT "That was a 1"
 RETURN
2000 PRINT "That was a 2"
 RETURN
3000 PRINT "That was a 3"
 RETURN

 err_routine:

184

Chapter 3. Statements and Functions

 PRINT "Out of range:
 RETURN
 done:
 END PROGRAM

ON...GOTO
ON...GOTO — The ON...GOTO statement transfers program control to one of several lines or targets,
depending on the value of a control expression.

Format
ON int-exp {GO TO | GOTO} target ,… [OTHERWISE target]

Syntax Rules
1. Int-exp determines which target VSI BASIC selects as the GOTO argument. If int-exp equals 1, VSI

BASIC selects the first target. If int-exp equals 2, VSI BASIC selects the second target, and so on.

2. Target must be a valid VSI BASIC line number or a label and must exist in the current program unit.

Remarks
1. Control cannot be transferred into a statement block (such as FOR...NEXT, UNTIL...NEXT,

WHILE...NEXT, DEF...END DEF, SELECT...END SELECT, WHEN...END WHEN, or
HANDLER...END HANDLER).

2. If there is an OTHERWISE clause, and if int-exp is less than one or greater than the number of
targets in the list, VSI BASIC transfers control to the target of the OTHERWISE clause.

3. If there is no OTHERWISE clause, and if int-exp is less than 1 or greater than the number of line
numbers in the list, VSI BASIC signals “ON statement out of range” (ERR=58).

4. If a target specifies a nonexecutable statement, VSI BASIC transfers control to the first executable
statement that lexically follows the target.

5. You can only use the ON...GOTO statement inside a handler if all the targets are contained within
the handler.

6. You can specify the ON...GOTO statement inside a WHEN block if the ON...GOTO target is in the
same protected region, an outer protected region, or in a nonprotected region.

7. You cannot specify an ON...GOTO statement inside a WHEN block if the ON...GOTO target
already resides in another protected region that does not contain the most current protected region.

Example
ON INDEX% GOTO 700,800,900 OTHERWISE finish
 .
 .
 .
finish:
 END PROGRAM

185

Chapter 3. Statements and Functions

OPEN
OPEN — The OPEN statement opens a file for processing. It transfers user-specified file characteristics
to OpenVMS Record Management Services (RMS) and verifies the results.

Format
OPEN file-spec1 [{FOR INPUT | FOR OUTPUT}] AS [FILE] [#]chnl-exp
 [,open-clause]...

open-clause:
[ACCESS {APPEND | READ | WRITE | MODIFY | SCRATCH}]

[ALLOW {NONE | READ | WRITE | MODIFY}]

[BUFFER int-exp4]

[CONTIGUOUS]

[DEFAULTNAME file-spec2]

[EXTENDSIZE int-exp5]

[FILESIZE int-exp2]

[MAP map-name]

Sequential Files Only
[BLOCKSIZE int-exp8]

[NOREWIND]

[NOSPAN]

[SPAN]

Relative and Indexed Files Only
[BUCKETSIZE int-exp9]

Indexed Files Only
[ALTERNATE [KEY] key-clause [DUPLICATES] [CHANGES]
 [{ASCENDING | DESCENDING}]]

[CONNECT chnl-exp2]

[PRIMARY [KEY] key-clause [DUPLICATES]
 [{ASCENDING | DESCENDING}]]

key-clause: {int-unsubs-var |
 decimal-unsubs-var |
 str-unsubs-var |
 (str-unsubs-var1,... str-unsubs-var8) |
 quad-record-group}

186

Chapter 3. Statements and Functions

Syntax Rules
1. File-spec1 specifies the file to be opened and associated with chnl-exp. It can be any valid string

expression and must be a valid VMS file specification. VSI BASIC passes these values to RMS
without editing, alteration, or validity checks.

VSI BASIC does not supply any default file specifications, unless you include the DEFAULTNAME
clause in the OPEN statement.

2. The FOR clause determines how VSI BASIC opens a file.

• If you open a file with FOR INPUT, the file must exist or VSI BASIC signals an error.

• If you open a file with FOR OUTPUT, VSI BASIC creates the file if it does not exist. If the file
does exist, VSI BASIC creates a new version of the file.

• If you do not use FOR INPUT or FOR OUTPUT to open an indexed file, you must specify a
primary key in the event the file does not exist.

• If you do not specify either FOR INPUT or FOR OUTPUT, VSI BASIC tries to open an existing
file. If there is no such file, VSI BASIC creates one.

3. Chnl-exp is a numeric expression that specifies a channel number to be associated with the file
being opened. It can be preceded by an optional number sign (#) and must be in the range of 1
to 299. Note that channels 100 to 299 are usually reserved for allocation by the RTL routines,
LIB$GET_LUN and LIB$FREE_LUN.

4. A statement that accesses a file cannot execute until you open that file and associate it with a
channel.

Remarks
1. The OPEN statement does not retrieve records.

2. Channel #0, the terminal, is always open. If you try to open channel zero, VSI BASIC signals the
error “Illegal I/O channel” (ERR=46).

3. If a program opens a file on a channel already associated with an open file, VSI BASIC closes the
previously opened file and opens the new one.

4. The ACCESS clause determines how the program can use the file.

• ACCESS READ allows only FIND, GET, or other input statements on the file. The OPEN
statement cannot create a file if the ACCESS READ clause is specified.

• ACCESS WRITE allows only PUT, UPDATE, or other output statements on the file.

• ACCESS MODIFY allows any I/O statement except SCRATCH on the file. ACCESS MODIFY
is the default.

• ACCESS SCRATCH allows any I/O statement valid for a sequential or terminal-format file.

• ACCESS APPEND is the same as ACCESS WRITE for sequential files, except that VSI BASIC
positions the file pointer after the last record when it opens the file. You cannot use ACCESS
APPEND on relative or indexed files.

187

Chapter 3. Statements and Functions

For an illustration of the interaction of ACCESS and ALLOW, see No. 5.

5. The ALLOW clause can be used in the OPEN statement to specify file sharing of relative, indexed,
sequential, and virtual files.

• ALLOW NONE lets no other users access the file. This is the default if any access other than
READ is specified. Note that you must have write access to the file to specify ALLOW NONE.

• ALLOW READ lets other users have read access to the file.

• ALLOW WRITE lets other users have write access to the file.

• ALLOW MODIFY lets other users have unlimited access to the file.

The following scenario may help clarify the interaction of the ACCESS and ALLOW clauses:
Suppose you specify ACCESS WRITE and ALLOW READ for a file. Your program then can access
and write to the file, but other users (both new and preexisting) can only read the file. However, if
another user has already opened the file for writing, an error is signaled. For further information,
refer to the OpenVMS Record Management Services (RMS) documentation.

6. The BUFFER clause can be used with all file organizations except UNDEFINED.

• For RELATIVE and INDEXED files, int-exp4 specifies the number of device or file buffers
RMS uses for file processing.

• For SEQUENTIAL files, int-exp4 specifies the size of the buffer; for example, BUFFER 8 for a
SEQUENTIAL file sets the buffer size to eight 512-byte blocks.

• It is recommended that you accept the system defaults or change the defaults with the DCL SET
RMS_DEFAULT command.

7. The CONTIGUOUS clause causes RMS to try to create the file as a contiguous-best-try sequence
of disk blocks. The CONTIGUOUS clause does not affect existing files or nondisk files.

The CONTIGUOUS clause does not guarantee that the file will occupy contiguous disk space. If
RMS can locate the file in a contiguous area, it will do so. However, if there is not enough free
contiguous space for a file, RMS allocates the largest possible contiguous space and does not signal
an error. See the VSI OpenVMS Record Management Services Reference Manual for more information
about contiguous disk allocation.

8. The DEFAULTNAME clause lets you supply a default file specification. If file-spec1 is not a
complete file specification, file-spec2 in the DEFAULTNAME clause supplies the missing parts. For
example:

10 INPUT 'FILE NAME';fnam$
20 OPEN fnam$ FOR INPUT AS FILE #1%, &
 DEFAULTNAME "USER$$DISK:.DAT"

If you type “ABC” for the file name, VSI BASIC tries to open USER$$DISK:[]ABC.DAT.

9. The EXTENDSIZE clause lets you specify the increment by which RMS extends a file after its
initial allocation is filled. The value of int-exp5 is in 512-byte disk blocks. The EXTENDSIZE clause
has no effect on an existing file.

10. The FILESIZE clause lets you pre-extend a new file to a specified size.

188

Chapter 3. Statements and Functions

• The value of int-exp2 is the initial allocation of disk blocks.

• The FILESIZE clause has no effect on an existing file.

11. The MAP clause specifies that a previously declared map is associated with the file's record
buffer. The MAP clause determines the record buffer's address and length unless overridden by the
RECORDSIZE clause.

189

Chapter 3. Statements and Functions

• The size of the specified map must be as large or larger than the longest record length or
maximum record size. For files with a fixed record size, the specified map must match exactly.

• The size of the largest MAP with the same map name in the current program unit becomes the
file's record size if the OPEN statement does not include a RECORDSIZE clause.

• It is recommended that you do not use both the MAP and RECORDSIZE clauses in an OPEN
statement. However, if you do use both the MAP and RECORDSIZE clauses in an OPEN
statement, the following rules apply:

• The RECORDSIZE clause overrides the record size set by the MAP clause.

• The map must be as large or larger than the specified RECORDSIZE.

• If there is no MAP clause, the record buffer space that VSI BASIC allocates is not directly
accessible; therefore, MOVE statements are needed to access data in the record buffer.

• You must have a MAP clause when creating an indexed file; you cannot use KEY clauses
without MAP statements because keys serve as offsets into the buffer.

• The size of the specified map cannot exceed 32,767 bytes.

12. The ORGANIZATION clause specifies the file organization. When present, it must precede
all other clauses. When you specify an ORGANIZATION clause, you must also specify one of
the following organization options: VIRTUAL, UNDEFINED, INDEXED, SEQUENTIAL or
RELATIVE. Specify ORGANIZATION UNDEFINED if you do not know the actual organization of
the file. If you do not specify an ORGANIZATION clause, VSI BASIC opens a terminal format file
by default.

• When you specify ORGANIZATION VIRTUAL, you create a sequentially fixed file with a
record size of 512 (or a multiple of 512). You can then access the file with the FIND, GET,
PUT, or UPDATE statements or through one or more virtual arrays. VSI BASIC allows you to
overwrite existing records in a file not containing virtual arrays and opened as ORGANIZATION
VIRTUAL by using the PUT statement with a RECORD clause. All other organizations require
the UPDATE statement to change an existing record. It is recommended that you also use the
UPDATE statement to change existing records in VIRTUAL files that do not contain virtual
arrays.

• When you do not know the organization of a file, you can open a file for input and specify
ORGANIZATION UNDEFINED. You can then use the FSP$ function or a USEROPEN routine
to determine the attributes of the file. You will usually want to specify the RECORDTYPE ANY
clause with the ORGANIZATION UNDEFINED clause. The combination of these two clauses
should allow you to access any file sequentially.

• When you specify ORGANIZATION INDEXED, you create an indexed file whose data records
are sorted in ascending or descending order according to a primary index key value.

• Use a PRIMARY KEY clause in the OPEN statement.

• The index keys you specify determine the order in which records are stored.

• Index keys must be variables declared in a MAP statement associated with the OPEN
statement for the file.

190

Chapter 3. Statements and Functions

• VSI BASIC allows you to specify an indexed file as either variable or fixed length.

• When you specify ORGANIZATION SEQUENTIAL, you create a file that stores records in the
order in which they are written.

• Sequential files can contain records of any valid VSI BASIC record format: fixed-length,
variable-length, or stream.

• If you open an existing file using stream as a record format option, the file must be one of the
following stream record formats defined by RMS:

• STREAM records can be delimited by any special character.

• STREAM_LF must be delimited by a line-feed character.

• STREAM_CR must be delimited by a carriage return.

If the file is not one of these stream formats, VSI BASIC signals the error “RECATTNOT,
record attributes not matched.”

• When you specify ORGANIZATION RELATIVE, you create a file that contains a series of
records that are numbered consecutively. VSI BASIC allows you to specify either fixed-length or
variable-length records.

• If you omit the ORGANIZATION clause entirely, a terminal-format file is opened.

• Terminal-format files are implemented as RMS sequential variable files and store ASCII
characters in variable-length records.

• Carriage control is performed by the operating system; the record does not contain carriage
returns or line feeds.

• You use essentially the same syntax to access terminal-format files as when reading from or
writing to the terminal (INPUT and PRINT).

13. The RECORDSIZE clause specifies the file's record size. Note that there are restrictions on the
maximum record size allowed for various file and record formats. See the VSI OpenVMS Record
Management Services Reference Manual for more information.

• For fixed-length records, int-exp1 specifies the size of all records.

• For variable-length records, int-exp1 specifies the size of the largest record.

• It is recommended that you do not use both the MAP and RECORDSIZE clauses in an OPEN
statement. However, if you do use both the MAP and RECORDSIZE clauses in an OPEN
statement, the following rules apply:

• The RECORDSIZE clause overrides the record size set by the MAP clause.

• The map must be as large or larger than the specified RECORDSIZE.

• If you specify a MAP clause but no RECORDSIZE clause, the record size is equal to the map
size.

191

Chapter 3. Statements and Functions

• If there is no MAP clause, the RECORDSIZE clause determines the record size.

• When creating a relative or indexed file, you must specify either a MAP or RECORDSIZE
clause; otherwise, VSI BASIC signals an error.

• For fixed files, the record size must match exactly.

• If you do not specify a RECORDSIZE clause when opening an existing file, VSI BASIC retrieves
the record size value from the file.

• When you print to a terminal-format file, you must supply a record size if the margin is to exceed
72 characters. For example, if you want to print a 132-character line, specify RECORDSIZE 132
or use the MARGIN and NOMARGIN statements.

• When creating SEQUENTIAL files, VSI BASIC supplies a default record size of 132.

• The record size is always 512 for VIRTUAL files, unless you specify a RECORDSIZE.

14. The RECORDTYPE clause specifies the file's record attributes.

• LIST specifies implied carriage control, <CR>. This is the default for all file organizations except
VIRTUAL.

• FORTRAN specifies a control character in the record's first byte.

• NONE specifies no attributes. This is the default for VIRTUAL files.

If you open a terminal-format file with RECORDTYPE NONE, you must explicitly insert
carriage control characters into the records your program writes to the file.

• ANY specifies a match with any file attributes when opening an existing file. If you create a new
file, ANY is treated as LIST for all organizations except VIRTUAL. For VIRTUAL, it is treated
as None.

15. The TEMPORARY clause causes VSI BASIC to delete the output file as soon as the program
closes it.

16. The UNLOCK EXPLICIT clause allows you to retain locks on records until they are explicitly
unlocked.

• The type of lock you impose on a record with a GET or FIND statement remains in effect until
you explicitly unlock the record or file with a FREE or UNLOCK statement or until you close
the file.

• If you specify UNLOCK EXPLICIT, and do not specify an ALLOW clause with a GET or FIND
statement, VSI BASIC imposes the ALLOW NONE lock by default and the next GET or FIND
operation does not unlock the previously locked record.

• You must open a file with UNLOCK EXPLICIT before you can explicitly lock records with the
ALLOW clause on GET and FIND statements. See the sections on GET and FIND and the VSI
BASIC User Manual for more information about explicit record locking and unlocking.

17. The USEROPEN clause lets you open a file with your own FUNCTION subprogram.

192

Chapter 3. Statements and Functions

• Func-name must be a separately compiled FUNCTION subprogram and must conform to
FUNCTION statement rules for naming subprograms.

• You do not need to declare the USEROPEN routine as an external function.

• VSI BASIC calls the user program after it fills the FAB (File Access Block), the RAB (Record
Access Block), and the XABs (Extended Attribute Blocks). The subprogram must issue the
appropriate RMS calls, including $OPEN and $CONNECT, and return the RMS status as
the value of the function. See the VSI BASIC User Manual for more information about the
USEROPEN routine.

Note

Future releases of the OpenVMS Run-Time Library may alter the use of some RMS fields.
Therefore, you may have to alter your USEROPEN procedures accordingly.

18. The WINDOWSIZE clause followed by int-exp3 lets you specify the number of block retrieval
pointers you want to maintain in memory for the file.

Retrieval pointers are associated with the file header and point to contiguous blocks on disk.

• By keeping retrieval pointers in memory you can reduce the I/O associated with locating a
record, as the operating system does not have to access the file header for pointers as frequently.

• The number of retrieval pointers in memory at any one time is determined by the system default
or by the WINDOWSIZE clause.

• The default number of retrieval pointers on OpenVMS systems is 7.

• A value of zero specifies the default number of retrieval pointers. A value of –1 means to map
the entire file, if possible. Values from –128 to –2 are reserved.

19. The BLOCKSIZE clause specifies the physical block size of magnetic tape files. The BLOCKSIZE
clause can be used for magnetic tape files only.

• The value of int-exp8 is the number of records in a block. Therefore, the block size in bytes is the
product of the RECORDSIZE and the BLOCKSIZE value.

• The default blocksize is one record.

20. The NOREWIND clause controls tape positioning on magnetic tape files. The NOREWIND clause
can be used for magnetic tape files only.

• If you specify NOREWIND, the OPEN statement does not position the tape at the beginning.
Your program can search for records from the current position.

• If you do not specify either ACCESS APPEND or NOREWIND, the OPEN statement positions
the tape at its beginning and then searches for the file.

21. The NOSPAN clause specifies that sequential records cannot cross block boundaries.

• SPAN specifies that records can cross block boundaries. SPAN is the default.

• The NOSPAN clause does not affect nondisk files.

193

Chapter 3. Statements and Functions

22. The BUCKETSIZE clause applies only to relative and indexed files. It specifies the size of an RMS
bucket in terms of the number of records one bucket should hold.

• The value of int-exp9 is the number of records in a bucket.

• The default is one record.

23. The CONNECT clause permits multiple record streams to be connected to the file.

• The CONNECT clause must specify an INDEXED file already opened on chnl-exp2 with the
primary OPEN statement.

• You cannot connect to a connected channel; you can connect only to the initially opened channel.

• You can connect more than one stream to an open channel.

• All clauses of the two files to be connected must be identical except MAP, CONNECT, and
USEROPEN.

• Do not use the CONNECT clause when accessing files over DECnet or VSI BASIC will signal
the error “Cannot open file” (ERR=162).

24. The PRIMARY KEY clause lets you specify an indexed file's key. You must specify a primary key
when opening an indexed file. The ALTERNATE KEY clause lets you specify up to 254 alternate
keys. The ALTERNATE KEY clause is optional.

• RMS creates one index list for each primary and alternate key you specify. These indexes are
part of the file and contain pointers to the records. Each key you specify corresponds to a sorted
list of record pointers.

• You can specify each key as ASCENDING or DESCENDING; ASCENDING is the default.
In an ASCENDING key, lower key values occur toward the beginning of the index. In a
DESCENDING key, higher key values occur toward the beginning of the index.

• The keys you specify determine the order in which records in the file are stored. All keys must
be variables declared in the file's corresponding MAP statement. The position of the key in the
MAP statement determines its position in the record. The data type and size of the key are as
declared in the MAP statement.

• A key can be an unsubscripted string, a WORD, LONG, QUAD, or packed decimal variable, or a
record or group that is exactly eight bytes long.

• You can also create a segmented index key for string keys by separating the string variable
names with commas and enclosing them in parentheses. You can then reference a segment of the
specified key by referencing one of the string variables instead of the entire key. A string key can
have up to eight segments.

• The order of appearance of keys determines key numbers. The primary key, which must appear
first, is key #0. The first alternate key is #1, and so on.

• DUPLICATES in the PRIMARY and ALTERNATE key clauses specifies that two or more
records can have the same key value. If you do not specify DUPLICATES, the key value must be
unique in all records.

• CHANGES in the ALTERNATE KEY clause specifies that you can change the value of an
alternate key when updating records. If you do not specify CHANGES when creating the file,

194

Chapter 3. Statements and Functions

you cannot change the value of a key. You cannot specify CHANGES with the PRIMARY KEY
clause.

• KEY clauses are optional for existing files. If you do specify a key, it must match a key in the
file.

Examples
Example 1
OPEN "FILE.DAT" AS FILE #4

Example 2
OPEN "INPUT.DAT" FOR INPUT AS FILE #4, &
 ORGANIZATION SEQUENTIAL FIXED, &
 RECORDSIZE 200, &
 MAP ABC, &
 ALLOW MODIFY, ACCESS MODIFY

OPEN Newfile$ FOR OUTPUT AS FILE #3, &
 INDEXED VARIABLE, &
 MAP Emp_name, &
 DEFAULTNAME "USER$$DISK:.DAT", &
 PRIMARY KEY Last$ DUPLICATES, &
 ALTERNATE KEY First$ CHANGES

MAP (SEGKEY) STRING last_name = 15, &
 MI = 1, first_name = 15

OPEN "NAMES.IND" FOR OUTPUT AS FILE #1, &
 ORGANIZATION INDEXED, &
 PRIMARY KEY (last_name, first_name, MI), &
 MAP SEGKEY

Example 3
MAP (OWNERKEYS) STRING owner_id = 6, dog_reg_no = 7, &
 last_name = 25, first_name = 20

OPEN "OWNERS.IND" FOR OUTPUT AS FILE #1, &
 ORGANIZATION INDEXED, &
 PRIMARY KEY (owner_id), &
 ALTERNATE KEY (last_name) DUPLICATES CHANGES, &
 ALTERNATE (dog_reg_no) DESCENDING, &
 MAP OWNERKEYS

The MAP statement describes the three string variables used as index keys in the file OWNERS.IND.
The OPEN statement declares an indexed file with two alternate keys in addition to the primary key. The
alternate key dog_reg_no is a DESCENDING key; the other keys are ASCENDING by default.

195

Chapter 3. Statements and Functions

OPTION
OPTION — The OPTION statement allows you to set compilation qualifiers such as default data type,
size, and scale factor. You can also set compilation conditions such as severity of run-time errors to
handle, constant type checking, subscript checking, overflow checking, decimal rounding, and setup in a
source program. The options you set affect only the program module in which the OPTION statement
occurs.

Format
OPTION option-clause,...

option-clause: {ANGLE = angle-clause |
 HANDLE = handle-clause |
 CONSTANT TYPE = const-type-clause |
 OLD VERSION = CDD |
 TYPE = type-clause |
 SIZE = size-clause |
 SCALE = int-const |
 {ACTIVE | INACTIVE} = active-clause}

angle-clause: {DEGREES | RADIANS}

handle-clause: {BASIC | SEVERE | ERROR | WARNING INFORMATIONAL}

const-type-clause: {REAL | INTEGER | DECIMAL}

type-clause: {INTEGER | REAL | EXPLICIT | DECIMAL}

size-clause: {size-item | (size-item,...)}

size-item: {INTEGER int-clause | REAL real-clause | DECIMAL(d,s)}

int-clause: {BYTE | WORD | LONG | QUAD}

real-clause: {SINGLE | DOUBLE | GFLOAT | HFLOAT | SFLOAT | TFLOAT | XFLOAT}

active-clause: {(active-item) | (active-item,...)}

active-item: {INTEGER OVERFLOW | DECIMAL OVERFLOW | SETUP | DECIMAL
 ROUNDING | SUBSCRIPT CHECKING}

Syntax Rules
None

Remarks

1. Option-clause specifies the compilation qualifiers to be in effect for the program module.

2. Angle-clause specifies whether angles are to be evaluated in radians or in degrees. If you do not
specify an angle-clause, VSI BASIC uses radians as the default.

3. Handle-clause specifies the severity level of the errors that are to be handled by an error handler.

• If you do not specify an OPTION HANDLE statement, VSI BASIC uses OPTION HANDLE =
BASIC as the default. Only those errors that can be trapped and that map onto a BASIC ERR

196

Chapter 3. Statements and Functions

value will transfer control to the current error handler. See the VSI BASIC User Manual for a list
of VSI BASIC run-time errors.

• If you specify a severity level, all errors of the specified severity or less, whether or not they can
be trapped, transfer control to the current error handler. This includes non BASIC errors. For
example, OPTION HANDLE = ERROR implies ERROR, WARNING, and INFORMATIONAL
errors but not SEVERE errors.

• If you specify OPTION HANDLE = SEVERE, you can handle fatal errors. However, in most
cases, a fatal error indicates that the program environment is badly corrupted and you should not
continue program execution.

4. Const-type-clause specifies the data type for all constants that do not end in a data type suffix or are
not in explicit literal notation with a data type supplied.

5. Type-clause sets the default data type for variables that have not been explicitly declared and for
constants if no constant type clause is specified. You can specify only one type-clause in a program
module.

6. Size-clause sets the default data subtypes for floating-point, integer, and packed decimal data. Size-
item specifies the data subtype you want to set. You can specify an INTEGER, REAL or DECIMAL
size-item, or a combination. Multiple size-items in an OPTION statement must be enclosed in
parentheses and separated by commas.

7. SCALE controls the scaling of double precision floating-point variables. Int-const specifies the power
of 10 you want as the scaling factor. It must be an integer from 0 to 6 or VSI BASIC signals an error.

8. OLD VERSION = CDD is provided for compatibility with previous versions of BASIC. When
bounds are specified in the CDD array, VSI BASIC changes the lower bounds to zero and adjusts
the upper bounds of the array. By default, if you do not specify OLD VERSION = CDD, VSI BASIC
compiles the program with the bounds specified in the CDD data definition.

9. Active-clause specifies the decimal rounding, integer and decimal overflow checking, setup, and
subscript checking conditions you want in effect for the program module. Active-item specifies
the conditions you want to set. Multiple active-items in an OPTION statement must be enclosed in
parentheses and separated by commas.

ACTIVE specifies the conditions that are to be in effect for a particular program module.
INACTIVE specifies the conditions that are not to be in effect for a particular program module. If a
condition does not appear in an active-clause, VSI BASIC uses the current environment default for
the condition.

See the VSI BASIC User Manual for more information about the INTEGER_OVERFLOW,
DECIMAL_OVERFLOW, SETUP, DECIMAL_ROUNDING, and SUBSCRIPT_CHECKING
compilation qualifiers. These qualifiers correspond to active-clause conditions (INTEGER
OVERFLOW, DECIMAL OVERFLOW, SETUP, DECIMAL ROUNDING, and SUBSCRIPT
CHECKING).

10. You can have more than one option in an OPTION statement, or you can use multiple OPTION
statements in a program module. However, each OPTION statement must lexically precede all
other source code in the program module, with the exception of comment fields, REM, PICTURE,
PROGRAM, SUB, FUNCTION, and OPTION statements.

11. OPTION statement specifications apply only to the program module in which the statement appears
and affect all variables in the module, including SUB and FUNCTION parameters.

197

Chapter 3. Statements and Functions

12. VSI BASIC signals an error in the case of conflicting options. For example, you cannot specify more
than one type-clause or SCALE factor in the same program unit.

13. If you do not specify a type-clause or a subtype-clause, VSI BASIC uses the current environment
default data types.

14. If you do not specify a scale factor, VSI BASIC uses the current environment default scale factor.

Example
FUNCTION REAL DOUBLE monthly_payment, &
 (DOUBLE interest_rate, &
 LONG no_of_payments, &
 DOUBLE principle)
OPTION TYPE = REAL, &
 SIZE = (REAL DOUBLE, INTEGER LONG), &
 SCALE = 4

PLACE$
PLACE$ — The PLACE$ function explicitly changes the precision of a numeric string. PLACE$ returns
a numeric string, truncated or rounded, according to the value of an integer argument you supply.

Format
str-var = PLACE$ (str-exp, int-exp)

Syntax Rules
1. Str-exp specifies the numeric string you want to process. It can contain an optional minus sign (–),

ASCII digits, and an optional decimal point.

2. Int-exp specifies the numeric precision of str-exp. Table 3.4 shows examples of rounding and
truncation and the values of int-exp that produce them.

Remarks
1. The PLACE$ function does not support E-format notation.

2. If str-exp has more than 60 characters, VSI BASIC signals the error “Illegal number” (ERR=52).

3. Str-exp is rounded or truncated, or both, according to the value of int-exp.

4. If int-exp is from –60 to 60, rounding and truncation occur as follows:

• For positive integer expressions, rounding occurs to the right of the decimal place. For example, if
int-exp is 1, rounding occurs one digit to the right of the decimal place (the number is rounded to
the nearest tenth). If int-exp is 2, rounding occurs two digits to the right of the decimal place (the
number is rounded to the nearest hundredth), and so on.

• If int-exp is zero, VSI BASIC rounds to the nearest unit.

198

Chapter 3. Statements and Functions

• For negative integer expressions, rounding occurs to the left of the decimal point. If int-exp is –
1, for example, VSI BASIC moves the decimal point one place to the left, then rounds to units. If
int-exp is –2, rounding occurs two places to the left of the decimal point; VSI BASIC moves the
decimal point two places to the left, then rounds to tens.

5. If int-exp is from 9940 to 10,060, truncation occurs as follows:

• If int-exp is 10,000, VSI BASIC truncates the number at the decimal point.

• If int-exp is greater than 10,000 (10,000 plus n), VSI BASIC truncates the numeric string n
places to the right of the decimal point. For example, if int-exp is 10,001 (10,000 plus 1), VSI
BASIC truncates the number starting one place to the right of the decimal point. If int-exp is
10,002 (10,000 plus 2), VSI BASIC truncates the number starting two places to the right of the
decimal point, and so on.

• If int-exp is less than 10,000 (10,000 minus n), VSI BASIC truncates the numeric string n places
to the left of the decimal point. For example, if int-exp is 9999 (10,000 minus 1), VSI BASIC
truncates the number starting one place to the left of the decimal point. If int-exp is 9998 (10,000
minus 2), VSI BASIC truncates starting two places to the left of the decimal point, and so on.

6. If int-exp is not from –60 to 60 or 9940 to 10,060, VSI BASIC returns a value of zero.

7. If you specify a floating-point expression for int-exp, VSI BASIC truncates it to an integer of the
default size.

8. Table 3.4 shows examples of rounding and truncation and the values of int-exp that produce them.
The number used is 123456.654321.

Table 3.4. Rounding and Truncation of 123456.654321

Int-exp Effect Value Returned

–5 Rounded to 100,000s and truncated 1
–4 Rounded to 10,000s and truncated 12
–3 Rounded to 1000s and truncated 123
–2 Rounded to 100s and truncated 1235
–1 Rounded to 10s and truncated 12346
0 Rounded to units and truncated 123457
1 Rounded to tenths and truncated 123456.7
2 Rounded to hundredths and truncated 123456.65
3 Rounded to thousandths and truncated 123456.654
4 Rounded to ten-thousandths and truncated 123456.6543
5 Rounded to hundred-thousandths and truncated 123456.65432
9,995 Truncated to 100,000s 1
9,996 Truncated to 10,000s 12
9,997 Truncated to 1000s 123
9,998 Truncated to 100s 1234
9,999 Truncated to 10s 12345
10,000 Truncated to units 123456

199

Chapter 3. Statements and Functions

Int-exp Effect Value Returned

10,001 Truncated to tenths 12345.6
10,002 Truncated to hundredths 123456.65
10,003 Truncated to thousandths 123456.654
10,004 Truncated to ten-thousandths 123456.6543
10,005 Truncated to hundred-thousandths 123456.65432

Example
DECLARE STRING str_exp, str_var
str_exp = "9999.9999"
str_var = PLACE$(str_exp,3)
PRINT str_var

Output

10000

POS
POS — The POS function searches for a substring within a string and returns the substring's starting
character position.

Format
int-var = POS (str-exp1, str-exp2, int-exp)

Syntax Rules
1. Str-exp1 specifies the main string.

2. Str-exp2 specifies the substring.

3. Int-exp specifies the character position in the main string at which VSI BASIC starts the search.

Remarks
1. The POS function searches str-exp1, the main string, for the first occurrence of str-exp2, the

substring, and returns the position of the substring's first character.

2. If int-exp is greater than the length of the main string, POS returns a value of zero.

3. POS always returns the character position in the main string at which VSI BASIC finds the substring,
with the following exceptions:

• If only the substring is null, and if int-exp is less than or equal to zero, POS returns a value of 1.

200

Chapter 3. Statements and Functions

• If only the substring is null, and if int-exp is equal to or greater than 1 and less than or equal to
the length of the main string, POS returns the value of int-exp.

• If only the substring is null and if int-exp is greater than the length of the main string, POS
returns the main string's length plus 1.

• If only the main string is null, POS returns a value of zero.

• If both the main string and the substring are null, POS returns 1.

4. If VSI BASIC cannot find the substring, POS returns a value of zero.

5. If int-exp is less than 1, VSI BASIC assumes a starting position of 1.

6. If int-exp does not equal 1, VSI BASIC still counts from the string's beginning to calculate the
starting position of the substring. That is, VSI BASIC counts character positions starting at position 1,
regardless of where you specify the start of the search. For example, if you specify 10 as the start of
the search and VSI BASIC finds the substring at position 15, POS returns the value 15.

7. If you know that the substring is not near the beginning of the string, specifying a starting position
greater than 1 speeds program execution by reducing the number of characters VSI BASIC must
search.

8. If you specify a floating-point expression for int-exp, VSI BASIC truncates it to an integer of the
default size.

Example
DECLARE STRING main_str, &
 sub_str
DECLARE INTEGER first_char
main_str = "ABCDEFG"
sub_str = "DEF"
first_char = POS(main_str, sub_str, 1)
PRINT first_char

Output

4

PRINT
PRINT — The PRINT statement transfers program data to a terminal or a terminal-format file.

201

Chapter 3. Statements and Functions

Format
PRINT [#chnl-exp,] [output-list]

output-list: [exp] [{,|;} exp]... [,|;]

Syntax Rules
1. Chnl-exp is a numeric expression that specifies a channel number associated with a file. It must be

immediately preceded by a number sign (#). If you do not specify a channel, VSI BASIC prints to
the controlling terminal.

2. Output-list specifies the expressions to be printed and the print format to be used.

3. Exp can be any valid expression.

4. A separator character (comma or semicolon) must separate each exp. Separator characters control
the print format as follows:

• A comma (,) causes VSI BASIC to skip to the next print zone before printing the expression.

• A semicolon (;) causes VSI BASIC to print the expression immediately after the previous
expression.

Remarks

1. A terminal or terminal-format file must be open on the specified channel. (Your current terminal is
always open on channel #0.)

2. A PRINT line has an integral number of print zones. Note, however, that the number of print zones
in a line differs from terminal to terminal.

3. The right margin setting, if set by the MARGIN statement, controls the width of the PRINT line.
The default right margin is 72.

4. The PRINT statement prints string constants and variables exactly as they appear, with no leading or
trailing spaces.

5. VSI BASIC prints quoted string literals exactly as they appear. Therefore, you can print quotation
marks, commas, and other characters by enclosing them in quotation marks.

6. A PRINT statement with no output-list prints a blank line.

7. An expression in the output-list can be followed by more than one separator character. That is, you
can omit an expression and specify where the next expression is to be printed by the use of multiple
separator characters. For example:

PRINT "Name",,"Address and ";"City"

Output

Name Address and City

In this example, the double commas after “Name” cause VSI BASIC to skip two print zones before
printing “Address and ”. The semicolon causes the next expression, “City”, to be printed immediately
after the preceding expression. Multiple semicolons have the same effect as a single semicolon.

202

Chapter 3. Statements and Functions

8. When printing numeric fields, VSI BASIC precedes each number with a space or minus sign (–) and
follows it with a space.

9. VSI BASIC does not print trailing zeros to the right of the decimal point. If all digits to the right of
the decimal point are zeros, VSI BASIC omits the decimal point as well.

10. For REAL numbers (SINGLE, DOUBLE, GFLOAT, SFLOAT, TFLOAT, XFLOAT, and HFLOAT),
VSI BASIC does not print more than 6 digits in explicit notation. If a number requires more than 6
digits, VSI BASIC uses E format and precedes positive exponents with a plus sign (+). VSI BASIC
rounds a floating-point number with a magnitude from 0.1 to 1.0 to 6 digits. For magnitudes smaller
than 0.1, VSI BASIC rounds the number to 6 digits and prints it in E format.

11. The PRINT statement can print up to:

• Three digits of precision for BYTE integers

• Five digits of precision for WORD integers

• Ten digits of precision for LONG integers

• Nineteen digits of precision for QUAD integers

• Thirty-one digits of precision for DECIMAL numbers

• The string length for STRING values

VSI BASIC prints both INTEGER and DECIMAL values according to the previous rules. However,
for REAL values, VSI BASIC displays a maximum of six digits.

12. If there is a comma or semicolon following the last item in output-list, VSI BASIC does the
following:

• When printing to a terminal, VSI BASIC does not generate a line terminator after printing the
last item. The next item printed with a PRINT statement is printed at the position specified by
the separator character following the last item in the first PRINT statement.

• When printing to a terminal-format file, VSI BASIC does not write out the record until a PRINT
statement without trailing punctuation executes.

13. If no punctuation follows the last item in the output-list, VSI BASIC does the following:

• When printing to a terminal, VSI BASIC generates a line terminator after printing the last item.

• When printing to a terminal-format file, VSI BASIC writes out the record after printing the last
item.

14. If a string field does not fit on the current line, VSI BASIC does the following:

• When printing string elements to a terminal, VSI BASIC prints as much as will fit on the current
line and prints the remainder on the next line.

• When printing string elements to a terminal-format file, VSI BASIC prints the entire element on
the next line.

15. If a numeric field is the first field in a line, and the numeric field spans more than one line, VSI
BASIC prints part of the number on one line and the remainder on the next; otherwise, numeric

203

Chapter 3. Statements and Functions

fields are never split across lines. If the entire field cannot be printed at the end of one line, the
number is printed on the next line.

16. When a number's trailing space does not fit in the last print zone, the number is printed without the
trailing space.

Example
PRINT "name "; "age", "height "; "weight"

Output

name age height weight

PRINT USING
PRINT USING — The PRINT USING statement generates output formatted according to a format
string (either numeric or string) to a terminal or a terminal-format file.

Format
PRINT [#chnl-exp] USING str-exp {,|;} output-list

output-list: [exp] [{,|;} exp]...[,|;]

Syntax Rules
1. Chnl-exp is a numeric expression that specifies a channel number associated with a file. It must be

immediately preceded by a number sign (#). If you do not specify a channel, VSI BASIC prints to
the controlling terminal.

2. Str-exp is the format string. It must contain at least one valid format field and must be followed by a
separator (comma or semicolon) and at least one expression.

Note

It is recommended that you use compile-time constant expressions for str-exp whenever possible.
When you do this, the VSI BASIC compiler compiles the string at compilation time rather than at
run time, thus improving the performance of your program.

3. Output-list specifies the expressions to be printed.

• Exp can be any valid expression.

• A comma or semicolon must separate each expression.

• A comma or semicolon is optional after the last expression in the list.

Remarks

1. The PRINT USING statement can print up to:

204

Chapter 3. Statements and Functions

• Three digits of precision for BYTE integers

• Five digits of precision for WORD integers

• Ten digits of precision for LONG integers

• Nineteen digits of precision for QUAD integers

• Six digits of precision for SINGLE floating-point numbers

• Sixteen digits of precision for DOUBLE floating-point numbers

• Fifteen digits of precision for GFLOAT floating-point numbers

• Thirty-three digits of precision for HFLOAT floating-point numbers

• Six digits of precision for SFLOAT floating-point numbers

• Fifteen digits of precision for TFLOAT floating-point numbers

• Thirty-three digits of precision for XFLOAT floating-point numbers

• Thirty-one digits of precision for DECIMAL numbers

• The string length for STRING values

2. A terminal or terminal-format file must be open on the specified channel or VSI BASIC signals an
error.

3. The separator characters (comma or semicolon) in the PRINT USING statement do not control
the print format as in the PRINT statement. The print format is controlled by the format string;
therefore, it does not matter whether you use a comma or semicolon.

4. Formatting Numeric Output

• The number sign (#) reserves space for one sign or digit.

• The comma (,) causes VSI BASIC to insert commas before every third significant digit to the left
of the decimal point. In the format field, the comma must be to the left of the decimal point, and
to the right of the rightmost dollar sign, asterisk, or number sign. A comma reserves space for a
comma or digit.

• The period (.) inserts a decimal point. The number of reserved places on either side of the period
determines where the decimal point appears in the output.

• The hyphen (-) reserves space for a sign and specifies trailing minus sign format. If present, it
must be the last character in the format field. It causes VSI BASIC to print negative numbers
with a minus sign after the last digit, and positive numbers with a trailing space. The hyphen (-)
can be used as part of a dollar sign ($$) format field.

• The letters CD (Credit/Debit) enclosed in angle brackets (<CD>) print CR (Credit Record) after
negative numbers or zero and DR (Debit Record) after positive numbers. If present, they must
be the last characters in the format field. The Credit/Debit format can be used as part of a dollar
sign ($$) format field.

205

Chapter 3. Statements and Functions

• Four carets (^^^^) specify E-format notation for floating-point and DECIMAL numbers. They
reserve four places for SINGLE, DOUBLE, SFLOAT, and DECIMAL values; five places for
GFLOAT and TFLOAT values; and six places for HFLOAT and XFLOAT values. If present,
they must be the last characters in the format field.

• Two dollar signs ($$) reserve space for a dollar sign and a digit and cause VSI BASIC to print a
dollar sign immediately to the left of the most significant digit.

• Two asterisks (**) reserve space for two digits and cause VSI BASIC to fill the left side of the
numeric field with leading asterisks.

• A zero enclosed in angle brackets (<0>) prints leading zeros instead of leading spaces.

• A percent sign enclosed in angle brackets (<%>) prints all spaces in the field if the value of the
print item is zero.

Note

You cannot specify the dollar sign ($$), asterisk-fill (**), and zero-fill (<0>) formats within the
same print field. Similarly, VSI BASIC does not allow you to specify the zero-fill (<0>) and
the blank-if-zero (<%>) formats within the same print field.

• An underscore (_) forces the next formatting character in the format string to be interpreted as a
literal. It affects only the next character. If the next character is not a valid formatting character,
the underscore has no effect and will itself be printed as a literal.

5. VSI BASIC interprets any other characters in a numeric format string as string literals.

6. Depending on usage, the same format string characters can be combined to form one or more print
fields within a format string. For example:

• When a dollar sign ($$) or asterisk-fill (**) format precedes a number sign (#) , it modifies the
number sign format. The dollar sign or asterisk-fill format reserves two places, and with the
number signs forms one print field. For example:

$$### Forms one field and reserves five spaces
**## Forms one field and reserves four spaces

When these formats are not followed by a number sign or a blank-if-zero (<%>) format, they
reserve two places and form a separate print field.

• When a zero-fill (<0>) or blank-if-zero format precedes a number sign, it modifies the number
sign format. The <0> or <%> reserves one place, and with the number signs forms one print
field. For example:

<0>#### Forms one field and reserves five spaces
<%>### Forms one field and reserves four spaces

When these formats are not followed by a number sign, they reserve one space and form a
separate print field.

206

Chapter 3. Statements and Functions

• When a blank-if-zero (<%>) format follows a dollar sign or asterisk-fill format (**), it
modifies the dollar sign ($$) or asterisk fill (**) format string. The blank-if-zero reserves one
space, and with the dollar signs or asterisks forms one print field. For example:

$$ <%>### Forms one field and reserves six spaces
** <%>## Forms one field and reserves five spaces

When the blank-if-zero precedes the dollar signs or asterisks, it reserves one space and forms a
separate print field.

7. The comma (digit separator), dollar sign (currency symbol), and decimal point (radix point) are the
defaults for U.S. currency. On VMS systems, you can change the digit separator, currency symbol
and radix point by assigning the logical names SYS$DIGIT_SEP, SYS$CURRENCY and SYS
$RADIX_POINT. Once you make each assignment, the PRINT USING statement accesses these
logical names for these symbols.

8. For E-format notation, PRINT USING left-justifies the number in the format field and adjusts the
exponent to compensate, except when printing zero. When printing zero in E-format notation, VSI
BASIC prints leading spaces, leading zeros, a decimal point, and zeros in the fractional portion if the
PRINT USING string contains these formatting characters, and then the string “E+00”.

9. Zero cannot be negative. If a small negative number rounds to zero, it is represented as a positive
zero.

10. If there are reserved positions to the left of the decimal point, and the printed number is less than
1, VSI BASIC prints one zero to the left of the decimal point and pads with spaces to the left of the
zero.

11. If there are more reserved positions to the right of the decimal point than fractional digits, VSI
BASIC prints trailing zeros in those positions.

12. If there are fewer reserved positions to the right of the decimal point than fractional digits, VSI
BASIC rounds the number to fit the reserved positions.

13. If a number does not fit in the specified format field, VSI BASIC prints a percent sign warning
symbol (%), followed by the number in PRINT format.

14. Formatting String Output

• Format string characters control string output and can be entered as either uppercase or
lowercase characters. All format characters except the backslash and exclamation point must start
with a single quotation mark ('). A single quote by itself reserves one character position. A single
quote followed by any format characters marks the beginning of a character format field and
reserves one character position.

• L reserves one character position. The number of Ls plus the leading single quote determines
the field's size. VSI BASIC left-justifies the print expression and pads with spaces if the print
expression is less than or equal to the field's width. If the print expression is larger than the field,
VSI BASIC left-justifies the expression and truncates its right side to fit the field.

• R reserves one character position. The number of Rs plus the leading single quote determines
the field's size. VSI BASIC right-justifies the print expression and pads with spaces if the print
expression is less than or equal to the field's width. If the print expression is larger than the field,
VSI BASIC truncates the right side to fit the field.

207

Chapter 3. Statements and Functions

• C reserves one character position. The number of Cs plus the leading single quote determines the
field's size. If the string does not fit in the field, VSI BASIC truncates its right side; otherwise,
VSI BASIC centers the print expression in this field. If the string cannot be centered exactly, it is
offset one character to the left.

• E reserves one character position. The number of Es plus the leading single quote determines the
field's size. VSI BASIC left-justifies the print expression if it is less than or equal to the field's
width and pads with spaces; otherwise, VSI BASIC expands the field to hold the entire print
expression.

• Two backslashes (\ \) when separated by n spaces reserve n+2 character positions. PRINT
USING left-justifies the string in this field. VSI BASIC does not allow a leading quotation mark
with this format.

• An exclamation point (!) creates a 1-character field. The exclamation point both starts and ends
the field. VSI BASIC does not allow a leading quotation mark with this format.

15. VSI BASIC interprets any other characters in the format string as string literals and prints them
exactly as they appear.

16. If a comma or semicolon follows the last item in output-list:

• When printing to a terminal, VSI BASIC does not generate a line terminator after printing the
last item. The next item printed with a PRINT statement is printed at the position specified by
the separator character following the last item in the first PRINT statement.

• When printing to a terminal-format file, VSI BASIC does not write out the record until a PRINT
statement without trailing punctuation executes.

17. If no punctuation follows the last item in output-list:

• When printing to a terminal, VSI BASIC generates a line terminator after printing the last item.

• When printing to a terminal-format file, VSI BASIC writes out the record after printing the last
item.

Examples
Example 1
PRINT USING "###.###",-12.345
PRINT USING "##.###",12.345

Output

-12.345
12.345

Example 2
INPUT "Your Name";Winner$
 Jackpot = 10000.0
PRINT USING "CONGRATULATIONS, 'EEEEEEEEE, YOU WON $$#####.##", Winner$,
 Jackpot
END

208

Chapter 3. Statements and Functions

Output

Your Name? Hortense Corabelle
CONGRATULATIONS, Hortense Corabelle, YOU WON $10000.00

PROD$
PROD$ — The PROD$ function returns a numeric string that is the product of two numeric strings. The
precision of the returned numeric string depends on the value of an integer argument.

Format
str-var = PROD$ (str-exp1, str-exp2, int-exp)

Syntax Rules
1. Str-exp1 and str-exp2 specify the numeric strings you want to multiply. A numeric string can contain

an optional minus sign (–), ASCII digits, and an optional decimal point (.).

2. If str-exp consists of more than 60 characters, VSI BASIC signals the error “Illegal number”
(ERR=52).

3. Int-exp specifies the numeric precision of str-exp. Table 3.4 shows examples of rounding and
truncation and the values of int-exp that produce them.

Remarks
1. The PROD$ function does not support E-format notation.

2. Str-exp is rounded or truncated, or both, according to the value of int-exp.

3. If int-exp is from –60 to 60, rounding and truncation occur as follows:

• For positive integer expressions, rounding occurs to the right of the decimal place. For example, if
int-exp is 1, rounding occurs one digit to the right of the decimal place (the number is rounded to
the nearest tenth). If int-exp is 2, rounding occurs two digits to the right of the decimal place (the
number is rounded to the nearest hundredth), and so on.

• If int-exp is zero, VSI BASIC rounds to the nearest unit.

• For negative integer expressions, rounding occurs to the left of the decimal point. If int-exp is –
1, for example, VSI BASIC moves the decimal point one place to the left, then rounds to units. If
int-exp is -2, rounding occurs two places to the left of the decimal point; VSI BASIC moves the
decimal point two places to the left, then rounds to tens.

4. If int-exp is from 9940 to 10,060, truncation occurs as follows:

• If int-exp is 10,000, VSI BASIC truncates the number at the decimal point.

• If int-exp is greater than 10,000 (10000 plus n), VSI BASIC truncates the numeric string n places
to the right of the decimal point. For example, if int-exp is 10,001 (10,000 plus 1), VSI BASIC
truncates the number starting one place to the right of the decimal point. If int-exp is 10,002

209

Chapter 3. Statements and Functions

(10,000 plus 2), VSI BASIC truncates the number starting two places to the right of the decimal
point, and so on.

• If int-exp is less than 10,000 (10,000 minus n), VSI BASIC truncates the numeric string n places
to the left of the decimal point. For example, if int-exp is 9999 (10,000 minus 1), VSI BASIC
truncates the number starting one place to the left of the decimal point. If int-exp is 9998 (10,000
minus 2), VSI BASIC truncates starting two places to the left of the decimal point, and so on.

5. If int-exp is not from –60 to 60 or 9940 to 10,060, VSI BASIC returns a value of zero.

6. If you specify a floating-point expression for int-exp, VSI BASIC truncates it to an integer of the
default size.

Example
DECLARE STRING num_exp1, &
 num_exp2, &
 product
num_exp1 = "34.555"
num_exp2 = "297.676"
product = PROD$(num_exp1, num_exp2, 1)
PRINT product

Output

10286.2

PROGRAM
PROGRAM — The PROGRAM statement allows you to identify a main program with a name other
than the file name.

Format
PROGRAM prog-name

Syntax Rules
1. Prog-name specifies the module name of the compiled source and cannot be the same as any SUB,

FUNCTION, or PICTURE name.

2. Prog-name also defines the global entry point name for the main program.

3. The first character of a prog-name must be an alphabetic character (A to Z). The remaining
characters, if any, can be any combination of alphabetic characters, digits (0 to 9), dollar signs ($),
periods (.), and underscores (_).

4. Prog-name cannot be a quoted name.

Remarks
1. The PROGRAM statement must be the first statement in a main program and can be preceded only

by comment fields and lexical directives.

210

Chapter 3. Statements and Functions

2. If you insert the program into a text or object library or examine it using the OpenVMS Debugger,
the program name you specify will be the module name used.

3. A PROGRAM statement does not require a matching END PROGRAM statement.

4. The PROGRAM statement is optional; VSI BASIC allows you to specify an END PROGRAM
statement and an EXIT PROGRAM statement without a matching PROGRAM statement.

Example
PROGRAM first_test
 .
 .
 .
END PROGRAM

PUT
PUT — The PUT statement transfers data from the record buffer to a file. PUT statements are valid on
RMS sequential, relative, and indexed files. You cannot use PUT statements on terminal-format files or
virtual array files.

Format
PUT #chnl-exp [, RECORD rec-exp] [, COUNT int-exp]

Syntax Rules
1. Chnl-exp is a numeric expression that specifies a channel number associated with a file. It must be

immediately preceded by a number sign (#).

2. The RECORD clause allows you to randomly write records to a relative or sequential fixed file by
specifying the record number. Rec-exp must be between 1 and the maximum record number allowed
for the file. VSI BASIC does not allow you to use the RECORD clause on sequential variable,
sequential stream, or indexed files.

3. Int-exp in the COUNT clause specifies the record's size. If there is no COUNT clause, the
record's size is that defined by the MAP or RECORDSIZE clause in the OPEN statement. The
RECORDSIZE clause overrides the MAP clause.

• If you write a record to a file with variable-length records, int-exp must be between zero and the
maximum record size specified in the OPEN statement.

• If you write a record to a file with fixed-length records, the COUNT clause serves no purpose. If
used, int-exp must equal the record size specified in the OPEN statement.

Remarks

1. For sequential access, the file associated with chnl-exp must be open with ACCESS WRITE,
MODIFY, SCRATCH, or APPEND.

211

Chapter 3. Statements and Functions

2. To add records to an existing sequential file, open it with ACCESS APPEND. If you are not at the
end of the file when attempting a PUT to a sequential file, VSI BASIC signals “Not at end of file”
(ERR=149).

3. After a PUT statement executes, there is no current record pointer. The next record pointer is set as
follows:

• For sequential files, variable and stream PUT operations set the next record pointer to the end of
the file.

• For relative files, a sequential PUT operation sets the next record pointer to the next record plus
1.

• For relative and sequential fixed files, a random PUT operation leaves the next record pointer
unchanged.

• For indexed files, a PUT operation leaves the next record pointer unchanged.

4. When you specify a RECORD clause, VSI BASIC evaluates num-exp and uses this value as the
relative record number of the target cell.

• If the target cell is empty or occupied by a deleted record, VSI BASIC places the record in that
cell.

• If there is a record in the target cell and the file has not been opened as a VIRTUAL file, the
PUT statement fails, and VSI BASIC signals the error “Record already exists” (ERR=153).

5. A PUT statement with no RECORD clause writes records to the file as follows:

• For sequential variable and stream files, a PUT operation adds a record at the end of the file.

• For relative and sequential fixed files, a PUT operation places the record in the empty cell
pointed to by the next record pointer. If the file is empty, the first PUT operation places a record
in cell number 1, the second in cell number 2, and so on.

• For indexed files, RMS stores records in order of ascending primary key value and updates all
indexes so that they point to the record.

6. When you open a file as ORGANIZATION VIRTUAL, the file you open is a sequential fixed file
with a record size that is a multiple of 512 bytes. You can then access the file with the FIND, GET,
PUT, or UPDATE statements or through one or more virtual arrays. VSI BASIC allows you to
overwrite existing records in a file not containing virtual arrays and opened as ORGANIZATION
VIRTUAL by using the PUT statement with a RECORD clause. All other organizations require the
UPDATE statement to change an existing record. It is recommended that you also use the UPDATE
statement to change existing records in VIRTUAL files that do not contain virtual arrays.

7. If an existing record in an indexed file has a record with the same key value as the one you want
to put in the file, VSI BASIC signals the error “Duplicate key detected” (ERR=134) if you did not
specify DUPLICATES for the key in the OPEN statement. If you specified DUPLICATES, RMS
stores the duplicate records in a first-in/first-out sequence.

8. The number specified in the COUNT clause determines how many bytes are transferred from the
buffer to a file:

• If you have not completely filled the record buffer before executing a PUT statement, VSI
BASIC pads the record with nulls to equal the specified value.

212

Chapter 3. Statements and Functions

• If the specified COUNT value is less than the buffer size, the record is truncated to equal the
specified value.

• The number in the COUNT clause must not exceed the size specified in the MAP or
RECORDSIZE clause in the OPEN statement or VSI BASIC signals “Size of record invalid”
(ERR=156).

• For files with fixed length records, the number in the COUNT clause must match the record size.

Examples
Example 1
!Sequential, Relative, Indexed, and Virtual Files
PUT #3, COUNT 55%

Example 2
!Relative and Virtual Files Only
PUT #5, RECORD 133, COUNT 16%

QUO$
QUO$ — The QUO$ function returns a numeric string that is the quotient of two numeric strings. The
precision of the returned numeric string depends on the value of an integer argument.

Format
str-var = QUO$ (str-exp1, str-exp2, int-exp)

Syntax Rules
1. Str-exp1 and str-exp2 specify the numeric strings you want to divide. A numeric string can contain an

optional minus sign (–), ASCII digits, and an optional decimal point (.).

2. Int-exp specifies the numeric precision of str-exp. Table 3.4 shows examples of rounding and
truncation and the values of int-exp that produce them.

Remarks
1. The QUO$ function does not support E-format notation.

2. If str-exp consists of more than 60 characters, VSI BASIC signals the error “Illegal number”
(ERR=52).

3. Str-exp is rounded or truncated, or both, according to the value of int-exp.

4. If int-exp is from –60 to 60, rounding and truncation occur as follows:

• For positive integer expressions, rounding occurs to the right of the decimal place. For example, if
int-exp is 1, rounding occurs one digit to the right of the decimal place (the number is rounded to

213

Chapter 3. Statements and Functions

the nearest tenth). If int-exp is 2, rounding occurs two digits to the right of the decimal place (the
number is rounded to the nearest hundredth), and so on.

• If int-exp is zero, VSI BASIC rounds to the nearest unit.

• For negative integer expressions, rounding occurs to the left of the decimal point. If int-exp is –
1, for example, VSI BASIC moves the decimal point one place to the left, then rounds to units. If
int-exp is -2, rounding occurs two places to the left of the decimal point; VSI BASIC moves the
decimal point two places to the left, then rounds to tens.

5. If int-exp is from 9940 to 10,060, truncation occurs as follows:

• If int-exp is 10,000, VSI BASIC truncates the number at the decimal point.

• If int-exp is greater than 10,000 (10,000 plus n), VSI BASIC truncates the numeric string n
places to the right of the decimal point. For example, if int-exp is 10,001 (10,000 plus 1), VSI
BASIC truncates the number starting one place to the right of the decimal point. If int-exp is
10,002 (10,000 plus 2), VSI BASIC truncates the number starting two places to the right of the
decimal point, and so on.

• If int-exp is less than 10,000 (10,000 minus n), VSI BASIC truncates the numeric string n places
to the left of the decimal point. For example, if int-exp is 9999 (10,000 minus 1), VSI BASIC
truncates the number starting one place to the left of the decimal point. If int-exp is 9998 (10,000
minus 2), VSI BASIC truncates starting two places to the left of the decimal point, and so on.

6. If int-exp is not from –60 to 60 or 9940 to 10,060, VSI BASIC returns a value of zero.

7. If you specify a floating-point expression for int-exp, VSI BASIC truncates it to an integer of the
default size.

Example
DECLARE STRING num_str1, &
 num_str2, &
 quotient
num_str1 = "458996.43"
num_str2 = "123222.444"
quotient = QUO$(num_str1, num_str2, 2)
PRINT quotient

Output

3.72

RAD$
RAD$ — The RAD$ function converts a specified integer in Radix-50 format to a 3-character string.
The RAD$ function is supported only for compatibility with BASIC-PLUS-2. It is recommended that
you do not use the RAD$ function for new program development.

Format
str-var = RAD$ (int-var)

214

Chapter 3. Statements and Functions

Syntax Rules
None

Remarks
1. The RAD$ function does not support E-format notation.

2. The RAD$ function converts int-var to a 3-character string in Radix-50 format and stores it in str-
var. Radix-50 format allows you to store three characters of data as a 2-byte integer.

3. VSI BASIC supports the RAD$ function, but not its complement, the FSS$ function.

4. If you specify a floating-point variable for int-var, VSI BASIC truncates it to an integer of the default
size.

Example
DECLARE STRING radix
radix = RAD$(999)

RANDOMIZE
RANDOMIZE — The RANDOMIZE statement gives the random number function, RND, a new
starting value.

Format
{RANDOMIZE | RANDOM}

Syntax Rules
None

Remarks
1. Without the RANDOMIZE statement, successive runs of the same program generate the same

random number sequence.

2. If you use the RANDOMIZE statement before invoking the RND function, the starting point
changes for each run. Therefore, a different random number sequence appears each time.

Example
DECLARE REAL random_num
RANDOMIZE
 FOR I = 1 TO 2
 random_num = RND
 PRINT random_num

215

Chapter 3. Statements and Functions

 NEXT I

Output

 .379784
 .311572

RCTRLC
RCTRLC — The RCTRLC function disables Ctrl/C trapping.

Format
int-var = RCTRLC

Syntax Rules
None

Remarks
1. After VSI BASIC executes the RCTRLC function, Ctrl/C typed at the terminal returns you to DCL

command level.

2. RCTRLC always returns a value of zero.

Example
Y = RCTRLC

RCTRLO
RCTRLO — The RCTRLO function cancels the effect of Ctrl/O typed on a specified channel.

Format
int-var = RCTRLO (chnl-exp)

Syntax Rules
Chnl-exp must refer to a terminal.

Remarks
1. If you enter Ctrl/O to cancel terminal output, nothing is printed on the specified terminal until your

program executes the RCTRLO or until you enter another Ctrl/O, at which time normal terminal
output resumes.

216

Chapter 3. Statements and Functions

2. The RCTRLO function always returns a value of zero.

3. RCTRLO has no effect if the specified channel is open to a device that does not use the Ctrl/O
convention.

Example
PRINT "A" FOR I% = 1% TO 10%
Y% = RCTRLO(0%)
PRINT "Normal output is resumed"

Output

A
A
A
A
Ctrl/O
Output off

Normal output is resumed

READ
READ — The READ statement assigns values from a DATA statement to variables.

Format
READ var,...

Syntax Rules
Var cannot be a DEF function name, unless the READ statement is inside the multiline DEF body.

Remarks

1. If your program has a READ statement without DATA statements, VSI BASIC signals a compile-
time error.

2. When VSI BASIC initializes a program unit, it forms a data sequence of all values in all DATA
statements. An internal pointer points to the first value in the sequence.

3. When VSI BASIC executes a READ statement, it sequentially assigns values from the data sequence
to variables in the READ statement variable list. As VSI BASIC assigns each value, it advances the
internal pointer to the next value.

4. VSI BASIC signals the error “Out of data” (ERR=57) if there are fewer data elements than READ
statements. Extra data elements are ignored.

5. The data type of the value must agree with the data type of the variable to which it is assigned or VSI
BASIC signals “Data format error” (ERR=50).

217

Chapter 3. Statements and Functions

6. If you read a string variable, and the DATA element is an unquoted string, VSI BASIC ignores
leading and trailing spaces. If the DATA element contains any commas, they must be inside quotation
marks.

7. VSI BASIC evaluates subscript expressions in the variable list after it assigns a value to the preceding
variable, and before it assigns a value to the subscripted variable. In the following example, VSI
BASIC assigns the value of 10 to variable A, then assigns the string, LESTER, to array element A
$(A).

READ A, A$(A)
 .
 .
 .
DATA 10, LESTER

The string, LESTER, is assigned to A$(10).

Example
DECLARE STRING A,B,C
READ A,B,C
DATA "X", "Y", "Z"
PRINT A + B + C

Output

XYZ

REAL
REAL — The REAL function converts a numeric expression or numeric string to a specified or default
floating-point data type.

Format
real-var = REAL (exp [, SINGLE | , DOUBLE | , GFLOAT | , SFLOAT | , TFLOAT
 | , XFLOAT | , HFLOAT])

Syntax Rules
Exp can be either numeric or string. If a string, it can contain the ASCII digits 0 to 9, uppercase E, a plus
sign (+), a minus sign (–), and a period (.).

Remarks
1. VSI BASIC evaluates exp, then converts it to the specified REAL size. If you do not specify a size,

VSI BASIC uses the default REAL size.

2. VSI BASIC ignores leading and trailing spaces and tabs if exp is a string.

3. The REAL function returns a value of zero when a string argument contains only spaces and tabs, or
when the argument is null.

218

Chapter 3. Statements and Functions

4. Alpha BASIC does not support the HFLOAT floating-point data type.

Example
DECLARE STRING any_num
INPUT "Enter a number";any_num
PRINT REAL(any_num, DOUBLE)

Output

Enter a number? 123095959
 .123096E+09

RECORD
RECORD — The RECORD statement lets you name and define data structures in a BASIC program
and provides the VSI BASIC interface to Oracle CDD/Repository. You can use the defined RECORD
name anywhere a BASIC data type keyword is valid if all data types are valid in that context.

Format
RECORD rec-name
 rec-name
 .
 .
 .
END RECORD [rec-name]

rec-compont: {data-type rec-item [,...] | group-clause | variant-clause}

rec-item: {unsubs-var [= int-const] |
 array([int-const1 TO] int-const2,...) [=int-const] |
 FILL [(int-const)][= int-const]}

group-clause: GROUP group-name([int-const1 TO] int-const2,...])
 rec-component
 .
 .
 .
 END GROUP [group-name]

219

Chapter 3. Statements and Functions

variant-clause: VARIANT
 case-clause
 .
 .
 .
 END VARIANT

case-clause: CASE
 [rec-component]
 .
 .
 .

Syntax Rules

1. Each line of text in a RECORD, GROUP, or VARIANT block can have an optional line number.

2. Data-type can be a BASIC data type keyword or a previously defined RECORD name. Table 1.2 lists
and describes BASIC data type keywords.

3. If the data type of a rec-item is STRING, the string is fixed-length. You can supply an optional string
length with the = int-const clause. If you do not specify a string length, the default is 16.

4. When you create an array of components with GROUP or create an array as a rec-item, VSI BASIC
allows you to specify both lower and upper bounds. The upper bounds is required; the lower bounds
is optional.

• Int-const1 specifies the lower bounds of the array.

• Int-const2 specifies the upper bounds of the array and when accompanied by int-const1, must be
preceded by the keyword TO.

• Int-const1 must be less than or equal to int-const2.

• If you do not specify int-const1, VSI BASIC uses zero as the default lower bounds.

Remarks
1. The total size of a RECORD cannot exceed 65,535 bytes. Also, a RECORD that is used as an array

component is limited to 32,767 bytes.

2. The declarations between the RECORD statement and the END RECORD statement are called a
RECORD block.

3. Variables and arrays in a RECORD definition are also called RECORD components.

4. There must be at least one rec-component in a RECORD block.

5. The RECORD statement names and defines a data structure called a RECORD template, but does
not allocate any storage. When you use the RECORD template as a data type in a statement such
as DECLARE, MAP, or COMMON, you declare a RECORD instance. This declaration of the
RECORD instance allocates storage for the RECORD. For example:

DECLARE EMPLOYEE emp_rec

220

Chapter 3. Statements and Functions

This statement declares a variable named emp_rec, which is an instance of the user-defined data type
EMPLOYEE.

6. Rec-item

• The rec-name qualifies the group-name and the group-name qualifies the rec-item. You can
access a particular rec-item within a record by specifying rec-name::group-name::rec-item. This
specification is called a fully qualified reference. The full qualification of a rec-item is also called
a component path name.

• Rec-item must conform to the rules for naming VSI BASIC variables.

• Whenever you access an elementary record component, that is, a variable named in a RECORD
definition, you do it in the context of the record instance; therefore, rec-item names need not be
unique in your program. For example, you can have a variable called first_name in any number
of different RECORD definitions. However, you cannot use a BASIC reserved keyword as a rec-
item name and you cannot have two variables or arrays with the same name at the same level in
the RECORD or GROUP definition.

• The group-name is optional in a rec-item specification unless there is more than one rec-item with
the same name or the group-name has subscripts. For example:

DECLARE EMPLOYEE Emp_rec
 .
 .
 .
RECORD Address
 STRING Street, City, State, Zip
END RECORD Address
RECORD Employee
 GROUP Emp_name
 STRING First = 15
 STRING Middle = 1
 STRING Last = 15
 END GROUP Emp_name
 ADDRESS Work
 ADDRESS Home
END RECORD Employee

You can access the rec-item “Last” by specifying only “Emp_rec::Last” because only one rec-
item is named “Last”; however, if you try to reference “Emp_rec::City”, VSI BASIC signals an
error because “City” is an ambiguous field. “City” is a component of both “Work” and “Home”;
to access it, either “Emp_rec::Work::City” or “Emp_rec::Home::City” must be specified.

7. Group-clause

• The declarations between the GROUP keyword and the END GROUP keyword are called a
GROUP block. The GROUP keyword is valid only within a RECORD block.

• A subscripted group is similar to an array within the record. The group can have both lower and
upper bounds for one or more dimensions. Each group element consists of all the record items
contained within the subscripted group including other groups.

8. Variant-clause

221

Chapter 3. Statements and Functions

• The declarations between the VARIANT keyword and the END VARIANT keywords are called
a VARIANT block.

• The amount of space allocated for a VARIANT field in a RECORD is equal to the space needed
for the variant field requiring the most storage.

• A variant defines the record items that overlay other items, allowing you to redefine the same
storage one or more ways.

9. Case-clause

• Each case in a variant starts at the position in the record where the variant begins.

• The size of a variant is the size of the longest case in that variant.

Example
1000 RECORD Employee
 GROUP Emp_name
 STRING Last = 15
 STRING First = 14
 STRING Middle = 1
 END GROUP Emp_name
 GROUP Emp_address
 STRING Street = 15
 STRING City = 20
 STRING State = 2
 DECIMAL(5,0) Zip
 END GROUP Emp_address
 STRING Wage_class = 2
 VARIANT
 CASE
 GROUP Hourly
 DECIMAL(4,2) Hourly_wage
 SINGLE Regular_pay_ytd
 SINGLE Overtime_pay_ytd
 END GROUP Hourly
 CASE
 GROUP Salaried
 DECIMAL(7,2) Yearly_salary
 SINGLE Pay_ytd
 END GROUP Salaried
 CASE
 GROUP Executive
 DECIMAL(8,2) Yearly_salary
 SINGLE Pay_ytd
 SINGLE Expenses_ytd
 END GROUP Executive
 END VARIANT
 END RECORD Employee

222

Chapter 3. Statements and Functions

RECOUNT
RECOUNT — The RECOUNT function returns the number of characters transferred by the last input
operation.

Format
int-var = RECOUNT

Syntax Rules
None

Remarks
1. The RECOUNT value is reset by every input operation on any channel, including channel #0.

• After an input operation from your terminal, RECOUNT contains the number of characters
(bytes), including line terminators, transferred.

• After accessing a file record, RECOUNT contains the number of characters in the record.

2. Because RECOUNT is reset by every input operation on any channel, you should copy the
RECOUNT value to a different storage location before executing another input operation.

3. If an error occurs during an input operation, the value of RECOUNT is undefined.

4. RECOUNT is unreliable after a Ctrl/C interrupt because the Ctrl/C trap may have occurred before
VSI BASIC set the value for RECOUNT.

5. The RECOUNT function returns a LONG value.

Example
DECLARE INTEGER character_count
INPUT "Enter a sequence of numeric characters";character_count
character_count = RECOUNT
PRINT character_count;"characters received (including CR and LF)"

Output

Enter a sequence of numeric characters? 12345678
 10 characters received (including CR and LF)

REM
REM — The REM statement allows you to document your program.

Format
REM [comment]

223

Chapter 3. Statements and Functions

Syntax Rules
1. REM must be the only statement on the line or the last statement on a multistatement line.

2. VSI BASIC interprets every character between the keyword REM and the next line number as part of
the comment.

3. VSI BASIC does not allow you to specify the REM statement in programs that do not contain line
numbers.

Remarks

1. Because the REM statement is not executable, you can place it anywhere in a program, except where
other statements, such as SUB and END SUB, must be the first or last statement in a program unit.

2. When the REM statement is the first statement on a line-numbered line, VSI BASIC treats any
reference to that line number as a reference to the next higher-numbered executable statement.

3. The REM statement is similar to the comment field that begins with an exclamation point, with one
exception: the REM statement must be the last statement on a BASIC line. The exclamation point
comment field can be ended with another exclamation point or a line terminator and followed by a
BASIC statement. See Chapter 1 for more information about the comment field.

Example
10 REM This is a multiline comment
 All text up to BASIC line 20
 is part of this REM statement.
 Any BASIC statements on line 10
 are ignored. PRINT "This does not
 execute".
20 PRINT "This will execute"

Output

This will execute

REMAP
REMAP — The REMAP statement defines or redefines the position in the storage area of variables
named in the MAP DYNAMIC statement.

Format
REMAP (map-dyn-name) remap-item,...

map-dyn-name: {map-name | static-str-var}

224

Chapter 3. Statements and Functions

remap-item: {num-var |
 num-array-name ([int-exp,...]) |
 str-var [= int-exp] |
 str-array-name ([int-exp,...]) [= int-exp] |
 [data-type] FILL [(rep-cnt)] [= int-exp] |
 FILL% [(rep-cnt)] |
 FILL$ [(rep-cnt)] [= int-exp] }

Syntax Rules
1. Map-dyn-name can be either a map name or a static string variable.

• Map-name is the storage area named in a MAP statement.

• If you specify a map name, then a MAP statement with the same name must precede both the
MAP DYNAMIC statement and the REMAP statement.

• When you specify a static string variable, the string must be declared before you can specify a
MAP DYNAMIC statement or a REMAP statement.

• If you specify a static-str-var, the following restrictions apply:

• Static-str-var cannot be a string constant.

• Static-str-var cannot be the same as any previously declared map-item in a MAP DYNAMIC
statement.

• If static-str-var is a parameter to the subprogram containing the REMAP statement, static-str-
var cannot be a RECORD component.

• Static-str-var cannot be a subscripted variable.

• Static-str-var cannot be a parameter declared in a DEF or DEF* function.

2. Remap-item names a variable, array, or array element declared in a preceding MAP DYNAMIC
statement:

• Num-var specifies a numeric variable or array element. Num-array-name followed by a set of
empty parentheses specifies an entire numeric array.

• Str-var specifies a string variable or array element. Str-array-name followed by a set of empty
parentheses, specifies an entire fixed-length string array. You can specify the number of bytes to
be reserved for string variables and array elements with the =int-exp clause. The default string
length is 16.

3. Remap-item can also be a FILL item. The FILL, FILL%, and FILL$ keywords let you reserve parts
of the record buffer. Rep-cnt specifies the number of FILL items to be reserved. The =int-exp clause
allows you to specify the number of bytes to be reserved for string FILL items. Table 3.1 describes
FILL item format and storage allocation.

4. In the applicable formats of FILL, (rep-cnt) represents a repeat count, not an array subscript. FILL
(n) represents n elements, not n + 1.

5. All remap-items, except FILL items, must have been named in a previous MAP DYNAMIC
statement, or VSI BASIC signals an error.

225

Chapter 3. Statements and Functions

6. Data-type can be any VSI BASIC data type keyword or a data type defined in a RECORD statement.
Data type keywords and their size, range, and precision are listed in Table 1.2. You can specify a data
type only for FILL items.

• When you specify a data type before a FILL keyword in a REMAP statement, the FILL item is
of that data type. The specified data type applies only to that one FILL item.

• If you do not specify any data type for a FILL item, the FILL item takes the current default data
type and size.

7. Remap-items must be separated with commas.

Remarks
1. The REMAP statement does not affect the amount of storage allocated to the map area.

2. Each time a REMAP statement executes, VSI BASIC sets record pointers to the named map area for
the specified variables from left to right.

3. The REMAP statement must be preceded by a MAP DYNAMIC statement or VSI BASIC signals
the error “No such MAP area <name>.” The MAP statement or static string variable creates a
named area of static storage, the MAP DYNAMIC statement specifies the variables whose positions
can change at run time, and the REMAP statement specifies the new positions for the variables
named in the MAP DYNAMIC statement.

4. Before you can specify a map name in a REMAP statement, there must be a MAP statement in the
program unit with the same map name; otherwise, VSI BASIC signals the error “ <Name> is not
a DYNAMIC MAP variable of MAP <name>.” Similarly, before you can specify a static string
variable in a REMAP statement, the string variable must be declared; otherwise, VSI BASIC signals
the same error message.

5. If a static string variable is the same as a map name, VSI BASIC overrides the static string name and
uses the map name.

6. Until the REMAP statement executes, all variables named in the MAP DYNAMIC statement point
to the first byte of the MAP area and all string variables have a length of zero. When the REMAP
statement executes, VSI BASIC sets the internal pointers as specified in the REMAP statement. For
example:

100 MAP (DUMMY) STRING map_buffer = 50
 MAP DYNAMIC (DUMMY) LONG A, STRING B, SINGLE C(7)
 REMAP (DUMMY) B=14, A, C()

The REMAP statement sets a pointer to byte 1 of DUMMY for string variable B, a pointer to byte
15 for LONG variable A, and pointers to bytes 19, 23, 27, 31, 35, 39, 43, and 47 for the elements in
SINGLE array C.

7. You can use the REMAP statement to redefine the pointer for an array element or variable more
than once in a single REMAP statement. For example:

100 MAP (DUMMY) STRING FILL = 48
 MAP DYNAMIC (DUMMY) LONG A, B(10)
 REMAP (DUMMY) B(), B(0)

This REMAP statement sets a pointer to byte 1 in DUMMY for array B. Because array B uses a total
of 44 bytes, the pointer for the first element of array B, B(0) points to byte 45. References to array

226

Chapter 3. Statements and Functions

element B(0) will be to bytes 45 to 48. Pointers for array elements 1 to 10 are set to bytes 5, 9, 13,
17 and so on.

8. Because the REMAP statement is local to a program module, it affects pointers only in the program
module in which it executes.

Examples
Example 1
DECLARE LONG CONSTANT emp_fixed_info = 4 + 9 + 2
MAP (emp_buffer) LONG badge, &
 STRING social_sec_num = 9, &
 BYTE name_length, &
 address_length, &
 FILL (60)

MAP DYNAMIC (emp_buffer) STRING emp_name, &
 emp_address

WHILE 1%
 GET #1
 REMAP (emp_buffer) STRING FILL = emp_fixed_info, &
 emp_name = name_length, &
 emp_address = address_length

 PRINT emp_name
 PRINT emp_address
 PRINT

NEXT

END

Example 2
SUB deblock (STRING input_rec, STRING item())
 MAP DYNAMIC (input_rec) STRING A(1 TO 3)
 REMAP (input_rec) &
 A(1) = 5, &
 A(2) = 3, &
 A(3) = 4
 FOR I = LBOUND(A) TO UBOUND(A)
 item(I) = A(I)
 NEXT I
END SUB

RESET
RESET — The RESET statement is a synonym for the RESTORE statement. See the RESTORE
statement for more information.

Format
RESET [#chnl-exp [, KEY #int-exp]]

227

Chapter 3. Statements and Functions

RESTORE
RESTORE — The RESTORE statement resets the DATA pointer to the beginning of the DATA
sequence, or sets the record pointer to the first record in a file.

Format
RESTORE [#chnl-exp [, KEY #int-exp]]

Syntax Rules
1. Chnl-exp is a numeric expression that specifies a channel number associated with a file. It must be

immediately preceded by a number sign (#).

2. Int-exp must be between zero and the number of keys in the file minus 1. It must be immediately
preceded by a number sign (#).

Remarks
1. If you do not specify a channel, RESTORE resets the DATA pointer to the beginning of the DATA

sequence.

2. RESTORE affects only the current program unit. Thus, executing a RESTORE statement in a
subprogram does not affect the DATA pointer in the main program.

3. If there is no channel specified, and the program has no DATA statements, RESTORE has no effect.

4. The file specified by chnl-exp must be open.

5. If chnl-exp specifies a magnetic tape file, VSI BASIC rewinds the tape to the first record in the file.

6. The KEY clause applies to indexed files only. It sets a new key of reference equal to int-exp and sets
the next record pointer to the first logical record in that key.

7. For indexed files, the RESTORE statement without a KEY clause sets the next record pointer to the
first logical record specified by the current key of reference. If there is no current key of reference,
the RESTORE statement sets the next record pointer to the first logical record of the primary key.

8. If you use the RESTORE statement on any file type other than indexed, VSI BASIC sets the next
record pointer to the first record in the file.

9. The RESTORE statement is not allowed on virtual array files or on files opened on unit record
devices.

Example
RESTORE #7%, KEY #4%

228

Chapter 3. Statements and Functions

RESUME
RESUME — The RESUME statement marks an exit point from an ON ERROR error-handling
routine. VSI BASIC clears the error condition and returns program control to a specified line number
or label or to the program block in which the error occurred. The RESUME statement is supported for
compatibility with other versions of BASIC. For new program development, it is recommended that you
use WHEN blocks.

Format
RESUME [target]

Syntax Rules
Target must be a valid VSI BASIC line number or label and must exist in the same program unit.

Remarks
1. The following restrictions apply:

• The RESUME statement cannot appear within a protected region, or within an attached or
detached handler.

• The target of a RESUME statement cannot exist within a protected region or handler.

• The RESUME statement cannot be used in a multiline DEF unless the target is also in the DEF
function definition.

• The execution of a RESUME with no target is illegal if there is no error active.

• A RESUME statement cannot transfer control out of the current program unit. Therefore, a
RESUME statement with no target cannot terminate an error handler if the error handler is
handling an error that occurred in a subprogram or an external function, and the error was passed
to the calling program's error handler by an ON ERROR GO BACK statement or by default.

2. When no target is specified in a RESUME statement, VSI BASIC transfers control based on where
the error occurs. If the error occurs on a numbered line containing a single statement, VSI BASIC
always transfers control to that statement. When the error occurs within a multistatement line under
the following conditions, VSI BASIC acts as follows:

• After a loop or SELECT block, VSI BASIC transfers control to the statement that follows the
NEXT or END SELECT statement.

• If not after a loop or SELECT block, but within a FOR, WHILE, or UNTIL loop, VSI BASIC
transfers control to the first statement that follows the FOR, WHILE, or UNTIL statement.

• If not after a loop or SELECT block, but within a SELECT block, VSI BASIC transfers control
to the start of the CASE block in which the error occurs.

• If none of the above conditions occurs, VSI BASIC transfers control back to the statement that
follows the most recent line number.

3. A RESUME statement with a specified line number transfers control to the first statement of a
multistatement line, regardless of which statement caused the error.

229

Chapter 3. Statements and Functions

4. A RESUME statement with a specified label transfers control to the block of code indicated by that
label.

Example
Error_routine:
IF ERR = 11
 THEN
 CLOSE #1
 RESUME end_of_prog
ELSE
 RESUME
END IF
end_of_prog: END

RETRY
RETRY — The RETRY statement clears an error condition and reexecutes the statement that caused the
error inside a protected region of a WHEN block.

Format
RETRY

Syntax Rules
The RETRY statement must appear lexically inside of a handler associated with a WHEN block.

Remarks
The following rules apply to errors that occur during execution of loop control statements (not the
statements inside the loop body):

• In FOR...NEXT loops, the RETRY statement reexecutes the FOR statement if the error occurs while
VSI BASIC is evaluating the limit or increment values.

• In FOR...NEXT loops, if the error occurs while VSI BASIC is evaluating the index variable, the
RETRY statement reexecutes the NEXT statement.

• In a FOR...UNTIL or FOR...WHILE loop, if an error occurs while VSI BASIC is evaluating the
relational expression, the RETRY statement reexecutes the NEXT statement.

Example
10 DECLARE LONG YOUR_AGE
 WHEN ERROR IN
 INPUT "Enter your age";your_age
 USE
 IF ERR = 50
 THEN RETRY
 ELSE EXIT HANDLER

230

Chapter 3. Statements and Functions

 END IF
 END WHEN

RETURN
RETURN — The RETURN statement transfers control to the statement immediately following the most
recently executed GOSUB or ON...GOSUB statement in the current program unit.

Format
RETURN

Syntax Rules
None

Remarks
1. Once the RETURN is executed in a subroutine, no other statements in the subroutine are executed,

even if they appear after the RETURN statement.

2. Execution of a RETURN statement before the execution of a GOSUB or ON...GOSUB causes VSI
BASIC to signal “RETURN without GOSUB” (ERR=72).

Example
GOSUB subroutine_1
 .
 .
 .
subroutine_1:
 .
 .
 .
RETURN

RIGHT$
RIGHT$ — The RIGHT$ function extracts a substring from a string's right side, leaving the string
unchanged.

Format
str-var = RIGHT[$] (str-exp,int-exp)

Syntax Rules
None

231

Chapter 3. Statements and Functions

Remarks
1. The RIGHT$ function extracts a substring from str-exp and stores the substring in str-var. The

substring begins with the character in the position specified by int-exp and ends with the rightmost
character in the string.

2. If int-exp is less than or equal to zero, RIGHT$ returns the entire string.

3. If int-exp is greater than the length of str-exp, RIGHT$ returns a null string.

4. If you specify a floating-point expression for int-exp, VSI BASIC truncates it to a LONG integer.

Example
DECLARE STRING main_str, &
 end_result
main_str = "1234567"
end_result = RIGHT$(main_str, 3)
PRINT end_result

Output

34567

RMSSTATUS
RMSSTATUS — The RMSSTATUS function returns the RMS status or the status value of the last I/O
operation on a specified open I/O channel.

Format
long-var = RMSSTATUS (chnl-exp {, STATUS | , VALUE})

Syntax Rules
1. Chnl-exp must be the number of a channel opened from a BASIC routine.

2. Chnl-exp cannot be zero.

Remarks
1. If chnl-exp does not represent an open channel, VSI BASIC signals the error “I/O channel not open”

(ERR=9).

2. If you do not specify either STATUS or VALUE, RMSSTATUS returns the STATUS value by default.

3. If you specify STATUS, RMSSTATUS returns the FAB$L_STS or the RAB$L_STS status value.
However, if you specify VALUE, RMSSTATUS returns the FAB$L_STV or the RAB$L_STV
status value.

4. Use the RMSSTATUS function to return the status of the following operations:

• RESTORE

232

Chapter 3. Statements and Functions

• GET

• PUT

• UPDATE

• UNLOCK

• PRINT and PRINT USING

• INPUT, INPUT LINE, and LINPUT

• SCRATCH

• FREE

• Virtual array references

To determine the reason for the failure of an OPEN, CLOSE, KILL, or NAME...AS statement, use
the VMSSTATUS function within an error handler.

Examples
Example 1
%TITLE "RMSSTATUS Example"
%SBTTL "Reference Manual Examples"
%IDENT "V1.0"

PROGRAM Demo_RMSSTATUS_function
 OPTION CONSTANT TYPE = INTEGER

 OPEN "DOES_NOT_EXIST.LIS" FOR OUTPUT AS 1, &
 SEQUENTIAL VARIABLE, &
 RECORDSIZE 80

 WHEN ERROR IN
 GET #1
 USE
 PRINT "GET Operation failed"
 PRINT "RMS Status ="; RMSSTATUS(1,STATUS)
 PRINT "RMS Status Value ="; RMSSTATUS(1,VALUE)
 END WHEN

END PROGRAM

Example 2
 OPTION TYPE=EXPLICIT
 EXTERNAL LONG CONSTANT RMS$_OK_DUP

 MAP (ORDER) LONG ORD_ENTRY, STRING ORD_CUST_NO = 6%, &
 STRING ORD_REMARK = 50%

 OPEN "ORD_DB" FOR INPUT AS FILE 1%, &
 ORGANIZATION INDEXED FIXED, &

233

Chapter 3. Statements and Functions

 MAP ORDER, &
 PRIMARY ORD_ENTRY NODUPLICATES, &
 ALTERNATE ORD_CUST_NO DUPLICATES
 INPUT "Enter order number";ORD_ENTRY
 INPUT "Enter customer number";ORD_CUST_NO
 INPUT "Remark";ORD_REMARK

 !
 ! Enter the order in the order database
 ! Check if the customer has other orders
 !
 PUT #1%
 IF RMSSTATUS(1%, STATUS) = RMS$_OK_DUP
 THEN
 !
 ! The customer has other orders; compute the customer's
 ! discount for other orders
 !
 END IF

 CLOSE 1%
 END

RND
RND — The RND function returns a random number greater than or equal to zero and less than 1.

Format
real-var = RND

Syntax Rules
None

Remarks
1. If the RND function is preceded by a RANDOMIZE statement, VSI BASIC generates a different

random number or series of numbers each time a program executes.

2. The RND function returns a pseudorandom number if not preceded by a RANDOMIZE statement;
that is, each time a program runs, VSI BASIC generates the same random number or series of
random numbers.

3. The RND function returns a floating-point SINGLE value.

4. The RND function returns values over a uniform distribution from 0 to 1. For example, a value
from 0 to .1 is as likely as a value from .5 to .6. Note the difference between this and a bell-curve
distribution where the probability of values in the range .3 to .7 is higher than the outer ranges.

Example
DECLARE REAL random_num
RANDOMIZE

234

Chapter 3. Statements and Functions

FOR I = 1 TO 3 !FOR loop causes BASIC to print three random numbers

 random_num = RND
 PRINT random_num

NEXT I

Output

 .865243
 .477417
 .734673

RSET
RSET — The RSET statement assigns right-justified data to a string variable. RSET does not change a
string variable's length.

Format
RSET str-var,... = str-exp

Syntax Rules
Str-var cannot be a DEF function name unless the RSET statement is inside the DEF function definition.

Remarks
1. The RSET statement treats strings as fixed-length. It does not change the length of str-var, nor does

it create new storage locations.

2. If str-var is longer than str-exp, RSET right-justifies the data and pads it with spaces on the left.

3. If str-var is shorter than str-exp, RSET truncates str-exp on the left.

Example
DECLARE STRING test
test = "ABCDE"
RSET test = "123"
PRINT "X" + test

Output

X 123

SCRATCH
SCRATCH — The SCRATCH statement deletes the current record and all following records in a
sequential file.

235

Chapter 3. Statements and Functions

Format
SCRATCH #chnl-exp

Syntax Rules
Chnl-exp is a numeric expression that specifies a channel associated with a file. It must be immediately
preceded by a number sign (#).

Remarks
1. Before you execute the SCRATCH statement, the file must be opened with ACCESS SCRATCH.

2. The SCRATCH statement applies to ORGANIZATION SEQUENTIAL files only.

3. The SCRATCH statement has no effect on terminals or unit record devices.

4. For disk files, the SCRATCH statement discards the current record and all that follows it in the file.
The physical length of the file does not change.

5. For magnetic tape files, the SCRATCH statement overwrites the current record with two end-of-file
marks.

6. Use of the SCRATCH statement on shared sequential files is not recommended.

Example
SCRATCH #4%

SEG$
SEG$ — The SEG$ function extracts a substring from a main string, leaving the original string
unchanged.

Format
str-var = SEG$ (str-exp, int-exp1, int-exp2)

Syntax Rules
None

Remarks
1. VSI BASIC extracts the substring from str-exp, the main string, and stores the substring in str-var.

The substring begins with the character in the position specified by int-exp1 and ends with the
character in the position specified by int-exp2.

2. If int-exp1 is less than 1, VSI BASIC assumes a value of 1.

236

Chapter 3. Statements and Functions

3. If int-exp1 is greater than int-exp2 or the length of str-exp, the SEG$ function returns a null string.

4. If int-exp1 equals int-exp2, the SEG$ function returns the character at the position specified by int-
exp1.

5. Unless int-exp2 is greater than the length of str-exp, the length of the returned substring equals int-
exp2 minus int-exp1 plus 1. If int-exp2 is greater than the length of str-exp, the SEG$ function returns
all characters from the position specified by int-exp1 to the end of str-exp.

6. If you specify a floating-point expression for int-exp1 or int-exp2, VSI BASIC truncates it to a LONG
integer.

Example
DECLARE STRING alpha, center
alpha = "ABCDEFGHIJK"
center = SEG$(alpha, 4, 8)
PRINT center

Output

DEFGH

SELECT
SELECT — The SELECT statement lets you specify an expression, a number of possible values the
expression may have, and a number of alternative statement blocks to be executed for each possible case.

Format
SELECT exp1
 case-clause
 .
 .
 .
 [else-clause]
END SELECT

case-clause: CASE case-item,...
 [statement]...

case-item: {[rel-op] exp2 | exp3 TO exp4 [, exp5 TO exp6],... }

else-clause: CASE ELSE
 [statement]...

Syntax Rules
1. Exp1 is the expression to be tested against the case-clauses and the else-clause. It can be numeric or

string.

2. Case-clause consists of the CASE keyword followed by a case-item and statements to be executed
when the case-item is true.

237

Chapter 3. Statements and Functions

3. Else-clause consists of the CASE ELSE keywords followed by statements to be executed when no
previous case-item has been selected as true.

4. Case-item is either an expression to be compared with exp1 or a range of values separated with the
keyword TO.

• Rel-op is a relational operator specifying how exp1 is to be compared to exp2. If you do not
include a rel-op, VSI BASIC assumes the equals (=) operator. VSI BASIC executes the statements
in the CASE block when the specified relational expression is true.

• Exp3 and exp4 specify a range of numeric or string values separated by the keyword TO.
Multiple ranges must be separated with commas. VSI BASIC executes the statements in the
CASE block when exp1 falls within any of the specified ranges.

Remarks
1. A SELECT statement can have only one else-clause. The else-clause is optional and, when present,

must be the last CASE block in the SELECT block.

2. Each statement in a SELECT block can have its own line number.

3. The SELECT statement begins the SELECT block and the END SELECT keywords terminate it.
VSI BASIC signals an error if you do not include the END SELECT keywords.

4. Each CASE keyword establishes a CASE block. The next CASE or END SELECT keyword ends the
CASE block.

5. You can nest SELECT blocks within a CASE or CASE ELSE block.

6. VSI BASIC evaluates exp1 when the SELECT statement is first encountered; VSI BASIC then
compares exp1 with each case-clause in order of occurrence until a match is found or until a CASE
ELSE block or END SELECT is encountered.

7. The following conditions constitute a match:

• Exp1 satisfies the relationship to exp2 specified by rel-op.

• Exp1 is greater than or equal to exp3, but less than or equal to exp4, greater than or equal to exp5
but less than or equal to exp6, and so on.

8. When a match is found between exp1 and a case-item, VSI BASIC executes the statements in the
CASE block where the match occurred. If ranges overlap, the first match causes VSI BASIC to
execute the statements in the CASE block. After executing CASE block statements, control passes to
the statement immediately following the END SELECT keywords.

9. If no CASE match occurs, VSI BASIC executes the statements in the else-clause, if present, and then
passes control to the statement immediately following the END SELECT keywords.

10. If no CASE match occurs and you do not supply a case-else clause, control passes to the statement
following the END SELECT keywords.

Example
100 SELECT A% + B% + C%

238

Chapter 3. Statements and Functions

 CASE = 100
 PRINT 'THE VALUE IS EXACTLY 100'
 CASE 1 TO 99
 PRINT 'THE VALUE IS BETWEEN 1 AND 99'
 CASE > 100
 PRINT 'THE VALUE IS GREATER THAN 100'
 CASE ELSE
 PRINT 'THE VALUE IS LESS THAN 1'
 END SELECT

SET PROMPT
SET PROMPT — The SET PROMPT statement enables a question mark prompt to appear after VSI
BASIC executes either an INPUT, LINPUT, INPUT LINE, MAT INPUT, or MAT LINPUT statement
on channel #0. The SET NO PROMPT statement disables the question mark prompt.

Format
SET [NO] PROMPT

Syntax Rules
None

Remarks
1. If you do not specify a SET PROMPT statement, the default is SET PROMPT.

2. SET NO PROMPT disables VSI BASIC from issuing a question mark prompt for the INPUT,
LINPUT, INPUT LINE, MAT INPUT, and MAT LINPUT statements on channel #0.

3. Prompting is reenabled when either a SET PROMPT statement or a CHAIN statement is executed.

4. The SET NO PROMPT statement does not affect the string constant you specify as the input prompt
with the INPUT statement.

Example
DECLARE STRING your_name, your_age, your_grade
INPUT "Enter your name";your_name
SET NO PROMPT
INPUT "Enter your age"; your_age
SET PROMPT
INPUT "Enter the last school grade you completed";your_grade

Output

Enter your name? Katherine Kelly
Enter your age 15
Enter the last school grade you completed? 9

239

Chapter 3. Statements and Functions

SGN
SGN — The SGN function determines whether a numeric expression is positive, negative, or zero. It
returns 1 if the expression is positive, –1 if the expression is negative, and zero if the expression is zero.

Format
int-var = SGN (real-exp)

Syntax Rules
None

Remarks
1. If real-exp does not equal zero, SGN returns MAG(real-exp)/ real-exp.

2. If real-exp equals zero, SGN returns a value of zero.

3. SGN returns an integer.

Example
DECLARE INTEGER sign
sign = SGN(46/23)
PRINT sign

Output

1

SIN
SIN — The SIN function returns the sine of an angle in radians or degrees.

Format
real-var = SIN (real-exp)

Syntax Rules
Real-exp is an angle specified in radians or degrees depending upon which angle clause you choose with
the OPTION statement.

Remarks
1. The returned value is from –1 to 1.

240

Chapter 3. Statements and Functions

2. VSI BASIC expects the argument of the SIN function to be a real expression. When the argument is
a real expression, VSI BASIC returns a value of the same floating-point size. When the argument is
not a real expression, VSI BASIC converts the argument to the default floating-point size and returns
a value of the default floating-point size.

Example
OPTION ANGLE = RADIANS
DECLARE REAL s1_angle
s1_angle = SIN(PI/2)
PRINT s1_angle

Output

1

SLEEP
SLEEP — The SLEEP statement suspends program execution for a specified number of seconds or until
a carriage return is entered from the controlling terminal.

Format
SLEEP int-exp

Syntax Rules
1. Int-exp is the number of seconds VSI BASIC waits before resuming program execution.

2. Int-exp must be from 0 to the largest allowed positive integer value; if it is greater, VSI BASIC signals
the error “Integer error or overflow” (ERR=51).

Remarks
1. Pressing the Return key on the controlling terminal cancels the effect of the SLEEP statement.

2. All characters typed while SLEEP is in effect, including a Return entered to terminate the SLEEP
statement, remain in the typeahead buffer. Therefore, if you type RETURN without preceding data,
an INPUT statement that follows SLEEP completes without data.

Example
SLEEP 120%

SPACE$
SPACE$ — The SPACE$ function creates a string containing a specified number of spaces.

241

Chapter 3. Statements and Functions

Format
str-var = SPACE$ (int-exp)

Syntax Rules
Int-exp specifies the number of spaces in the returned string.

Remarks
1. VSI BASIC treats an int-exp less than 0 as zero.

2. If you specify a floating-point expression for int-exp, VSI BASIC truncates it to an integer.

Example
DECLARE STRING A, B
A = "1234"
B = "5678"
PRINT A + SPACE$(5%) + B

Output

1234 5678

SQR
SQR — The SQR function returns the square root of a positive number.

Format
real-var = {SQRT | SQR} (real-exp)

Syntax Rules
None

Remarks
1. VSI BASIC signals the error “Imaginary square roots” (ERR=54) when real-exp is negative.

2. VSI BASIC assumes that the argument of the SQR function is a real expression. When the argument
is a real expression, VSI BASIC returns a value of the same floating-point size. When the argument
is not a real expression, VSI BASIC returns a value of the default floating-point size.

Example
DECLARE REAL root
root = SQR(20*5)
PRINT root

242

Chapter 3. Statements and Functions

Output

10

STATUS
STATUS — The STATUS function returns an integer value containing information about the last opened
channel. Your program can test each bit to determine the status of the channel. The STATUS function
is supported only for compatibility with other versions of BASIC. It is recommended that you use the
RMSSTATUS function for new program development.

Format
int-var = STATUS

Syntax Rules
None

Remarks
1.

The STATUS function returns a LONG integer.

2. The value returned by the STATUS function is undefined until VSI BASIC executes an OPEN
statement.

3. The STATUS value is reset by every input operation on any channel; therefore, you should copy the
STATUS value to a different storage location before your program executes another input operation.

4. If an error occurs during an input operation, the value of STATUS is undefined. When no error
occurs, the 6 low-order bits of the returned value contain information about the type of device
accessed by the last input operation. Table 3.5 lists STATUS bits set by VSI BASIC.

Table 3.5. VSI BASIC STATUS Bits

Bit Set Device Type

0 Record-oriented device
1 Carriage-control device
2 Terminal
3 Directory device
4 Single directory device
5 Sequential block-oriented device (magnetic tape)

Example
150 Y% = STATUS

243

Chapter 3. Statements and Functions

STOP
STOP — The STOP statement halts program execution allowing you to optionally continue execution.

Format
STOP

Syntax Rules
None

Remarks
1. The STOP statement cannot appear before a PROGRAM, SUB, or FUNCTION statement.

2.

3. When a STOP statement is in an executable image, the line number, module name, and a number
sign (#) prompt are printed. In response to the prompt, you can type CONTINUE to continue
program execution or EXIT to end the program. If the program module was compiled with
the /NOLINE qualifier, no line number is displayed.

Example
PROGRAM Stopper
 PRINT "Type CONTINUE when the program stops"
 INPUT "Do you want to stop now"; Quit$

 IF Quit$ = "Y"
 THEN
 STOP
 ELSE
 PRINT "So what are you waiting for?"
 STOP
 END IF

 PRINT "You told me to continue... thank you"
END PROGRAM

Output

Type CONTINUE when the program stops
Do you want to stop now?n
So what are you waiting for?
Stop
In module STOPPER
Ready

continue
You told me to continue... thank you
Ready

244

Chapter 3. Statements and Functions

STR$
STR$ — The STR$ function changes a numeric expression to a numeric character string without leading
and trailing spaces.

Format
str-var = STR$ (num-exp)

Syntax Rules
None

Remarks
1.

If num-exp is negative, the first character in the returned string is a minus sign (–).

2. The STR$ function does not return leading or trailing spaces.

3. When you print a floating-point number that has 6 decimal digits or more but the integer portion has
6 digits or less (for example, 1234.567), VSI BASIC rounds the number to 6 digits (1234.57). If a
floating-point number's integer part is 7 decimal digits or more, VSI BASIC rounds the number to 6
digits and prints it in E format.

4. When you print a floating-point number with magnitude from 0.1 to 1, VSI BASIC rounds it to 6
digits. When you print a number with magnitude smaller than 0.1, VSI BASIC rounds it to 6 digits
and prints it in E format.

5. The STR$ function returns up to 10 digits for LONG integers and up to 31 digits for DECIMAL
numbers.

Example
DECLARE STRING new_num
new_num = STR$(1543.659)
PRINT new_num

Output

1543.66

STRING$
STRING$ — The STRING$ function creates a string containing a specified number of identical
characters.

Format
str-var = STRING$ (int-exp1, int-exp2)

245

Chapter 3. Statements and Functions

Syntax Rules
1. Int-exp1 specifies the character string's length.

2. Int-exp2 is the decimal ASCII value of the character that makes up the string. This value is treated
modulo 256.

Remarks
1. VSI BASIC signals the error “String too long” (ERR=227) if int-exp1 is greater than 65535.

2. If int-exp1 is less than or equal to zero, VSI BASIC treats it as zero.

3. VSI BASIC treats int-exp2 as an unsigned 8-bit integer. For example, –1 is treated as 255.

4. If either int-exp1 or int-exp2 is a floating-point expression, VSI BASIC truncates it to an integer.

Example
DECLARE STRING output_str
output_str = STRING$(10%, 50%) !50 is the ASCII value of the
PRINT output_str !character "2"

Output

2222222222

SUB
SUB — The SUB statement marks the beginning of a VSI BASIC subprogram and specifies the number
and data type of its parameters.

Format
SUB sub-name [pass-mech] [([formal-param], ...)]
 [statement],...
{END SUB | SUBEND}

pass-mech: {BY REF | BY DESC | BY VALUE}

formal-param: [data-type] {unsubs-var | array-name
 ([int-const],… | [,]...)}
 [= int-const] [pass-mech]

Syntax Rules

1. Sub-name is the name of the separately compiled subprogram.

2. Formal-param specifies the number and type of parameters for the arguments the SUB subprogram
expects to receive when invoked.

• Empty parentheses indicate that the SUB subprogram has no parameters.

246

Chapter 3. Statements and Functions

• Data-type specifies the data type of a parameter. If you do not specify a data type, parameters are
of the default data type and size. When you do specify a data type, all following parameters are
of that data type until you specify a new data type. Data type keywords and their size, range, and
precision are listed in Table 1.2.

3. Sub-name can have from 1 to 31 characters and must conform to the following rules:

• The first character of an unquoted name must be an alphabetic character (A to Z). The remaining
characters, if present, can be any combination of letters, digits (0 to 9), dollar signs ($), periods
(.), or underscores (_).

• A quoted name can consist of any combination of printable ASCII characters.

4. Data-type can be any VSI BASIC data type keyword or a data type defined by a RECORD
statement.

5. Pass-mech specifies the parameter passing mechanism by which the subprogram receives arguments.

6. A pass-mech clause outside the parentheses applies by default to all SUB parameters. A pass-mech
clause in the formal-param list overrides the specified default and applies only to the immediately
preceding parameter.

Remarks
1. The SUB statement must be the first statement in the SUB subprogram.

2. Compiler directives and comment fields created with an exclamation point (!), can precede the SUB
statement because they are not BASIC statements. Note that REM is a BASIC statement; therefore, it
cannot precede the SUB statement.

3. Every SUB statement must have a corresponding END SUB statement or SUBEND statement.

4. If you do not specify a passing mechanism, the SUB program receives arguments by the default
passing mechanisms.

5. Parameters defined in formal-param must agree in number, type, ordinality, and passing mechanism
with the arguments specified in the CALL statement of the calling program.

6. You can specify up to 255 parameters.

7. Any VSI BASIC statement except those that refer to other program unit types (FUNCTION,
PICTURE or PROGRAM) can appear in a SUB subprogram.

8. All variables, except those named in MAP and COMMON statements are local to that subprogram.

9. VSI BASIC initializes local variables to zero or the null string.

10. SUB subprograms receive parameters by reference, by descriptor, or by value.

• BY REF specifies that the subprogram receives the argument's address.

• BY DESC specifies that the subprogram receives the address of a BASIC descriptor. For
information about the format of a BASIC descriptor for strings and arrays, see the VSI BASIC
User Manual. For information about other types of descriptors, see the VSI BASIC User Manual.

• BY VALUE specifies that the subprogram receives a copy of the argument value.

247

Chapter 3. Statements and Functions

11. By default, VSI BASIC subprograms receive numeric unsubscripted variables by reference, and all
other parameters by descriptor. You can override these defaults for strings and arrays with a BY
clause:

• If you specify a string length with the =int-const clause, you must also specify BY REF. If you
specify BY REF and do not specify a string length, VSI BASIC uses the default string length of
16.

•

12. Subprograms can be called recursively.

Example
SUB SUB3 BY REF (DOUBLE A, B, &
 STRING Emp_nam BY DESC, &
 wage(20))
 .
 .
 .
END SUB

SUBEND
SUBEND — The SUBEND statement is a synonym for the END SUB statement. See the END
statement for more information.

Format
SUBEND

SUBEXIT
SUBEXIT — The SUBEXIT statement is a synonym for the EXIT SUB statement. See the EXIT
statement for more information.

Format
SUBEXIT

SUM$
SUM$ — The SUM$ function returns a string whose value is the sum of two numeric strings.

Format
str-var = SUM$ (str-exp1, str-exp2)

Syntax Rules
None

248

Chapter 3. Statements and Functions

Remarks
1. The SUM$ function does not support E-format notation.

2. Each string expression can contain up to 60 ASCII digits and an optional decimal point and sign.

3. VSI BASIC adds str-exp2 to str-exp1 and stores the result in str-var.

4. If str-exp1 and str-exp2 are integers, str-var takes the precision of the larger string unless trailing
zeros generate that precision.

5. If str-exp1 and str-exp2 are decimal fractions, str-var takes the precision of the more precise fraction,
unless trailing zeros generate that precision.

6. SUM$ omits trailing zeros to the right of the decimal point.

7. The sum of two fractions takes precision as follows:

• The sum of the integer parts takes the precision of the larger part.

• The sum of the decimal fraction part takes the precision of the more precise part.

8. SUM$ truncates leading and trailing zeros.

Example
DECLARE STRING A, B, Total
A = "45.678"
B = "67.89000"
total = SUM$ (A,B)
PRINT Total

Output

113.568

SWAP%
SWAP% — The SWAP% function transposes a WORD integer's bytes. The SWAP% function is
supported only for compatibility with BASIC-PLUS-2. It is recommended that you do not use the SWAP
% function for new program development.

Format
int-var = SWAP% (int-exp)

Syntax Rules
None

Remarks
1. SWAP% is a WORD function. VSI BASIC evaluates int-exp and converts it to the WORD data type,

if necessary.

249

Chapter 3. Statements and Functions

2. VSI BASIC transposes the bytes of int-exp and returns a WORD integer.

Example
DECLARE INTEGER word_int
word_int = SWAP%(23)
PRINT word_int

Output

5888

TAB
TAB — When used with the PRINT statement, the TAB function moves the cursor or print mechanism
to a specified column. When used outside the PRINT statement, the TAB function creates a string
containing the specified number of spaces.

Format
str-var = TAB (int-exp)

Syntax Rules
1. When used with the PRINT statement, int-exp specifies the column number of the cursor or print

mechanism.

2. When used outside the PRINT statement, int-exp specifies the number of spaces in the returned
string.

Remarks
1. You cannot tab beyond the current MARGIN restriction.

2. The leftmost column position is zero.

3. If int-exp is less than the current cursor position, the TAB function has no effect.

4. The TAB function can move the cursor or print mechanism only from the left to the right.

5. You can use more than one TAB function in the same PRINT statement.

6. Use semicolons to separate multiple TAB functions in a single statement. If you use commas, VSI
BASIC moves to the next print zone before executing the TAB function.

7. If you specify a floating-point expression for int-exp, VSI BASIC truncates it to an integer.

Example
PRINT "Number 1"; TAB(15); "Number 2"; TAB(30); "Number 3"

Output

250

Chapter 3. Statements and Functions

Number 1 Number 2 Number 3

TAN
TAN — The TAN function returns the tangent of an angle in radians or degrees.

Format
real-var = TAN (real-exp)

Syntax Rules
Real-exp is an angle specified in radians or degrees, depending on which angle clause you choose with
the OPTION statement.

Remarks
VSI BASIC expects the argument of the TAN function to be a real expression. When the argument is a
real expression, VSI BASIC returns a value of the same floating-point size. When the argument is not a
real expression, VSI BASIC converts the argument to the default floating-point size and returns a value
of the default floating-point size.

Example
OPTION ANGLE = DEGREES
DECLARE REAL tangent
tangent = TAN(45.0)
PRINT tangent

Output

1

TIME
TIME — The TIME function returns the time of day (in seconds) as a floating-point number. The TIME
function can also return process CPU time and connect time.

Format
real-var = TIME (int-exp)

Syntax Rules
None

Remarks
1. The value returned by the TIME function depends on the value of int-exp.

251

Chapter 3. Statements and Functions

2. If int-exp equals zero, TIME returns the number of seconds since midnight.

3. VSI BASIC also accepts values 1 and 2 and returns values as shown in Table 3.6. All other
arguments to the TIME function are undefined and cause VSI BASIC to signal “Not implemented”
(ERR=250).

4. The TIME function returns a SINGLE floating-point value.

5. If you specify a floating-point expression for int-exp, VSI BASIC truncates it to an integer.

Table 3.6. TIME Function Values

Argument Value VSI BASIC Returns

0 The amount of time elapsed since midnight in seconds
1 The CPU time of the current process in tenths of a second
2 The connect time of the current process in minutes

Example
PRINT TIME(0)

Output

49671

TIME$
TIME$ — The TIME$ function returns a string displaying the time of day in the form hh:mm AM or
hh:mm PM.

Format
str-var = TIME$ (int-exp)

Syntax Rules
Int-exp specifies the number of minutes before midnight.

Remarks
1. If int-exp equals zero, TIME$ returns the current time of day.

2. The value of int-exp must be from 0 to 1440 or VSI BASIC signals an error.

3. The TIME$ function uses a 12-hour, AM/PM clock. Before 12:00 noon, TIME$ returns hh:mm
AM; after 12:00 noon, hh:mm PM.

4. If you specify a floating-point expression for int-exp, VSI BASIC truncates it to an integer.

252

Chapter 3. Statements and Functions

Example
DECLARE STRING current_time
current_time = TIME$(0)
PRINT current_time

Output

01:51 PM

TRM$
TRM$ — The TRM$ function removes all trailing blanks and tabs from a specified string.

Format
str-var = TRM$(str-exp)

Syntax Rules
None

Remarks
The returned str-var is identical to str-exp, except that it has all the trailing blanks and tabs removed.

Example
DECLARE STRING old_string, new_string
old_string = "ABCDEFG "
new_string = TRM$(old_string)
PRINT old_string;"XYZ"
PRINT new_string;"XYZ"

Output

ABCDEFG XYZ
ABCDEFGXYZ

UBOUND
UBOUND — The UBOUND function returns the upper bounds of a compile-time or run-time
dimensioned array.

Format
num-var = UBOUND (array-name [, int-exp])

Syntax Rules
1. Array-name must specify an array that has been previously explicitly or implicitly declared.

253

Chapter 3. Statements and Functions

2. Int-exp specifies the number of the dimension for which you have requested the upper bounds.

Remarks
1. If you do not specify a numeric expression, VSI BASIC automatically returns the upper bounds of

the first dimension.

2. If you specify a numeric expression that is less than or equal to zero, VSI BASIC signals an error
message.

3. If you specify a numeric expression that exceeds the number of dimensions, VSI BASIC signals an
error message.

Example
DECLARE INTEGER CONSTANT B = 5
DIM A(B)
account_num = 1
FOR dim_num = 0 TO UBOUND(A)
 A(dim_num) = account_num
 account_num = account_num + 1
 PRINT A(dim_num)
NEXT dim_num

Output

1
2
3
4
5
6

UNLESS
UNLESS — The UNLESS qualifier modifies a statement. VSI BASIC executes the modified statement
only if a conditional expression is false.

Format
statement UNLESS cond-exp

Syntax Rules
None

Remarks

1. The UNLESS statement cannot be used on nonexecutable statements or on statements such as
SELECT, IF, and DEF that establish a statement block.

2. VSI BASIC executes the statement only if cond-exp is false (value zero).

254

Chapter 3. Statements and Functions

Example
PRINT "A DOES NOT EQUAL 3" UNLESS A% = 3%

UNLOCK
UNLOCK — The UNLOCK statement unlocks the current record or bucket locked by the last FIND or
GET statement.

Format
UNLOCK #chnl-exp

Syntax Rules
Chnl-exp is a numeric expression that specifies a channel number associated with a file. It must be
immediately preceded by a number sign (#).

Remarks
1. A file must be opened on the specified channel before UNLOCK can execute.

2. The UNLOCK statement only applies to files on disk.

3. If the current record is not locked by a previous GET or FIND statement, the UNLOCK statement
has no effect and VSI BASIC does not signal an error.

4. The UNLOCK statement does not affect record buffers.

5. After VSI BASIC executes the UNLOCK statement, you cannot update or delete the current record.

6. Once the UNLOCK statement executes, the position of the current record pointer is undefined.

Example
UNLOCK #10%

UNTIL
UNTIL — The UNTIL statement marks the beginning of an UNTIL loop or modifies the execution of
another statement.

Format
Conditional
UNTIL cond-exp
 [statement]
 .
 .

255

Chapter 3. Statements and Functions

 .
NEXT

Statement Modifier
statement UNTIL cond-exp

Syntax Rules
None

Remarks
1. Conditional

• A NEXT statement must end the UNTIL loop.

• VSI BASIC evaluates cond-exp before each loop iteration. If the expression is false (value zero),
VSI BASIC executes the loop. If the expression is true (value nonzero), control passes to the first
executable statement after the NEXT statement.

2. Statement Modifier

VSI BASIC executes the statement repeatedly until cond-exp is true.

Examples
Example 1
!Conditional
UNTIL A >= 5
 A = A + .01
 TOTAL = TOTAL + 1
NEXT

Example 2
!Statement Modifier
A = A + 1 UNTIL A >= 200

UPDATE
UPDATE — The UPDATE statement replaces a record in a file with a record in the record buffer. The
UPDATE statement is valid on sequential, relative, and indexed files.

Format
UPDATE #chnl-exp [, COUNT int-exp]

Syntax Rules
1. Chnl-exp is a numeric expression that specifies a channel number associated with a file. It must be

immediately preceded by a number sign (#).

256

Chapter 3. Statements and Functions

2. Int-exp specifies the size of the new record.

Remarks
1.

2. Each UPDATE statement must be preceded by a successful GET or FIND operation or VSI BASIC
signals “No current record” (ERR=131). FIND locates but does not retrieve records. Therefore, you
must specify a COUNT clause when retrieving variable-length records when the preceding operation
was a FIND. Int-exp must exactly match the size of the old record.

3. If you are updating a variable-length record, and the record that you want to write out is not the
same size as the record you retrieved, you must use a COUNT clause.

4. After an UPDATE statement executes, there is no current record pointer. The next record pointer is
unchanged.

5. The length of the new record must be the same as that of the existing record for all files with fixed-
length records and for all sequential files. If you specify a COUNT clause, the int-exp must match the
size of the existing record.

6. For relative files with variable-length records, the new record can be larger or smaller than the record
it replaces.

• The new record must be smaller than or equal to the maximum record size set with the MAP or
RECORDSIZE clause when the file was opened.

•

7. For indexed files with variable-length records, the new record can be larger or smaller than the
record it replaces. When the program does not permit duplicate primary keys, the new record can be
no longer than the size specified by the MAP or RECORDSIZE clause when the file was opened.
The record must include at least the primary key field.

8. An indexed file alternate key for the new record can differ from that of the existing record only if the
OPEN statement for that file specified CHANGES for the alternate key.

Example
UPDATE #4%, COUNT 32

257

Chapter 3. Statements and Functions

VAL
VAL — The VAL function converts a numeric string to a floating-point value. It is recommended that
you use the DECIMAL, REAL, and INTEGER functions to convert numeric strings to numeric data
types.

Format
real-var = VAL (str-exp)

Syntax Rules
Str-exp can contain the ASCII digits 0 to 9, uppercase E, a plus sign (+), a minus sign (–), and a period
(.).

Remarks
1. The VAL function ignores spaces and tabs.

2. If str-exp is null, or contains only spaces and tabs, VAL returns a value of zero.

3. The value returned by the VAL function is of the default floating-point size.

Example
DECLARE REAL real_num
real_num = VAL("990.32")
PRINT real_num

Output

990.32

VAL%
VAL% — The VAL% function converts a numeric string to an integer. It is recommended that you use
the DECIMAL, REAL, and INTEGER functions to convert numeric strings to numeric data types.

Format
int-var = VAL% (str-exp)

Syntax Rules
Str-exp can contain the ASCII digits 0 to 9, a plus sign (+), or a minus sign (–).

Remarks
1. The VAL% function ignores spaces and tabs.

258

Chapter 3. Statements and Functions

2. If str-exp is null or contains only spaces and tabs, VAL% returns a value of zero.

3. The value returned by the VAL% function is an integer of the default size.

Example
DECLARE INTEGER ret_int
ret_int = VAL%("789")
PRINT ret_int

Output

789

VMSSTATUS
VMSSTATUS — VMSSTATUS returns the underlying OpenVMS condition code when control is
transferred to an VSI BASIC error handler.

Format
int-var = VMSSTATUS

Syntax Rules
None

Remarks
1. If ERR contains the value 194, you can specify VMSSTATUS to examine the actual error that was

signaled to VSI BASIC.

2. If an error is raised by an underlying system component such as the Run-Time Library, you can
specify VMSSTATUS to determine the underlying error.

3. If you are writing a utility routine that may be called from languages other than VSI BASIC, you can
specify VMSSTATUS in a call to LIB$SIGNAL to signal the underlying error to the caller of the
utility routine.

4. When there is no error pending, VMSSTATUS remains undefined.

5. VMSSTATUS always returns a LONG integer.

Example
PROGRAM
WHEN ERROR USE global_handler
 .
 .
 .
END WHEN
 .
 .

259

Chapter 3. Statements and Functions

 .
HANDLER global_handler
final_status% = VMSSTATUS
END HANDLER
END PROGRAM final_status%

WAIT
WAIT — The WAIT statement specifies the number of seconds the program waits for terminal input
before signaling an error.

Format
WAIT int-exp

Syntax Rules
Int-exp must be from 0 to 255; if it is greater than 255, VSI BASIC assumes a value of 255.

Remarks
1. The WAIT statement must precede a GET operation to a terminal or an INPUT, INPUT LINE,

LINPUT, MAT INPUT, or MAT LINPUT statement. Otherwise, it has no effect.

2. Int-exp is the number of seconds VSI BASIC waits for input before signaling the error “Keyboard
wait exhausted” (ERR=15).

3. After VSI BASIC executes a WAIT statement, all input statements wait the specified amount of time
before VSI BASIC signals an error.

4. WAIT 0 disables the WAIT statement.

Example
10 DECLARE STRING your_name
 WAIT 60
 INPUT "You have sixty seconds to type your name";your_name
 WAIT 0

Output

You have sixty seconds to type your name?
%BAS-F-KEYWAIEXH, Keyboard wait exhausted
-BAS-I-ON_CHAFIL, on channel 0 for file SYS$INPUT:.; at user PC 00000644
-RMS-W-TMO, timeout period expired
-BAS-I-FROLINMOD, from line 10 in module WAIT
%TRACE-F-TRACEBACK, symbolic stack dump follows
module name routine name line rel PC abs PC

 00007334 00007334
----- above condition handler called with exception 001A807C:
%BAS-F-KEYWAIEXH, keyboard wait exhausted
-BAS-I-ON_CHAFIL, on channel 0 for file SYS$INPUT:.; at user PC 00000644
-RMS-W-TMO, timeout period expired

260

Chapter 3. Statements and Functions

----- end of exception message
 00011618 00011618
 0000F02F 0000F02F
 0000E3F6 0000E3F6
 0001387A 0001387A
WAIT$MAIN WAIT$MAIN 3 00000044 00000644

WHEN ERROR
WHEN ERROR — The WHEN ERROR statement marks the beginning of a WHEN ERROR construct.
The WHEN ERROR construct contains a protected region and can include an attached handler or
identify a detached handler.

Format
With an Attached Handler
WHEN ERROR IN
 protected-statement
 [protected-statement,...]
USE
 handler-statement
 [handler-statement,...]
END WHEN

With a Detached Handler
WHEN ERROR USE handler-name
 protected-statement
 [protected-statement,...]
END WHEN
HANDLER handler-name
 [handler-statement,...]
END HANDLER

Syntax Rules
1. Protected-statement specifies a statement that appears within a protected region. A protected region is

a special block of code that is monitored by VSI BASIC for the occurrence of a run-time error.

2. Handler-statement specifies the statement that appears inside an error handler.

3. With an Attached Handler

• The keyword USE marks the start of handler statements.

• An attached handler must be delimited by a USE and END WHEN statement.

4. With a Detached Handler

• The keyword USE names the associated handler for the protected region.

• Handler-name must be a valid VSI BASIC identifier and cannot be the same as any label, DEF,
DEF*, SUB, FUNCTION, or PICTURE name within the same program unit.

261

Chapter 3. Statements and Functions

• A detached handler must be delimited by a HANDLER and END HANDLER statement.

• You can specify the same detached handler with more than one WHEN ERROR USE statement.

Remarks
1. The WHEN ERROR statement designates the start of a block of protected statements.

2. If an error occurs inside a protected region, VSI BASIC transfers control to the error handler
associated with the WHEN ERROR statement.

3. VSI BASIC does not allow you to branch into a WHEN block.

4. When VSI BASIC encounters an END WHEN statement for an attached handler or an END
HANDLER statement for a detached handler, VSI BASIC clears the exception and transfers control
to the following statement.

5. VSI BASIC allows you to nest WHEN blocks. If an exception occurs within a nested protected
region, VSI BASIC transfers control to the handler associated with the innermost protected region in
which the error occurred.

6. WHEN blocks cannot exist inside a handler.

7. WHEN blocks cannot cross other block structures.

8. You cannot specify a RESUME statement within a WHEN ERROR construct.

9. You cannot specify an ON ERROR statement within a protected region.

10. An attached handler must immediately follow the protected region of a WHEN ERROR IN block.

11. Exit from a handler must occur through a RETRY, CONTINUE, or EXIT HANDLER statement, or
by reaching the end of the handler delimited by END WHEN or END HANDLER.

12. For more information about detached handlers, see the HANDLER statement.

Examples
Example 1
!With an attached handler
PROGRAM salary
DECLARE REAL hourly_rate, no_of_hours, weekly_pay
WHEN ERROR IN
 INPUT "Enter your hourly rate";hourly_rate
 INPUT "Enter the number of hours you worked this week";no_of_hours
 weekly_pay = no_of_hours * hourly_rate
 PRINT "Your pay for this week is";weekly_pay

USE
 SELECT ERR
 CASE = 50
 PRINT "Invalid data"
 RETRY
 CASE ELSE

262

Chapter 3. Statements and Functions

 EXIT HANDLER
 END SELECT
END WHEN
END PROGRAM

Output

Enter your hourly rate? 35.00
Enter the number of hours you worked this week? 45
Your pay for this week is 1575

Example 2
!With a detached handler
PROGRAM salary
DECLARE REAL hourly_rate, no_of_hours, weekly_pay
WHEN ERROR USE patch_work
 INPUT "Enter your hourly rate";hourly_rate
 INPUT "Enter the number of hours you worked this week";no_of_hours
 weekly_pay = no_of_hours * hourly_rate
 PRINT "Your pay for this week is";weekly_pay
END WHEN

HANDLER patch_work
 SELECT ERR
 CASE = 50
 PRINT "Invalid data"
 RETRY
 CASE ELSE
 EXIT HANDLER
 END SELECT
END HANDLER
END PROGRAM

Output

Enter your hourly rate? Nineteen dollars and fifty cents
Invalid data
Enter your hourly rate? 19.50
Enter the number of hours you worked this week? 40
Your pay for this week is 780

263

Chapter 3. Statements and Functions

WHILE
WHILE — The WHILE statement marks the beginning of a WHILE loop or modifies the execution of
another statement.

Format
Conditional
WHILE cond-exp
 [statement]...
 .
 .
 .
NEXT

Statement Modifier
statement WHILE cond-exp

Syntax Rules
A NEXT statement must end the WHILE loop.

Remarks
1. Conditional

VSI BASIC evaluates cond-exp before each loop iteration. If the expression is true (value nonzero),
VSI BASIC executes the loop. If the expression is false (value zero), control passes to the first
executable statement after the NEXT statement.

2. Statement Modifier

VSI BASIC executes the statement repeatedly as long as cond-exp is true.

Examples
Example 1
!Conditional
WHILE X < 100
 X = X + SQR(X)
NEXT

Example 2
!Statement Modifier
X% = X% + 1% WHILE X% < 100%

264

Chapter 3. Statements and Functions

XLATE$
XLATE$ — The XLATE$ function translates one string to another by referencing a table string you
supply.

Format
str-var = XLATE[$] (str-exp1, str-exp2)

Syntax Rules
1. Str-exp1 is the input string.

2. Str-exp2 is the table string.

Remarks
1. Str-exp2 can contain up to 256 ASCII characters, numbered from 0 to 255; the position of each

character in the string corresponds to an ASCII value. Because 0 is a valid ASCII value (null), the
first position in the table string is position zero.

2. XLATE$ scans str-exp1 character by character, from left to right. It finds the ASCII value n of
the first character in str-exp1 and extracts the character it finds at position n in str-exp2. XLATE$
then appends the character from str-exp2 to str-var. XLATE$ continues this process, character by
character, until the end of str-exp1 is reached.

3. The output string may be smaller than the input string for the following reasons:

• XLATE$ does not translate nulls. If the character at position n in str-exp2 is a null, XLATE$
does not append that character to str-var.

• If the ASCII value of the input character is outside the range of positions in str-exp2, XLATE$
does not append any character to str-var.

Example
DECLARE STRING A, table, source
A = "abcdefghijklmnopqrstuvwxyz"
table = STRING$(65, 0) + A
LINPUT " Type a string of uppercase letters"; source
PRINT XLATE$(source, table)

Output

Type a string of uppercase letters? ABCDEFG
abcdefg

265

Chapter 3. Statements and Functions

266

Appendix A. ASCII Character Codes
ASCII is a 7-bit character code with an optional parity bit (8) added for many devices. Programs
normally use seven bits internally with the eighth bit being zero; the extra bit is either stripped (on input)
or added by a device driver (on output) so the program will operate with either parity- or nonparity-
generating devices. The eighth bit is reserved for future standardization.

The International Reference Version (IRV) of ISO Standard 646 is identical to the IRV in CCITT
Recommendation V.3 (International alphabet No. 5). The character sets are the same as ASCII except
that the ASCII dollar sign (hexadecimal 24) is the international currency sign (###).

ISO Standard 646 and CCITT V.3 also specify the structure for national character sets, of which ASCII
is the U.S. national set. Certain specific characters are reserved for national use. Table A.1 contains the
values and symbols.

Table A.1. ASCII Characters Reserved for National Use

Hexadecimal
Value

IRV ASCII

23 # #
24 ### $ (General currency symbol vs. dollar sign)
40 @ @
5B [[
5C \ \
5D]]
5E ^ ^
60 ' '
7B { {
7C | |
7D } }
7E ~ Tilde

ISO Standard 646 and CCITT Recommendation V.3 (International Alphabet No. 5) are identical to
ASCII except that the number sign (23) is represented as ## instead of #, and certain characters are
reserved for national use. Table A.2 list the ASCII codes.

Table A.2. ASCII Codes

Decimal Code 8-Bit Hexadecimal
Code

Character Remarks

0 00 NUL Null (tape feed)
1 01 SOH Start of heading (^A)
2 02 STX Start of text (end of address, ^B)
3 03 ETX End of text (^C)
4 04 EOT End of transmission (shuts off the TWX

machine ^D)
5 05 ENQ Enquiry (WRU, ^E)

267

Appendix A. ASCII Character Codes

Decimal Code 8-Bit Hexadecimal
Code

Character Remarks

6 06 ACK Acknowledge (RU, ^F)
7 07 BEL Bell (^G)
8 08 BS Backspace (^H)
9 09 HT Horizontal tabulation (^I)
10 0A LF Line feed (^J)
11 0B VT Vertical tabulation (^K)
12 0C FF Form feed (page, ^L)
13 0D CR Carriage return (^M)
14 0E SO Shift out (^N)
15 0F SI Shift in (^O)
16 10 DLE Data link escape (^P)
17 11 DC1 Device control 1 (^Q)
18 12 DC2 Device control 2 (^R)
19 13 DC3 Device control 3 (^S)
20 14 DC4 Device control 4 (^T)
21 15 NAK Negative acknowledge (ERR, ^U)
22 16 SYN Synchronous idle (^V)
23 17 ETB End-of-transmission block (^W)
24 18 CAN Cancel (^X)
25 19 EM End of medium (^Y)
26 1A SUB Substitute (^Z)
27 1B ESC Escape (prefix of escape sequence)
28 1C FS File separator
29 1D GS Group separator
30 1E RS Record separator
31 1F US Unit separator
32 20 SP Space
33 21 ! Exclamation point
34 22 " Double quotation mark
35 23 # Number sign
36 24 $ Dollar sign
37 25 % Percent sign
38 26 & Ampersand
39 27 ' Apostrophe
40 28 (Left (open) parenthesis
41 29) Right (close) parenthesis
42 2A * Asterisk

268

Appendix A. ASCII Character Codes

Decimal Code 8-Bit Hexadecimal
Code

Character Remarks

43 2B + Plus sign
44 2C , Comma
45 2D – Minus sign, hyphen
46 2E . Period (decimal point)
47 2F / Slash (slant)
48 30 0 Zero
49 31 1 One
50 32 2 Two
51 33 3 Three
52 34 4 Four
53 35 5 Five
54 36 6 Six
55 37 7 Seven
56 38 8 Eight
57 39 9 Nine
58 3A : Colon
59 3B ; Semicolon
60 3C < Less than (left angle bracket)
61 3D = Equal sign
62 3E > Greater than (right angle bracket)
63 3F ? Question mark
64 40 @ Commercial at
65 41 A Uppercase A
66 42 B Uppercase B
67 43 C Uppercase C
68 44 D Uppercase D
69 45 E Uppercase E
70 46 F Uppercase F
71 47 G Uppercase G
72 48 H Uppercase H
73 49 I Uppercase I
74 4A J Uppercase J
75 4B K Uppercase K
76 4C L Uppercase L
77 4D M Uppercase M
78 4E N Uppercase N
79 4F O Uppercase O

269

Appendix A. ASCII Character Codes

Decimal Code 8-Bit Hexadecimal
Code

Character Remarks

80 50 P Uppercase P
81 51 Q Uppercase Q
82 52 R Uppercase R
83 53 S Uppercase S
84 54 T Uppercase T
85 55 U Uppercase U
86 56 V Uppercase V
87 57 W Uppercase W
88 58 X Uppercase X
89 59 Y Uppercase Y
90 5A Z Uppercase Z
91 5B [Left square bracket
92 5C \ Backslash (reverse slant)
93 5D] Right square bracket
94 5E ^ Circumflex (caret)
95 5F _ Underscore (underline)
96 60 ' Grave accent
97 61 a Lowercase a
98 62 b Lowercase b
99 63 c Lowercase c
100 64 d Lowercase d
101 65 e Lowercase e
102 66 f Lowercase f
103 67 g Lowercase g
104 68 h Lowercase h
105 69 i Lowercase i
106 6A j Lowercase j
107 6B k Lowercase k
108 6C l Lowercase l
109 6D m Lowercase m
110 6E n Lowercase n
111 6F o Lowercase o
112 70 p Lowercase p
113 71 q Lowercase q
114 72 r Lowercase r
115 73 s Lowercase s
116 74 t Lowercase t

270

Appendix A. ASCII Character Codes

Decimal Code 8-Bit Hexadecimal
Code

Character Remarks

117 75 u Lowercase u
118 76 v Lowercase v
119 77 w Lowercase w
120 78 x Lowercase x
121 79 y Lowercase y
122 7A z Lowercase z
123 7B { Left brace
124 7C | Vertical line
125 7D } Right brace
126 7E ~ Tilde
127 7F DEL Delete (rubout)

271

Appendix A. ASCII Character Codes

272

Appendix B. VSI BASIC Keywords
The following is a list of the VSI BASIC keywords. Most of the keywords are reserved; unreserved
keywords are marked with a dagger (dag).

%ABORT
%CDDdag

%CROSS
%DEFINE
%ELSE
%END
%FROM
%IDENT
%IF
%INCLUDE
%LET
%LIBRARY
%LIST
%NOCROSS
%NOLIST
%PAGE
%PRINT
%SBTTL
%THEN
%TITLE
%UNDEFINE
%VARIANT
ABORT
ABS
ABS%
ACCESS
ACCESS%
ACTIVATE
ACTIVE
ALIGNED
ALLOW
ALTERNATE
AND
ANGLEdag

ANY
APPEND
AREAdag

AS
ASC
ASCENDING
ASCII
ASK
ATdag

ATN
ATN2

dagUnreserved keyword

273

Appendix B. VSI BASIC Keywords

BACK
BASE
BASIC
BEL
BINARY
BIT
BLOCK
BLOCKSIZE
BS
BUCKETSIZE
BUFFER
BUFSIZ
BY
BYTE
CALL
CASE
CAUSE
CCPOS
CHAIN
CHANGE
CHANGES
CHECKING
CHOICE dag

CHR$
CLEAR
CLIP dag

CLK$
CLOSE
CLUSTERSIZE
COLORdag

COM
COMMON
COMP%
CON
CONNECT
CONSTANT
CONTIGUOUS
CONTINUE
COS
COT
COUNT
CR
CTRLC
CVTF$
CVT$F
CVT$$
CVT$%
CVT%$
DAT
DAT$
DATA
DATE$

274

Appendix B. VSI BASIC Keywords

DEACTIVATE
DECIMAL
DECLARE
DEF
DEF*
DEFAULTNAME
DEL
DELETE
DESC
DESCENDING
DET
DEVICE
DIF$
DIM
DIMENSION
DOUBLE
DOUBLEBUF
DRAW
DUPLICATES
DYNAMIC
ECHO
EDIT$
ELSE
END
EQ
EQV
ERL
ERN$
ERR
ERROR
ERT$
ESC
EXIT
EXP
EXPAND dag

EXPLICIT
EXTEND
EXTENDSIZE
EXTERNAL
FF
FIELD
FILE
FILESIZE
FILL
FILL$
FILL%
FIND
FIX
FIXED
FLUSH
FNAME$
FNEND

275

Appendix B. VSI BASIC Keywords

FNEXIT
FONT dag

FOR
FORMAT$
FORTRAN
FREE
FROM
FSP$
FSS$
FUNCTION
FUNCTIONEND
FUNCTIONEXIT
GE
GET
GETRFA
GFLOAT
GO
GOBACK
GOSUB
GOTO
GRAPH
GRAPHICS dag

GROUP
GT
HANDLE
HANDLER
HEIGHT dag

HFLOAT
HT
IDN
IF
IFEND
IFMORE
IMAGE
IMP
IN dag

INACTIVE
INDEX dag

INDEXED
INFORMATIONAL
INITIAL
INKEY$
INPUT
INSTR
INT
INTEGER
INV
INVALID
ITERATE
JSB
KEY
KILL

276

Appendix B. VSI BASIC Keywords

LBOUND
LEFT
LEFT$
LEN
LET
LF
LINE
LINES dag

LINO
LINPUT
LIST
LOC
LOCKED
LOG
LOG10
LONG
LSET
MAG
MAGTAPE
MAP
MAR
MAR%
MARGIN
MAT
MAX
METAFILE dag

MID
MID$
MIN
MIX dag

MOD
MOD%
MODE
MODIFY
MOVE
MULTIPOINT dag

NAME
NEXT
NO dag

NOCHANGES
NODATA
NODUPLICATES
NOECHO
NOEXTEND
NOMARGIN
NONE
NOPAGE
NOREWIND
NOSPAN
NOT
NUL$
NUM

277

Appendix B. VSI BASIC Keywords

NUM$
NUM1$
NUM2
NX
NXEQ
OF
ON
ONECHR
ONERROR
OPEN
OPTION
OPTIONAL
OR
ORGANIZATION
OTHERWISE
OUTPUT
OVERFLOW
PAGE
PATH dag

PEEK
PI
PICTURE
PLACE$
PLOT
POINT dag

POINTS dag

POS
POS%
PPS%
PRIMARY
PRINT
PRIORITY dag

PROD$
PROGRAM
PROMPT dag

PUT
QUAD
QUO$
RAD$
RANDOM
RANDOMIZE
RANGE dag

RCTRLC
RCTRLO
READ
REAL
RECORD
RECORDSIZE
RECORDTYPE
RECOUNT
REF
REGARDLESS

278

Appendix B. VSI BASIC Keywords

RELATIVE
REM
REMAP
RESET
RESTORE
RESUME
RETRY
RETURN
RFA
RIGHT
RIGHT$
RMSSTATUS
RND
ROTATE
ROUNDING
RSET
SCALE
SCRATCH
SEG$
SELECT
SEQUENTIAL
SET
SETUP
SEVERE
SFLOAT
SGN
SHEAR
SHIFT
SI
SIN
SINGLE
SIZE
SLEEP
SO
SP
SPACE dag

SPACE$
SPAN
SPEC%
SQR
SQRT
STATUS
STEP
STOP
STR$
STREAM
STRING
STRING$
STYLE dag

SUB
SUBEND
SUBEXIT

279

Appendix B. VSI BASIC Keywords

SUBSCRIPT
SUM$
SWAP%
SYS
TAB
TAN
TEMPORARY
TERMINAL
TEXT dag

TFLOAT
THEN
TIM
TIME
TIME$
TO
TRAN dag

TRANSFORM
TRANSFORMATION dag

TRM$
TRN
TYP
TYPE
TYPE$
UBOUND
UNALIGNED
UNDEFINED
UNIT dag

UNLESS
UNLOCK
UNTIL
UPDATE
USAGE$
USEROPEN
USING
USR$
VAL
VAL%
VALUE
VARIABLE
VARIANT
VFC
VIEWPORT dag

VIRTUAL
VPS%
VT
WAIT
WARNING
WHEN
WHILE
WINDOW dag)
WINDOWSIZE
WITHdag

280

Appendix B. VSI BASIC Keywords

WORD
WRITE
XFLOAT
XLATE
XLATE$
XOR
ZER

281

Appendix B. VSI BASIC Keywords

282

Appendix C. Differences Between
Variations of BASIC
This appendix describes:

• Section C.1: Differences Between I64 BASIC and Alpha BASIC

• Section C.2: Differences Between VAX BASIC and I64 BASIC/ Alpha BASIC

C.1. Differences Between I64 BASIC and
Alpha BASIC
I64 BASIC supports most of the Alpha BASIC features.

Differences are:

• On I64 BASIC, the default floating-point format is S_floating, corresponding to the data type
keyword SFLOAT. On Alpha BASIC, the default floating-point type is F_floating, corresponding to
the data type keyword SINGLE.

• The Itanium architecture does not support the VAX floating-point data types (FFLOAT, DFLOAT,
GFLOAT, and HFLOAT). All uses of these data types are converted to an appropriate IEEE data
type before any computation is performed, and then the result is converted back to the original data
type. This process might cause rounding errors, and might result in slight differences compared with
results obtained using VAX floating-point data types directly.

• The /ARCHITECTURE and /OPTIMIZE=TUNE qualifiers on I64 BASIC support the options
ITANIUM and MERCED and ignore the various Alpha-specific options.

C.2. Differences Between VAX BASIC and I64
BASIC/ Alpha BASIC
C.2.1. VAX BASIC Features Not Available in I64 BASIC/
Alpha BASIC
Table C.1 describes the VAX BASIC features not available in I64 BASIC/ Alpha BASIC. There are no
plans for I64 BASIC or Alpha BASIC to support these features.

Table C.1. VAX BASIC Features Not Available in I64 BASIC/ Alpha BASIC

Features Comments

/[NO]ANSI_STANDARD Enforces the ANSI Minimal BASIC standard.
VAX BASIC Environment The VAX BASIC Environment provides features specific to

BASIC for program development. The RUN command and
immediate mode are not supported.

/[NO]SYNTAX_CHECK Specifies syntax checking after every entered line.

283

Appendix C. Differences Between Variations of BASIC

Features Comments

/[NO]FLAG=[BP2COMPATIBILITY] Notifies VAX BASIC users of VAX BASIC features that are
not compatible with PDP–11 BASIC/PLUS2.

/[NO]FLAG=[AXPCOMPATIBILITY] Notifies VAX BASIC users of VAX BASIC features that are
not supported by I64 BASIC/ Alpha BASIC.

Graphics statements

Graphics statements, graphics transformation functions, and
the information in Programming with VAX BASIC Graphics is
not supported.

HFLOAT data type Specifies floating-point format for floating-point data.
Additionally, the HFLOAT argument to the REAL built-in
function is not supported.

/[NO]DESIGN There is no support for the Program Design Facility (PDF).
The compiler does not attempt to compile a program when /
DESIGN is specified.

C.2.2. I64 BASIC/Alpha BASIC Features Not Available in
VAX BASIC
Table C.2 describes I64 BASIC/ Alpha BASIC command-line qualifiers not available in VAX BASIC.
For detailed information about all the BASIC qualifiers, see the VSI BASIC User Manual.

Table C.2. I64 BASIC/ Alpha BASIC Qualifiers Not Available in VAX BASIC

Qualifier Comments

/INTEGER_SIZE=QUAD Allows you to specify that integers should be
quadwords (that is, 64 bits in size).

/OPTIMIZE=LEVEL= n Controls the level of optimization done by the
compiler. (/OPTIMIZE without the LEVEL is
available in VAX BASIC; see Section C.2.3.1.)

/REAL_SIZE= {SFLOAT | TFLOAT | XFLOAT} Allows you to specify one of the IEEE floating-
point data types, SFLOAT, TFLOAT, or XFLOAT.

/SEPARATE_COMPILATION Controls whether an individual compilation unit
becomes a separate module in an object file.

/SYNCHRONOUS_EXCEPTIONS Controls whether or not the compiler emits
additional code to emulate VAX BASIC exception
behavior.

/WARNINGS=ALIGNMENT Instructs the compiler to flag all occurrences of
non-naturally aligned RECORD fields, variables
within COMMONs and MAPs, and RECORD
arrays.

C.2.3. Behavior Differences
This section describes the behavior differences between I64 BASIC/ Alpha BASIC and VAX BASIC.

C.2.3.1. Optimization
In both Alpha BASIC and VAX BASIC, the /[NO]OPTIMIZE qualifier controls whether optimization is
turned on or off, and for both the default is /OPTIMIZE (unless /DEBUG is specified).

284

Appendix C. Differences Between Variations of BASIC

The difference is that Alpha BASIC allows you to specify which of four levels of optimization the
compiler should perform. The default is /OPTIMIZE=LEVEL=4 (full optimization). In VAX BASIC,
you cannot specify a level of optimization. For more information, see the section on BASIC command
qualifiers in the VSI BASIC User Manual.

C.2.3.2. Data Types
The following data types are discussed in this section:

• QUAD, SFLOAT, TFLOAT, and XFLOAT

• Implicit use of HFLOAT

• Double

• HFLOAT and HFLOAT Complex in Oracle CDD/Repository

C.2.3.2.1. QUAD, SFLOAT, TFLOAT, and XFLOAT

I64 BASIC/ Alpha BASIC has four data types not available in VAX BASIC:

• QUAD allows you to specify a size of 64 bits (quadword) for integers.

• SFLOAT, TFLOAT, and XFLOAT are IEEE floating-point data types requiring Version 7.1 or higher
of the OpenVMS Alpha operating system.

These four data types allow the Alpha BASIC user to take advantage of the 64-bit Alpha architecture.

C.2.3.2.2. Implicit Use of the HFLOAT Data Type

VAX BASIC performs some intermediate calculations in the HFLOAT data type, even if the source code
does not explicitly specify its use. This generally occurs when mixed data type operations are performed
between large DECIMAL items and floating-point items.

Alpha BASIC performs these operations in GFLOAT. As a result, some loss of precision is possible.
Alpha BASIC issues the following compile-time warning message if source code is encountered that
results in this difference:

OPEPERGFL, operation performed in GFLOAT, loss of precision possible

C.2.3.2.3. Double Data Type

The Alpha hardware does not completely support the D-floating data type. Alpha BASIC performs
BASIC DOUBLE operations (+, -, and so on) in G-floating (consistent with other languages on
OpenVMS Alpha systems). As a result, the operations lose three bits of precision.

Alpha BASIC performs mixed operations between GFLOAT and DOUBLE in GFLOAT, not HFLOAT.
VAX BASIC performs mixed operations between GFLOAT and DOUBLE in HFLOAT.

Conversions between the human world of decimal numbers and the binary world of computers cause
rounding errors. For example, .1 (1/10) cannot be represented exactly in either D_floating or G_floating
data type. It must be rounded. Because the D_floating and G_floating representations provide differing
amounts of precision, the rounding error may be slightly different. As a result, the D_floating and
G_floating representations of the same decimal number are not always the same when converted back to
decimal.

285

Appendix C. Differences Between Variations of BASIC

C.2.3.2.4. HFLOAT Data Type and HFLOAT COMPLEX Data Type in Oracle CDD/
Repository

I64 BASIC/ Alpha BASIC does not support HFLOAT. Neither I64 BASIC/ Alpha BASIC nor VAX
BASIC support the HFLOAT COMPLEX data type. The following sections discuss the translations that
occur when reading records from Oracle CDD/Repository.

HFLOAT Data Type

In I64 BASIC/ Alpha BASIC, HFLOAT data types generate a GROUP using the name of the HFLOAT
item specified in Oracle CDD/Repository. The GROUP contains a single 16 byte string item. Because
HFLOAT is not supported, the compiler generates an informational message similiar to those caused by
other unsupported data types.

See Example C.1 and Example C.2.

Example C.1. I64 BASIC/ Alpha BASIC HFLOAT Translation

GROUP MY_H_REAL
 STRING STRING_VALUE = 16
END GROUP

Example C.2. VAX BASIC HFLOAT Translation

HFLOAT MY_H_REAL

HFLOAT COMPLEX Data Type

In I64 BASIC/ Alpha BASIC, the Oracle CDD/Repository data type HFLOAT COMPLEX maps to
a GROUP of two 16-byte static strings. Example C.3 shows Oracle CDD/Repository output on I64
BASIC/ Alpha BASIC.

Example C.3. Oracle CDD/Repository HFLOAT COMPLEX Data Type with I64 BASIC/
Alpha BASIC

GROUP MY_H_COMPLEX
 STRING HFLOAT_R_VALUE = 16
 STRING HFLOAT_I_VALUE = 16
END GROUP

Example C.4 shows Oracle CDD/Repository output on VAX BASIC.

Example C.4. Oracle CDD/Repository HFLOAT COMPLEX Data Type with VAX BASIC

GROUP MY_H_COMPLEX
 HFLOAT HFLOAT_R_VALUE
 HFLOAT HFLOAT_I_VALUE
END GROUP

C.2.3.3. Passing Parameters by Value
Both I64 BASIC/ Alpha BASIC and VAX BASIC are able to pass actual parameters by value, but only
I64 BASIC/ Alpha BASIC allow by-value formal parameters.

C.2.3.4. Array Parameters
The following are differences in the way I64 BASIC/ Alpha BASIC and VAX BASIC handle array
parameters:

286

Appendix C. Differences Between Variations of BASIC

• Both I64 BASIC/ Alpha BASIC and VAX BASIC perform parameter checking when an entire array
is passed to a subprogram or function. When the array that was passed does not match the array
that is expected by the subprogram or function, the compiler issues the error message “Arguments
don't match.” VAX BASIC performs this check each time the array is referenced. I64 BASIC/ Alpha
BASIC performs this check once at the start of the subprogram or function.

I64 BASIC/ Alpha BASIC processes array parameters more efficiently. The following differences
exist between I64 BASIC/ Alpha BASIC and VAX BASIC in the way each processes array
parameters:

• In I64 BASIC/ Alpha BASIC, if a subprogram or function declares an array in its parameter list,
the calling program must pass an array when calling the subprogram or function. If this is not
done, an unexpected failure can occur. For example, passing a null parameter instead of an array
causes a memory management violation and the program fails. In VAX BASIC, it is valid for the
program to pass a null parameter if the array is not accessed in the subprogram.

• In I64 BASIC/ Alpha BASIC, the subprogram cannot trap the “Arguments don't match” error.
The error is signaled, but can only be trapped by the calling program.

•
When passing an entire array by descriptor, VAX BASIC creates a DSC$K_CLASS_A descriptor;
I64 BASIC/ Alpha BASIC creates a DSC$K_CLASS_NCA descriptor.

For most BASIC applications, this is not noticeable because both the calling program and the called
subprogram use NCA descriptors. However, a program that relies on individual descriptor fields may
have to be modified to work with descriptors produced by I64 BASIC/ Alpha BASIC.

For more information about DSC$K_CLASS_A and DSC$K_CLASS_NCA descriptors, see the
OpenVMS Calling Standard.

• VAX BASIC performs no scale or precision checking when passing entire decimal arrays to a
subprogram or function.

I64 BASIC/ Alpha BASIC subprograms and functions check all decimal arrays received by descriptor
to verify that precision, scale factor, and bound information match those of the parameter in the
calling program. For example, the following program causes the error “Arguments don't match” when
the subprogram test_func starts to execute:

10 declare decimal(5,2) a(10)
20 call test_func(a())
30 print a(1)
35 end

40 sub test_func(decimal(10,4) b())
45 b(1) = 12.12
50 end sub

• VAX BASIC performs minimal checking when receiving an array of records from a caller. For
example, in the following program, VAX BASIC does not check whether the size of the array passed
is equal to the size declared in the subprogram.

I64 BASIC/ Alpha BASIC checks that the size of the array elements are the same and that the
number of dimensions match. The following program produces the error “Arguments don't match”
when the subprogram test_func starts to execute:

10 record rec1

287

Appendix C. Differences Between Variations of BASIC

 long a
 long b
 end record
 declare rec1 a(10)
 call test_func(a())
 end

40 sub test_func(rec2 a())
 record rec2
 long x
 long y
 long z
 end record
 a(2)::x = 1
50 end sub

• VAX BASIC always performs bounds checking on arrays received as descriptor parameters.

I64 BASIC/Alpha BASIC does not perform bounds checking on arrays received as descriptor
parameters if the /CHECK=NOBOUNDS qualifier is specified. In this way, arrays received as
parameters are consistent with all other arrays.

C.2.4. DEF* Routines
In Alpha BASIC, DEF* routines cannot be called from within DEF routines In I64 BASIC/ Alpha
BASIC, DEF* routines cannot be called from within DEF routines or WHEN handlers. If such calls are
attempted, the following error message is issued:

%BASIC-E-DEFSNOTALL, DEF* reference not allowed in DEF or handler

Alpha BASIC gives highest precedence to DEF* routines that are called from I64 BASIC/ Alpha BASIC
gives highest precedence to DEF* routines that are called from within an expression. Thus, a DEF*
routine call is evaluated first. When the DEF* routine directly modifies the values of variables used
within the same expression, this can affect the result of the expression. If the compiler changes the order
of a DEF* call in an expression, it issues the following warning message:

%BASIC-W-DEFEXPCOM, expression with DEF* too complex, moving <name>
 invocation

You can avoid this by simplifying the expression.

C.2.4.1. /LINES Qualifier
In I64 BASIC/ Alpha BASIC, the /LINES qualifier affects only the ERL function and determines
whether BASIC line numbers are reported in run-time error messages. The following differences exist in
I64 BASIC/ Alpha BASIC:

• /NOLINES is the default.

• You do not have to use /LINES to use the RESUME statement without a target.

• Using /LINES in programs that have line numbers on most lines can negatively affect run-time
performance.

C.2.4.2. Appending Files at the DCL Command Line

288

Appendix C. Differences Between Variations of BASIC

VAX BASIC requires that source files using the plus sign (+) to append source files use line numbers
within the files; otherwise, an error message is issued.

I64 BASIC/ Alpha BASIC does not require line numbers in either of the source files. The plus sign is
treated as an OpenVMS append operator. I64 BASIC/ Alpha BASIC appends and compiles the separate
files as if they were a single source file.

C.2.4.3. Unreachable Code Error
I64 BASIC/ Alpha BASIC performs extensive analysis when searching for unreachable code and may
report more occurrences than VAX BASIC.

In I64 BASIC/ Alpha BASIC, the compile-time error message for unreachable code, UNREACH, is
an informational message. In VAX BASIC, the compile-time error message for unreachable code,
INACOFOL, is a warning.

I64 BASIC/ Alpha BASIC checks for DEF functions that are never referenced and issues the
informational message “UNCALLED, routine xxxx can never be called.”

C.2.4.4. Line Numbers
In I64 BASIC/ Alpha BASIC, unlike VAX BASIC, you cannot have duplicate line numbers or line
numbers not in ascending numerical order. This restriction applies to single source files or source files
concatenated with a plus sign (+) at the DCL command line. Duplicate line numbers or line numbers not
in ascending order cause “E” level compilation errors.

VAX BASIC does allow duplicates and lines out of order. I64 BASIC/ Alpha BASIC provides an
example TPU command procedure to help work around this difference. It can be used to append source
files and sort BASIC line numbers into ascending numerical order from one or more source files.

After installation of Alpha BASIC, the TPU command procedure is located in:

SYS$COMMON:[SYSHLP.EXAMPLES.BASIC]BASIC$ENV.TPU.

Instructions for its use are in the file.

Note

Although there are no known problems, the TPU command procedure has not been thoroughly tested.
As a result, it is not supported by VSI.

C.2.4.5. Error Handling Semantics
To achieve the most efficient performance, the I64 BASIC/Alpha BASIC compiler may reorder
the execution of arithmetic instructions. Rarely does this result in error handling semantics that are
incompatible with VAX BASIC; most programs are not affected by this change.

Use the I64 BASIC/Alpha BASIC /SYNCHRONOUS_EXCEPTIONS qualifier for those programs that
require exact VAX BASIC behavior.

C.2.4.6. Generation of Object Modules
In I64 BASIC/Alpha BASIC, the default behavior places all routines (SUBs, FUNCTIONs, and
main programs) compiled within a single source program into a single module in the object

289

Appendix C. Differences Between Variations of BASIC

file. VAX BASIC generates each routine as a separate module. Use the I64 BASIC/ Alpha
BASIC /SEPARATE_COMPILATION qualifier to duplicate VAX BASIC behavior. See the information
on qualifiers on the BASIC command line in the VSI BASIC User Manual.

C.2.4.7. RESUME and DEF
VAX BASIC does not enforce the documented restriction that a RESUME statement lexically outside a
DEF statement (without a target specified) cannot resume program execution within a DEF statement.
I64 BASIC/Alpha BASIC enforces this restriction at run time.

C.2.4.8. Exceptions
When the I64 BASIC/ Alpha BASIC compiler determines that the result of an expression is never used,
the compiler does not generate code to evaluate that expression. This causes an incompatibility with
VAX BASIC if the removed expression causes an exception. In the following example, the program
generates a divide-by-zero error in VAX BASIC. It runs without error in I64 BASIC/ Alpha BASIC
because I64 BASIC/ Alpha BASIC, recognizing that the variable A is never used, does not generate code
to evaluate the expression that is assigned to A:

 B = 5
 A = B / 0
 END

C.2.4.9. Compiler Message Differences
There is a small difference in the way compiler messages are reported. In VAX BASIC, the source
information appears before the message text, and includes both source and listing line numbers. In I64
BASIC/ Alpha BASIC, the source information appears after the message text and includes only source
line numbers.

When the I64 BASIC/ Alpha BASIC compiler reports source line information, the message looks like:

%BASIC-E-xxxxxxxxx, xxxxxxxxxxxxx at line number YY in file xxxxxxxxxxx

In both I64 BASIC/ Alpha BASIC and VAX BASIC, the reported line number is the physical source line
in the file. It is not the BASIC line number that might occur in the source program.

C.2.4.10. Error Status Returned to DCL
When errors occur, the I64 BASIC/ Alpha BASIC and VAX BASIC compilers at times return a different
status to DCL. For example, when the file specified at the DCL command line cannot be found, I64
BASIC/ Alpha BASIC returns BASIC–F–ABORT; VAX BASIC returns BASIC–F–OPENIN.

C.2.4.11. SYS$INPUT
In I64 BASIC/ Alpha BASIC, when you specify SYS$INPUT as the input file specification at the DCL
command line, the object file and the listing file are named differently from VAX BASIC. In I64 BASIC/
Alpha BASIC, the compiler names the files with the file types .OBJ and .LIS (with nothing preceding).
In VAX BASIC, the compiler names the files NONAME.OBJ and NONAME.LIS.

C.2.4.12. FSS$ Function
The VAX BASIC compiler compiles a program that uses the FSS$ function, but if the FSS$ function is
invoked at run time, the following run-time error is generated:

290

Appendix C. Differences Between Variations of BASIC

%BAS-F-NOTIMP, Not implemented

The I64 BASIC/ Alpha BASIC compiler reports all uses of the FSS$ function by generating the
following error at compile time:

%BAS-E-BLTFUNNOT, built-in function not supported

C.2.4.13. BAS$K_FAC_NO Constant
The BAS$K_FAC_NO constant is not defined on OpenVMS I64/Alpha systems. You should
replace all occurrences of the EXTERNAL LONG CONSTANT BAS$K_FAC_NO with
EXTERNAL LONG CONSTANT BAS$_FACILITY. OpenVMS VAX systems use the constant
BAS$K_FAC_NO to communicate the facility number between SYS$LIBRARY:BASRTL.EXE and
SYS$LIBRARY:BASRTL2.EXE; it is not needed on OpenVMS I64/Alpha systems.

C.2.4.14. Math Functions with Different Results
Some math function results differ between I64 BASIC/ Alpha BASIC and VAX BASIC, because
underlying OpenVMS I64/Alpha system routines use improved algorithms to perform these operations.

C.2.4.15. Floating-Point Errors
Some programs that run successfully on OpenVMS VAX systems may fail on OpenVMS I64/Alpha
systems with division by zero or other floating-point errors. Examine your failing program for a dirty
floating-point zero. A dirty floating-point zero is a number represented by a zero exponent and a
nonzero mantissa. Most OpenVMS VAX system instructions treat the invalid floating-point number as a
zero, but it causes an exception to be generated by some OpenVMS I64/Alpha instructions.

You cannot create a dirty zero by using BASIC arithmetic expessions. You can create a dirty zero by
reading it from a file. BASIC I/O statements, such as GET and MOVE FROM, move bytes of data to a
variable without checking that the data is valid for the variable.

Correct the problem in one of the following ways:

• Determine how the dirty zero was created and make the correction. This is the preferred way.

• Write a routine to clean any floating-point numbers that receive a dirty zero value.

The following is an example of a routine that cleans a single precision floating-point number (you can
write similar routines to clean double or G-floating numbers):

SUB CLEAN_SINGLE(SINGLE A)
 MAP (OVER) SINGLE B
 MAP (OVER) WORD W1,W2
 B = A
 IF (W1 AND 32640%) = 0% THEN
 A = 0
 END IF
END SUB

The routine accepts a floating-point number, checks for a zero exponent, and clears the mantissa. It
redefines the floating-point number as an integer so that the proper bits are tested.

For more information on floating-point formats and dirty zeros, see the Alpha Architecture Reference
Manual.

291

Appendix C. Differences Between Variations of BASIC

C.2.4.16. Error Detection on Illegal MAT Operations
Following are two differences in error detection on illegal MAT operations:

• I64 BASIC/ Alpha BASIC correctly reports ILLOPE (Error 141 - “Illegal operation”) if an attempt
is made to perform matrix multiplication when the destination matrix is identical to either source
matrix. VAX BASIC does not correctly detect and report the ILLOPE message if an attempt is made
to perform the following matrix multiplication, where B is a virtual array, and A is either a virtual
array or an in-memory array:

MAT B = A * B

• Under certain conditions, VAX BASIC does not enforce the documented restriction that arrays used
in MAT operations must have zero lower bounds. I64 BASIC/ Alpha BASIC always reports either
a LOWNOTZER error at compile time, or a MATDIMERR error at run time, when attempting to
perform MAT operations on arrays with nonzero lower bounds.

C.2.4.17. Debugging Differences
There are debugging differences between VAX BASIC and I64 BASIC/ Alpha BASIC, especially during
use of the debugger STEP command around exception handlers, DEF functions, external subprograms,
and GOSUB routines.

These differences are described below and in the VSI BASIC User Manual.

When the debugger STEP command is used in source code containing an error, differences occur in the
Debugger behavior between OpenVMS VAX and OpenVMS I64/Alpha. These differences are due to
architectural differences in the hardware and software of the two systems.

In I64 BASIC/ Alpha BASIC, a STEP at a statement that causes an exception might never return control
to the debugger. The debugger cannot determine what statement in the BASIC source code will execute
after the exception occurs. Therefore, set explicit breaks if you use STEP on statements that cause
exceptions.

The following hints should help when you use the STEP command to debug programs that handle errors:

• When you STEP at a statement that takes an error, the debugger will not regain control unless the
program reaches an explicit breakpoint or the next statement that would have executed if no error
had occurred. Set explicit breaks if you want the program to stop in any other place.

• Use of the STEP command at a statement that takes an error does not return control to the debugger
when the program reaches the error handler code. If you want the program to break when program
execution enters an error handler, explicitly set a breakpoint at the error handler. This applies to both
ON ERROR handlers and WHEN handlers.

• If you are within a WHEN handler, a STEP at a statement that terminates execution within the
WHEN handler (CONTINUE, RETRY, END WHEN, END HANDLER, EXIT HANDLER) will
not stop unless program flow reaches a point where an explicit breakpoint is set.

• A STEP at a RESUME statement in an ON ERROR handler stops program execution at the first line
of non-error-handler code.

• Use SET BREAK/EXCEPTION at the beginning of the debugging session to prevent unexpected
errors from occurring. This breakpoint is not necessary if you have set explicit breakpoints at all error
handlers. However, use of this command will break at all exceptions, allowing you to check that you
have the proper breakpoints to stop program execution following the exception.

292

Appendix C. Differences Between Variations of BASIC

C.2.4.18. Listing File Differences
Following are differences in listing files between I64 BASIC/Alpha BASIC and VAX BASIC:

• /MACHINE/LIST – In VAX BASIC, if you specify BASIC/MACHINE, you get a listing file
containing a machine language listing but no source code listing. I64 BASIC/ Alpha BASIC, if you
specify BASIC/MACHINE, you do not get either listing. You must specify /LIST to get listing files.
In I64 BASIC/ Alpha BASIC, specifying /MACHINE/LIST gives you both the machine language and
the source code in the listing file.

When VAX BASIC creates a listing file for a program with more than one routine, it places the
machine code for each routine after the source code for that routine. The listing file produced by the
I64 BASIC/ Alpha BASIC compiler contains the source listing for all the routines followed by the
machine code listing for all the routines, unless you use the /SEPARATE_COMPILATION qualifier.

• %PAGE – In I64 BASIC/Alpha BASIC, the %PAGE directive appears on the page following the
page break. In VAX BASIC, the %PAGE directive appears on the page before the page break.

• %TITLE and %SBTTL strings – These are truncated at 31 characters in I64 BASIC/ Alpha BASIC,
and 45 characters in VAX BASIC.

• Form feeds – VAX BASIC treats form feeds as %PAGE directives. I64 BASIC/ Alpha BASIC does
no special processing with form feeds. When a form feed occurs in the source file, that form feed
occurs in the listing file, but no listing header information accompanies the form feed.

• /SHOW=MAP qualifier – The following differences occur in I64 BASIC/Alpha BASIC when you
use the /SHOW=MAP qualifier:

• I64 BASIC/ Alpha BASIC leaves the offset field in the allocation map blank in cases where the
values are not applicable, or not available to the listing phase.

• In dynamic maps of arrays, VAX BASIC reports the size of the array descriptors; I64 BASIC/
Alpha BASIC reports the size of the array.

• Message placement – The placement of some error messages in the listing file may differ between
VAX BASIC and I64 BASIC/ Alpha BASIC. For example, in I64 BASIC/ Alpha BASIC, errors that
require flow analysis such as “unreachable code” and “routine can never be called” appear in the
listing after the source code and allocation map listing. In listings for source files that contain more
than one routine, these errors appear after the source and allocation listing for all routines in the
compilation, unless the /SEPARATE_COMPILATION is specified.

C.2.5. Common Language Environment Differences
This section describes differences between I64 BASIC/ Alpha BASIC, VAX BASIC, and other languages
within the common language environment.

C.2.5.1. Creating PSECTs with COMMON and MAP Statements
In I64 BASIC/ Alpha BASIC, the PSECT attributes are different from those in VAX BASIC, as follows:

I64 BASIC/ Alpha BASIC VAX BASIC

NOPIC PIC
NOSHR SHR

293

Appendix C. Differences Between Variations of BASIC

I64 BASIC/ Alpha BASIC VAX BASIC

Alignment of OCTAWORD Alignment of LONG

In I64 BASIC/ Alpha BASIC, the lengths of the PSECTs that the COMMON and MAP statements create
are rounded up to a multiple of 16. The size of COMMON or MAP does not change; the size of the
PSECT does. This change is visible only to applications that use shareable images in a multilanguage
environment.

Both I64 BASIC/ Alpha BASIC and VAX BASIC create PSECTs that are compatible with those of other
languages on the same platform, with the exception of MACRO. You can link with modules written
in languages other than MACRO without changing code. If you link against MACRO modules that
reference these PSECTs, you may need to make corresponding changes in the MACRO code.

C.2.5.2. 64-Bit Floating-Point Data
In most other VSI languages, the default 64-bit floating-point data type has changed from D_floating on
OpenVMS VAX systems to G_floating on OpenVMS Alpha systems to T_floating on OpenVMS IA64
systems. If you communicate BASIC DOUBLE (OpenVMS D_floating) data between BASIC and one of
the other languages that have made this change, you need to do one of the following:

• In the compiler command line of the other language, change the 64-bit floating-point data type to
D_floating to match the behavior of Alpha BASIC or to T_floating to match the behavior of I64
BASIC.

• In your BASIC program, change the data type of the 64-bit floating-point data from DOUBLE to
GFLOAT or TFLOAT to match the other language.

C.2.6. LIB$ROUTINES and BASIC$STARLET.TLB
Routines Unsupported by I64 BASIC/Alpha BASIC
Direct use of the following routines by I64 BASIC/ Alpha BASIC programs is unsupported. Attempts to
execute any of these routines will result in an error.

In LIB$ROUTINES module:
LIB$INSERT_TREE_64
LIB$SHOW_VM_64
LIB$SHOW_VM_ZONE_64

In STARLET module:
SYS$CREATE_BUFOBJ_64
SYS$CREATE_GFILE
SYS$CREATE_GPFILE
SYS$CREATE_REGION_64
SYS$CRETVA_64
SYS$CRMPSC_FILE_64
SYS$CRMPSC_GFILE_64
SYS$CRMPSC_GPFILE_64
SYS$DELTVA_64
EXPREG_64
SYS$IO_CLEANUP
SYS$IO_PERFORM

294

Appendix C. Differences Between Variations of BASIC

SYS$IO_PERFORMW
SYS$LCKPAG_64
SYS$LKWSET_64
SYS$MGBLSC_64
SYS$PURGE_WS
SYS$SETPRI_64
SYS$ULKPAG_64
SYS$ULWSET_64
SYS$UPDESC_64
SYS$UPDSEC_64W

295

Appendix C. Differences Between Variations of BASIC

296

	VSI BASIC Reference Manual
	Table of Contents
	Preface
	1. About VSI
	2. Intended Audience
	3. Document Structure
	4. Related Documents
	5. OpenVMS Documentation
	6. VSI Encourages Your Comments
	7. Conventions

	Chapter 1. Program Elements and Structure
	1.1. Building Blocks
	1.2. Components of Program Lines
	1.2.1. Line Numbers
	1.2.1.1. Programs with Line Numbers
	1.2.1.2. Programs Without Line Numbers

	1.2.2. Labels
	1.2.3. Statements
	1.2.3.1. Keywords
	1.2.3.2. Single-Statement Lines and Continued Statements
	1.2.3.3. Multistatement Lines

	1.2.4. Compiler Directives

	1.3. BASIC Character Set
	1.4. BASIC Data Types
	1.4.1. Implicit Data Typing
	1.4.2. Explicit Data Typing
	1.4.3. QUAD and IEEE Floating-Point Data Types for 64-Bit Support

	1.5. Variables
	1.5.1. Variable Names
	1.5.2. Implicitly Declared Variables
	1.5.3. Explicitly Declared Variables
	1.5.4. Subscripted Variables and Arrays
	1.5.5. Initialization of Variables

	1.6. Constants
	1.6.1. Numeric Constants
	1.6.1.1. Floating-Point Constants
	1.6.1.2. Integer Constants
	1.6.1.3. Packed Decimal Constants

	1.6.2. String Constants
	1.6.3. Named Constants
	1.6.3.1. Naming Constants Within a Program Unit
	1.6.3.2. Naming Constants External to a Program Unit

	1.6.4. Explicit Literal Notation
	1.6.5. Predefined Constants

	1.7. Expressions
	1.7.1. Numeric Expressions
	1.7.1.1. Floating-Point and Integer Promotion Rules
	1.7.1.2. DECIMAL Promotion Rules

	1.7.2. String Expressions
	1.7.3. Conditional Expressions
	1.7.3.1. Numeric Relational Expressions
	1.7.3.2. String Relational Expressions
	1.7.3.3. Logical Expressions

	1.7.4. Evaluating Expressions

	1.8. Program Documentation
	1.8.1. Comment Fields
	1.8.2. REM Statements

	Chapter 2. Compiler Directives
	%ABORT
	%CROSS
	%DECLARED
	%DEFINE
	%IDENT
	%IF-%THEN-%ELSE-%END %IF
	%INCLUDE
	%LET
	%LIST
	%NOCROSS
	%NOLIST
	%PAGE
	%PRINT
	%REPORT
	%SBTTL
	%TITLE
	%UNDEFINE
	%VARIANT

	Chapter 3. Statements and Functions
	ABS
	ABS%
	ASCII
	ATN
	BUFSIZ
	CALL
	CAUSE ERROR
	CCPOS
	CHAIN
	CHANGE
	CHR$
	CLOSE
	COMMON
	COMP%
	CONTINUE
	COS
	CTRLC
	CVT$$
	CVTxx
	DATA
	DATE$
	DATE4$
	DECIMAL
	DECLARE
	DEF
	DEF*
	DELETE
	DET
	DIF$
	DIMENSION
	ECHO
	EDIT$
	END
	ERL
	ERN$
	ERR
	ERT$
	EXIT
	EXP
	EXTERNAL
	FIELD
	FIND
	FIX
	FNEND
	FNEXIT
	FOR
	FORMAT$
	FREE
	FSP$
	FUNCTION
	FUNCTIONEND
	FUNCTIONEXIT
	GET
	GETRFA
	GOSUB
	GOTO
	HANDLER
	IF
	INKEY$
	INPUT
	INPUT LINE
	INSTR
	INT
	INTEGER
	ITERATE
	KILL
	LBOUND
	LEFT$
	LEN
	LET
	LINPUT
	LOC
	LOG
	LOG10
	LSET
	MAG
	MAGTAPE
	MAP
	MAP DYNAMIC
	MAR
	MARGIN
	MAT
	MAT INPUT
	MAT LINPUT
	MAT PRINT
	MAT READ
	MAX
	MID$
	MIN
	MOD
	MOVE
	NAME...AS
	NEXT
	NOECHO
	NOMARGIN
	NUM
	NUM2
	NUM$
	NUM1$
	ON ERROR GO BACK
	ON ERROR GOTO
	ON ERROR GOTO 0
	ON...GOSUB
	ON...GOTO
	OPEN
	OPTION
	PLACE$
	POS
	PRINT
	PRINT USING
	PROD$
	PROGRAM
	PUT
	QUO$
	RAD$
	RANDOMIZE
	RCTRLC
	RCTRLO
	READ
	REAL
	RECORD
	RECOUNT
	REM
	REMAP
	RESET
	RESTORE
	RESUME
	RETRY
	RETURN
	RIGHT$
	RMSSTATUS
	RND
	RSET
	SCRATCH
	SEG$
	SELECT
	SET PROMPT
	SGN
	SIN
	SLEEP
	SPACE$
	SQR
	STATUS
	STOP
	STR$
	STRING$
	SUB
	SUBEND
	SUBEXIT
	SUM$
	SWAP%
	TAB
	TAN
	TIME
	TIME$
	TRM$
	UBOUND
	UNLESS
	UNLOCK
	UNTIL
	UPDATE
	VAL
	VAL%
	VMSSTATUS
	WAIT
	WHEN ERROR
	WHILE
	XLATE$

	Appendix A. ASCII Character Codes
	Appendix B. VSI BASIC Keywords
	Appendix C. Differences Between Variations of BASIC
	C.1. Differences Between I64 BASIC and Alpha BASIC
	C.2. Differences Between VAX BASIC and I64 BASIC/ Alpha BASIC
	C.2.1. VAX BASIC Features Not Available in I64 BASIC/ Alpha BASIC
	C.2.2. I64 BASIC/Alpha BASIC Features Not Available in VAX BASIC
	C.2.3. Behavior Differences
	C.2.3.1. Optimization
	C.2.3.2. Data Types
	C.2.3.2.1. QUAD, SFLOAT, TFLOAT, and XFLOAT
	C.2.3.2.2. Implicit Use of the HFLOAT Data Type
	C.2.3.2.3. Double Data Type
	C.2.3.2.4. HFLOAT Data Type and HFLOAT COMPLEX Data Type in Oracle CDD/Repository

	C.2.3.3. Passing Parameters by Value
	C.2.3.4. Array Parameters

	C.2.4. DEF* Routines
	C.2.4.1. /LINES Qualifier
	C.2.4.2. Appending Files at the DCL Command Line
	C.2.4.3. Unreachable Code Error
	C.2.4.4. Line Numbers
	C.2.4.5. Error Handling Semantics
	C.2.4.6. Generation of Object Modules
	C.2.4.7. RESUME and DEF
	C.2.4.8. Exceptions
	C.2.4.9. Compiler Message Differences
	C.2.4.10. Error Status Returned to DCL
	C.2.4.11. SYS$INPUT
	C.2.4.12. FSS$ Function
	C.2.4.13. BAS$K_FAC_NO Constant
	C.2.4.14. Math Functions with Different Results
	C.2.4.15. Floating-Point Errors
	C.2.4.16. Error Detection on Illegal MAT Operations
	C.2.4.17. Debugging Differences
	C.2.4.18. Listing File Differences

	C.2.5. Common Language Environment Differences
	C.2.5.1. Creating PSECTs with COMMON and MAP Statements
	C.2.5.2. 64-Bit Floating-Point Data

	C.2.6. LIB$ROUTINES and BASIC$STARLET.TLB Routines Unsupported by I64 BASIC/Alpha BASIC

