I II VMS Software

VSI C
User Manual

Document Number: DO-VIBHAA-009
Publication Date: April 2024

Operating System and Version: VSI OpenVMS Alpha Version 8.4-2L1 or higher
VSI OpenVMS |A-64 Version 8.4-1H1 or higher

Software Version: VS| C Version 7.4-1 for OpenVMS Alpha
VSI C Version 7.4-1 for OpenVMS 1A64

VMS Software, Inc. (VSI)
Boston, Massachusetts, USA

VSI C User Manual

I II VMS Software

Copyright © 2024 VMS Software, Inc. (VSI), Boston, Massachusetts, USA

Legal Notice

Confidential computer software. Valid license from VSI required for possession, use or copying. Consistent with FAR 12.211 and 12.212,
Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

The information contained herein is subject to change without notice. The only warranties for VSI products and services are set forth in the
express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional
warranty. VSI shall not be liable for technical or editorial errors or omissions contained herein.

HPE, HPE Integrity, HPE Alpha, and HPE Proliant are trademarks or registered trademarks of Hewlett Packard Enterprise.
Intel, Itanium and IA64 are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

Java, the coffee cup logo, and all Java based marks are trademarks or registered trademarks of Oracle Corporation in the United States or other
countries.

Kerberos is a trademark of the Massachusetts Institute of Technology.

Microsoft, Windows, Windows-NT and Microsoft XP are U.S. registered trademarks of Microsoft Corporation. Microsoft Vista is either a
registered trademark or trademark of Microsoft Corporation in the United States and/or other countries.

Motif is a registered trademark of The Open Group.

UNIX is a registered trademark of The Open Group.

ii

VSI C User Manual

Preface xiii
Lo ADOUL VST s xiii
2. Intended AUGIENCEcoooueviiiiiiieeeeiiiiiee ettt e e ettt e e ettt e e e e e sttt e e e e e Xiii
3. DOCUMENE SIIUCHUIE ...eevvvrverieeeeniiiiieeteeeeee ettt e eeeesraeitr et eeeeessanatbereeeeeeeessaaennreneeeeens Xiii
4. Related DOCUMENLSeeuiiiiiiiieeeiiiiiiiitteeeee ettt e e e ettt e e e s et eeeeeeeesnaaanrneeeeas xiv
5. OpenVMS DOCUMENTALION ...ttt e Xiv
6. VSI Encourages YOour COMIMENTScceeeeeeeeeieeeee e Xiv
7. Platform Labelsccovvoiiiiiiiiiiiiiiiee et Xiv
8. Typographical CONVENTIONScceeiiiiiiiiiiiiiiiieieee et XV
9. New and Changed FEatUIESsccccieeimiiiiiiiiieeiiiiiiiiieieeeee et ee e e s nirreeeeeeee e e XV

Chapter 1. Developing VSI C Programs 1
1.1. DCL Commands for Program Developmentuuuiuiiiiiiiiiieeieieiiiiiiieiiieeeieeeeeeeneeenes 1
1.2. Creating @ VSI C Programccoeiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeee ettt 3

L.2.1. USING TPU .ottt ettt e e 3
1.2.2. The EVE Interface to TPUccccoimiiiiiiiiiiiiiieeeeeeeeec e 3

1.3. Compiling @ VSI C PIOZIAIMuuuutitiiiiiiiiiiiiiiiiiitieiiiiieieieteeebeeebabebebebebeaeeeeebeeeeebeeeeeeeeeees 3
1.3.1. The CC COommMANQcccceerrmimiiiiiiiieeraiiiiiieeeee e e ettt e e e e et e e e e e e e seaebeeeees 4
1.3.1.1. Including Header Files ...ttt 5

1.3.1.2. Listing Header Filesuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieieieeeeeeeeeeeeeeeeeeenes 6

1.3.2. Compilation MOEScceiiiiiiiiiiiiiiiai e 7
1.3.3. Microsoft Compatibility Compilation MOdeeeeereeirmmiiiiiieeieeiiniiiieeeeeennn 9
1.3.3.1. Unnamed Nested struct or union Memberscccoovveuvriieeiieeennnninineeeneen. 9

1.3.3.2. Block Scope Declaration of static FUNCHONScccoeeiiieiiiie 9

1.3.3.3. Treat &* as Having NO Effectuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieieieeeeees 9

1.3.3.4. char is Not Treated as a Unique TYPEeuvuvuuremiuimimiiiiiiiiiiiiiiiiiiiiiiiiiiias 9

1.3.3.5. Double Semicolons in Declarationsc.ceeeeeerrnnuiieeeeeeeeinnnniiiieeeeeeen. 10

1.3.3.6. Declaration without @ TYPecooeviiiiiiiiiiiiii, 10

1.3.3.7. Enumerators in an Enumeration Declarationccoceccvvveeiieeeinnnnnnnnen. 10

1.3.3.8. Useless TYPEAEfSccceeiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiitieeeeeeteee ettt eeeeeeeeeees 10

1.3.3.9. Unrecognized Pragmas AcCeptedeeeeeeerimmmiiiieeieeeernniiiieeeeeeeeennes 10

1.3.4. CC Command QUALIIETSccceiiiuieiiiiiiieee e e e e e e e 10
1.3.5. Compiler Diagnostic MESSAZESccceeriiiiiiiiiiiiiiaieie i 60

1.4. Linking a VSI C Programcccooeiiiiiiiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeee ettt 61
1.4.1. The LINK Commandccccceommimiiiiiiiieriiiiiieeieeeeenniiieeeeeeeeeeniiirreeeeeeens 61
1.4.2. LINK Command QUalifierscceeiiiiiiiiiiiiiiieieiiiie e e 62
1.4.3. Linker Input Files ... 63
1.4.4. Linker OUtPUL FilESuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiitieieieet ittt 64
1.4.5. Linking Against Object Module Libraries and Shareable Images 64
1.4.6. Object ModUIE LIDIATIESeuutuuuueiiiiiiiiiiiiiiiiiiitieitiiieieeibeetbeeeeeeeeaeeeeeeeeeeeeeeeeeee 64
1.4.7. Linker Error MESSAZESccceiiiiiiiiiiiiiiiiiii e 65

1.5. Running a VSI C Program ..o 66
1.6. Passing Arguments to the main FUNCHONuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiieieieieieieieeeieeeeeees 68
1.7. 64-bit AddIessing SUPPOTT ...ccceerrruurriiiiiieeeeiiiiiiireee e e e ettt e e e e e eriirrreeeeeeeessaennreeeeas 69
1.7.1. Qualifiers and Pragmaseuuueueuuuuueueiiiiieiiiiiiiiieieiiiiieieieeeeeeeeeeeeeeeeeeeeeneees 70
1.7.1.1. The /POINTER_SIZE QUalifierccccccveiimmiiiiiiniiiieeiniiicceeiieece e 70

1.7.1.2. The __INITIAL_POINTER_SIZE MaCIOccccuvvtimmiiiianniiieceniiieeee 71

1.7.1.3. The /CHECK=POINTER_SIZE Qualifierccccccevrurreemniiiiernineeens 71

L.7.1.4. Pragmas ..ccooeveeeiieeeiiiiiiiiiiee ettt e e e ettt e e e e e e teeatbbe e e e e e eeeeeanaaas 71

1.7.2. Determining PoINter SiZecccoiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeceeeeeeeeeeeeeeee e 72
1.7.2.1. Special Casescoeeeviiiiiiiiiiiiii 73

1.7.2.2. MixXing POINEET SIZES ... 74

1.7.3. Header File CONSIAErationseeeeeeeeimmniimiieeieeeernniniiiireeeeeeeensinrnereeeeeesnnans 74

iii

VSI C User Manual

1.7.4. Prologue/Epilogue Filescuuuiiiiiiiiiiiiiiiiiiee e eeeeeiiee e e e ee e e e e e e e eeaeienes 75
1.7.4.1. RAIONALEeveiiiiiiiiiiiiiiiii 75

1.7.4.2. Using Prologue/Epilogue Filesccouuuiiieiiiiiiiiiiiiiiiineeeeeeeiiiiccee e eeees 75

1.7.5. AvOIiding ProblemScceeiiiiiiiiiiieeeeeeiiiiiieee e e e e et e e e e e e eeetaae e e e e e e eeeeaenannns 76

) BT 5 < 111 o) [PP 77
Chapter 2. Using OpenVMS Record Management Services 81
2.1. RMS File OrganizZationcccceeeeeeeeiuuuinneeeeeeeiiiiiaaeeeeeeerstnnnaseeeseseessnnnnaeeeseesesssnnnns 81
2.1.1. Sequential File Organizationceeeeeiiriuiieeerereeeiiiiiieeeeeeeeeeeeiinneeeeeeeeerennnnnnns 82
2.1.2. Relative File Organizationceeeeeerereiiiiiiiineeeeereeiiiiineeeeeeseereninnaeeeeeeaenens 82
2.1.3. Indexed File Organizationcccceeeeereeiiiiiineeeeereeiiiiiineeeeeeereinnnnaeeeeeseeeenenns 83

2.2. Record Access MOESccooeiiiiiiiiiiiiiiiiiiiiiiii 83
2.3. RMS ReCOTd FOIMALSuuuuuieiiiiiiiiiiiiiiiiiiiiiiieiiiiieiite e 83
P Y N S 1 1116 o) 1 84
2.5. Writing VSI C Programs Using RMSoiiiiiiiiiiii e 85
2.5.1. Initializing File Access BIOCKSccceeeiiiiiiiiiiiiieeeeeieiiiiiieie e ee et eeeeeeeaaaeens 86
2.5.2. Initializing Record Access BIOCKScoouiuiiiiiiiiiiiiiiiiiiie e 87
2.5.3. Initializing Extended Attribute BIOCKScooviiiiiiiiiiiiiiiiiiiiciee e 88
2.5.4. Initializing Name BIOCKSccovriiiiiiiiiiiiiie e 89

2.6. RMS Example Programuucoieiiiiiiiiiiiiiieneeeeeeeiiiieee e e e eeeeeeiieeeeeeeeeeevsannaaeeeeeaees 89
Chapter 3. Using VSI C in the Common Language Environment 105
3.1. Basic Calling Standard CONVENTIONSccevuuuuiiiereerreiiiiiiineeeeeeeeeiiiiaeeeeereereninnaeeas 106
3.1.1. Register and Stack USAZEuueiereiiiiiiiiiiiiieeeeeeeeiiiiiiee e e e e e eeeeviieeeeeeeeeeeeennnnns 106
3.1.2. Return of the Function Valuecccccccciiiiiiiiiiiiiiiiiicieeeeeeeee 108
3.1.3. The Argument LStccoouiuuiireeiiiiiiiiiiien e e et e e e e et e e e e e e eeaeaan e e e 108

3.2. Specifying Parameter-Passing MechaniSmsccouuuiieieeriiiiiiiiiiiineeeeeeeiiiiieneeeeeeeens 109
3.2.1. Passing Arguments by Immediate Valuecoooeviiiiiiineiiiiiiiiiiiiiineeeeeeeeeenee, 109
3.2.2. Passing Arguments by Referenceceeeeveeiiiiiiiiiiiiinieieiiieiiiceeee e 112
3.2.3. Passing Arguments by DeSCIIPLOLuuuuiereiiriiiiiiiiieeeeeeeeeiiiiiiieeeeeeeeeeiriiieeeeeeeeeans 114
3.2.4. VSI C Default Parameter-Passing MechaniSmsuceeeeereiiiiiiiiiiineeneeennnnns 118

3.3. Interlanguage CalliNgceeeviiiiiiiiieeeeeeiiiiiieee e e ettt e e e e e e e e eataae e e e e e eeeeeanaaaeeeeeas 118
3.3.1. Calling FORTRANooiiiiiiiiiiiiiee ettt ettt e e e e e 119
3.3.2. Calling VAX MAGCRO ...ttt ettt 123
3.3.3. Calling VSI BASIC ..ottt eee e 127
3.3.4. Calling VSI Pascalcooviiiiiiiiiiiiiiiiiiicee e e e e e e 129

3.4, Sharing GIobal DAtacceeiiiiiiiiiiiiiiie e e et e e e e e e e 134
3.4.1. Sharing Program Sections with FORTRAN Common Blocksc....cceveerenneee. 134
3.4.2. Sharing Program Sections with PL/I EXternalsccceeeivrrriiiiiiiiiineeneenennas 136
3.4.3. Sharing Program Sections with MACRO Programscccceeveeeivviiiiniiennnennennns 137

3.5. OpenVMS Run-Time Library ROULINEScvvereiiiiiiiiiiiiieeeiiiiiiiiiiieee e eeeeeiiiee e e e eeeeees 138
3.6. OpenVMS System Services ROULINESuuuieeeririiiiiiiiiiieeeeeeeeiiiiiiiseeeeeeeeeeiiineeeeeeeanenes 139
3.7, Calling ROULINESuuueeeeereiiiiiiieeeeeeeeteiiiiieeeeeeeeeetettiaeeeeeeeeaaeaannaeseeeeeessnsnnnneeeeeeeeresnnns 140
3.7.1. Determining the Type of Callccovviiiiiiiiiiiiiiieie e 140
3.7.2. Declaring an External Routine and Its Argumentsccceeeveeervriiiiniinneeeeennns 140
3.7.3. Calling the External ROULINEuiieiiiiriiiiiiiiiiee e et e et eeees 140
3.7.4. System ROULINEG ATZUIMENLSceeeeririiiiiiiiieeeeeeeeiiiiiianeeeeereereninnaeeeeereearnnnnaeeens 141
3.7.5. Symbol Definitionsceeeeeeriiiiiiiiieeeeeee ittt e e e e e e ettt e e e eeeeeraaineeeeeeaaeeens 143
3.7.6. Condition VAlUEScceeiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieieetieteteeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 144
3.7.7. Checking System Service Return Valuescccoveeeriiiiiiiiiiinneeeeeeiiiiiiieeeeeeeeeens 144

3.8. Variable-Length Argument Lists in SyStem SeIrVICESccceeeerivriiiiiiiereeereriiiiiiieeeeeeeenenns 145
3.9. Return Status ValUESoooiiiiiiiiiiiiiiiiiiiiiiii 147
3.9.1. Format of Return Status ValUescccoooeieiiioiiiiiiieieeeieeeeeeeeeeeeee e 147

iv

VSI C User Manual

3.9.2. Manipulating Return Status ValUuescoooviuiiiiiiiieeiiiiiiiiiiiene e e
3.9.3. Testing for Success Or Failurecccoeeviiiiiiiiiiiiniieiieiiiiiieee e e e e e
3.9.4. Testing for Specific Return Status Valuesouuiiierriiiiiiiiiiiieneeeeeeeeiiinnn.
3.10. Examples of Calling System ROULINESuuuieerieiiiiiiiiiiieeeeeeeeiiiiie e e e e e eeeiiii e

Chapter 4. Data Storage and Representation

4.1, Storage AlIOCATION ..uuuuueeeeeeiiiiiiiiieeeeeeeeeeitiieee e e e eeeettati e e eeeeeeeaantnnnaeeeaeeensssnnnaeaeaeaenes
4.2. Standard-Conforming Method of Controlling External Objectscccvvueeeereereenennnn.
4.3, Global StOrage CIASSES ...eevvuvuueeeeereiiiiiiiaeeeeerettiiiiaeeeeeeetetrrannaaeseeeeeresnnnaaaseeeeessssnnnns
4.3.1. The globaldef and globalref Specifiersccevvviuiiiiririiiiiiiiiiiie e
4.3.2. Comparing the Global and the External Storage Classescceevvvveuiierreerennns
4.3.3. The globalvalue SPECIfiercceeriiiiiiiiiiiiiieieeeeeiciiicee e e e e e
4.4, Storage-Class MOIFIEISceeeeeiiiiiiiiiiieee e et e e e e e e e et e e e e e e eeeeaaaeeeeas
4.4.1. The noshare MOIfierccooiiiiiiiiiiiiiiiiieeeeeee
4.4.2. The readonly MOGIIETcoeeeiiiiiiiiiiiin e e e e e e eeeees
4.4.3. The _alignh MOGIfIerccoviiiiiiiiieieiiiiiicee e e et e e e e eeeeaae s
4.5. Floating-Point Numbers (float, double, long double)cccovvviriiiiiiiiiiiierniiiiiiiiiceeee,
4.6. POINLET CONVEISIONS ..eeveiiiiiiiiiiiiiiiiiiieietiieteieietete ettt ee e et et et et ettt et et et eeeeeeeeeeeeeeeeeeeeeeeeees
4.7, Structure ALZNIMENTuieieeriiiiiiiiiiie et eeeeeeiiieaeeeeeeeetaeieaeeeeeeeeraeaenaeeeeeeeerensnnnaeeas
4.7.1. Bit-Field AGNMENTuuuiieiiiiiiiiiiiiiie e e et e e e eeeetiieee e e e e eeeeaaaaeeeeeaaaees
4.7.2. Bit-Field InitialiZation ...t
4.7.3. Variant Structures and UnNIONScoooeriiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeee
4.8, Prograim SECHIOMNSceeeeeeiiiiiiiiiieeeeeetetiiiuieaeeeeerertrntenaeaeeeeesresnnnnaeeesesessnsnnaeeseeseesssens
4.8.1. Attributes of Program SECtiONScceeeeeeiiiiiiiiiiieeeeeeeeiiiiiireeeeeeeeeeiiiiaeeeeeeeeenes
4.8.2. Program Sections Created by VSI Ccoiiiiiiiiiiiiiiiieeeeeee e

Chapter 5. Preprocessor Directives

5.1. CDD/Repository Extraction (FAiCtIONAIY)ceveeeriiiiiiiiiiineeeeeiiiiiiiieeeeeeeeeeiiiieeeeeeeeeenns
5.2. File Inclusion (FNCIUAR)uviivniiieiiieiie e
5.2.1. Inclusion Using Angle Bracketscooouuiuiiiiiiiiiiiiiiiiiiieeeeeeeeeiiicee e e eeeeieens
5.2.2. Inclusion Using Quotation MarKScceeeriruumiireereeiiiiiiiiineeeeeeeeeiiiieeeeeeeenenns
5.2.3. Inclusion of Text ModUulescocoieieieieiiieieeee e
5.2.4. Macro Substitution in #include DIrectivescccceeiiiiiiiiiii .

5.3. Changing the Default Object Module Name and Identification (#module)
5.4. Implementation-Specific Preprocessor Directive (#pragma)ceeeeeeeeeeeiiinnnenneeeennnns
5.4.1. #pragma assert DITECHVEuuuieeeeeiiiiiiiiiieeeeeeeeeiiiiiee e e e e e e eeeireeeeeeeeeeeanenneees
5.4.1.1. #pragma assert fUNC_AtrScceveeeeriiiiiiiiieeeeeeeeeeiiieee e e e e eeeeriiieeeeeeeeens

5.4.1.2. #pragma assert global_status_variablecoeuuuieerrerriiiiiiiiiinneneeennns

5.4.1.3. USAZE INOLES ..vvuuneeeereiiiiiiiiieeeeeeeetettiiniaaeeeeeeeearnnnaeeeeeeerrsnnnnaeeeseeeeressnnn

5.4.1.4. #pragma aSSeIt NON_ZETOcceeeeeerrrrruunnneeeeeereesnsnnneeeeserressmsnnaneeseeeeennes

5.4.2. #pragma builting DITECLIVEccceeiiiiiiiiiiiieeeeeiiiiiieee e ee e e e e e
5.4.3. #pragma dictionary DITECHIVEcoevriiuiiiieeeeiiiiiiiiiireeeeeeeeeiiieee e e e e e eereeiea e
5.4.4. #pragma environment DITECHIVEuuuiieeriiiiiiiiiiiiiee e
5.4.5. #pragma extern_model DITeCHIVEccovveiiriiiiiiiiiieeeeeeiiiiiiiieee e et eeeees
BT T BN 7 1 L). PP URRPPIN:

5.4.5.2. #pragma extern_model common_blockcccoeeiiiiiiiiiiiiiiiniini,

5.4.5.3. #pragma extern_model relaxed_refdefccccoevriiiiiiiiiiiiinn e,

5.4.5.4. #pragma extern_model strict_refdefcoooiiiiiiiiiiiiii

5.4.5.5. #pragma extern_model globalvalueceeeerriiiiiiiiiiiiinneeeeereeiienenn,

5.4.5.6. #pragma extern_model SAVEcoeuuuiiiireeeriiiiiiiiieee e e e eeeens

5.4.5.7. #pragma extern_model TeStOTeceveeereriiiiiiiiineeeeeeeiiiieieeeeeeeeeeeeenns

5.4.5.8. Effects on the VSI C Run-Time Library and User Programs

5.4.5.9. BXAMPIEceeviiiiiiiiieeee et e e e e ee ettt e e e e e e e ee et e e e e e e e e e eaa e e e e eaaaes

VSI C User Manual

5.4.6. #pragma extern_prefix DIrECHIVEcevvvuuiiiieeiiiiiiiiiicie e 198
5.4.7. #pragma function DITECIVEceuuuuiiirrreriiiiiiiiieeeeeeeeeiiiiee e e e e e eeeeiaieeeeeeaeeenes 199
5.4.8. #pragma [no]include_directory DIr€CtiVeceeeeeerriiiiiiiniienreeeeeeiiiiieeeeeeeeeens 200
5.4.9. #pragma [No]inline DIrECHIVEcceeeiiiiiiiiiiieeeeeeiiiiiiiiee e e e e e e e ee e 200
5.4.10. #pragma intrinsSiC DITECLIVEccceeiiiiiiiiiiiiieeeeeiiiiiiieeee et e e e e 202
5.4.11. #pragma linkage Directive (Alpha only)ooovviiiiriiiiiiiiiiiiiie e, 203
5.4.12. #pragma linkage Directive (I64 Only)coeveeeeiiiiiiiiiiineieeiiiiiiice e 206
5.4.12.1. #pragma linkage FOrmatcocuvuuiiereiiriiiiiiiiiee e eeeeciiiee e e eeeeeeens 206
5.4.12.2. #pragma linkage_ia64 FOrmatccceovreeiiiiiiiiiiiinneeeeeeiiiiciee e eeeeeeens 208
5.4.13. #pragma [no]member_alignment DIreCtivecoevrrivuuiiiereeereeiiiiiiineneeeeeennns 208
5.4.14. #pragma message DITECHIVEuuuereeeeeiiiiiiiiieeeeeeeeetiiiieieeeeeeeeereiiiaeeeeeeeeeeseens 210
5.4.14.1. #pragma meSSage OPHIONTceeeeeeeeeeiiiiiieeeeeeeeeiiiieee e e e e e eeeeaaine e 210
5.4.14.2. #pragma meSSAZE OPHION2uueeeeeeeeeeeiiiiiaeeeeeeereeeiiiaaaeeeeereereranaaaeaens 213
5.4.14.3. #pragma messSage (GUOTEA-SITING)ceeeeeeeeeeiiiiiieeeeeeeeeeeiiiiaaeeeeeeeerenanns 213
5.4.15. #pragma module DIr€CtiVecoviruuiiieereeriiiiiiiiieee e e eeeeiiiee e e e eeeeeeiieae e 213
5.4.16. #pragma names DITECHIVEuuuuieirieiiiiiiiiiiiiie e eeeeeeiiceee e e e e e e e e eeeeeeeeens 214
5.4.17. #pragma optimize DIrECHIVEcouvuuiiiereiiiiiiiiiiiieeeeeeeeeiiiee e e e eeeeriieeeeeeeeenes 215
5.4.18. #pragma pack DITECHIVEccoeiiiiuiiiieieeiiiiiiiiiiie e e e eee e e e e e e eeeerie e e e eeeaenes 216
5.4.19. #pragma pointer_size DIrECHVEcouuuiiiiereriiiiiiiiiiieeeeeeeeeiiieer e e eeeeeiiie e 218
5.4.20. #pragma required_pointer_size DIreCtivecceeeeeeeiiiiiiiiireereiiiiiiiiiieeeeeeeeeens 218
5.4.21. #pragma [no]standard DIireCtivecoeeviuuiiiierereriiiiiiiiiieeeeeeeeeiiiieeeeeeeeeenns 219
5.4.22. #pragma unroll DIr€CtIVEuuuuiiieeeeiiiiiiiiiieee e e e e eeeiiiee e e e e e e eeeiiieaeeeeeeeenaees 220
5.4.23. #pragma use_linkage DIreCtiVecceiiiiiuuiiireeeeiieiiiiiiiieeeeeeeeeeiiie e e e eeeeeeens 220
Chapter 6. Predefined Macros and Built-In Functions 223
6.1. Predefined IMACTOSoeeeiiiiiiiiiiiieee e e e eeeeiiieee e e e e e ettt e e e e e e e eeetaaaaeeeeeeeeeesssnnnaeeeeaaeees 223
6.1.1. CCSgfloat (G_Floating Identification Macro)ccccveeeieeeeiicinnveeeeeeeeeeennneeenn. 223
6.1.2. System Identification MACIOSuuueeereeeiiiiiiiiiiieeeeeeeeiiiieee e e eeeeereiiieeeeeeeeeenenens 223
6.1.2.1. The __DECC_VER MAaCTOcoeeiiiiiiiiiiiiiieeeeeeeieiiiiieee e e e e eeeiiiieeeeeeeeeens 225
6.1.2.2. The __VMS_VER MACIOcovtiiiiiiiiiiiiiieee e e e eeeeeaens 226
6.1.3. Standards Conformance MACIOSuuieereeririiiiiiiieeeeeeeeeiiiiieeaeeeeereeeeerenaeeees 227
6.1.4. Floating-Point IMACTOSccetriiuuniieeeeeeeieiiiiaeeeeeeeeeeiiiieaeeeeeeeeersnanaeeeeeeeeennes 228
6.1.5. Compiler-Mode MACIOSccouuuuiieeeiiiiiiiiiiieeeeeeeeeeiiieeeeeeeeeeeeaaanaaeeeeeeeeeenannnns 229
6.1.6. POINEr-SiZ€ IMACTOuoviieeiiiiiiiiiieeeeeeeeeeiiieee e e e e e ettt e e e e e e e e aaaae e e e e e eeeeaaannnnes 229
6.1.7. The __HIDE_FORBIDDEN_NAMES MaCIOcoveieieieieieiiieeeseeeseseseeeseeennnns 229
6.2, BUilt-In FUNCHONSuuiiieieiiiiiiiiiieie et e e e e e e e ettt e e e e e e e e eeaaaannaeeeeaaees 230
6.2.1. Built-In Functions for OpenVMS Alpha Systems (Alpha only)ccceveeeennnn. 231
6.2.1.1. Translation Macros for VAX C Built-in Functionsceeeeeerennennn. 231
6.2.1.2. In-line Assembly Code — ASMScoviiiiiiiiiiiiiiieeeeeeeeeeiiiie e e e e eeeeeeeaeanns 231
6.2.1.3. Absolute Value (__ABS) ..cooiiiiiiiiiiiiee e 234
6.2.1.4. Acquire and Release Longword Semaphore (__ACQUIRE_SEM_LONG,
__RELEASE_SEM_LONG) ...cuuittitititaeeiiiiet ettt et e e e 234
6.2.1.5. Add Aligned Word Interlocked (__ADAWI)ouiiiiiiiiiiiiiiiiiiieeeeeeeees 235
6.2.1.6. Add Atomic Longword (__ADD_ATOMIC_LONG)ccvvceeeeererennnnnne 236
6.2.1.7. Add Atomic Quadword (__ADD_ATOMIC_QUAD)ccccceevvriumnnnnnn. 236
6.2.1.8. Allocate Bytes from Stack (__ALLOCA)ccoovviiiiiiieeeeeieiiiiiceeeeeeeeeees 237
6.2.1.9. AND Atomic Longword (__AND_ATOMIC_LONG)cccevvvrreunnnnn... 237
6.2.1.10. AND Atomic Quadword (__ AND_ATOMIC_QUAD)c.o........ 237
6.2.1.11. Atomic Add Longword (__ATOMIC_ADD_LONG)cccooeveeeeeeeeeennnn. 238
6.2.1.12. Atomic Add Quadword (__ATOMIC_ADD_QUAD)c.ccccuvvvrrerernnnnns 239
6.2.1.13. Atomic AND Longword (__ATOMIC_AND_LONG)ccccvvvvueeeereeenens 239
6.2.1.14. Atomic AND Quadword (__ATOMIC_AND_QUAD)cccoevvvvnveennnn.n. 240
6.2.1.15. Atomic OR Longword (__ATOMIC_OR_LONG)ccoevrvirrirririinnnnnnnn. 241

vi

VSI C User Manual

6.2.1.16. Atomic OR Quadword (__ATOMIC_OR_QUAD)ccccccuvvrrrnrnrnrnnnnnnns 241
6.2.1.17. Atomic Increment Longword (__ATOMIC_INCREMENT_LONG) 242
6.2.1.18. Atomic Increment Quadword (__ATOMIC_INCREMENT_QUAD) 242
6.2.1.19. Atomic Decrement Longword (__ ATOMIC_DECREMENT_LONG) 243
6.2.1.20. Atomic Decrement Quadword (__ ATOMIC_DECREMENT_QUAD) 243
6.2.1.21. Atomic Exchange Longword (__ATOMIC_EXCH_LONG) 244
6.2.1.22. Atomic Exchange Quadword (__ATOMIC_EXCH_QUAD) 245
6.2.1.23. Compare Store Longword (__CMP_STORE_LONG)cccevvvvrnnnn... 245
6.2.1.24. Compare Store Quadword (__CMP_STORE_QUAD)cccceeevvvrrrnnnne. 245
6.2.1.25. Convert G_Floating to F_Floating Chopped (__CVTGF_C) 246
6.2.1.26. Convert G_Floating to Quadword (__CVTGQ)ceeevvvrvviiiiieeeeeeeeeienn. 246
6.2.1.27. Convert IEEE T_Floating to IEEE S_Floating Chopped

QI VA0 N 1 T) PRSP 246
6.2.1.28. Convert IEEE T_Floating to Quadword (__CVTTQ)eceevvrrrrreennnnnnn. 247
6.2.1.29. Convert X_Floating to Quadword (__CVTXQ) ..cooevvvviiiiiiiiiieeeeeeeeeninee, 247
6.2.1.30. Convert X_Floating to IEEE T_Floating Chopped (__CVTXT_C) 247
6.2.1.31. Copy Sign Built-in FUnCtionsceeeviiiiiiiiiiiiiinieeeeeiieiiiieee e 247
6.2.1.32. CoSINE (__COS) ettt e e e 248
6.2.1.33. Double-Precision, Floating-Point Arithmetic Built-in Functions 248
6.2.1.34. Floating-Point Absolute Value (__FABS)ccooiiiiiiiiiiiiiiiieeeieeeeeee, 248
0.2.1.35. _1AAZ .eeriiiiiiiieee e 249
6.2.1.36. Long Double-Precision, Floating-Point Arithmetic Built-in Functions 249
6.2.1.37. Longword Absolute Value (__LABS)oociiiiiiiiiiiieee e, 249
6.2.1.38. Lock and Unlock Longword (__LOCK_LONG,

__UNLOCK_LONG) ittt ettt e e ettt e e e e e e e 250
6.2.1.39. Memory Barrier (__MB)coiiiiiiiiiiiiiiie e 250
6.2.1.40. Memory Copy and Set Functions (__ MEMCPY, _ MEMMOVE,

L MEMSET) et e e e e e e 250
6.2.1.41. OR Atomic Longword (__OR_ATOMIC_LONG)ccceevvrrrrrrririnnnnnnnnn. 251
6.2.1.42. OR Atomic Quadword (__OR_ATOMIC_QUAD)ccccceurrrmrmrnrnnnnnnns 251
6.2.1.43. Privileged Architecture Library Code Instructionscccccceeeeeeeeeeneee. 252
0.2.1.44. __PAL_BPT ..o 252
6.2.1.45. __PAL_BUGCHKouutuiiiiiiiiiiiiiiiiiiiniernnnnnrernrnrnnerensrnrsneremsnnns.. 252
6.2.1.46. __PAL_CFLUSHccooiiiiiieieeeeeeeeeeeeeeeeeeeeeeeeee et 252
(Y W7 R &2 P G = 01, 252
6.2.1.48. __PAL_CHMK ...t 253
6.2.1.49. __PAL_CHMS ...ttt 253
6.2.1.50. __PAL_CHMUooiiiiiiiiiiiiee ettt 253
6.2.1.51. __PAL_DRAINA ... e e s e e e e e e e e ee e e e 253
6.2.1.52. __PAL_GENTRAPcoooriiiiiiiiiiiiiieeeeeeeeeeeeeeeeee e 253
6.2.1.53. _ PAL_HALT ..ooriiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeveeeeeeereeeeeseeessssssesesssesrsesssrerene 254
6.2.1.54. __PAL_INSQHILouuiiieieee e 254
6.2.1.55. __PAL_INSQHILRcouuiii s 254
6.2.1.56. __ PAL_INSQHIQcoeiiiiiiiiieeieieee ettt 255
6.2.1.57. __PAL_INSQHIQRooutiiiiiiiriiiriiiirrierrurrrrrerrersrsssnssnssrssssssnnrn.. 255
6.2.1.58. __PAL_INSQTILoooiiiiiiiiiiiiiee e, 256
6.2.1.59. __PAL_INSQTILRcooiiiiiiiiiiiii e, 256
6.2.1.60. __PAL_INSQTIQ ...cooiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeee et 257
6.2.1.61. __PAL_INSQTIQRcooeriiiiiiiiiiieeeeee e, 257
6.2.1.62. __PAL_INSQUELouutiiiuiiiiiiiiernrireuernrsesnsrersrsssssrsrnssssrsssssnsnnns.. 257
6.2.1.63. __PAL_INSQUEL_D ...ccoooiiiieeeeeeeeeeeeeeeeeeeeeeeeeee e 258
6.2.1.64. __PAL_INSQUEQ ...cooiiieieeeeeeeeeeeeeeeeeee e 258

vii

VSI C User Manual

6.2.1.65. __PAL_INSQUEQ _D ...oootiiiiiiiiiiiiee e 259
6.2.1.66. __PAL_LDQPcooiiiiiiiiiiiiiieeeeeeee et 259
6.2.1.67. __PAL_STQP ...oueeeiiiiieeeeee et 259
6.2.1.68. _ PAL_MFPR_XXXX ...ciiiiiiiiiiiiiiie et 260
6.2.1.69. _ PAL_MTPR_XXXX ...oiittiiiieiiiiiiiiiiiieee e et e e e 260
6.2.1.70. __PAL_PROBERoootitiiiiiiiiiiiciee e 261
6.2.1.71. __PAL_PROBEWcootitiiiiiiiiiiieee ettt 261
6.2.1.72. __ PAL_RD_PS ...t 262
6.2.1.73. __PAL_REMQHILoociiiiiiiiiiiiieee e 262
6.2.1.74. __ PAL_REMQHILRccooiiiiiiiiiiiiiiiie et 262
6.2.1.75. __ PAL_REMQHIQooottiiiiiiiiiiiiiieee et 263
6.2.1.76. _ PAL_REMQHIQRouiiiiiiiiiiiiiiiiiee e 263
6.2.1.77. __ PAL_REMQTILcoooiiitiiiieiiiieceeee et 264
6.2.1.78. __PAL_REMQTILRooottiiiiiiiiiiiiiiiee e 264
6.2.1.79. _ PAL_REMQTIQcceiiiiiiiiieee et 265
6.2.1.80. _ PAL_REMQTIQRcooomiiiiiiiiiiiiiiee et 265
6.2.1.81. __PAL_REMQUELooiiiiiiiiiiiiiieee e 266
6.2.1.82. _ PAL_REMQUEL_Dccooiiiiiiiiiiieiiiicie e 266
6.2.1.83. __ PAL_REMQUEQouoiiiiiiiiiiiiiiiee e 267
6.2.1.84. _ PAL_REMQUEQ_Doottiiiiiiiiiiicieee et 267
6.2.1.85. __PAL_SWPCTX ...ciiiiiiiiiiii ettt 267
6.2.1.86. _ PAL_SWASTENcooiiiiiiiiiiieceee et 268
6.2.1.87. __PAL_WR_PS_SW . it 268
0.2.1.88. _POPCIL ..ueeeieiiiiiiiieee e e e ettt e e e e e e eeetataa e e e e eeeeeaatanaeeeeeeeeeeatannaaeeeaaeaees 268
T R L 0107 o) o | RSP 268
6.2.1.90. Read Process Cycle Counter (__RPCC)covvuiivviiiiiiiiiiiiiiiieeeeeeeeiiinenn, 268
6.2.1.91. Sine (__SIN) oot 269
6.2.1.92. Single-Precision, Floating-Point Arithmetic Built-in Functions 269
6.2.1.93. Test for Bit Clear then Clear Bit Interlocked
(_INTERLOCKED_TESTBITCC_QUAD)coieiiiieeeeeeeeeeeeee e 269
6.2.1.94. Test for Bit Clear then Clear Bit Interlocked (__TESTBITCCI) 270
6.2.1.95. Test for Bit Set Then Set Bit Interlocked
(__INTERLOCKED_TESTBITSS_QUAD) ...uoeiiiiiiiiiiicieeeeeeeeeecee e 270
6.2.1.96. Test for Bit Set then Set Bit Interlocked (__TESTBITSSI)ccccccou...... 271
0.2.1.97. _tTAILZ ..oooveiiiieeee e 271
6.2.1.98. Trap Barrier Instruction (__TRAPB)ccoiiiiiiiiiiiiiiiie e, 272
6.2.1.99. Unsigned Quadword Multiply High (__UMULH)ccccoovvverriniinnnnnnn. 272
6.2.2. Built-In Functions for 164 Systems (164 only)ccoeveriiiiiiiiiiinneeeieeeeiiinne. 272
6.2.2.1. Builtin Differences on 164 SYStEMSuueereeeriiiiiiiiiieeeeeeeeiiiicieeeeeeeeennns 272
6.2.2.2. Built-in Functions Specific to 164 Systemsceeeererriiiiiiiiiieneenennns 273
6.2.2.3. Get Hardware Register Value (__getReg)coovvvviiiiiineiiiiiiiiiienee, 273
6.2.2.4. Set Hardware Register Value (__SetReg)covuvuieiiriiiiiiiiiiiinnneeenns 275
6.2.2.5. Get Index Register Value (__getIndReg)ccovvueeieiiiiiiiiiiiiineeeeeeenns 275
6.2.2.6. Set Index Register Value (__setIndReg)ooovvveieeeiiiiiiiiiiiiinneeeeeenes 276
6.2.2.7. Generate Break Instruction (__break)cccoeviveiiiiiiiiiieiiiieeiiieeiinnes 276
6.2.2.8. Serialize Data (__dSTIZ) ...oouniiinniiiieiie e 277
6.2.2.9. Flush Cache Instruction (__fC)ooviimiiiiiiiiieiiiee e 277
6.2.2.10. Flush Write Buffers (__ fWb)oviiiiiiiieiieee e 277
6.2.2.11. Invalidate ALAT (__invalat)ccccovueiimieiiiieeiiieeiieeeeieeeeeee e 277
6.2.2.12. Invalidate ALAT (__inVala)ccouueiiiniiiieiiieeie e 277
6.2.2.13. Execute Serialize (__ISTIZ) ...ccovuiiiieiiiiiiee e 277
6.2.2.14. Insert Data Address Translation Cache (__itcd)coooevvevivneiinnennnnnn.n. 277

viii

VSI C User Manual

6.2.2.15. Insert Instruction Address Translation Cache (__itCi)ccccovvnvrvnninnnes.
6.2.2.16. Insert Data Translation Register (__itrd)ceeeeeerriiiiiiiiiieeeeeeeeinenne.
6.2.2.17. Insert Instruction Translation Register (__itri)oeevvvvvvvvnneereeeeennnnnns
6.2.2.18. Purge Translation Cache Entry (__ptce)ceeeveeeriiiiiiiiiiieeeeeeeeeiiiinnnn
6.2.2.19. Purge Global Translation Cache (__ptcg) ..ccooeverervrviiiiiineeeeeieiiiiicneennn,
6.2.2.20. Purge Local Translation Cache (__ptcl)ceeveeveriiiiiiiiiiieeeeiiiiiiiiie,
6.2.2.21. Purge Global Translation Cache and ALAT (_ptcga)evveeeeeeeerervennnnn
6.2.2.22. Purge Data Translation Register (__ptrd)coovvueveeriiiiiiiiiiiiieneeeeennes
6.2.2.23. Purge Instruction Translation Register (__ptri)ccceeeeeeeeeeiiiiiiiinneeennnnns
6.2.2.24. Reset System Mask (__TSIM) ceoouvueiieereriiiiiiiiiieeeeeeeeeeiiiiieeeeeeeeeeevineenes
6.2.2.25. Reset User Mask (__TUIM)oiivniiiiiiiiiieeeeeee e
6.2.2.26. Set System Mask (__SSIM) ...ceeeviriiiiiieeeeeeieiiiiiieeeeeeeeeeniiieeeeeeeeeeeeeaanns
6.2.2.27. Set User Mask (__SUIN) ...coovniiiiniiiiieeiiieeiiee e
6.2.2.28. Enable Memory Synchronization (__SYNCI)uuuveeereereriiiiinienneeeennnns
6.2.2.29. Translation Hashed Entry Address (__thash)c..ccoooviiiiiiiiinnnnnnnnnn,
6.2.2.30. Translation Hashed Entry Tag (__ttag)ccovvvviiieiiieneeriiiiiiiiieeeeeeeeees
6.2.2.31. Atomic Compare and Exchange
(_InterlockedCompare EXChange_acq)eeeveeiiuuiiieeeeerriiiiiiieneeeeeeeeiiiiine e
6.2.2.32. Atomic Compare and Exchange
(_InterlockedCompareEXchange64_acq)cevvvvuuueeeeeeeeeiiiiiiiieeeeeeeeeeiiiieaeeeeen
6.2.2.33. Atomic Compare and Exchange (_InterlockedCompareExchange_rel)
6.2.2.34. Atomic Compare and Exchange
(_InterlockedCompareExchange64_rel)uuuieerereiiiiiiiiiiineeeeeieiiiiicee e eeeees
6.2.2.35. Conditional Atomic Compare and Exchange Longword
(_CMP_SWAP_LONG) ..eieiiiiiietteee ettt ettt e e e e e e
6.2.2.36. Conditional Atomic Compare and Exchange Quadword
(_CMP_SWAP_QUAD) ettt e e e e
6.2.2.37. Conditional Atomic Compare and Exchange Longword with Acquire
Semantics (_ CMP_SWAP_LONG_ACQ) ...uiivuiiieieeeeeeeeeeeeeeeeeee e
6.2.2.38. Conditional Atomic Compare and Exchange Quadword with Acquire
Semantics (_ CMP_SWAP_QUAD_ACQ) ..uiveniiiieeiieeeeeeeeeeeeeeeeee e
6.2.2.39. Conditional Atomic Compare and Exchange Longword with Release
Semantics (__ CMP_SWAP_LONG_REL)ccooiviiiiiiiiieie e,
6.2.2.40. Conditional Atomic Compare and Exchange Quadword with Release
Semantics (__ CMP_SWAP_QUAD_REL)cccciiiiiiiiiiiiiiieeeee e
6.2.2.41. Return Address (__RETURN_ADDRESS)cccoovvviiiiiieieieieeeeeeeeeeeee,
6.2.2.42. Implement Alpha _ PAL_GENTRAP and __PAL_BUGCHK Builtins
(O o) (=1) TR
6.2.2.43. Flush Register Stack (__fIushrs)ccoovviiiiiiiiiiiiieieicicie e,
6.2.2.44. Load Register Stack (__10adrs)cuuuiieeriiiiiiiiiiiiene e
6.2.2.45. Probe Read-Access Permission (__Prober)ceeevveeieeererereeiiennnnnnnn.
6.2.2.46. Probe Write-Access Permission (__probew)ceeuvveieeerreereevinnnnnnnn.
6.2.2.47. Translation Access Key (__tak)coovviimiiieeriiiiiiiiiiiieie e
6.2.2.48. Translate to Physical Address (__tPa)oeeeeveevivriiieeeeereeiiiiiiieeeeeeeeeenns
6.2.3. Built-In Functions for OpenVMS VAX Systems (VAX only)cceeveeeevvviininnnnnnnn.
6.2.3.1. Allocate Bytes from Stack (__ALLOCA)ccovviiiiiiieeiieieiiiiiieeeeeeeeeees
6.2.3.2. Add Aligned Word Interlocked (_ADAWI)coovviiiiiiiiiiiiiiiiiieeeeeeeees
6.2.3.3. Branch on Bit Clear-Clear Interlocked (_BBCCI)ccccovvvviiveiinnnnnnn..
6.2.3.4. Branch on Bit Set-Set Interlocked (_BBSSI)ccoviiiiiiiiiiiiiiieein,
6.2.3.5. Find First Clear Bit (_FFC)ccooouiiiiiiiiiiie e
6.2.3.6. Find First Set Bit (_FFS) ...coiiiiiiiiiieeee e
6.2.3.7. Halt (_HALT) .eeiiiiiiiiiiee ettt e e

ix

VSI C User Manual

6.2.3.8. Insert Entry into Queue at Head Interlocked (_INSQHI)ccccceeeees 292
6.2.3.9. Insert Entry into Queue at Tail Interlocked (_INSQTI)oeuveeeeernnis 292
6.2.3.10. Insert Entry in Queue (_INSQUE)ccovvviiiiiiiiiiiiiiiiiiieeee e, 293
6.2.3.11. Locate Character (_LLOCC)eiivueiiieiieeieeeee e 293
6.2.3.12. Move from Processor Register (_MFPR)cccccceeiiiiiiiiiiiiiiiiinenee, 294
6.2.3.13. Move Character 3 Operand (_MOVC3)cceevvriiiiiiiiiiiiieeeeeeeeeeiiinnenn 294
6.2.3.14. Move Character 5 Operand (_MOVCS)uuceeveriiiiiiiiiiiiieeeeeeeeeeiiinenn, 295
6.2.3.15. Move from Processor Status Longword (_MOVPSL)cccevvvnnnnnn. 296
6.2.3.16. Move to Processor Register (_MTPR)ccoovviiiiiiiiiiiiiiiiiiiiieeeeeeeeens 296
6.2.3.17. Probe Read Accessibility (_PROBER)cccooviiiiiiiiiiiiiiieieiereee, 296
6.2.3.18. Probe Write Accessibility (_PROBEW)ciiiiiiiiiiiiiiiiiiieeeeeeeees 297
6.2.3.19. Read General-Purpose Register (_READ_GPR)ccccovvviviiiiiiinnnnnn... 297
6.2.3.20. Remove Entry from Queue at Head Interlocked (_REMQHI) 297
6.2.3.21. Remove Entry from Queue at Tail Interlocked (_REMQTI) 298
6.2.3.22. Remove Entry from Queue (_REMQUE)ccccoceiiiiiiiiiiiiiiiineeeeees 299
6.2.3.23. Scan Characters (_SCANQC)coouiiiieiiieeeeee et 299
6.2.3.24. Skip Character (_SKPC)ccoiiiiiiiiiiiiiie e 300
6.2.3.25. Span Characters (_SPANQC)ccoviiiiiiiiiiiiiie e 300
Appendix A. Migrating from VAX C 303
A.1. Features Affecting the COMPILETcceeiviiiiiiiiiineeieiieiiicee e e e e e 303
AT L. VST C QUANTIETS ...eeviiiiiieeeeiiiiiiee et et e e e et e e e e e e e 303
A 1.2, ComMMENt PrOCESSING ..ovvvvvuieeeeeiiiiiiiiiiieeeeeeeteeiiiieeeeeeeeeerattaieaeeeeeeeeeaannnnaeeaaaaes 305
A.1.3. String Literal CONCAteNnationuuueeeeeeeeeeiiiiiiiieeeeeeeeieiiinnaeeeeereerennnnaeeeens 305
A.1.4. Recursive main() FUNCHONccoouuiiiiiiiiiiiiie e 306
ALLS. Trigraph SEQUEICESuvuuneeeeeeiiiiiiiiieeeeeeeeeeiiieeaeeeeeeetratiisaeeeeeeeeeessanaeeeeeaeenes 306
A.1.6. Alert ESCAPE SEQUEICEcovvvunieeeeiiiiiiiiiieeeeeeeeetiiiae e e e eeeeeeiiie e e e eeeeeeernnaneeas 306
A.1.7. Hexadecimal ESCApE SEQUENCEccevvuuuiereeeiiiiiiiiieeneeeeeeeieiiieee e e e eeeeeivan e 306
A.1.8. Invalid ESCAPE SEQUENCESccevrrrrrrriiieeeeeeieiiiiiiieeeeeeeeeeiaineeeeeeeeeennennneeaeaaaanes 307
AL1.9. 3 in MACTO NAIMESovvviiiiiiiieeieiiiiieeeeeeeeeeirree e e e e e e e erierrbeeeeeeeeessnearrraeeaaeeens 307
A.1.10. Null Arguments tO IMACTOSeeeeerrrririuieeeeeereeiiiiiieeeeeeeerririnnaeeseeeeerennnnnaenns 307
A.1.11. Standard C Name Space Conformancecuuuueeeereereeriiiunianeneeeeeeeiinnnnnss 307
A.1.11.1. Nonstandard KeyWordsccceeeeeriiiiiiiiiieeeiiiiiiiiiceee e e eeeeiiieeeeeeeeeens 307
A.1.11.2. Nonstandard Predefined Macrosccceeeeeeriiiiiiiiiineeneeiiiiiiiiieeeeeeeeens 308
A.1.11.3. Nonstandard Identifiers in Standard-Specified Header Files 308
A.1.12. VSI C Predefined MACTOScceeeeieiiiiiiieeeeeeieiiiiiiiaeeeeeeeeeeiieieeeeseeeeeennnnnnnnns 309
AT 130 VST C TYPES ettt e ettt ettt e e e e ettt e e e e e ettt e e e e e e e senneeee 309
A.1.13.1. signed Reserved WOrdueeiviiiiiiiiiiiiiiee e 309
A.1.13.2. Removal of the long float TYPEccuuuueeeereriiiiiiiiiieee e 309
A.1.13.3. Addition of the long double TYPEccevvvrruiiiereeiiiiiiiiiieeee e 309
A.1.13.4. Addition of Processor-Specific Integer Data Typesccevvvvvvrunnnnnnnn. 310
A.1.14. Type CompatibDilityouuueieeeeiiiiiiiiiiiieeeeeeeeiiieee e e e ee et e e e e e eeeaeaaeaeeeaeaens 311
AL T.15. COMPOSIEE TYPES tevvvrrnneeeeeeriiiiiiiieeeeeeeeeeiiiiaeaeeeeeeettaannnaaeeeeereersrnnnaaeseaseeeens 311
A.1.16. Enumerations Have TYPE INtcceevviiiiiiiiieeereeeiiiiiiiie e e eee et e e e e eeeeeevanennns 312
A.1.17. long double CONSLANESeuuuuieeeeereiiiiiiiaeeeeeeeeeiiiiaeaeeeeeeerennnnaaeeeeeeerrennnnns 312
A.1.18. Implicit Unsigned Integer CONStaNtSceeeeeeereeriiiiniineeeerereiiiieeeeeeeeeeennens 312
A.1.18.1. OpenVMS VAX SYSIEIMNSceevvrrniieeeeeeeieiiiiiiieneeeeeeeeiiiniaaeseereerennnnnnnns 312
A.1.18.2. OpenVMS AIpPha SYSEMS ..eevvvrunireeeerriiiiiiireeeeeeeeiiiiiiaeeeeeeeerrenannaeeeens 312
A.1.19. Multibyte and Wide Character SUPPOITcevereriiiiiiiiiieeeeeeeeiiiieee e e eeeeeenenes 312
A.1.19.1. The Wide Character TYPEcceuvuuuiiieeeeiiiiiiiiiieeeeeeeeeeeiiieeeeeeeeeeeeeaeens 313
A.1.19.2. Multibyte Characters in Comments, Character Constants, and String
1153 1 PPN 313
A.1.19.3. Wide Character CONSLANTScceerrrrvuuiaeeeeeereeiiiiiiaeeeeeererrrinnaeaaeeeeenens 313

VSI C User Manual

Appendix B. Common Pitfalls
Appendix C. Programming Tools

A.1.19.4. Wide String LiteralSceeeererriiiiiiiiiiieeeeeeeiiiiieeeeeeeeeeeiiieeeeeeeeenns
A.1.20. Usual Arithmetic CONVEISIONSceeeeeeeeeeeeeeeeeeeeee e
A.1.21. Indexing as a Commutative OPEIatOreeeeeerrvruunieereerreriiiiiieeeeeeeeeeerennnnns
PN B @ T)15 ¢ 110 -SSP
AL 123, FUNCHON CallS .. s

A.1.23.1. Assignment Compatibility Argument Checkingcccevvvvuienernrnnn.

A.1.23.2. Passing Narrow Types to Old Syntax Functionsceeeeereerennns
A 1.24. “Address Of 7 OPEIALOLceeeeeeieiiiiiiiieeeeeeeeiiiiiieeeeeeeeeeeittaaeeeeeeeeressannaaeeaaaeees
ALL2S5. UNATY PIUS .eiiiiiiiiiiiiiiiiie et e e e e e e ettt e e e e e e eeeaaanneeeeeeaenees
A.1.26. Relational OPETALOrSuuueeeeeeriiiiiiiiaeeeeeeeeiiiiiiaaeeeeeeeeetearnaeeeeeeeeererennnaaaeees
A.1.27. Assignment Compatibilityeuceeerriiiiiiiiiiiieee e e e eeeees
ALT.28. DECIATALIONS .eevveririiiiiiiiiiiiiiiiiiiiiiititttetetetee ettt ettt et teeeee e et e e e et eeeeeeeeeeeees

A.1.28.1. Implementation LIMitScceeeeeriiiiiiiiiiineeeeiiiiiiiieeeeeeeeeeiiiieeeeeeeeeeens

A.1.28.2. Identifier Name Lengthccoeiiiiiiiiiiiiiiiiiiieeeeeee e

A.1.28.3. Diagnosing Empty Declarationscc.uuuieeeeereiiiiiininneeeeeeeeeinnnnnnnns

A.1.28.4. Restriction on Placement of Storage-Class Specifierscccceeeeeeeeenns

A.1.28.5. Diagnosing Old-Style Function Declarationscceeeereeereeennnnnnnn.

A.1.28.6. Function Definitions Using typedef-namescccceeervrrrriiiiinnnnnnnn.

ALL.28.7. INTHANHZAION ... s
A.1.29. Bit-Field InitialiZationcooooereioieiieeeee e
A.1.30. The PreproCeSSOTccvvuiuuuieeeeeeiiiiiiieeeeeeeeeetiiiiiaaeeeeeeeeertannaeeeeeeeersnnnnnaeeeas

A.1.30.1. White Space Appearing Before the #cooovviiiiiiiieiniiiiiiiiiiiieeeeeees

A.1.30.2. The #define Directive and Macro Substitutionccceeeeeerreriiinennnn..

A.1.30.3. The #line DIr€CtiVecceveririiiiiiiiiiiiiiiiiiiiiiiiieeieeeeeeeeeeeeeeeeeeeeeeeeeeeeees

A.1.30.4. The HError DITECHIVEeuuuuiiiriiiiiiiiiiiiiiiieeieeteeeeeeeeeeeeeeeeeeeeeeeeeeeneaene

A.1.30.5. The #pragma builting DIreCtiveccevurruuierrrereieiiiiiiiineeeeeeeeeiinnnnnnns

A.1.30.6. The #pragma dictionary DIireCtiVecceevrruuiieeeeerreriiiiiieeeeeerennennens

A.1.30.7. The #pragma extern_model DireCtivecccceevrieriiiiiineerereriiiiiinnnnnnn.

A.1.30.8. The #pragma linkage Directive (Alpha only)ccevvviiiiiiiiennierinnnnnen.

A.1.30.9. The #pragma use_linkage Directive (Alpha only)cccevverererrnnnnnnnn.

A.1.30.10. The #pragma message DIreCtiVecceeeeeerieirirniereeereeiiiiiiieeneeeeennnns

A.1.30.11. The #pragma module Dir€CtiVeceevrvurierrreriiriiiiiiieneeeeeeeriiiinennnns

A.2. Features Affecting the VSI C Run-Time Library and Include Filesccceeeveeeennnnn.
A2 L. KSTAAEl i N> e eaaaans
AL 2. LY PO i N> e a s
PN RS i o T o =N = 1= T o DO SPURR
A24, <LOCALE N> it e e et e e e e eeeaaaaas
YN T 11 1= ol o N o USSR UUPPRPRPN
A2.6. <SIONAL cN> et eaaaans
Y =S e i o N o D PP PPPPPPPPPPP
A28, KSTALA i N> e aaaans
A2, ST TANG . N> e e
AL2.10. SEAME L N> i e e e et ee e

A3, Unsupported FEAtUIEScoieiiiiiiiiiiiiiiieeeeeeeieiiiiee e e e e e e eettiiee e e e e e eeeeaaanaeeeeeeeeenennnnns

C.1. OpenVMS DEDUZEETccoeeeeeeeieeeeeeeee e
C.1.1. Compiling and Linking to Prepare for Debuggingceeueeeriveiiveviieneeenennnns
C.1.2. Starting and Terminating a Debugging Sessioncccccccci .
C.1.3. Notes 0n VSI C SUPPOILt ...coeeeeeeeeeieieeeeeeeeeeeeeeeeeee e

C.1.3.1. Debugger Command-Line Optionsccceeeeererereieieneieierereeeceeeeee s

Xi

VSI C User Manual

Appendix D. VSI C Compiler Messages
Appendix E. VSI C Limits

VSI C Glossary

C.1.3.2. Accessing Scalar Variablescouuuuiiiiieriiiiiiiiiiieee e e eeeeeeens

C.1.3.3. ACCESSING ATTAYS ..eeevvvvuueeeeeeeeeiiiiiaeeeeeeerettrennaaeeeeeeeersnnnaaeseeseerssnnnnnnens

C.1.3.4. Accessing Character StriNgscceuuuuuieeereeeriiiiiiiieeeeeeeeeeeiiieeeeeeaeanns

C.1.3.5. Accessing Structures and UNIONSceevuuuiieeeeerrreiiiiiiienneeeeeeeiiennnnnnss

C.1.3.6. Sample Debugg@ing SeSSIONuuuieeererrieiiiiiiieeeeeeereeiiiiareeeeeeeeenennnnns

C.2. OpenVMS Text Processing ULHLYcouvuiiirreiiiiiiiiiieeeeeeeieeiiiie e e eeeeeeiie e e eeeeenens
C.3. Language-Sensitive Editor and the Source Code Analyzercceeeeveevieiiiiiiiineneeenns
C.3.1. Preparing an SCA LIDIarycoouuuioiieriiiiiiiiiiiieee e eeeeeiiiee e e e e eeeeeviieeeeeeaeeeees
C.3.2. Starting and Terminating an LSE or an SCA Sessionceeeeeeeeiieeiiivnnnnennn.
C.3.3. Programming Language Placeholders and Tokenscccccovvceeerrrereiniiinnnnnnn..
C.3.4. Compiling SOUICE COAEcceeiiiiiiiiiieeeeeiieiiiiieee e e e eeeteiieee e e e e e e e erebbeaeeeeeeeeeeees
(O T BN A 2111 o) (<SSP URRPP
C.3.5.1. Compilation UNItuuiereeereiiiiiiiieeeeeeeeeiiiieeeeeeeeeeeviineeeeeeeeeeannnnanns

C.3.5.2. Preprocessor LINESceeeereriiiiiiiiieieeeeeeeiiiiceeeeeeeeeeeiiiiseeeeeeeeeeeenenns

C.4. CDD/REPOSIEOTY ..evvvvvvrunneeeereeetiiunnaaeeeeeerttennnaaeseseeeeressnnaaseseressssnnnnsaseessesmssnnnneseeseees
C.4.1. USING CDD/REPOSILOTY .vvuuueeeereiiiiiiiiaaeeeeeeteitieniaeeeeeeereersnnnaaeseeeeresssnnaeesesseenes
C.4.2. Accessing CDD/Repository from VSI C Programsccuuveeeeeeeerreeiiiennnnnn.
C.4.3. Support for CDD/Repository Data TYPESceevvvrviireeeriiiiiiiiiiieeeeeeeeeiiiiene e

E.1. Contents Of <float. >ouiiniiiiiii e
E.2. Contents of <HIMItS. NS> oouiniiniiiii e

xii

Preface

This manual provides reference information for using the VSI C language on OpenVMS systems. VSI C
is an ANSI compliant C compiler for the OpenVMS operating system on VAX, Alpha, and Intel Itanium
processors and for the UNIX operating system on Alpha processors. The shortened forms, OpenVMS
164 and 164, are also used throughout this manual.

VSI C is compliant with the International Standards Organization (ISO) C Standard (ISO
9899:1990[1992]), formerly the American National Standard for Information Systems-Programming
Language C (document number: X3.159- 1989). By the use of command-line options, VSI C is
compatible with older dialects of C, including common usage C (Kernighan and Ritchie C) and VAX C.

This manual is based on the ISO C Standard (ISO 9899:1990[1992]), formerly the ANSI X3J11
committee’s standard for the C programming language (called the ANSI C standard in this manual). All
library functions and language extensions to the ANSI C standard are also described. You may send
comments or suggestions regarding this manual or any VSI C document by sending electronic mail to the
following Internet address: <docinfo@vmssoftware.com>

1. About VSI

VMS Software, Inc. (VSI) is an independent software company licensed by Hewlett Packard Enterprise
to develop and support the OpenVMS operating system.

2. Intended Audience

This guide is intended for experienced programmers who need to develop VSI C programs

on OpenVMS systems, for users who need to know the difference between VSI C and other
implementations, and for experienced C users who need to reference language information specific

to OpenVMS systems. You should be familiar with one high-level language and should have some
familiarity with the Digital Command Language (DCL). If you are not familiar with or need to reference
information about the DCL, see Chapter 1.

3. Document Structure

This guide has the following chapters and appendixes:
* Chapter 1 shows how to create, compile, link, and run a VSI C program.
* Chapter 2 describes VAX Record Management Services (RMS).

* Chapter 3 describes interlanguage calling, and OpenVMS System Services, Run-Time Library (RTL)
routines, and calling standard conventions.

* Chapter 4 describes data storage and representation on OpenVMS systems.

» Chapter 5 describes the preprocessor directives.

» Chapter 6 describes the predefined macros and the built-in functions.

* Appendix A documents the features that distinguish VSI C for OpenVMS Systems from VAX C.

* Appendix B describes common pitfalls when using VSI C.

xiii

Preface

* Appendix C provides an overview of the OpenVMS Debugger, Text Processing Utility (TPU),
Language-Sensitive Editor (LSE), Source Code Analyzer (SCA), and CDD/Repository.

* Appendix D lists VSI C compiler messages.

* Appendix E describes implementation-specific limits and parameters for VSI C on OpenVMS
systems.

* The glossary provides an alphabetical listing of key terms.

4. Related Documents
You may find the following documents useful when programming in VSI C:

* VSI C Reference Manual [https://docs.vmssoftware.com/vsi-c-language-reference-manual/]—

Provides language reference information for VSI C on OpenVMS systems.

* VSI C Run-Time Library Reference Manual for OpenVMS Systems [https://docs.vmssoftware.com/vsi-
c-run-time-library-reference-manual-for-openvms-systems/]—Provides information on using the VSI
C Run-Time Library (C RTL) functions and macros, and information about porting programs to and
from other operating systems.

* The C Programming Language by Ritchie—Provides an excellent tutorial of the C language. Because
VSI C contains features and enhancements to the standard C language, use the VSI C User Manual
[https://docs.vmssoftware.com/vsi-c-user-s-guide-for-openvms-systems/] and the VSI C Reference

Manual [https://docs.vmssoftware.com/vsi-c-language-reference-manual/] as the reference books for
the full description of VSI C.

* VSI OpenVMS Calling Standard—Describes the concepts used by all OpenVMS languages to invoke
routines and pass data between them. It also describes the differences between the OpenVMS VAX,
Alpha, and 164 parameter-passing mechanisms.

5. OpenVMS Documentation

The full VSI OpenVMS documentation set can be found on the VMS Software Documentation webpage
at https://docs.vmssoftware.com.

6. VSI Encourages Your Comments

You may send comments or suggestions regarding this manual or any VSI document by sending
electronic mail to the following Internet address: <docinfo@vmssoftware.com>. Users who have
VSI OpenVMS support contracts through VSI can contact <support@vmssoftware.com> for
help with this product.

7. Platform Labels

A platform is a combination of operating system and hardware that provides a distinct environment. This
guide contains information applicable to the VSI OpenVMS operating system on VAX, Alpha, and Intel
Itanium processors.

The information in this guide applies to all of these processors, except when specifically labeled as
follows:

Xiv

https://docs.vmssoftware.com/vsi-c-language-reference-manual/
https://docs.vmssoftware.com/vsi-c-language-reference-manual/
https://docs.vmssoftware.com/vsi-c-run-time-library-reference-manual-for-openvms-systems/
https://docs.vmssoftware.com/vsi-c-run-time-library-reference-manual-for-openvms-systems/
https://docs.vmssoftware.com/vsi-c-run-time-library-reference-manual-for-openvms-systems/
https://docs.vmssoftware.com/vsi-c-user-s-guide-for-openvms-systems/
https://docs.vmssoftware.com/vsi-c-user-s-guide-for-openvms-systems/
https://docs.vmssoftware.com/vsi-c-language-reference-manual/
https://docs.vmssoftware.com/vsi-c-language-reference-manual/
https://docs.vmssoftware.com/vsi-c-language-reference-manual/
https://docs.vmssoftware.com

Preface

Label Explanation

(VAX only) Specific to a VAX processor running the OpenVMS operating system.

(Alpha only) Specific to an Alpha processor running the OpenVMS operating system.

(164 only) Specific to an Intel Itanium processor running the OpenVMS operating system.
On this platform, the product name of the operating system is OpenVMS Industry
Standard 64 (or its abbreviated forms, OpenVMS 164 or 164).

8. Typogr

aphical Conventions

The conventions found in the following table are used in this document.

Convention

Meaning

UPPERCASE TYPE

All uppercase letters in a command line indicate keywords that must be
entered. You can enter them in either uppercase or lowercase. You can use
the first three characters to abbreviate command keywords, or you can use
the minimum unique abbreviation.

lowercase italics

Lowercase italics in command syntax or examples indicate variables for
which either you or the system supplies a value.

[]

In examples showing VMS directory specifications, square brackets are a
necessary part of the specification, [directory-name].

In a procedure, square brackets in an inquiry enclose the default response for
the inquiry.

[Return]

Press the Return key.

Ctrl/x

While holding down the Ctrl key, press the key specified by x.

Vertical ellipses (dots) in examples represent data that has been omitted.

9. New and Changed Features

VSI C runs on OpenVMS Alpha and OpenVMS Industry Standard 64 systems. The compiler behaves
much the same on both systems, with some differences, primarily in the support for #pr agma
| i nkage, built-in functions, default floating-point representation, and predefined macros. These

differences are noted

in the relevant sections of this manual.

XV

Preface

Xvi

Chapter 1. Developing VSI C Programs

This chapter describes the following information about developing VSI C programs on an OpenVMS
system:

Overview of the DIGITAL Command Language (DCL) commands used for program development
(Section 1.1)

Creating VSI C programs (Section 1.2)

Compiling VSI C programs (Section 1.3)

Linking VSI C programs (Section 1.4)

Running VSI C programs (Section 1.5)

Passing arguments to the mai n function (Section 1.6)

Using 64-bit addressing (Section 1.7)

1.1. DCL Commands for Program
Development

This section provides a brief overview of the DCL commands used for program development. The
following sections provide more detailed information about these topics.

Figure 1.1 shows the basic steps in VSI C program development.

Chapter 1. Developing VSI C Programs

Figure 1.1. DCL. Commands for Developing Programs

COMMANDS ACTION | INPUT/QUTPUT FILES

§ EDIT AWERAGE.C
Usze the file type of © Create a AWERAGE.C
to indicate that the file FOUFCE program

contains a C program

$ CC AVERAGE

The CC command
assumes that the file type AVERAGE. OB
of an input file is © Carmnpile the
(AWVERAGE.LIS)
SOUFCE PROGran T
{If you use the ALAST likararies

qualifier, the compiler
creates a listing file)

$ LINK AVERAGE
The (LN command dssumes Link the AVERAGE.EXE
that the fil type of an input akiect module (AVERAGE MAF)
file iz S8S
{If wou uze the A4S qualifier,
the linker creates a map file)
% RUMN AVERAGE
Fun the
The AL commancd assumes
. executable
that the file type of an image .
is EXE mage
ZK-5167-0E

To create a VSI C source program at DCL level, you must invoke a text editor. In Figure 1.1, the EDIT
command invokes the default editor TPU (OpenVMS Text Processing Utility) to create the source
program AVERAGE.C. You can use another editor, such as EDT or the Language-Sensitive Editor
(LSE). (LSE is a product that must be purchased separately; see Appendix C for more information.) A
file type of C is used to indicate that you are creating a VSI C source program. C is the conventional file
type for all VSI C source programs.

When you compile your program with the CC command, you do not have to specify the file type; by
default, VSI C searches for files with a file type of C.

If your source program compiles successfully, the VSI C compiler creates an object file with the file type
OBJ.

However, if the VSI C compiler detects errors in your source program, the system displays each error on
your screen and then displays the DCL prompt. You can then reinvoke your text editor to correct each
error.

You can specify command qualifiers on the CC command. Command qualifiers cause the VSI C
compiler to perform additional actions. In the following example, the /LIST qualifier causes the VSI C
compiler to produce the listing file AVERAGE.LIS:

$ CC/LIST AVERAGE

For a complete description of all CC command qualifiers, see Section 1.3.4.

Chapter 1. Developing VSI C Programs

After your program has compiled successfully, invoke the OpenVMS Linker to create an executable
image file. For example:

$ LINK AVERAGE

The linker uses the object file produced by VSI C as input to produce an executable image file as output.
(The executable image is a file containing program code that can be run on the system.)

You can specify command qualifiers with the DCL. command LINK. For a complete list and explanation
of all the command qualifiers available with the LINK command, see Section 1.4.2.

After producing the executable image file, use the RUN command to execute your program.

1.2. Creating a VSI C Program

To create and modify a VSI C program, you must invoke a text editor. The OpenVMS system provides
you with two text editors: EDT and the OpenVMS Text Processing Utility (TPU). The following section
discusses TPU. See the OpenVMS EDT Reference Manual for more information on EDT.

1.2.1. Using TPU

TPU is a high-performance, programmable utility. It provides two editing interfaces: the Extensible VAX
Editor (EVE), described in the following section, and the TPU EDT Keypad Emulator. You can also
create your own interfaces.

Like EDT, TPU provides you with an online help facility that you can access during your editing session.
When you invoke TPU to create a file, a journal file is automatically created. You can use this journal
file to recover your edits if the system fails during an editing session. To recover your edits, enter the
EVE/RECOVER command.

Unlike EDT, TPU provides multiple windows. This feature allows you to view two files on your screen at
the same time.

1.2.2. The EVE Interface to TPU

EVE is an interactive text editor that allows you to execute common editing functions using the EVE
keypad or to execute more advanced functions by entering commands on the EVE command line. The
following command line invokes the EVE editor and creates the file PROG_1.C:

$ EDIT/TPU PROG_1.C

You can define a global symbol for the EDIT/TPU command by placing a symbol definition in your
LOGIN.COM file. For example:

$ EVE == "EDIT/TPU"

After this command line is executed, you can type EVE at the DCL prompt followed by the name of the
file you want to modify or create.

1.3. Compiling a VSI C Program

The VSI C compiler performs the following functions:

e Detects errors in your source program

Chapter 1. Developing VSI C Programs

* Displays each error on your screen or writes the errors to a file
* Generates machine-language instructions from the source statements
* Groups these machine-language instructions into an object module for the linker

The following sections discuss the CC command and its qualifiers.

1.3.1. The CC Command

To invoke the VSI C compiler, enter the CC command at the DCL prompt ($). The CC command has
the following format:

CC[/qualifier...][file-spec [/qualifier...]],...

Note
(VAX only) This note applies to OpenVMS VAX systems that have both VSI C and VAX C installed.

The CC command is used to invoke either the VAX C or VSI C compiler. If the VSI C installation
procedure detects that your system already has a VAX C compiler installed on it, the installer is given
the option to specify which compiler gets invoked by default whenever the CC command verb is used.
To invoke the compiler that is not the default, use the CC command with the appropriate qualifier: CC/
DECC for the VSI C compiler, or CC/VAXC for the VAX C compiler. Where the CC command appears
in examples in this manual, CC/DECC is assumed to be the default.

/qualifier

An action to be performed by the compiler on all files or specific files listed. When a qualifier
appears directly after the CC command, it affects all the files listed. When a qualifier appears after
a file specification, it affects only the file that immediately precedes it. However, when files are
concatenated, these rules do not apply.

file-spec

An input source file that contains the program or module to be compiled. You are not required to
specify a file type if you give your file a .C file extension; the VSI C compiler adopts the default file
type C.

You can include more than one file specification on the same command line by separating the file
specifications with either a comma (,) or a plus sign (+). If you separate the file specifications with
commas, you can control which source files are affected by each qualifier. In the following example, the
VSI C compiler creates an object file for each source file but creates only a listing file for the source files
PROG_1 and PROG_3:

$ CC /LIST PROG_1, PROG_2/NOLIST, PROG_3

If you separate file specifications with plus signs, the VSI C compiler concatenates each of the specified
source files and creates one object file and one listing file. In the following example, only one object
file is created, PROG_1.0B]J, and only one listing file is created, PROG_1.LIS. Both of these files are
named after the first source file in the list, but contain all three modules.

$ CC PROG_1 + PROG_2/LIST + PROG_3

Chapter 1. Developing VSI C Programs

Any qualifiers specified for a single file within a list of files separated with plus signs affect all the
files in the list. See the description of the /PLUS_LIST_OPTIMIZE qualifier for its affect on file
concatenation.

Note

Concatenating source files without using the /PLUS_LIST_OPTIMIZE qualifier is not recommended
because potential conflicts in the name space of declared objects can result in compilation errors or
incorrect run-time behavior.

A more common use of plus-list concatenation is for specifying text libraries. You can specify the name
of a text library on the CC command line to compile a source program. A text library is a file that
contains text organized into modules indexed by a table. Text libraries have a . TLB default file extension.
In the following example, text libraries A. TLB and B.TLB are made available for searching for text
library modules during the compilation of source file TEST.C:

$ CC TEST.C + A.TLB/LIB + B.TLB/LIB

1.3.1.1. Including Header Files

Header files are pieces of source code that typically contain declarations shared among C programs. A
header file often declares a set of related functions, as well as defining any types and macros needed for
their use.

To make the contents of a header file available to your program, include the header file using the
#i ncl ude preprocessor directive.

The #i ncl ude directive has three forms. Two of the forms are defined by the C standard and are
portable:

* Inclusion using angle brackets to delimit the file to be included:
#include <file-spec>

* Inclusion using quotation marks to delimit the file to be included:
#include "file-spec"

The third form is the text-module form. It is specific to OpenVMS systems and is not portable. See
Section 5.2.3 for more information on the text-module form of inclusion.

The form of the #i ncl ude directive used determines where the compiler will look to find the file to be
included. Generally, the compiler looks in the following places, in the order listed:

1. Places named on the command line with the /INCLUDE_DIRECTORY qualifier or the /LIBRARY
qualifier

2. Places identified through logical names, such as DECC$USER_INCLUDE,
DECC$SYSTEM_INCLUDE, DECC$LIBRARY_INCLUDE, and DECC$TEXT_LIBRARY

3. System-defined places such as the SYSSCOMMON:[DECCS$LIB.INCLUDE.*] directory and the
SYSSLIBRARY:DECCSRTLDEF.TLB and SYSSLIBRARY:SYS$STARLET_C.TLB text libraries

Chapter 1. Developing VSI C Programs

You can use the UNUSED message group described in the #pr agna nmessage description
in Section 5.4.14 to enable messages that report apparently unnecessary #i ncl ude files (and
CDD records). Unlike any other messages, these messages must be enabled on the command line
(/WARNINGS=ENABLE=UNUSED), rather than with #pr agma nessage, to be effective.

The VSI C preprocessor is usually able to determine if a particular #i ncl ude file that has already been
processed once was guarded by the conventional sequence: #i f ndef FI LE_SEEN, #defi ne
FI LE_SEEN, #endif.

When the compiler detects this pattern of use the first time a particular file is included, it remembers that
fact as well as the name of the macro. The next time the same file is included, the compiler checks to see
if the "FILE_SEEN" macro is still defined and, if so, it does not reopen and reread the file. Note that if
the initial test is in the form #i f ! def i ned instead of #i f ndef , then the pattern is not recognized.
In a listing file, #i ncl ude directives that are skipped because of this processing are marked with an
"X" just as if the #i ncl ude line itself were excluded.

See the /INCLUDE_DIRECTORY qualifier in Section 1.3.4 for a more complete description of the
search-order rules that VSI C uses to locate included files.

See the VSI C Run-Time Library Reference Manual for OpenVMS Systems [https://
docs.vmssoftware.com/vsi-c-run-time-library-reference-manual-for-openvms-systems/] for information
on the header files required to use VSI C Run-Time Library (C RTL) functions and macros.

1.3.1.2. Listing Header Files

To list the names of system header files, use the following commands:

$ LIBRARY/LIST SYSS$SLIBRARY:SYSS$STARLET_C.TLB
(OpenVMS Version 7.1 and higher)

$ LIBRARY/LIST SYSS$LIBRARY:DECCS$RTLDEF.TLB

$ DIR SYS$COMMON: [DECCSLIB.REFERENCE.SYS$STARLET_C]*.H;
$ DIR SYS$COMMON: [DECCS$LIB.REFERENCE.DECCSRTLDEF] * . H;

$ DIR SYSSLIBRARY:*.H;

These commands list, respectively:

* The names of the text-module header files for the OpenVMS system interfaces
* The names of the text-module header files for the VSI C language interfaces

* *h header files for the OpenVMS system interfaces

* *h header files for the VSI C language interfaces

* *h header files for layered products and other applications

Note

The SYS$COMMON:[DECCS$LIB.REFERENCE.DECC$RTLDEF] and SYS$COMMON:

[DECCS$LIB.REFERENCE.SYS$SSTARLET _C] directories are only reference areas for your viewing.
They are created during the compiler installation from the content of the text libraries. By default, the
compiler searches only the text library files for headers; it does not search these reference directories.

https://docs.vmssoftware.com/vsi-c-run-time-library-reference-manual-for-openvms-systems/
https://docs.vmssoftware.com/vsi-c-run-time-library-reference-manual-for-openvms-systems/
https://docs.vmssoftware.com/vsi-c-run-time-library-reference-manual-for-openvms-systems/

Chapter 1. Developing VSI C Programs

Be aware that OpenVMS VAX operating systems prior to Version 7.1 do not have

a file named SYSSLIBRARY:SYS$STARLET_C.TLB. For these older versions

of the operating system, the STARLET header files are generated during VSI C
installation and placed in SYS$LIBRARY:DECC$RTLDEF.TLB and also in both
SYS$COMMON:[DECCS$LIB.REFERENCE.DECC$RTLDEF] and SYS$COMMON:
[DECCSLIB.REFERENCE.SYS$STARLET_C].

1.3.2. Compilation Modes

VSI C has two complementary qualifiers that control which dialect of C is to be recognized by the
compiler, and which messages are generated:

* The /STANDARD qualifier controls what language features and extensions are recognized by the
compiler.

e The /[NO]JWARNINGS qualifier enables or disables the generation of warning and/or informational
messages.

The /STANDARD qualifier causes the compiler to issue only those warnings appropriate for the dialect
of C being compiled. For example, VAX C compatibility mode (/STANDARD=VAXC) does not issue
warnings against VAX C extensions, while ANSI C mode does.

To generate a list of all messages that are in effect at the start of compilation, specify /LIST/
SHOW=MESSAGES. For each message, the identifier, severity, and message text are shown.
To also show the message description and user action for each message listed, specify /LIST/
SHOW=MESSAGES/WARN=VERBOSE.

The VSI C compiler for OpenVMS systems provides several dialects of C, which are controlled by the /
STANDARD qualifier:

e Strict ANSI C: Only the ANSI C Standard 89 (C89) language dialect is recognized. This mode is
enabled by specifying /STANDARD=ANSI89 on the CC command line.

/STANDARD=ANSIg9 issues all diagnostics required by the ANSI C standard as well as a number
of optional diagnostics that help detect source code constructs that are not portable under the C89
standard. Digraph recognition from the 1994 Amendment is also supported in this mode.

You can use /STANDARD=ANSI89 with /[NOJWARNINGS to control issuance of informational
or warning messages. However, since the compiler does not recognize many VAX C or common
C extensions when in strict ANSI mode (for example, VAX C keywords not beginning with two
underscores), many of the messages normally associated with flagging VAX C and common C
extensions are not produced.

* Strict C99: Only the ISO C99 dialect is recognized. This mode is enabled by
specifying /STANDARD=C99 on the CC command line.

/STANDARD=C99 accepts just the C99 language without extensions, and diagnoses violations of
the C99 standard. Because C99 is a superset of Amendment 1 to the C89 standard, and the default
mode of RELAXED is a superset of C99, the __ STDC_VERSION__ macro is now defined with the
C99-specified value of 199901L.

Only when the ISOC94 keyword is added to the strict ANSI89, MIA, or COMMON modes does the
_ STDC_VERSION___ macro take on the Amendment 1 value of 199409L (In the absence of the
ISOC94 keyword, the ANSI89, MIA, and COMMON modes do not define the macro at all.)

Chapter 1. Developing VSI C Programs

Note

/STANDARD=C99 is not fully supported on VAX systems. Specifying /SSTANDARD=C99 on
OpenVMS VAX systems produces a warning and puts the compiler into /STANDARD=RELAXED
mode.

Latest C standard dialect.'STANDARD=LATEST is currently equivalent to /STANDARD=C99, but
is subject to change when newer versions of the C standard are released.

Relaxed: This is the default mode on OpenVMS systems, and is specified by /NOSTANDARD

or /STANDARD=RELAXED on the CC command line. The /STANDARD=RELAXED mode
accepts C89 and C99 features, as well as nearly all language extensions (such as additional VSI

C keywords and predefined macros that do not begin with an underscore). It excludes only K&R
(COMMON mode), VAX C, and Microsoft features that conflict with standard C. The purpose of
the /STANDARD=RELAXED mode is to support everything from the most current C standard, in
addition to all extensions that do not specify different semantics for the same constructs.

Microsoft compatibility: This mode interprets source programs according to certain language rules
followed by the C compiler provided with the Microsoft Visual C++ compiler product. This mode
is enabled by specifying /STANDARD=MS on the CC command line. See Section 1.3.3 for more

information about Microsoft compatibility mode.

ISO C 94: This mode is enabled by specifying /STANDARD=ISOC94. It can be specified alone or
with any other /SSTANDARD option except VAXC. If it is specified alone, the default major mode is
RELAXED.

Specifying /STANDARD=ISOC94 enables digraph processing and defines the predefined macro
__STDC_VERSION__=199409L, as specified by Amendment 1 to the C89 standard.

VAX C compatibility: This mode is enabled by specifying /STANDARD=VAXC. It allows the same
language as the C standard, but also supports VAX C extensions that are incompatible with the C
standard and that change the language semantics. This mode provides compatibility for programs
that depend on old VAX C behavior.

Portable: This mode is enabled by specifying /STANDARD=PORTABLE. It places the compiler in
RELAXED mode and enables the issuance of diagnostics that warn about any nonportable usages
encountered.

/STANDARD=PORTABLE is supported for VAX C compatibility only. It is
equivalent to the recommended combination of qualifiers /'STANDARD=RELAXED/
WARNINGS=ENABLE=PORTABLE.

Common usage C: This mode is enabled by specifying /STANDARD=COMMON. It enforces K &
R programming style; that is, compatibility with older UNIX compilers such as pcc and gcc. This
mode is close to a subset of /SSTANDARD=VAXC mode.

MIA conformance: This mode is enabled by specifying /STANDARD=MIA. This is strict ANSI
C with some differences required by the Multivendor Integration Architecture (MIA) standard.
Compiling a program with /STANDARD=MIA sets the __M A predefined macro to 1.

With one exception, the /SSTANDARD qualifier options are mutually exclusive. Do not combine them.
The exception is that you can specify /STANDARD=ISOC94 with any other option except VAXC.

VSI C modules compiled in different modes can be linked and executed together.

Chapter 1. Developing VSI C Programs

The /STANDARD qualifier is further described in Section 1.3.4.

Also see the __HI DE_FORBI DDEN_NANMES predefined macro (Section 6.1.7).

1.3.3. Microsoft Compatibility Compilation Mode

The /STANDARD=MS qualifier instructs the VSI C compiler to interpret your source code according
to certain language rules followed by the C compiler provided with the Microsoft Visual C++ compiler
product. However, compatibility with this implementation is not complete. The following sections
describe the compatibility situations that VSI C recognizes. In most cases, these situations consist of
relaxing a standard behavior and suppressing a diagnostic message.

1.3.3.1. Unnamed Nested struct or union Members

Allow a declaration of a structure with no name within another structure. You can reference all members
of the inner structure as members of the named outer structure. This is similar to the C++ treatment

of nested unions lacking a name, but extended to both structures and unions. A similar capability is
provided by the VAX C var i ant _struct and vari ant _uni on types.

For example:

struct{
struct{
int a;
int b;
}; /*No name here */
int c;

+d; /* d.a, d.b, and d.c are valid member names. */

1.3.3.2. Block Scope Declaration of static Functions

Allow a st at i ¢ function declaration in block scope (that is, inside another function).
For example:

£0OA4

static int a(int b);

}
1.3.3.3. Treat &* as Having No Effect

Standard C does not allow the & operator to produce an Ivalue expression. The Microsoft relaxation
allows & to produce an lvalue in certain cases.

For example:

int *a, *b;

1.3.3.4. char is Not Treated as a Unique Type

Treat the char type as either Si gned char or, depending on the default in effect.

Chapter 1. Developing VSI C Programs

For example, a pointer to char can be assigned to a pointer to Si gned char , assuming the
command-line default of /NOUNSIGNED_CHAR:

signed char *a;
char *b;

1.3.3.5. Double Semicolons in Declarations

Suppress warning messages for declarations that contain two semicolons. (That is, allow completely
empty declarations at file scope.)

For example:

int a;;

1.3.3.6. Declaration without a Type

Suppress warning messages for declarations that contain a variable name but no type.
For example:

b;

1.3.3.7. Enumerators in an Enumeration Declaration

Ignore any extra comma at the end of the last enumerator in an enumeration declaration.
For example:

enum E {a, b, c,}; /* Ignore the comma after "c". */

1.3.3.8. Useless Typedefs

Allow t ypedef s that have a type specifier but no identifier name declaring the new type.

For example:

typedef struct { int a; };

1.3.3.9. Unrecognized Pragmas Accepted

Suppress warning messages when one of the following unsupported Microsoft pragmas is encountered:

#pragma code_seg
#pragma warning

1.3.4. CC Command Qualifiers

The following list shows all the command qualifiers and their defaults available with the CC command.
A description of each qualifier follows the list.

You can place command qualifiers either on the CC command line itself or on individual file
specifications (with the exception of the /[LIBRARY qualifier). If placed on a file specification, the

10

Chapter 1. Developing VSI C Programs

qualifier affects only the compilation of the specified source file and all subsequent source files in
the compilation unit. If placed on the CC command line, the qualifier affects all source files in all
compilation units unless it is overridden by a qualifier on an individual file specification.

Command Qualifiers Default
/ACCEPT=(option[,option]) See text.
/[NOJANALYSIS_DATA [=file-spec] /NOANALYSIS_DATA
/[NOJANNOTATIONS[=(option,...)] /NOANNOTATIONS
/[INO]JANSI_ALIAS See text.
/ARCHITECTURE=option /ARCHITECTURE=GENERIC
/ASSUME=(option],...]) See text.
/[NO]JCHECK([=(option,...)] /NOCHECK
/[NO]JCOMMENTS=0ption See text.

/NOCROSS_REFERENCE

]
/[NO]JCROSS_REFERENCE
/[NO]DEBUG([=(option],...])]

/DEBUG=(TRACEBACK,NOSYMBOLS)

/DEBUG=(TRACEBACK,NOINLINE,
NOSYMBOLS) (VAX only)

/DECC See text.
/[NO]DEFINE=(identifier[=definition][,...]) /NODEFINE
/[INO]DIAGNOSTICS|=file-spec] /NODIAGNOSTICS

/ENDIAN=option

/ENDIAN=LITTLE

/[NOJERROR_LIMIT[=n]

/ERROR_LIMIT=30

/EXTERN_MODEL=option

/EXTERN_MODEL=RELAXED_REFDEF

/INOJFIRST_INCLUDE=(file[,...])

/NOFIRST_INCLUDE

/FLOAT=option

/FLOAT=G_FLOAT (Alpha only)
/FLOAT=IEEE_FLOAT (164 only)

/FLOAT=D_FLOAT (VAX only)

/GRANULARITY=option

/GRANULARITY=QUADWORD

/INOJINCLUDE_DIRECTORY=(pathnamel,...])

/NOINCLUDE_DIRECTORY

/IEEE_MODE[=option]

/IEEE_MODE=FAST (Alpha only)

/IEEE_MODE=DENORM_RESULTS (164 only)

/L_DOUBLE_SIZE=option

/L_DOUBLE_SIZE=128

/LIBRARY

See text.

/[NO]JLINE_DIRECTIVES

/LINE_DIRECTIVES

/[NO]LIST[=file-spec]

/NOLIST (interactive mode)

/LIST (batch mode)
/INO]MACHINE_CODE[=option] /NOMACHINE_CODE
/INOIMAIN=POSIX_EXIT /NOMAIN

/[INOJMEMBER_ALIGNMENT

/MEMBER_ALIGNMENT

11

Chapter 1. Developing VSI C Programs

Command Qualifiers

Default

/NOMEMBER_ALIGNMENT (VAX only)

/[INOJMMS_DEPENDENCIES=option

/NOMMS_DEPENDENCIES

/NAMES=(option1,option2)

/NAMES=UPPERCASE, TRUNCATED

/NESTED_INCLUDE_DIRECTORY [=option]

/NESTED_INCLUDE_DIRECTORY

=INCLUDE_FILE

/[INO]JOBJECT|=file-spec] /OBJECT
/[INOJOPTIMIZE|[=(optionl,...])] /OPTIMIZE
/PDSC_MASK=option See text.

/[INOJPLUS_LIST_OPTIMIZE

/NOPLUS_LIST_OPTIMIZE

/[NOJPOINTER _SIZE=option

/NOPOINTER_SIZE

/PRECISION|[=option]

See text.

/[NO]PREFIX_LIBRARY_
ENTRIES[=(option],...])]

See text.

/[NOJPREPROCESS_ONLY [=filename]

/NOPREPROCESS_ONLY

/[INOJPROTOTYPES|[=(optionl[,...])] /NOPROTOTYPES
/PSECT_MODEL=[NO]JMULTILANGUAGE /NOMULTILANGUAGE
/REENTRANCY =option /REENTRANCY=TOLERANT
/REPOSITORY =option /See text.

/ROUNDING_MODE=option

/ROUNDING_MODE=NEAREST

/[INO]JSHARE_GLOBALS

/NOSHARE_GLOBALS

/SHOW |[=(option][,...])]

/SHOW=(NOBRIEF, NOCROSS_REFERENCE,
NODICTIONARY, NOEXPANSION,
NOINCLUDE, NOINTERMEDIATE,
NOMESSAGE, NOSTATISTICS, NOSYMBOLS,
NOTRANSLATION, SOURCE, TERMINAL)

/[NO]STANDARD[=(option][,...])] /NOSTANDARD (equivalent
to /STANDARD=RELAXED)
/[NO]TIE /NOTIE
/[INOJUNDEFINE=(identifier][,...]) /NOUNDEFINE
/[NO]JUNSIGNED_CHAR /NOUNSIGNED_CHAR
/VAXC (VAX only) See text.
/[NO]VERSION /NOVERSION
/[INO]JWARNINGS[=(option][,...])] /WARNINGS

/ ACCEPT=(option[, option])

Allows the compiler to accept C language syntax that it might not normally accept.

VSI C accepts slightly different syntax depending upon the compilation mode specified with
the /STANDARD qualifier. The /ACCEPT qualifier can fine tune the language syntax accepted by

each /STANDARD mode.

The following qualifier options can be specified:

12

Chapter 1. Developing VSI C Programs

Table 1.1. /ACCEPT Qualifier Options

Option

Usage

[NOJC99_KEYWORDS

Controls whether or not the C99 Standard keywords i nl i ne and
restrict (which are in the C89 namespace for user identifiers)
are accepted without double leading underscores. The spelling with
two leading underscores (__i nli ne, __restrict)isin the
namespace reserved to the compiler implementation and is always
recognized as a keyword regardless of this option.

[NO]JGCCINLINE

The gce compiler implements an i nl i ne function qualifier
for functions with external linkage that gives similar capabilities
as the C99 ext er n i nl i ne feature for functions, but

the usage details are somewhat different: the combination of
externandi nl i ne keywords makes an inline definition,
instead of the exclusive use of the i nl i ne keyword without
the ext er n keyword. This option controls which variation of
the feature is implemented. The default in all compiler modes is
NOGCCINLINE.

[NOJRESTRICT_KEYWORD

Controls whether or not the compiler recognizes the C99 standard
restrict keyword regardless of the STANDARD mode used.

This only affects recognition of the spelling of the keyword as
proposed for inclusion in the C99 standard. The spelling with two
leading underscores, __restri ct, is in the namespace reserved
to the compiler implementation and is always recognized as a
keyword regardless of this option.

Note that [NO]JRESTRICT_KEYWORD is a subset of
[NOJC99_KEYWORDS. They have the same compiler-mode
defaults.

[NO]JTRIGRAPHS

Turns trigraph processing on or off. In COMMON and VAXC
modes, trigraphs are disabled by default. In all other modes, they
are enabled by default.

[NO]JVAXC_KEYWORDS

Controls whether or not the compiler recognizes the VAX C
keywords (such as "readonly") regardless of the /STANDARD
mode used.

The default values are based upon the settings of the /SSTANDARD qualifier:

¢ For /STANDARD=RELAXED, the default is:

/ACCEPT=(VAXC_KEYWORDS,C99_KEYWORDS, NOGCCINLINE,TRIGRAPHS)

¢ For /ISTANDARD=VAXC, the default is:

/ACCEPT=(VAXC_KEYWORDS,NOC99_KEYWORDS, NOGCCINLINE,NOTRIGRAPHS)

¢ For /STANDARD=COMMON, the default is:

/ACCEPT=(NOVAXC_KEYWORDS,NOC99_KEYWORDS, NOGCCINLINE,NOTRIGRAPHS)

e In all other modes, the default is:

/ACCEPT=(NOVAXC_KEYWORDS,NOC99_KEYWORDS, NOGCCINLINE,TRIGRAPHS)

13

Chapter 1. Developing VSI C Programs

/ [NO ANALYSI S_DATA[=fi | e- spec]

Generates a file of source-code analysis information. The default file name is the file name of the
primary source file; the default file type is .ANA. The .ANA file is reserved for use with VSI layered
products. The default is NOANALYSIS_DATA. For more information, see Appendix C.

/ [NO| ANNOTATI ONS[=opt i on]

Controls whether or not the source listing file is annotated with indications of specific optimizations
performed or, in some cases, not performed. These annotations can be helpful in understanding the

optimization process.

If annotations are requested (and the /LISTING qualifier appears on the command line), the source
listing section is shifted to the right and annotation numbers are added to the left of source lines. These
numbers refer to brief descriptions that appear later in the source listing file.

Select one or more of the /ANNOTATIONS qualifier options shown in Table 1.2.

Table 1.2. /ANNOTATIONS Qualifier Options

Option

Usage

ALL

Selects all annotations. This output can be quite verbose
because it includes detailed output for all annotations.
For more concise output for each kind of annotation,
use /ANNOTATIONS=(ALL,NODETAIL), or

just /ANNOTATIONS with no qualifier options.

[NO]JCODE

Annotates the machine-code listing with descriptions of
special instructions used for prefetching, alignment, and so
on. The /MACHINE_CODE qualifier must also be specified
for /ANNOTATION=CODE to have any visible effect.

[NO]DETAIL

Provides additional level of annotation detail, where available.

[NOJFEEDBACK

Indicates use of profile-directed feedback optimizations. Feedback
optimizations are not implemented on OpenVMS systems, so this
keyword has no visible effect.

[NOJINLINING

Indicates where code for a called procedure was expanded inline.

[NOJLOOP_TRANSFORMS

Indicates optimizations such as loop reordering and code hoisting.

[NOJLOOP_UNROLLING

Indicates where advanced loop nest optimizations have been
applied to improve cache performance (unroll and jam, loop
fusion, loop interchange, and so on).

[NO]JPREFETCHING Indicates where special instructions were used to reduce memory
latency.
[NO]SHRINKWRAPPING Indicates removal of code establishing routine context when it is

not needed.

[NO]JSOFTWARE_PIPELINING

Indicates where loops have been scheduled to hide functional unit
latency.

[NO]JTAIL_CALLS

Indicates an optimization where a call from routine A to B can be
replaced by a jump.

[NO]JTAIL_RECURSION

Indicates an optimization that eliminates unnecessary routine
context for a recursive call.

NONE

Same as /NOANNOTATIONS.

14

Chapter 1. Developing VSI C Programs

The default is /NOANNOTATIONS.

Specifying /ANNOTATIONS with no keywords is the same as
specifying /ANNOTATIONS=(ALL,NODETAIL).

/ [NO ANSI _ALI AS

Directs the compiler to assume the standard C aliasing rules. By so doing, the compiler has the freedom
to generate better optimized code.

The aliasing rules referred to are explained in the C Standard, reprinted as follows:

An object shall have its stored value accessed only by an lvalue that has one of the following types:
» the declared type of the object,

* aqualified version of the declared type of the object,

* atype that is the signed or unsigned type corresponding to the declared type of the object,

* atype that is the signed or unsigned type corresponding to a qualified version of the declared type of
the object,

e an aggregate or union type that includes one of the aforementioned types among its members
(including, recursively, a member of a subaggregate or contained union), or

* a character type.

If your program does not access the same data through pointers of a different type (and for this purpose,
signed and qualified versions of an otherwise same type are considered to be the same type), then
assuming standard C aliasing rules allows the compiler to generate better optimized code.

If your program does access the same data through pointers of a different type (for example, by a
"pointer to i Nt " and a "pointer to f | oat "), then you must not allow the compiler to assume standard
C aliasing rules. Otherwise, incorrect code might be generated.

The default is /NOANSI_ALIAS for the /STANDARD=VAXC and /STANDARD=COMMON compiler
modes. The default is /ANSI_ALIAS for all other modes.

/ ARCHI TECTURE

Determines the Alpha or Intel processor instruction set to be used by the compiler.
The /ARCHITECTURE qualifier uses the same keyword options (keywords) as the /OPTIMIZE=TUNE
qualifier.

Where the /OPTIMIZE=TUNE qualifier is primarily used by certain higher-level optimizations
for instruction scheduling purposes, the /ARCHITECTURE qualifier determines the type of code
instructions generated for the program unit being compiled.

OpenVMS Version 7.1 and subsequent releases provide an operating system kernel that includes an
instruction emulator. This emulator allows new instructions, not implemented on the host processor chip,
to execute and produce correct results. Applications using emulated instructions will run correctly, but
may incur significant software emulation overhead at runtime.

All Alpha processors implement a core set of instructions. Certain Alpha processor versions include
additional instruction extensions.

Select one of the /ARCHITECTURE qualifier options shown in Table 1.3.

15

Chapter 1. Developing VSI C Programs

Table 1.3. /ARCHITECTURE Qualifier Options

Option Usage

GENERIC Generates code that is appropriate for all Alpha and Itanium processor
generations. This is the default.

HOST Generates code for the processor generation in use on the system being used
for compilation.
Running programs compiled with this option on other implementations of the
Alpha or Itanium architecture may encounter instruction-emulation overhead.

EV4 (Alpha only) Generates code for the 21064, 21064A, 21066, and 21068 implementations

of the Alpha architecture.

Running programs compiled with the EV4 option will run without
instruction-emulation overhead on all Alpha processors.

EV5 (Alpha only)

Generates code for some 21164 chip implementations of the Alpha
architecture that use only the base set of Alpha instructions (no extensions).

Running programs compiled with the EV5 option will run without
instruction-emulation overhead on all Alpha processors.

EV56 (Alpha only)

Generates code for some 21164 chip implementations that use the byte and
word-manipulation instruction extensions of the Alpha architecture.

Running programs compiled with the EV56 option might incur emulation
overhead on EV4 and EVS5 processors, but will still run correctly on
OpenVMS Version 7.1 (or higher) systems.

PCAS56 (Alpha only)

Generates code for the 21164PC chip implementation that uses the byte-
and word-manipulation instruction extensions and multimedia instruction
extensions of the Alpha architecture.

Running programs compiled with the PCA56 option might incur emulation
overhead on EV4, EV5, and EV56 processors, but will still run correctly on
OpenVMS Version 7.1 (or higher) systems.

EV6 (Alpha only)

Generates code for the first-generation 21264 implementation of the Alpha
architecture.

EV67 (Alpha only)

Generates code for the second-generation 21264 implementation of the
Alpha architecture.

ITANIUM2 (164 only)

Generates code for the Intel Itanium 2 processor.

[/ ASSUME=(opt i on, .

)

Controls compiler assumptions. You can select one or more of the qualifier options described in

Table 1.4.

Table 1.4. /ASSUME Qualifier Options

Option

Usage

[NOJACCURACY_SENSITIVE Specifies whether certain code transformations that affect

floating-point operations are allowed. These changes may or
may not affect the accuracy of the program's results.

16

Chapter 1. Developing VSI C Programs

Option

Usage

[NOJALIGNED_OBJECTS

Controls an optimization for dereferencing pointers.

[NO]JCLEAN_PARAMETERS

Controls compiler assumptions about short-integer formal
parameters.

[NOIJEXACT_CDD_OFFSETS

Controls the alignment of Control Data Dictionary records.

[NOJHEADER_TYPE_DEFAULT

Controls whether or not the default file-type mechanism for
header files is enabled.

[NO]MATH_ERRNO

Controls whether or not intrinsic code is generated for math
functions that set the errno variable.

[NOJPOINTERS_TO_GLOBALS

Controls whether or not the compiler can safely assume that
global variables have not had their addresses taken in code
that is not visible to the current compilation.

[NOJWEAK_VOLATILE

Affects the generation of code for assignments to objects
that are less than or equal to 16 bits in size that have been
declared as volatile.

[NOJWHOLE_PROGRAM

Asserts to the compiler that except for "well-behaved library
routines," the whole program consists only of the single
object module being produced by this compilation.

[NOJWRITABLE_STRING_
LITERALS

Stores string constants in a writable psect. Otherwise, such
constants are placed in a nonwritable psect.

The following sections describe these options in greater detail.

[NO] ACCURACY_SENSI TI VE

The default is ACCURACY_SENSITIVE.

If you specify NOACCURACY_SENSITIVE, the compiler is free to reorder floating-point operations
based on algebraic identities (inverses, associativity, and distribution). This allows the compiler to move
divide operations outside of loops, which improves performance.

The default, ACCURACY _SENSITIVE, directs the compiler to use only certain scalar rules for
calculations. This setting can prevent some optimizations.

If you use the /ASSUME=NOACCURACY _SENSITIVE qualifier, VSI C might reorder code (based
on algebraic identities) to improve performance. The results can be different from the default (/
ASSUME=ACCURACY_SENSITIVE) because of how the intermediate results are rounded. However,
the NOACCURACY_SENSITIVE results are not categorically less accurate than those gained by the

default.

[NOJ ALI GNED_OBJECTS

The default is /ASSUME=ALIGNED_OBIJECTS.

On OpenVMS Alpha and 164 systems, dereferencing a pointer to a longword- or quadword-aligned
object is more efficient than dereferencing a pointer to a byte- or word-aligned object. Therefore, the

compiler can generate more optimized code if it makes the assumption that a pointer object of an aligned
pointer type does point to an aligned object.

Since the compiler determines the alignment of the dereferenced object from the type of the pointer, and
the program is allowed to compute a pointer that references an unaligned object (even though the pointer

17

Chapter 1. Developing VSI C Programs

type indicates that it references an aligned object), the compiler must assume that the dereferenced
object's alignment matches or exceeds the alignment indicated by the pointer type. Specifying /
ASSUME=ALIGNED_OBJECTS (the default) allows the compiler to make such an assumption. With
this assumption made, the compiler can generate more efficient code for pointer dereferences of aligned
pointer types.

To prevent the compiler from assuming the pointer type's alignment for objects that it points to, use the /
ASSUME=NOALIGNED_OBJECTS qualifier.

Before deciding whether to specify /ASSUME=NOALIGNED_OBJECTS
or /ASSUME=ALIGNED_OBJECTS, you need to know what programming practices will affect your
decision.

The compiler assumes that pointers point to objects that are aligned at least as much as the alignment of
the pointer type. For example:

* A pointer of type shor t points to objects that are at least Shor t -aligned.
* A pointer of type i nt points to objects that are at least i nt -aligned.

* A pointer of type St ruct f 00 points to objects that have an alignment of St r uct f 0o (that is,
the alignment of the strictest member alignment, or byte alignment if you have specified #pr agnma
nonenber _al i gnnent forstruct foo0).

If your module breaks this rule, your program will suffer alignment faults at runtime that can seriously
degrade performance. If you can identify the places in your code where the rule is broken, use the
__unal i gned type qualifier. Otherwise, the /ASSUME=NOALIGNED_OBJECTS qualifier
effectively treats all dereferences as if they were unaligned.

On OpenVMS Alpha and 164 systems, VSI C aligns all nonmember declarations on natural boundaries,
so by default all objects do comply with the previous assumption. Also, the standard library routine
mal | oc on OpenVMS systems returns quadword-aligned heap memory.

A program can violate the previous assumption in any of the following ways:

* By explicitly specifying a lesser alignment for an object than the pointer type's alignment
* By casting a pointer to a pointer type of stricter alignment

* By enclosing a member-aligned object inside a nonmember-aligned object

The following example explicitly specifies a lesser alignment for an object than the pointer type's
alignment, which occurs when the address of an unaligned i nt member of a St r uct with #pr agma
nonmenber _al i gnnent is used in a pointer dereference:

#pragma nomember_alignment
struct foo {
char C;
int i; /* 1 is unaligned because of char C */

bi

struct foo st;
int *i_p;

i_p = &st.i;

i_p ... / An expression containing a dereferenced i_p */

18

Chapter 1. Developing VSI C Programs

This example casts a pointer to a pointer type with stricter alignment:

int *i_p;
char *c_p;
i_p = (int *)c_p;
i_p ... / An expression containing a dereferenced i_p */

The following example encloses a member-aligned object inside a nonmember-aligned object:

fpragma member_alignment
struct inside {
int i; /* this type asserts that its objects have at least
longword alignment (int is a longword)... */

bi

fpragma nomember_alignment
struct outside {

char C;

struct inside s; /* ...but foo_ptr -> s is only byte—-aligned! */
} *foo_ptr;

The expression f 00_ptr -> s has a type whose alignment is explicitly specified to be longword
(because longword is the strictest alignment of the structure's members), but the expression type is only
guaranteed to be byte-aligned.

Also note that just as the pointer type information can direct the compiler to generate the appropriate
code to dereference the pointer (code that does not cause alignment faults), it can also direct the
compiler to generate even better code if it indicates that the object is at least longword-aligned.

[NO CLEAN_PARAMETERS
The default is /ASSUME=CLEAN_PARAMETERS.

The OpenVMS Alpha and 164 Calling Standards require integers less than 64 bits long that are passed
by value to have their upper bits either zeroed or sign-extended to make full 64-bit values. These are
referred to as clean parameters. Some old code does not follow this convention. This can cause problems
if the called program assumes that the caller followed the Calling Standard by passing only clean
parameters.

Specifying /ASSUME=NOCLEAN_PARAMETERS allows a program to be called by old code that
might pass unclean integer parameters. It directs the compiler to generate run-time code to clean the
short integers so they comply with the Calling Standard.

[NO| EXACT_CDD_OFFSETS
The default is /ASSUME=NOEXACT_CDD_OFFSETS.

If /ASSUME=EXACT_CDD_OFFSETS is specified, the records input from the CDD are given the
exact alignment (relative to the start of the record) specified by the CDD definition. This alignment is
independent of the current compiler member-alignment setting.

If /ASSUME=NOEXACT_CDD_OFFSETS is specified, the compiler may modify the offsets specified
in a CDD record according to the current member-alignment setting.

19

Chapter 1. Developing VSI C Programs

[NO HEADER _TYPE_DEFAULT
The default is /ASSUME=HEADER_TYPE_DEFAULT.

In past versions of the C compiler, the #i ncl ude directive always supplied a default file type of .h for
C compilations. Similarly, the C++ compiler supplied a default file type of .hxx for C++ compilations.

However, the C++ standard requires that, for example, #i ncl ude <i ostr ean® be distinguishable
from #i ncl ude <i ostream hxx>. This is not possible with the header file-type default
mechanism in effect.

You can disable the type default mechanism for either VSI C or VSI C++ by
specifying /ASSUME=NOHEADER_TYPE_DEFAULT.

With /ASSUME=NOHEADER_TYPE_DEFAULT specified, an #i ncl ude directive written with the
standard syntax for header name (enclosed in quotes or angle brackets) will use the filename as specified,

nn

without supplying a default file type. More precisely stated, the default file type will be empty (just ".").

For example, a directory might contain three files named IOSTREAM., IOSTREAM.HXX, and
IOSTREAM.H. By default, the C++ compiler processes #i ncl ude <i ost r ean® such that the file
IOSTREAM.HXX is found, while the C compiler would find IOSTREAM.H.

However, if /ASSUME=NOHEADER_TYPE_DEFAULT is specified, the same directive causes

the file IOSTREAM. to be found by both compilers, and the only way to include the file named
IOSTREAM.HXX or IOSTREAM.H is to specify the .hxx or .h file type explicitly in the #i ncl ude
directive. Be aware that while the OpenVMS operating system treats filenames as case-insensitive and
normally displays them in uppercase, filenames in #i ncl ude directives should use lowercase for best
portability. This is more in keeping with other C and C++ implementations.

[NO| MATH_ERRNO

The default is /ASSUME=MATH_ERRNO, which does not allow intrinsic code for such math functions
to be generated, even if /OPTIMIZE=INTRINSICS is in effect. Their prototypes and call formats,
however, are still checked.

[NO PO NTERS_TO GLOBALS

The default is /ASSUME=POINTER_TO_GLOBALS, which directs the compiler to assume that global
variables have had their addresses taken in separately compiled modules and that, in general, any pointer
dereference could be accessing the same memory as any global variable. This is often a significant
barrier to optimization.

The /ANSI_ALIAS command-line qualifier allows some resolution based on data type,
but /ASSUME=NOPOINTER_TO_GLOBALS provides significant additional resolution and improved
optimization in many cases.

/ASSUME=NOPOINTER_TO_GLOBALS tells the compiler that any global variable accessed through a
pointer in the compilation must have had its address taken within that compilation. The compiler can see
any code that takes the address of an extern variable. If it does not see the address of the variable being
taken, the compiler can assume that no pointer points to the variable.

Consider the following code sequence:

extern int x;

int *p;

20

Chapter 1. Developing VSI C Programs

po= 35

Under /ASSUME=NOPOINTERS_TO_GLOBALS, the compiler can assume that X is not changed by
the assignment through p when generating code. This can lead to faster code.

In combination with the /PLUS_LIST_OPTIMIZE qualifier, several source modules can be treated as
a single compilation for the purpose of this analysis. Because run-time libraries such as the VSI C RTL
do not take the addresses of global variables defined in user programs, source modules can often be
combined into a single compilation that allows /ASSUME=NOPOINTER_TO_GLOBALS to be used
effectively.

Be aware that /ASSUME=NOPOINTERS_TO_GLOBALS does not tell the compiler that the
compilation never uses pointers to access global variables (which is seldom true of real C programs).

[NO WEAK_VOLATI LE

This option affects the generation of code for assignments to objects that are less than or equal to 16 bits
in size (for example: char, short) that have been declared as volatile.

Specifying /ASSUME=WEAK_VOLATILE directs the compiler to generate code for volatile
assignments to single bytes or words without using the load-locked store-conditional sequences that,
in general, are required to assure volatile data integrity when direct byte or word memory-access
instructions are not being used.

This option is intended for use in special I/O hardware access situations, and should not generally be
used.

The default is /ASSUME=NOWEAK_VOLATILE, which uses interlocked instructions for sub-longword
volatile accesses when byte or word instructions are not enabled.

[NO| WHOLE_PROGRAM
The default is /ASSUME=NOWHOLE_PROGRAM.

The optimizations enabled by /ASSUME=WHOLE_PROGRAM include all those enabled
by /ASSUME=NOPOINTER_TO_GLOBALS, and possibly additional optimizations as well.

[NO WRI TABLE_STRI NG _LI TERALS

For /STANDARD=VAXC or /STANDARD=COMMON, the default
is /ASSUME=WRITABLE_STRING_LITERALS.

For all other compiler modes, the default is /ASSUME=NOWRITABLE_STRING_LITERALS.

/ [NQ CHECK[= ([NOJ UNI NI TI ALI ZED_VARI ABLES, [NO BOUNDS [NO PO NTER_SI ZE[=(opt i
This qualifier is for use as a debugging aid.

/ CHECK=UNI NI TI ALl ZED_VARI ABLES

/CHECK=UNINITIALIZED_VARIABLES initializes all automatic variables to the value
OxfffaSaSafffaSaSa. This value is a floating NaN and, if used, causes a floating-point trap. If used as a
pointer, this value is likely to cause an ACCVIO.

| CHECK=BOUNDS

/CHECK=BOUNDS enables run-time checking of array bounds. Array-bounds processing is performed
in the following way:

21

Chapter 1. Developing VSI C Programs

Checks are done only when accessing an array.

Checks are not done when accessing a pointer, even if that access is done using the subscript
operator. This means that checks are not done on arrays declared as formal parameters because
they are considered pointers in the C language. If a formal parameter is a multi-dimension array, all
bounds except the first are checked.

If an array is accessed using the subscript operator (as either the left or right operand), and the
subscript operator is not the operand of an address-of operator, the check is for the index to be
between 0 and the number of array elements minus one, inclusive.

If an array is accessed using the subscript operator (as either the left or right operand), and the
subscript operator is the operand of the address-of operator, the check is for the index to be between
0 and the number of elements in the array, inclusive.

The reason for treating the address-of case differently is that it is common programming practice to
have a loop such as:

int a[10];
int *b;
for (b = a ; b < &a[10] ; b++) { }

In this case, access to &a[10] is allowed even though it is outside the range of the array.

If the array is being accessed using pointer addition, the check is for the value being added to be
between O and the number of elements in the array, inclusive.

If the array is being accessed using pointer subtraction (that is, the subtraction of an integer value
from a pointer, not the subtraction of one pointer from another), the check is for the value being
subtracted to be between the negation of the number of elements in the array and 0, inclusive.

In the previous three cases, an optional compile-time message (ident SUBSCRBOUNDS?2) can be
enabled to detect the case where an array has been accessed using either a constant subscript or
constant pointer arithmetic, and the element accessed is exactly one past the end of the array.

Bounds checking is not done for arrays declared with one element. (Because standard C does not
allow arrays without dimensions inside St r uct s, it is common practice to declare such arrays with
a bounds specifier of 1.)

In this case, an optional compile-time message (ident SUBSCRBOUNDS1) can be enabled to detect
the case where an array declared with a single element is accessed using either a constant subscript or
constant pointer arithmetic, and the element accessed is not part of the array.

VSI C emits run-time checks for arrays indexed by constants, even though the compiler can and does
detect this situation at compile-time. An exception is that no run-time check is made if the compiler
can determine that the access is valid.

Here are examples of some array references:

int a[10];
int *b;
int c¢;

int *d;
int vlal[c];
int one[1l];

22

Chapter 1. Developing VSI C Programs

alc] = 1; // check c is from 0-9

blc] = 1; // no check

cla] = 1; // check c is from 0-9

b = &alc] // check ¢ is from 0-10

*(a + c) = 1; // check ¢ is from 0-10

*(a — c) = 1; // check c is from -10 to O

d=a+ c; // check that ¢ is from 0-10

d=Db + c; // no check

all] = 1; // no run—-time check - know access is valid

vlial[l] = 1; // run—-time check

a[l0] = 1; // run—-time check (and compiler diagnostic)

d=a + 10; // no run-time check, optional SUBSCRBOUNDS2
// message can be enabled

c = onel[5]; // no run—-time check, optional SUBSCRBOUNDSI1
// message can be enabled

e If a multi-dimension array is accessed, the compiler performs checks on each of the subscript
expressions, making sure each is within the corresponding bound. So for the following code, the
compiler checks that both x and y are between 0 and 9. It does not check that 10 * x + yis
between 0 and 99:

int a[10][10];
int x,vy,2z;

x = a[x]lyl;

Notes

* Because of operating system differences, the behavior of the run-time array-bounds checking is
different on UNIX systems than on OpenVMS systems.

If there is no handler, an OpenVMS program fails with:

$SYSTEM-F-SUBRNG, arithmetic trap, subscript out of range at
PC=xxx, PS=xxx
$TRACE-F-TRACEBACK, symbolic stack dump follows

On UNIX systems, the output would be:

Trace/BPT trap (core dumped)

Furthermore, to trap the error on OpenVMS systems, a user needs to write:
signal (SIGFPE, handler);

While on UNIX systems, the equivalent line would be:

signal (SIGTRAP, handler);

* When run-time checking is enabled, the VSI C compiler emits a bad check in certain cases. These
cases arise when an array is accessed using pointer arithmetic and run-time array-bounds checking
is enabled. In such a case, the compiler can output only the checking code for the first pointer-
arithmetic operation performed on the array. This can result in an incorrect check if the resulting
pointer value is again operated on by pointer arithmetic.

Consider the following expression where a is a pointer, C is an array, and ¢ and d are integers:

a=Db+c-d;

Chapter 1. Developing VSI C Programs

When bounds checking is enabled, the compiler outputs a check to verify that C is within the bounds
of the array. This leads to an incorrect run-time trap in cases where C is outside the bounds of the
array and ¢ - d is not.

In these cases, the compiler outputs a diagnostic noting that the check code it produced is bad.
You can then recode the pointer expression so that the integer part is in parentheses. In this way,
the expression will contain only one pointer-arithmetic operation, and the compiler will output the
correct check. In the previous example, the expression would be changed to:

a=>b + (c - d);

| CHECK=PO NTER_SI ZE

/CHECK=POINTER_SIZE directs the compiler to generate code that checks 64-bit pointer values

(used in certain contexts where 32-bit pointers are also present) to make sure they will fit in a 32-bit
pointer. If such a value cannot be represented by a 32-bit pointer, the run-time code signals a range error
(SS$_RANGEERR).

To control the types of pointer-size checks you want made, use one or more of the POINTER_SIZE
option keywords shown in Table 1.5.

Table 1.5. /CHECK=POINTER_SIZE Qualifier Options

Option Usage

[NO]JASSIGNMENT Check whenever a 64-bit pointer is assigned to a 32-bit pointer
(including use as an actual argument).

[NO]CAST Check whenever a 64-bit pointer is cast to a 32-bit pointer.

[NOJINTEGER_CAST Check whenever a long pointer is cast to a 32-bit integer.

[NOJPARAMETER Check all formal parameters at function startup to make sure that all
formal parameters declared to be 32-bit pointers are 32-bit values.

ALL Do all checks.

NONE Do no checks.

Specifying /CHECK=POINTER_SIZE defaults
to /CHECK=POINTER_SIZE=(ASSIGNMENT,PARAMETER).

For information about compiler features that affect pointer size, see the following:
* /POINTER_SIZE

e #pragna pointer_size

* #pragma required_pointer_size

* I NITI AL_PO NTER_SI ZE predefined macro

The following contrived program contains a number of pointer assignments. The comment on each line
indicates what /CHECK=POINTER_SIZE keyword to specify to enable checking for that line.

fpragma required_pointer_size long
int *aj;

char *b;

typedef char * 1_char_ptr;

24

Chapter 1. Developing VSI C Programs

#fpragma required_pointer_size short

char *c;
int *d;
foo(int * e) /* Check e if PARAMETER is specified. */
{
d = a; /* Check a if ASSIGNMENT is specified. */
c = (char *) a; /* Check a if CAST is specified. */
c = (char *) d; /* No checking ever. */
foo(a); /* Check a if ASSIGNMENT is specified. */
bar(a); /* No checking ever - no prototype */
b = (l_char_ptr) a; /* No checking ever. */
c = (l_char_ptr) a; /* Check a if ASSIGNMENT is specified */
b = (char *) a; /* Check if CAST is specified. */

}
| CHECK=[NO| FP_MODE (164 onl y)

/CHECK=FP_MODE generates code in the prologue of every function defined in the compilation to
compare the current values of certain fields in the processor's floating-point status register (FPSR) with
the values expected in those fields based on the command-line qualifiers with which the function was
compiled.

The values checked are the rounding mode and the trap-enable bits:

» If the rounding mode is not consistent with the value of the /ROUNDING_MODE qualifier specified
at compile time, an informational message SYSTEM-I-FPMODERC is issued at runtime, citing the
current mode and the compile-time specified mode (Note that /ROUNDING_MODE=DYNAMIC is
treated the same as /ROUNDING_MODE=NEAREST for this purpose).

» If the trap-enable flags are not consistent with the setting of the /IEEE qualifier
(for /[FLOAT=IEEE_FLOAT compilations) or with the setting used to implement VAX floating
types (for /[FLOAT=G_FLOAT or /FLOAT=D_FLOAT compilations), an informational message
SYSTEM-I-FPMODECTL is issued at run time, citing the current trap-enable flags as well as the
trap-enable flags expected by the compilation. To identify the point of failure, you need to rerun the
program under DEBUG and issue "SET BREAK/EXCEPTION".

Note that the checking code generated for /CHECK=FP_MODE includes a standard call to
OTS$CHECK_FP_MODE within the prologue of each function, and OTSSCHECK_FP_MODE itself
assumes the standard calling conventions (described in the OpenVMS Calling Standard). Because

of this, it is not possible to use this checking option when compiling function definitions that have

a nonstandard linkage (see #pr agnma | i nkage and #pr agma use_| i nkage) specifying
conventional scratch registers with the PRESERVED or NOTUSED attribute. Doing so will cause

the compiler to issue the "REGCONFLICT" E-level diagnostic at the opening brace of such function
definitions. To compile such functions successfully, the FP_MODE keyword must be removed from the
list of /CHECK= keywords.

Defaults

Omitting this qualifier defaults to /NOCHECK, which equates
to /CHECK=(NOUNINITIALIZED_VARIABLE,NOBOUNDS,NOPOINTER_SIZE,NOFP_MODE).

Specifying /CHECK defaults to /CHECK=(UNINITIALIZED_VARIABLES,BOUNDS,
POINTER_SIZE=(ASSIGNMENT,PARAMETER),FP_MODE).

/ [NO| COMMENTS=opt i on

25

Chapter 1. Developing VSI C Programs

Governs whether or not comments appear in preprocess output files and, if they are to appear, whether
they appear themselves or are replaced by a single space.

Table 1.6 shows the /COMMENTS qualifier options.

Table 1.6. /COMMENTS Qualifier Options

Option Usage
AS_IS Specifies that the comment appears in the output file.
SPACE Specifies that a single space replaces the comment in the output file.

/NOCOMMENTS specifies that nothing replaces the comment in the output file. This can result in
inadvertent token pasting.

The VSI C preprocessor might replace a comment at the end of a line or on a line by itself with nothing,
even if /COMMENTS=SPACE is specified. Doing so does not change the meaning of the program.

The default is /COMMENTS=SPACE for the ANSI89, RELAXED, and MIA modes of the compiler.
The default is / NOCOMMENTS for all other compiler modes.

Specifying /COMMENTS on the command line defaults to /COMMENTS=AS_]IS.
/ [NO CROSS_REFERENCE
Specifies whether the compiler generates cross-references for variable names.

If you specify /CROSS_REFERENCE, the compiler lists, for each variable referenced in the procedure,
the line numbers of the lines on which the variable is referenced.

This qualifier has no effect unless you also specify /LIST and either /SHOW=SYMBOLS
or /SHOW=BRIEF. The default is/NOCROSS_REFERENCE.

/[NO DEBUF =(option[, .])]

Includes information in the object module for use by the OpenVMS Debugger.

If the /DEBUG qualifier is not specified, the default is:

* /DEBUG=(TRACEBACK,NOSYMBOLS) on Alpha systems.

* /DEBUG=(TRACEBACK,NOINLINE,NOSYMBOLS) on VAX systems.
Specifying /DEBUG with no keywords is equivalent to specifying /DEBUG=ALL.

Table 1.7 describes the debugger options.

Table 1.7. Debugger Compilation Options

Option Usage

ALL Includes symbol table records and traceback records for both VAX and Alpha
systems. On VAX systems, this also selects the behavior of the INLINE
keyword.

On Alpha and 164 systems, /[DEBUG=ALL is equivalent
to /DEBUG=(TRACEBACK,SYMBOLYS).

On VAX systems, /DEBUG=ALL is equivalent
to /DEBUG=(TRACEBACK,SYMBOLS,INLINE).

26

Chapter 1. Developing VSI C Programs

Option Usage
INLINE (VAX only) Generates debug information to cause a STEP command to STEP/INTO an
inlined function call.

NOINLINE (VAX only) |Generates debug information to cause a STEP command to STEP/OVER an
inlined function call.

NONE Does not include any debugging information. This is equivalent to /
NODEBUG.

NOTRACEBACK Suppresses generation of traceback records.

NOSYMBOLS Suppresses generation of symbol table records.

SYMBOLS Generates symbol table records.

TRACEBACK Generates traceback records.

/ DECC

Invokes the VSI C compiler.

On OpenVMS VAX systems, the CC command is used to invoke either the VAX C or VSI C compiler.
If your system has a VAX C compiler already installed on it, the VSI C installation procedure provides
the option of specifying which compiler will be invoked by default when just the CC command is used.
To invoke the compiler that is not the default, use the CC command with the appropriate qualifier: CC/
DECC for the VSI C compiler, or CC/VAXC for the VAX C compiler. If your system does not have a
VAX C compiler installed on it, the CC command will invoke the VSI C compiler.

On OpenVMS Alpha and 164 systems, specifying /DECC is equivalent to not specifying it; this qualifier
is supported to provide compatibility with VSI C on OpenVMS VAX systems.

/[NO DEFI NE= (identifier[=definition][,.])
/ [NO UNDEFI NE= (identifier[,.])

Performs the same functions as the #def i ne and #undef preprocessor directives. The /DEFINE
qualifier defines a macro to be substituted for every occurrence of a given identifier in the compilation
unit or units. The /UNDEFINE qualifier cancels a previous definition (but not subsequent ones).
When both /DEFINE and /UNDEFINE are present in a compilation unit or on the CC command

line, /DEFINE is evaluated before /UNDEFINE.

Since /DEFINE and /UNDEFINE are not part of the source file, they are not associated with a listing
line number or source line number. Therefore, when an error occurs in a command-line definition, the
message displayed at the terminal does not indicate a line number. In the listing file, these diagnostic
messages are placed before the source listing in the order that they were encountered. When the
expansion of a definition causes an error at a specific source line in the program, the diagnostics—both
at the terminal and in the listing file—are associated with that source line.

A command line containing the /DEFINE and the /UNDEFINE qualifiers can be long. Continuation
characters cannot appear within quotes or they will be included in the macro stream. The length of a CC
command line cannot exceed the maximum length allowed by DCL.

The /NODEFINE and /NOUNDEFINE qualifiers are provided for compatibility with other DCL
qualifiers. You can use these qualifiers to cancel /DEFINE or /UNDEFINE qualifiers that you have
specified in a symbol that you use to compile VSI C programs.

The defaults are /NODEFINE and /NOUNDEFINE.

27

Chapter 1. Developing VSI C Programs

Usage and Examples

Since the CC command line must be compatible with DCL, the syntax of the /DEFINE
and /UNDEFINE qualifiers differs from the syntax of the #def i ne and #undef preprocessor
directives in the following way:

An equal sign is required after /DEFINE; a space is required after #def i ne. For example, the
following are equivalent:

S CC/DEFINE=TRUE
#define TRUE 1

Note that the value of TRUE on the /DEFINE qualifier is automatically set to 1. Any other value
must be specified. For example, the following are equivalent:

$ CC/DEFINE=MAYBE=2
#define MAYBE 2

DCL converts all input to uppercase unless it is enclosed in quotation marks. For example, the
following are equivalent:

S CC/DEFINE=true
#define TRUE 1

The macro defined on the /DEFINE qualifier must be enclosed in quotation marks if at least one of
the following is true:

* You want to preserve lowercase

* The macro definition contains spaces or characters that would not be valid on the DCL command
line.

e The macro is a function-like macro

For example:

$ CC/DEFINE="true"

$ CC/DEFINE="blank=' '"
$ CC/DEFINE="fl=a+b"

$ CC/DEFINE="funct (a)=2"

Preserves lowercase

Contains and preserves the blank
Contains a '+' character

Defines a function-like macro

Within a macro definition and inside quotation marks, a delimiter can be either an equal sign or a
space, whichever comes first. If an equal sign is the delimiter, the following examples are equivalent:

S CC/DEFINE="true=1"
#define true 1

If a space is the delimiter, the following examples are equivalent:

$ CC/DEFINE="true =1"
#define true =1

In this example, the space, preserved by the quotation marks, serves as the delimiter, assigning t r ue
a value of =1, which is clearly not intended.

Within a definition and outside quotation marks, the only allowed delimiter is an equal sign; a space
terminates the definition. The following definitions, for example, are not recognized by DCL.:

28

Chapter 1. Developing VSI C Programs

$ CC/DEFINE= TRUE
$ CC/DEFINE=(FALSE 0

In the first example, DCL interprets TRUE as a file specification; in the second, DCL flags an invalid
value specification.

* When more than one /DEFINE is present on the CC command line or in a single compilation unit,
only the last /DEFINE is used. Similarly, only the last /UNDEFINE on the CC command line or the
compilation unit is used.

You can pass an equal sign to the compiler in any of the following ways:
$ CC/DEFINE= (EQU==, "equ =", "equal==")

In the first definition, the first equal sign is removed by DCL as the delimiter; the second equal sign

is passed to the compiler. In the second example, the space is recognized as a delimiter because the
definition is inside quotes; therefore, only one equal sign is required. In the third definition, the first
equal sign is recognized as the delimiter and is removed; the second equal sign is passed to the compiler.

You can pass quotation marks in any of the following ways:
$ CC/DEFINE=(QUOTES="""", "funct (b)=printf(")")

In both examples, DCL removes the first and last quotation marks before passing the definition to the
compiler.

Here is a simple use of the /UNDEFINE qualifier to cancel a previous definition of TRUE:

$ CC/UNDEFINE=TRUE

The /UNDEFINE qualifier is useful for undefining the predefined VSI C preprocessor constants. For
example, if you use a preprocessor system identification macro (such as __vaxc, __ VAXC, _ DECC,
or __Vms) to conditionally compile segments of VSI C specific code, you can undefine that constant to
see how the portable sections of your program execute. Consider the following program:

main ()

{

#1if _ DECC

printf ("I'm being compiled with VSI C on an OpenVMS system.");
#else

printf ("I'm being compiled on some other compiler.");

#endif

}

This program produces the following output:

$ CC EXAMPLE.C

$ LINK EXAMPLE.OBJ

$ RUN EXAMPLE.EXE

I'm being compiled with VSI C on an OpenVMS system.

$ CC/UNDEFINE="DECC" EXAMPLE
$ LINK EXAMPLE.OBJ

$ RUN EXAMPLE.EXE
I'm being compiled on some other compiler.

/ [NO DI AGNOSTI CS[=f i | e- spec]

29

Chapter 1. Developing VSI C Programs

Creates a file containing compiler messages and diagnostic information. The default file extension
for a diagnostics file is .DIA. The diagnostics file is used with the Language-Sensitive Editor (LSE).
To display a diagnostics file, enter the command REVIEW/FILE=file-spec while in LSE. For more
information, see Appendix C. The default is NODIAGNOSTICS.

/ ENDI AN=opt i on
This qualifier takes the options BIG or LITTLE.

It controls whether big or little endian ordering of bytes is carried out in character constants. For
example, consider the following declaration:

int foo = 'ABCD';

Specifying /ENDIAN=LITTLE places 'A" in the first byte, 'B' in the second byte, and so on.
Specifying /ENDIAN=BIG places 'D' in the first byte, 'C' in the second byte, and so on.
The default is /ENDIAN=LITTLE.

/ [NQ ERROR_LI M T[=n]

This qualifier limits the number of Error-level diagnostic messages that are acceptable during program
compilation. Compilation terminates when the limit » is exceeded. /NOERROR_LIMIT specifies that
there is no limit on error messages.

The default is /ERROR_LIMIT=30, which specifies that compilation terminates after 31 error messages.
/ EXTERN_MODEL=opt i on

In conjunction with the /[NO]SHARE_GLOBALS qualifier, controls the initial compiler model
for external objects. Conceptually, the compiler behaves as if the first line of the program

being compiled was a #pr agma ext er n_nodel with the model and psect name, if any,
specified by the /EXTERN_MODEL qualifier and with the shr or noshr keyword specified by
the /[NOJSHARE_GLOBALS qualifier.

For example, assume the command line contains the following qualifiers:
/EXTERN_MODEL=STRICT_REFDEF="MYDATA" /NOSHARE

The compiler will behave as if the program begins with the following line:

#pragma extern_model strict_refdef "MYDATA" noshr

Table 1.8 describes the /EXTERN_MODEL qualifier options.

Table 1.8. / EXTERN_MODEL Qualifier Options

Option Usage

COMMON_BLOCK Sets the compiler's ext er n_nodel to the
conmon_bl ock model. This is the model traditionally used
for ext er n data by VAX C.

RELAXED_REFDEF Sets the compiler's ext er n_nodel to the

rel axed_r ef def model. Some declarations are
references and some are definitions. Multiple uninitialized
definitions for the same object are allowed and are resolved
into one by the linker. However, a reference requires that at
least one definition exist.

30

Chapter 1. Developing VSI C Programs

Option Usage

This is the model used by the portable C compiler (pcC) on
UNIX systems.

STRICT_REFDEF [="name" Sets the compiler's ext er n_nodel to the
strict_refdef model. Some declarations are references
and some are definitions. There must be exactly one
definition in the program for any symbol referenced. The
optional name, in quotation marks, is the name of the psect
for any definitions.

This is the model specified by standard C. Use it in a
program that is to be a strict standard-conforming program.

This model is the preferred alternative to the nonstandard
storage-class keywords gl obal def and gl obal ref.

GLOBALVALUE Sets the compiler's ext er n_nodel to the gl obal val ue
model. This model is similar to the st ri ct _ref def
model except that these global objects have no storage;
instead, they are link-time constant values. There are two
cases:

» If the declaration is a standard C reference, the same
object file records are produced as VAX C would
produce for an uninitialized gl obal val ue.

e If the declaration is a standard C definition, the same
object records are produced as VAX C would produce for
an initialized gl obal val ue.

This model is the preferred alternative to the nonstandard
storage-class keyword gl obal val ue.

The default is /EXTERN_MODEL=RELAXED_ REFDEEF. This is different from VAX C, which uses
the common block model for external objects.

/[NQ FI RST_I NCLUDE=(file[, .])
Includes the specified files before any source files. This qualifier corresponds to the UNIX - Fl switch.

This qualifier is useful if you have command lines to pass to the C compiler that are exceeding the
DCL command-line length limit. Using the /FIRST_INCLUDE qualifier can help solve this problem by
replacing lengthy /DEFINE and /WARNINGS qualifiers with #def i ne and #pr agma nessage
preprocessor directives placed in a /FIRST_INCLUDE file.

When /FIRST_INCLUDE=file is specified, file is included in the source as if the line before the first line
of the source was:

#include "file"

If more than one file is specified, the files are included in their order of appearance on the command
line.

The default is /NOFIRST_INCLUDE.

[/ FLOAT=0pt i on

31

Chapter 1. Developing VSI C Programs

Controls the format of floating-point variables.

Table 1.9 describes the /FLOAT qualifier options.

Table 1.9. /FLOAT Qualifier Options

Option Usage

D_FLOAT doubl e variables are represented in D_floating format. The __D_FLOAT macro
is predefined.

G_FLOAT doubl e variables are represented in G_floating format. The _G_FLOAT macro

is predefined.

IEEE_FLOAT f | oat and doubl e variables are represented in IEEE floating-

point format (S_float and T_float, respectively). The _ IEEE_FLOAT
macro is predefined. Use the /IEEE_MODE qualifier for controlling

the handling of IEEE exceptional values. If /IEEE_MODE is not
specified, the default behavior is /[IEEE_MODE=FAST for Alpha systems
and /IEEE_MODE=DENORM_RESULTS for 164 systems.

OpenVMS VAX Systems (VAX only)

On OpenVMS VAX systems, representation of doubl e variables defaults toD_floating format if not
overridden by another format specified with the /FLOAT or /[NO]G_FLOAT qualifier. There is one
exception: if /STANDARD=MIA is specified, G_floating is the default. If you are linking against object-
module libraries, a program compiled with G_floating format must be linked with the object library
DECCRTLG.OLB. (VAX only)

OpenVMS Alpha Systems (Alpha only)

On OpenVMS Alpha systems, representation of doubl e variables defaults to G_floating format if not
overridden by another format specified with the /FLOAT or /[NO]G_FLOAT qualifier.

If you are linking against object-module libraries, and /PREFIX=ALL is not specified on the command
line, then a program compiled with:

* G_FLOAT format must be linked with the object library VAXCRTL.OLB
e D _FLOAT format must be linked with VAXCRTLD.OLB
e TEEE_FLOAT format must be linked with VAXCRTLT.OLB

The VAXCRTLX.OLB, VAXCRTLDX.OLB, and VAXCRTLTX.OLB libraries are used
for the same floating-point formats, respectively, but include support for X_FLOAT format
(/L_DOUBLE_SIZE=128).

If /PREFIX=ALL is specified, then there is no need to link to the above-mentioned *.OLB object
libraries. All the symbols you need are in STARLET.OLB.

164 Systems (164 only)

This section describes floating-point support and application porting considerations for 164 systems.

On OpenVMS 164 systems, /FLOAT=IEEE_FLOAT is the default floating-point representation. IEEE
format data is assumed and IEEE floating-point instructions are used. There is no hardware support
for floating-point representations other than IEEE, although you can specify the /FLOAT=D_FLOAT
or /[FLOAT=G_FLOAT compiler option. These VAX floating-point formats are supported in the 164

32

Chapter 1. Developing VSI C Programs

compiler by generating run-time code that converts VAX floating-point formats to IEEE format to
perform arithmetic operations, and then converts the IEEE result back to the appropriate VAX floating-
point format. This imposes additional run-time overhead and some loss of accuracy compared to
performing the operations in hardware on Alpha and VAX systems. The software support for the VAX
formats is provided to meet an important functional compatibility requirement for certain applications
that need to deal with on-disk binary floating-point data.

On 164 systems, the default for /[IEEE_MODE is DENORM_RESULTS, which is a change from

the default of /IEEE_MODE=FAST on Alpha systems. This means that by default, floating-point
operations may silently generate values that print as Infinity or Nan (the industry-standard behavior),
instead of issuing a fatal run-time error as they would when using VAX floating-point format

or /IEEE_MODE=FAST. Also, the smallest-magnitude nonzero value in this mode is much smaller
because results are allowed to enter the denormal range instead of being flushed to zero as soon as the
value is too small to represent with normalization.

The conversion of VAX floating-point formats to IEEE single and IEEE double floating-point types on
the Intel Itanium architecture is a transparent process that will not impact most applications. All you
need to do is recompile your application. Because IEEE floating-point format is the default, unless your
build explicitly specifies VAX floating-point format options, a simple rebuild for 164 systems will use
the native IEEE formats directly. For the large class of programs that do not directly depend on the VAX
formats for correct operation, this is the most desirable way to build for 164 systems.

When you compile an OpenVMS application that specifies an option to use VAX floating-point on an
164 system, the compiler automatically generates code for converting floating-point formats. Whenever
the application performs a sequence of arithmetic operations, this code does the following:

1. Converts VAX floating-point formats to either IEEE single or IEEE double floating-point formats.
2. Performs arithmetic operations in IEEE floating-point arithmetic.
3. Converts the resulting data from IEEE formats back to VAX formats.

Where no arithmetic operations are performed (VAX float fetches followed by stores), no conversion
will occur. The code handles such situations as moves.

VAX floating-point formats have the same number of bits and precision as their equivalent IEEE
floating-point formats. For most applications the conversion process will be transparent and thus a non-
issue.

In a few cases, arithmetic calculations might have different results because of the following differences
between VAX and IEEE formats:

* Values of numbers represented

* Rounding rules

* Exception behavior

These differences might cause problems for applications that do any of the following:
* Depend on exception behavior

* Measure the limits of floating-point behaviors

* Implement algorithms at maximal processor-specific accuracy

* Perform low-level emulations of other floating-point processors

33

Chapter 1. Developing VSI C Programs

* Use direct equality comparisons between floating-point values, instead of appropriately ranged
comparisons (a practice that is extremely vulnerable to changes in compiler version or compiler
options, as well as architecture)

You can test an application's behavior with IEEE floating-point values by compiling it on an OpenVMS
Alpha system using /FLOAT=IEEE_FLOAT/IEEE_MODE=DENORM. If that produces acceptable
results, then simply build the application on the OpenVMS 164 system using the same qualifier.

If you determine that simply recompiling with an /IEEE_MODE qualifier is not sufficient because your
application depends on the binary representation of floating-point values, then first try building for your
164 system by specifying the VAX floating-point option that was in effect for your VAX or Alpha build.
This causes the representation seen by your code and on disk to remain unchanged, with some additional
run-time cost for the conversions generated by the compiler. If this is not an efficient approach for your
application, you can convert VAX floating-point binary data in disk files to IEEE floating-point formats
before moving the application to an 164 system.

/ GRANULARI TY=o0pt i on

Controls the size of shared data in memory that can be safely accessed from different threads. The
possible size values are BYTE, LONGWORD, and QUADWORD.

Specifying BYTE allows single bytes to be accessed from different threads sharing data in memory
without corrupting surrounding bytes. This option will slow run-time performance.

Specifying LONGWORD allows naturally aligned 4-byte longwords to be accessed safely from different
threads sharing data in memory. Accessing data items of 3 bytes or less, or unaligned data, may result in
data items written from multiple threads being inconsistently updated.

Specifying QUADWORD allows naturally aligned 8-byte quadwords to be accessed safely from different
threads sharing data in memory. Accessing data items of 7 bytes or less, or unaligned data, might result
in data items written from multiple threads being inconsistently updated. This is the default.

/1 EEE_MODE=0pt i on
Selects the IEEE floating-point mode to be used if /FLOAT=IEEE_FLOAT is specified.

Table 1.10 describes the /IEEE_MODE options.

Table 1.10. IEEE_MODE Options

Option Usage

FAST During program execution, only finite values (no infinities, NaNs, or
denorms) are created. Underflows and denormal values are flushed to
zero. Exceptional conditions, such as floating-point overflow, divide-by-
zero, or use of an IEEE exceptional operand are fatal.

UNDERFLOW_TO_ ZERO |Generate infinities and NaNs. Flush denormalized results and underflow
to zero without exceptions.

DENORM_RESULTS Same as UNDERFLOW_TO_ZERO, except that denorms are
generated.
INEXACT Same as DENORM_RESULTS, except that inexact values are trapped.

This is the slowest mode, and is not appropriate for any sort of general-
purpose computations.

On Alpha systems, the default is /IEEE_MODE=FAST.

34

Chapter 1. Developing VSI C Programs

On 164 systems, the default is /[EEE_ MODE=DENORM_RESULTS.

The INFINITY and NAN macros defined in <mat h. h> are available to programs compiled
with /FLOAT=IEEE and /IEEE_MODE={anything other than FAST}, and in a compiler mode that
enables C99 extensions in the headers (any mode other than COMMON or VAXC).

On Alpha systems, the /IEEE_MODE qualifier generally has its greatest effect on the generated code of
a compilation. When calls are made between functions compiled with different /IEEE_MODE qualifiers,
each function produces the /IEEE_MODE behavior with which it was compiled.

On 164 systems, the /IEEE_MODE qualifier primarily affects only the setting of a hardware register

at program startup. In general, the /[EEE_MODE behavior for a given function is controlled by the /
IEEE_MODE option specified on the compilation that produced the main program: the startup code for
the main program sets the hardware register according the command-line qualifiers used to compile the
main program.

When applied to a compilation that does not contain a main program, the /IEEE_MODE qualifier does
have some effect: it might affect the evaluation of floating-point constant expressions, and it is used to
set the EXCEPTION_MODE used by the math library for calls from that compilation. But the qualifier
has no effect on the exceptional behavior of floating-point calculations generated as inline code for

that compilation. Therefore, if floating-point exceptional behavior is important to an application, all of
its compilations, including the one containing the main program, should be compiled with the same /
IEEE_MODE setting.

Even on Alpha systems, the particular setting of /IEEE_MODE=UNDERFLOW_TO_ZERO has this
characteristic: its primary effect requires the setting of a run-time status register, and so it needs to be
specified on the compilation containing the main program in order to be effective in other compilations.

/ [N | NCLUDE_DI RECTORY= (pat hnane[, ..])

Provides similar functionality to the - | option of the cc command on UNIX systems. This qualifier
allows you to specify additional places to search for include files. A place can be one of the following:

* OpenVMS file-spec to be used as a default file-spec to RMS file services (example:
DISKS:[directory])

* UNIX style pathname in quotation marks (example: "/sys")
* Empty string ("")

If one of the places is specified as an empty string, the compiler does not search any of its
conventionally-named places:

DECCSUSER_INCLUDE
DECCS$SYSTEM_INCLUDE
DECCSLIBRARY_INCLUDE
SYS$COMMON:[DECCS$LIB.INCLUDE.*]
DECCSTEXT_LIBRARY
SYSSLIBRARY:DECC$RTLDEF.TLB
SYSSLIBRARY:SYSSSTARLET_C.TLB

Instead, it searches only places specified explicitly on the command line by

the /INCLUDE_DIRECTORY and /LIBRARY qualifiers (or by the location of the primary source
file, depending on the /NESTED_INCLUDE_DIRECTORY qualifier). This behavior is similar to that
obtained by specifying -1 without a directory name to the UNIX cC command.

35

Chapter 1. Developing VSI C Programs

The basic search order depends on the form of the header-file name (after macro expansion). Additional
aspects of the search order are controlled by other command-line qualifiers and the presence or absence
of logical name definitions.

Only the portable forms of the #i ncl ude directive are affected by the pathnames specified on
an /INCLUDE_DIRECTORY qualifier:

* In quotes (example: #i ncl ude "stdi o. h")
» In angle brackets (example: #i ncl ude <stdi o. h>)

However, an empty string also affects the text-module form specific to OpenVMS systems (example:
#i ncl ude stdi o).

Except where otherwise specified, searching a "place" means that the string designating the place is
used as the default file-spec in a call to an RMS system service (for example, SSEARCH/$PARSE).
The file-spec consists of the name in the #i ncl ude directive without enclosing delimiters. The search
terminates successfully as soon as a file can be opened for reading.

Note

Prior to OpenVMS VAX Version 7.1, the operating system did not provide a
SYSSLIBRARY:SYS$STARLET_C.TLB nor the headers contained therein. Instead, the compiler
installation generated these headers and placed them in SYSSLIBRARY:DECCS$RTLDEF.TLB.

Quoted Form

For the quoted form of inclusion, the search order is:
1. One of the following:

* If /NESTED_INCLUDE_DIRECTORY=INCLUDE_FILE (the default) is in effect, search the
directory containing the file in which the #i ncl ude directive itself occurred. The directory
containing means the RMS resultant string obtained when the file in which the #i ncl ude
occurred was opened, except that the filename and subsequent components are replaced by the
default file type for headers (".h", or just "." if /ASSUME=NOHEADER_TYPE_DEFAULT is
in effect). The resultant string will not have translated any concealed device logical.

» If/NESTED_INCLUDE_DIRECTORY=PRIMARY_FILE is in effect, search the default file
type for headers using the context of the primary source file. This means that just the file type
(".h" or ".") is used for the default file-spec but, in addition, the chain of "related file-specs"
used to maintain the sticky defaults for processing the next top-level source file is applied when
searching for the include file. This most closely matches the behavior of the VAX C compiler.

* If /NESTED_INCLUDE_DIRECTORY=NONE is in effect, this entire step (Step 1) is bypassed.

2. Search the places specified in the /INCLUDE_DIRECTORY qualifier, if any. A place that can
be parsed successfully as an OpenVMS file-spec and that does not contain an explicit file type or
version specification is edited to append the default header file type specification (".h" or ".").

A place containing a "/" character is considered to be a UNIX-style name. If the name in the

#i ncl ude directive also contains a "/" character that is not the first character and is not preceded
by a "!" character (it is not an absolute UNIX-style pathname), then the name in the #i ncl ude
directive is appended to the named place, separated by a "/" character, before applying the

36

Chapter 1. Developing VSI C Programs

3.

4,

decc$to_vms pathname translation function. The result of the decc$to_vms translation is then used
as the filespec to try to open.

If DECC$USER_INCLUDE is defined as a logical name, search DECC$USER_INCLUDE:.H, or

just DECC$USER_INCLUDE:. if /ASSUME=NOHEADER_TYPE_DEFAULT is in effect.

If the file is not found, follow the steps for the angle-bracketed form of inclusion.

Angle-Bracketed Form

For the angle-bracketed form of inclusion, the search order is:

1.

Search the place "/". This is a UNIX-style name that can combine only with UNIX names specified
explicitly in the #i ncl ude directive. It causes a specification like to be considered first as /sys/
types.h, which is translated by decc$to_vms to SYS:TYPES.H.

Search the places specified in the /INCLUDE_DIRECTORY qualifier, exactly as in Step 2 for the
quoted form of inclusion.

If DECC$SYSTEM_INCLUDE is defined as a logical name, search
DECC$SYSTEM_INCLUDE:.H, or just DECC$SYSTEM_INCLUDE..
if /ASSUME=NOHEADER_TYPE_DEFAULT is in effect.

If DECCS$LIBRARY_INCLUDE is defined as a logical name and DECC$SYSTEM_INCLUDE
is not defined as a logical name, search DECC$LIBRARY_INCLUDE:.H, or just
DECCSLIBRARY_INCLUDE.. if /ASSUME=NOHEADER_TYPE_DEFAULT is in effect.

If neither DECCSLIBRARY _INCLUDE nor DECC$SYSTEM_INCLUDE are defined as logical
names, then search the default list of places for plain text-file copies of compiler header files as
follows:

SYS$COMMON:[DECCS$LIB.INCLUDE.DECC$RTLDEF]*.H
SYS$COMMON:[DECCSLIB.INCLUDE.SYS$STARLET_CJ*.H

Note

The compiler installation does not create these directories of header files. Instead, it

creates [DECCSLIB.REFERENCE] for your convenience. But if you choose to create and
populate SYS$COMMON:[DECCS$LIB.INCLUDE.DECC$RTLDEF] or SYS$COMMON:
[DECCSLIB.INCLUDE.SYS$STARLET_C], the compiler will search them.

If the file is not found, perform the text library search described in the next step.

Extract the simple filename and file type from the #i ncl ude specification and use the filename as
the module name to search a list of text libraries associated with that file type.

For any file type, the initial text libraries searched consist of those named on the command line
with /[LIBRARY qualifiers, searched in left-to-right order.

If the /INCLUDE_DIRECTORY qualifier contained an empty string, no further text libraries are
searched. Otherwise, DECC$TEXT_LIBRARY is searched for all file types.

If DECCS$LIBRARY_INCLUDE is defined as a logical name, then no further text libraries are
searched. Otherwise, the subsequent libraries searched for each file type are:

37

Chapter 1. Developing VSI C Programs

* For a file type of ".h" or ".":

SYSSLIBRARY:DECC$RTLDEF.TLB
SYSSLIBRARY:SYSSSTARLET_C.TLB

* For a file type other then ".h" or ".":
SYSSLIBRARY:SYS$STARLET_C.TLB
7. If the previous step fails, search the following:
SYS$SLIBRARY:.H

Under /ASSUME=NOHEADER_TYPE_DEFAULT, the default file type is modified as usual.

Text-Module Form

For the text-module (nonportable) form of inclusion, the name can only be an identifier. It, therefore, has
no associated file type.

The identifier is used as a module name to search the following:
1. The text libraries named on the command line with /[LIBRARY qualifiers, in left-to-right order.

2. The following list of text libraries in the order shown (unless the /INCLUDE_DIRECTORY qualifier
contains an empty string, in which case no further text libraries are searched):

DECC$TEXT_LIBRARY
SYSSLIBRARY:DECC$RTLDEF.TLB
SYSSLIBRARY:SYS$STARLET_C.TLB

The default for this qualifier is /NOINCLUDE_DIRECTORY.
/ L_DOUBLE_SI ZE=opti on
Determines how the compiler interprets the | ong doubl e type. The qualifier options are 64 and 128.

Specifying /L._DOUBLE_SIZE=64 treats all | ong doubl e references as G_FLOAT, D_FLOAT, or
T_FLOAT, depending on the value of the /FLOAT qualifier.

Specifying /L._DOUBLE_SIZE=128 treats all | ong doubl e references as X_FLOAT.
The default is /L_ DOUBLE_SIZE=128.
/ L1 BRARY

Indicates that the associated input file is a library containing modules of VSI C source text. If the library
specification does not include a file extension, the CC command line assumes the .TLB default type. You
must join the /[LIBRARY qualifier with a file specification in a compilation unit using a plus sign (+);
you cannot place the qualifier at other places on the CC command line. No matter where you place the /
LIBRARY qualifier in a compilation unit, all files in the unit may make reference to modules within that
library. Consider the following example:

$ CC ONE + TWO + THREE/LIBRARY

Files ONE.C and TWO.C can contain references to modules in THREE.TLB. Consider the following
example:

38

Chapter 1. Developing VSI C Programs

$ CC ONE + TWO + THREE/LIBRARY, FOUR

The file FOUR.C cannot contain references to modules in THREE.TLB since FOUR.C is located in a
separate compilation unit separated by a comma. The placement of the library file specification does not
matter. The following command lines are equivalent:

$ CC THREE/LIBRARY + ONE + TWO
$ CC ONE + THREE/LIBRARY + TWO
$ CC ONE + TWO + THREE/LIBRARY

/[NQ LI NE_DI RECTI VES

Governs whether or not #| i ne directives appear in preprocess output files.
The default is /LINE_DIRECTIVES.

[[NQ LI ST[=fil e-spec]

Produces a source program listing. You must specify this qualifier to get a listing. None of the other
qualifiers use /LIST by default.

By default, /LIST creates a listing file with the same name as the source file and with a file extension
of .LIS. If you include a file specification with the /LIST qualifier, the compiler uses that specification to
name the listing file.

In interactive mode, the default is /NOLIST. In batch mode, the default is /LIST. See the descriptions of
the qualifiers /[[NO]JMACHINE_CODE, and /SHOW for related information. (For example, to suppress
compiler messages to the terminal or to a batch log file, use the /SHOW=NOTERMINAL qualifier.)

/ [NO MACHI NE_CCDE[=opt i on]

Lists the generated machine code in the listing file. To produce the listing file, you must also specify /
LIST.

On OpenVMS VAX systems, several formats exist to list machine code. Table 1.11 describes
the /MACHINE_CODE qualifier options.

Table 1.11. /MACHINE_CODE Qualifier Options (VAX only)

Option Usage

AFTER Causes the lines of machine code produced during compilation to print after
all the source code in the listing.

BEFORE Causes lines of machine code produced during compilation to print before
any source code in the listing.

INTERSPERSED Produces a listing consisting of lines of source code followed by the
corresponding lines of machine code. This is the default option.

On OpenVMS Alpha systems, the format of the generated machine code listing is similar to what you
would get using the AFTER keyword on OpenVMS VAX systems.

The default is/ NOMACHINE_CODE.
/[NO MAI N=PCSI X_EXI' T
Directs the compiler to call __posi X_exi t instead of exi t when returning from mai n.

The default is /NOMAIN.

39

Chapter 1. Developing VSI C Programs

/ [NO| MEMBER _AL| GNVENT

Controls whether the compiler naturally aligns data structure members. Natural alignment means that
data structure members are aligned on the next boundary appropriate to the type of the member, rather
than on the next byte. For instance, a | ong variable member is aligned on the next longword boundary;
ashort variable member is aligned on the next word boundary.

Any use of the #pr agnma nenber _al i gnnment or #pr agma nonenber _al i gnnment
directives within the source code overrides the setting established by this qualifier. Specifying /
NOMEMBER_ALIGNMENT causes data structure members to be byte-aligned (with the exception of
bit-field members).

On OpenVMS Alpha systems, the default is/ MEMBER_ALIGNMENT.

On OpenVMS VAX systems, the default is/NOMEMBER_ALIGNMENT.

See the description of #pr agma [no] menber _al i gnnment in Section 5.4.13.
/ [NO| MvB_DEPENDENCI ES [=(option[, .])]

Directs the compiler to produce a dependency file. Dependency files list all source files and included
files for each object module. Note that the /OBJECT qualifier has no impact on the dependency file. The
dependency file format is:

object_file_name :<tab><source file name>)
object_file_name :<tab><full path to first include file>)
object_file_name :<tab><full path to second include file>)

Table 1.12 shows the /MMS_DEPENDENCIES qualifier options.

Table 1.12. /MMS_DEPENDENCIES Qualifier Options

Option Usage

FILE[=filespec] Specifies where to save the dependency file. The default file
extension for a dependency file is . Ms. Other than using
this different default extension, /MMS_DEPENDENCY uses
the same procedure that the /OBJECT and /LIST qualifiers
do for determining the name of the output file.

[NOJSYSTEM_INCLUDE_FILES Specifies whether or not to include dependency information
about system include files (those included with #i ncl ude
<fi | enanme>.) If omitted, this option defaults to including
dependency information about system include files.

TARGET=string Specifies the target that appears in the output . s file. The
default is TARGET=""in which case the target is the source
file name with a .OBJ extension, as in previous versions of
the compiler. If you specify any string other than .OBJ, that
string is used as the target. For the special case of .OBJ, the
compiler uses the name of the object file (stripped of any
version number and path) for the MMS target.

Examples:
1. $ CcC/MMS/OBJ=0QUTPUT T.C

This command produces an . N8 file with a target of
T.OBIJ:

40

Chapter 1. Developing VSI C Programs

Option

Usage

2. $ CC/MMS= (TARGET=F00) /OBJ=OUTPUT T.C

This command produces an . M8 file with a target of
FOO:

3. $ CC/MMS=(TARGET=.0BJ) /OBJ=0OUTPUT T.C

This command produces an . s file with a target of
OUTPUT.OBI:

The default is/NOMMS_DEPENDENCY.

/ NAMES=(opt i onl, opti on2)

Optionl converts all definitions and references of external symbols and psects to the case specified.
Table 1.13 lists the option] case values.

Table 1.13. /NAMES Qualifier Optionl Values

Option Usage
UPPERCASE Converts to uppercase.
AS_IS Leaves the case as specified in the source.

Option2 controls whether or not external names greater than 31 characters get truncated or shortened.
Table 1.14 lists the option2 values.

Table 1.14. NAMES Qualifier Option2 Values

Option

Usage

/NAMES=TRUNCATED
(default)

Truncates long external names.

/NAMES=SHORTENED

Shortens long external names.

A shortened name consists of the first 23 characters of the name
followed by a 7-character Cyclic Redundancy Check (CRC) computed
by looking at the full name, and then a "$".

The CRC is generated by calling lib$crc as follows:

long initial_crc = -1;
crc_result = lib$crc(good_crc_table,
&initial_crc,
<descriptor of string to CRC>);

where good_crc_table is:

/*
** Default CRC table:

* %

** This table was taken from Ada's

** generalized name generation algorithm.
** It represents a commonly used CRC

** polynomial known as AUTODIN-II.

** For more information see the VAX

** Macro OpenVMS documentation under the
** CRC VAX instruction.

*/

41

Chapter 1. Developing VSI C Programs

Option

Usage

static const unsigned int good_crc_table[l16] =
{0x00000000, 0x1DB71064, 0x3B6E20C8, 0x26D930AC,
0x76DC4190, O0x6B6B51F4, 0x4DB26158, 0x5005713C,
0xEDB88320, O0xFO00F9344, 0xD6D6A3E8, 0xCB61B38C,
0x9B64C2B0, 0x86D3D2D4, 0xAOQOAE278, O0xBDBDF21C};

The default is /NAMES=(UPPERCASE,TRUNCATED), which provides the same conversion-to-
uppercase behavior as VAX C, and truncates the name to 31 characters.

Note

On OpenVMS VAX systems, the /NAMES qualifier does not affect the names of the $CODE and

$DATA psects.

On OpenVMS Alpha systems, the /NAMES qualifier does not affect the names of the SABS$, BSS,
$CODES$, $DATAS, SLINKS, SLITERALS, and SREADONLY$ psects.

Specifying /NAMES=SHORTENED turns on the /REPOSITORY qualifier.

/ NESTED_| NCLUDE_DI RECTORY [=opt i on]

Controls the first step in the compiler's search algorithm for finding files that are included using the
quoted form of the #i ncl ude preprocessing directive:

#include "file-spec"

Table 1.15 describes the /NESTED_INCLUDE_DIRECTORY qualifier options.

Table 1.15. /NESTED_INCLUDE_DIRECTORY Qualifier Options

Option

Usage

PRIMARY_FILE

Directs the compiler to search the default file type for headers using the
context of the primary source file (the .C file). This means that just the file
type (".h" or ".") is used for the default file-spec, but the chain of "related
file-specs" used to maintain the sticky defaults for processing the next top-
level source file is also applied when searching for the include file. This most
closely matches the behavior of VAX C.

INCLUDE_FILE

Directs the compiler to first search the directory of the source file containing
the #i ncl ude directive. If the file to be included is not found, the compiler
continues searching by following normal inclusion rules.

NONE

Directs the compiler to skip the first step of processing #i ncl ude
"file.h" directives. The compiler starts its search for the include file in
the /INCLUDE_DIRECTORY directories. It does not start by looking in the
directory containing the including file or in the directory containing the top
level source file.

The default is /NESTED_INCLUDE_DIRECTORY=INCLUDE_FILE.

/[NO OBJECT[=fi | e- spec]

Produces an object module. By default, /OBJECT creates an object module file with the same name as
that of the first source file of a compilation unit and with the .OBJ file extension. If you include a file
specification with /OBJECT, the compiler uses that specification instead.

42

Chapter 1. Developing VSI C Programs

The compiler executes faster if it does not have to produce an object module. Use the /NOOBJECT
qualifier when you need only a listing of a program or when you want the compiler to check a source file
for errors. The default is /OBJECT.

Note that the /OBJECT qualifier has no impact on the output file of the /MMS_DEPENDENCIES
qualifier.

/[NQ OPTI M ZE[=(option[, .]})]
Determines whether VSI C performs code optimizations.

You can specify the options described in Table 1.16.

Table 1.16. /OPTIMIZE Qualifier Options

Usage
Option

[NO]DISJOINT (VAX only) Optimizes the generated machine code. For example, the compiler
eliminates common subexpressions, removes invariant expressions
from loops, collapses arithmetic operations into 3-operand
instructions, and places local variables in registers.

When debugging VSI C programs, use

the /OPTIMIZE=NODISJOINT option if you need minimal
optimization; if optimization during debugging is not important, use
the /NOOPTIMIZE qualifier.

[NO]JINLINE[=keyword] Provides inline expansion of functions that yield optimized code

when they are expanded. You can specify one of the following
keywords to control inlining:

NONE No inlining is done, even if requested by the
language syntax.
MANUAL Inlines only those function calls for which the

program explicitly requests inlining.

AUTOMATIC |Inlines all of the function calls in the MANUAL
category, plus additional calls that the compiler
determines are appropriate on this platform.

On Alpha systems, this is the same as SIZE;

on 164 systems, this is the same as SPEED.
AUTOMATIC is the default.

SIZE Inlines all of the function calls in the MANUAL
category plus any additional calls that the
compiler determines would improve run-time
performance without significantly increasing the
size of the program.

SPEED Performs more aggressive inlining for run-time
performance, even when it might significantly
increase the size of the program.

ALL Inlines every call that can be inlined while still
generating correct code. Recursive routines,
however, will not cause an infinite loop at compile
time.

43

Chapter 1. Developing VSI C Programs

Option

Usage

Note that /OPT=INLINE=ALL is not
recommended for general use, because it
performs very aggressive inlining and can cause
the compiler to exhaust virtual memory or take an
unacceptably long time to compile.

The #pr agma noi nl i ne preprocessor directive can be used

to prevent inlining of any particular functions under the compiler-
selected forms of inlining (SPEED, SIZE, or AUTOMATIC).

The #pragma i nl i ne preprocessor directive (or the __i nl i ne
storage-class modifier for OpenVMS Alpha systems) can be used

to request inlining of specific functions under the AUTOMATIC or
MANUAL forms of inlining.

[NOJINTRINSICS

Controls whether or not certain functions are handled as intrinsic
functions without explicitly enabling each of them as an intrinsic
through the #pr agma i nt ri nsi ¢ preprocessor directive. An
intrinsic function is an apparent function call that could be handled
as an actual call to the specified function, or could be handled by
the compiler in a different manner. By treating the function as an
intrinsic, the compiler can often generate faster code. (Contrast with
a built-in function, which is an apparent function call that is never
handled as an actual function call. There is never a function with the
specified name.)

See Section 5.4.10 for a list of functions that can be handled as
intrinsics.

The /OPTIMZE=INTRINSICS qualifier works together
with /OPTIMIZE=LEVEL=n and some other qualifiers to determine
how intrinsics are handled:

» If the optimization level specified is less than 4, the intrinsic-
function prototypes and call formats are checked, but normal
run-time calls are still made.

» If the optimization level is 4 or higher, intrinsic code is
generated.

* If /STANDARD=ANSIS9 is specified, nonstandard functions
are not automatically intrinsic and do not even have their
prototypes checked. They are only checked if the nonstandard
functions are made intrinsic through #pr agna intrinsic.

* Intrinsic code is not generated for math functions that set
the errno variable unless /ASSUME=NOMATH_ERRNO
is specified. Such math functions, however, do have their
prototypes and call formats checked.

The default is /OPTIMIZE=INTRINSICS, which turns on this
handling.

44

Chapter 1. Developing VSI C Programs

Option

Usage

To turn it off, specify /NOOPTIMIZE
or /OPTIMIZE=NOINTRINSICS, or specify an optimization level
less than 4.

LEVEL=n

Selects the level of optimization. Specify an integer from 0 (no
optimization) to 4 (full optimization):

0

Disables all optimizations. Does not check for
unassigned variables.

Includes level 1 optimizations. Enables global
optimization. This includes data-flow analysis,
code motion, strength reduction and test
replacement, split lifetime analysis, and code
scheduling.

Includes level 2 optimizations. Enables additional
global optimizations that improve speed (at the
cost of extra code size), for example: integer
multiplication and division expansion (using
shifts), loop unrolling, and code replication to
eliminate branches.

Includes level 2 optimizations. Enables additional
global optimizations that improve speed (at the
cost of extra code size), for example: integer
multiplication and division expansion (using
shifts), loop unrolling, and code replication to
eliminate branches.

Includes level 3 optimizations. Enables
interprocedural analysis and automatic inlining
of small procedures (with heuristics limiting the
amount of extra code). This is the default.

Includes level 4 optimizations. Activates software
pipelining, which is a specialized form of loop
unrolling that in certain cases improves run-time
performance. Software pipelining uses instruction
scheduling to eliminate instruction stalls within
loops, rearranging instructions between different
unrolled loop iterations to improve performance.

Loops chosen for software pipelining are always
innermost loops and do not contain branches or
procedure calls. To determine whether using level
5 benefits your particular program, you should
time program execution for the same program
compiled at levels 4 and 5. For programs that
contain loops that exhaust available registers,
longer execution times may result with level 5.

[NOJPIPELINE

Controls Activation of the software pipelining optimization.

The software pipelining optimization applies instruction scheduling
to certain innermost loops, allowing instructions within a loop to

45

Chapter 1. Developing VSI C Programs

Option

Usage

"wrap around" and execute in a different iteration of the loop. This
can reduce the impact of long-latency operations, resulting in faster
loop execution.

Software pipelining can be more effective when

you combine /OPTIMIZE=PIPELINE with the

appropriate /OPTIMIZE=TUNE keyword for the target Alpha
processor generation.

Software pipelining also enables the prefetching of data to reduce the
impact of cache misses.

Software pipelining is a subset of the optimizations activated by
optimization level 5.

To determine whether using /OPTIMIZE=PIPELINE benefits your
particular program, you should time program execution for the
same program (or subprogram) compiled with and without software
pipelining.

For programs containing loops that exhaust available registers, longer
execution times can result with optimization level 5, requiring use
of /OPTIMIZE=UNROLL=# to limit loop unrolling.

UNROLL=n

Controls loop unrolling done by the optimizer. UNROLL=n
means to unroll loop bodies n times, where n is between 0 and 16.
UNROLL=0 means the optimizer will use its own default unroll
amount. Specify UNROLL only at level 3 or higher.

TUNE=keyword

Selects processor-specific instruction tuning for implementations
of the Alpha architecture. Regardless of the setting of

the /OPTIMIZE=TUNE flag, the generated code will run correctly
on all implementations of the Alpha architecture. Tuning for a
specific implementation can provide improvements in run-time
performance. Code tuned for a specific target might run slower on
another target.

You can specify one of the following keywords:

GENERIC Selects instruction tuning that is appropriate for
all implementations of the Alpha and Itanium
architecture. This option is the default.

HOST Selects instruction tuning that is appropriate for
the machine on which the code is being compiled.

EV4 (Alpha Selects instruction tuning for the 21064, 21064 A,

only) 21066, and 21068 implementations of the Alpha
architecture.

EV5 (Alpha Selects instruction tuning for the 21164

only) implementation of the Alpha architecture.

PCAS56 (Alpha |Selects instruemction tuning for the 21164PC

only) implementation that uses the byte- and word-

manipulation instruction extensions and

46

Chapter 1. Developing VSI C Programs

Usage
Option
multimedia instruction extensions of the Alpha
architecture.
Running programs compiled with the PCA56
keyword might incur emulation overhead on EV4,
EVS5, and EV56 processors, but will still run
correctly on OpenVMS Version 7.1 (or higher).
EV6 (Alpha Selects instruction tuning for the first-generation
only) 21264 implementation of the Alpha architecture.
EV67 (Alpha Selects instruction tuning for the second-
only) generation 21264 implementation of the Alpha
architecture.
ITANIUM?2 (164 |Selects instruction tuning for the Intel Itanium 2
only) processor.

For OpenVMS VAX systems the default, /OPTIMIZE, is equivalent
to /OPTIMIZE=(DISJOINT,INLINE).

For OpenVMS Alpha systems the default, /OPTIMIZE, is equivalent
to /OPTIMIZE=(INLINE=AUTOMATIC,LEVEL=4,UNROLL=0,TUNE=GENERIC).

Use /NOOPTIMIZE or /OPTIMIZE=LEVEL=0 for a debugging session to ensure that the debugger has
sufficient information to locate errors in the source program.

In most cases, using /OPTIMIZE will make the program execute faster. As a side effect of getting the
fastest execution speeds, using /OPTIMIZE can produce larger object modules and longer compile times
than /NOOPTIMIZE.

Loop Unrolling

At optimization level 3 or above, VSI C attempts to unroll certain loops to minimize the number of
branches and group more instructions together to allow efficient overlapped instruction execution
(instruction pipelining). The best candidates for loop unrolling are innermost loops with limited control
flow.

As more loops are unrolled, the average size of basic blocks increases. Loop unrolling generates multiple
loop code iterations in a manner that allows efficient instruction pipelining.

The loop body is replicated a certain number of times, substituting index expressions. An initialization
loop may be created to align the first reference with the main series of loops. A remainder loop may be
created for leftover work.

The number of times a loop is unrolled can be determined by the optimizer or the user can specify the
limit for loop unrolling using the /OPTIMIZE=UNROLL qualifier. Unless the user specifies a value, the
optimizer unrolls a loop 4 times for most loops or 2 times for certain loops (large estimated code size or
branches out the loop).

Software Pipelining

Software pipelining and additional software dependence analysis are enabled by
using /OPTIMIZE=LEVEL=5, which in certain cases improves run-time performance.

47

Chapter 1. Developing VSI C Programs

Loop unrolling (enabled at /OPTIMIZE=LEVEL=3 or higher) is constrained in that it cannot schedule
across iterations of a loop. Because software pipelining can schedule across loop iterations, it can
perform more efficient scheduling that eliminates instruction stalls within loops, by rearranging
instructions between different unrolled loop iterations to improve performance.

For example, if software dependence analysis of data flow reveals that certain calculations can be done
before or after that iteration of the unrolled loop, software pipelining reschedules those instructions
ahead of or behind that loop iteration, at places where their execution can prevent instruction stalls or
otherwise improve performance.

Loops chosen for software pipelining:
* Are always innermost loops (those executed the most)
* Do not contain branches or procedure calls

By modifying the unrolled loop and inserting instructions as needed before and/or after the unrolled
loop, software pipelining generally improves run-time performance, except for cases where the loops
contain a large number of instructions with many existing overlapped operations. In this case, software
pipelining may not have enough registers available to effectively improve execution performance, and
run-time performance using level 5 may not improve as compared to using level 4.

To determine whether using level 5 benefits your particular program, time program execution for
the same program compiled at levels 4 and 5. For programs that contain loops that exhaust available
registers, longer execution times may result with level 5.

In cases where performance does not improve, consider compiling using /OPTIMIZE=(UNROLL=1,
LEVEL=5) to possibly improve the effects of software pipelining.

/ PDSC_MASK=o0pt i on

Forces the compiler to set the PDSC$V_EXCEPTION_MODE field of the procedure descriptor for each
function in the compilation unit to the specified value, regardless of the setting of any other qualifiers.

Ordinarily the PDSC$V_EXCEPTION_MODE field gets set automatically by the compiler, depending
on the /IEEE_MODE qualifier setting. The /PDSC_MASK qualifier overrides the /IEEE_MODE
qualifier setting of this field.

Note

This qualifier is a low-level systems-programming feature that is seldom necessary. Its usage can produce
object modules that do not conform to the VMS common language environment and, within C, it can
produce nonstandard and seemingly incorrect floating-point behaviors at runtime.

As shown in Table 1.17, the qualifier option keywords are exactly the allowed values defined in the
OpenVMS Calling Standard for this field, stripped of the PDSC$V_EXCEPTION_MODE prefix (for
example, /PDSC_MASK=SIGNAL sets the field to PDSC$V_EXCEPTION_MODE_SIGNAL).

Table 1.17. /PDSC_MASK Qualifier Options

Option Maps to Meaning

SIGNAL PDSC$K_EXCEPTION_MODE_SIGNAL Raise exceptions for all except
underflow (which is flushed
to 0).

48

Chapter 1. Developing VSI C Programs

Option Maps to Meaning
SIGNAL_ALL PDSC$K_EXCEPTION_MODE_SIGNAL_ALL |Raise exceptions for all.
SILENT PDSC$K_EXCEPTION_MODE_SILENT Raise no exceptions. Create

only finite values: no
infinities, no denorms, no
NaNs.

FULL_IEEE PDSC$K_EXCEPTION_MODE_FULL_IEEE Raise no exceptions except
as controlled by separate
IEEE exception-enabling
bits. Create exceptional
values according to the IEEE
standard.

CALLER PDSC$K_EXCEPTION_MODE_CALLER Emulate the same mode

as the caller. This is useful
primarily for writing libraries
that can be called from
languages other than C.

In the absence of the /PDSC_MASK qualifier, the compiler sets the PDSC$V_EXCEPTION_MODE
field automatically, depending on the /IEEE_MODE qualifier setting:

* If/IEEE_MODE is specified with UNDERFLOW_TO_ZERO, DENORM_RESULTS, or
INEXACT, then /PDSC_MASK is set to FULL_IEEE.

* In all other cases, /PDSC_MASK is set to SILENT. This setting differs from the calling-standard-
specified default of SIGNAL used by FORTRAN, and is largely responsible for the standard-
conforming behavior of the math library when called from C or C++ programs.

/ [NO PLUS_LI ST_OPTI M ZE

Provides improved optimization and code generation across file boundaries that would not be available if
the files were compiled separately.

When you specify /PLUS_LIST_OPTIMIZE on the command line in conjunction with a series of file
specifications separated by plus signs, the compiler does not concatenate each of the specified source
files together; such concatenation is generally not correct for C code because a C source file defines a
scope.

Instead, each file is treated separately for purposes of parsing, except that the compiler issues diagnostics
about conflicting external declarations and function definitions that occur in different files. For purposes
of code generation, the compiler treats the files as one application and can perform optimizations across
the source files.

The default is /NOPLUS_LIST_OPTIMIZE.
/[NO PO NTER_SI ZE=opt i on
Controls whether or not pointer-size features are enabled and whether pointers are 32-bits or 64 bits.

The default is NOPOINTER_SIZE, which disables pointer-size features, such as the ability to use
#pragma poi nt er _si ze, and directs the compiler to assume that all pointers are 32-bit pointers.
This default represents no change over previous versions of VSI C.

Table 1.18 shows the /POINTER_SIZE qualifier options.

49

Chapter 1. Developing VSI C Programs

Table 1.18. /POINTER_SIZE Qualifier Options

Option Usage

{SHORTI32} |The compiler assumes 32-bit pointers.

{LONGI64} |The compiler assumes 64-bit pointers.

Specifying /POINTER_SIZE=32 enables pointer-size features and directs the compiler to assume that all
pointers are 32-bit pointers.

Specifying /POINTER_SIZE=64 enables pointer-size features and directs the compiler to assume that all
pointers are 64-bit pointers.

Specifying the /POINTER_SIZE qualifier enables the following pointer-size features:
» Enables processing of #pr agma poi nt er _si ze.
» Sets the initial default pointer size.

* Predefines the preprocessor macro __| NI TI AL_PQO NTER_SI ZE to 32 or 64.
If /POINTER_SIZE is omitted from the command line, _ INITIAL_POINTER_SIZE is 0, which
allows you to use #i fdef I NI TI AL_PO NTER_SI ZE to test whether or not the compiler
supports 64-bit pointers.

* For /POINTER_SIZE=64, the VSI C RTL name mapping table is changed to select the 64-bit
versions of mal | oc, cal | oc, and other RTL routines by default.

For information about other compiler features that affect pointer size or warn about potential pointer size
conflicts, see the following:

* /CHECK=POINTER_SIZE

e #pragna pointer_size

e #pragna required _pointer_size

* I NITI AL_PO NTER_SI ZE predefined macro

The /POINTER_SIZE qualifier must be specified for any program that uses 64-bit pointers.
/ PRECI SI O\ =opt i on]

Controls whether floating-point operations on f | oat variables are performed in single or double
precision. Table 1.19 shows the /PRECISION qualifier options.

Table 1.19. /PRECISION Qualifier Options

Option Usage

SINGLE Performs floating-point operations in single precision.

DOUBLE Performs floating-point operations in double precision.

Your code may execute faster if it contains f | oat variables and is compiled
with /PRECISION=SINGLE. However, the results of your floating-point operations will be less precise.

See the VSI C Reference Manual [https://docs.vmssoftware.com/vsi-c-language-reference-manual/] for

more information on floating-point variables.

The default is /PRECISION=DOUBLE for /STANDARD=VAXC and /STANDARD=COMMON
compiler modes.

50

https://docs.vmssoftware.com/vsi-c-language-reference-manual/
https://docs.vmssoftware.com/vsi-c-language-reference-manual/

Chapter 1. Developing VSI C Programs

The default is /PRECISION=SINGLE for /STANDARD=ANSI89 and /STANDARD=RELAXED

compiler modes.

/ [NO| PREFI X_LI BRARY_ ENTRI ES[=(opti on[, .])]

The VSI C Run-Time Library (RTL) shareable image, DECC$SHR.EXE, resides in SYSSLIBRARY
with a DECCS$ prefix for its entry points. The linker searches IMAGELIB.OLB to locate the shareable
image. Every external name in IMAGELIB.OLB has a DECCS$ prefix, and, therefore, has an OpenVMS
conformant name space (a requirement for inclusion in IMAGELIB).

The /[INO]JPREFIX_LIBRARY_ENTRIES qualifier lets you control the VSI C RTL name prefixing.
Table 1.20 describes the /PREFIX_LIBRARY_ENTRIES qualifier options.

Table 1.20. /PREFIX_LIBRARY_ENTRIES Qualifier Options

Option

Usage

EXCEPT = (name,...)

The names specified are not prefixed.

ALL_ENTRIES

All VSI C RTL names, as well as C99 names not supported by the underlying
C RTL, are prefixed.

ANSI_C89_ENTRIES

Only C Standard 89 (C89) library names are prefixed.

C99_ENTRIES

Only C Standard 99 (C99) library names are prefixed. These are a superset
of the external names prefixed under /PREFIX=ANSI_C89_ENTRIES and a
subset of those prefixed under /PREFIX=ALL_ENTRIES.

The compiler will prefix C99 entries based on their inclusion in the standard,
not on the availability of their implementations in the run-time library. So
calling functions introduced in C99 that are not yet implemented in the C
RTL will produce unresolved references to symbols prefixed by DECC$
when the program is linked. In addition, the compiler will issue a CC-W-
NOTINCRTL message when it prefixes a name that is not in the current C
RTL.

RTL="name"

Generates references to the C RTL indicated by the name keyword. (The
name keyword has a length limit of 24 characters for OpenVMS VAX
systems and 1017 characters for OpenVMS Alpha systems.) If no keyword is
specified, then references to the VSI C RTL are generated by default. To use
an alternate RTL, see its documentation for the name to use.

If you want no names prefixed, specify /NOPREFIX_LIBRARY_ENTRIES.

For /STANDARD=ANSIS9, the default is /PREFIX=ANSI_C89_ENTRIES.

For /STANDARD=C99, the default is /PREFIX=C99_ENTRIES.

For all other compiler modes, the default is /PREFIX=ALL.

/ [NO| PREPROCESS_ONLY [=fi | enane]

Gives the same functionality as the - E qualifier on UNIX C compilers. When specified, it performs only
the actions of the preprocessor phase and writes the resulting processed text to a file. No semantic or
syntax processing is done. Furthermore, no object file, diagnostic file, listing file, or analysis data file is

produced.

If you do not specify a file name for the preprocessor output, the name of the output file defaults to the
file name of the input file with a .I file type.

51

Chapter 1. Developing VSI C Programs

The default is /NOPREPROCESS_ONLY.
/[NQ PROTOTYPE [=(option[, .])]

Creates an output file containing function prototypes for all global functions defined in the module being
compiled.

Standard-style prototypes are created even for functions defined with Kernighan and Ritchie style syntax.

This qualifier can be used to convert to Standard-sytle prototypes or just to ensure that every function
definition has a compatible explicit declaration, thereby avoiding implicit declarations that can sometimes
produce surprising results.

Table 1.21 describes the /PROTOTYPE qualifier options.

Table 1.21. /PROTOTYPE Qualifier Options

Option Usage

[NOJIDENTIFIERS Indicates that identifier names are to be included in the
prototype declarations that appear in the output file. The
default is NOIDENTIFIERS.

[NO]JSTATIC_FUNCTIONS Indicates that prototypes for static function definitions
are to be included in the output file. The default is
NOSTATIC_FUNCTIONS.

FILE=filename Specifies the output file name. When not specified, the output
file name has the same defaults as the listing file, except that
the file extension is .CH instead of .LIS.

The default is /NOPROTOTYPES.
/ PSECT_MODEL= [NO| MULTI LANGUAGE

Controls whether the compiler allocates the size of overlaid psects to ensure compatibility when the psect
is shared by code created by other VSI compilers.

The problem this switch solves can occur when a psect generated by a FORTRAN COMMON block is
overlaid with a psect consisting of a C struct. Because FORTRAN COMMON blocks are not padded, if
the C struct is padded, the inconsistent psect sizes can cause linker error messages.

Compiling with /PSECT_MODEL=MULTILANGUAGE ensures that VSI C uses
a consistent psect size allocation scheme. The corresponding FORTRAN switch is /
ALIGN=COMMON=[NOJMULTILANGUAGE.

The default is /PSECT=NOMULTILANGUAGE, which is the old default behavior of the compiler, and
is sufficient for most applications.

/ REENTRANCY=o0pt i on

Controls the type of reentrancy that reentrant VSI C RTL routines will exhibit. (See the decc
$set _reent rancy RTL routine.)

This qualifier is for use only with a module containing the mai n routine.

The reentrancy level is set at runtime according to the /REENTRANCY qualifier specified while
compiling the module containing the mai n routine.

Table 1.22 describes the /REENTRANCY qualifier options.

52

Chapter 1. Developing VSI C Programs

Table 1.22. /REENTRANCY Qualifier Options

Option

Usage

AST

Uses the _ TESTBITSSI built-in function to perform simple locking around
critical sections of RTL code, and may additionally disable asynchronous
system traps (ASTs) in locked region of codes. This type of locking should be
used when AST code contains calls to VSI C RTL I/O routines.

MULTITHREAD

Designed to be used in conjunction with the DECthreads product. It performs
DECthreads locking and never disables ASTs.

NONE

Gives optimal performance in the RTL, but does absolutely no locking
around critical sections of RTL code. It should only be used in a single
threaded environment when there is no chance that the thread of execution
will be interrupted by an AST that would call the VSI C RTL.

TOLERANT

Uses the __ TESTBITSSI built-in function to perform simple locking around
critical sections of RTL code, but ASTs are not disabled. This type of locking
should be used when ASTs are used and must be delivered immediately.

The default is / REENTRANCY=TOLERANT.

/ REPCSI TORY=0pt i on

Specifies a repository for the compiler to store shortened external name information. When /
NAMES=SHORTENED is specified, the compiler stores to the repository any external names that were
shortened. The demangler utility can then be used to map the shortened names back to the names used

in the original C program.

By default, the qualifier is not active unless /NAMES=SHORTENED has been specified, in which case
the default is /REPOSITORY=[.CXX_REPOSITORY].

The default name of the repository is the same as that used by the VSI C++ compiler for decoding
mangled names. This is intentional. A C++ mangled name cannot match a shortened name, so a single
repository can be used by both the VSI C and VSI C++ compilers.

/ ROUNDI NG_MODE=0pt i on

If /FLOAT=IEEE_MODE is specified, the /ROUNDING_MODE qualifier lets you select one of the
following IEEE rounding modes:

Option Usage

NEAREST Sets the normal rounding mode (unbiased round to nearest). This is the
default.

DYNAMIC Sets the rounding mode for IEEE floating-point instructions dynamically, as

determined from the contents of the floating-point control register.

MINUS_INFINITY

Rounds toward minus infinity.

CHOPPED

Rounds toward 0.

If /FLOAT=G_FLOAT or /FLOAT=D_FLOAT is specified, then rounding defaults
to /ROUNDING_MODE=NEAREST, with no other choice of rounding mode.

/ [NO| SHARE_GLOBALS

Controls whether the compiler will treat declarations of objects with the gl obal def keyword as

shared or not shared.

53

Chapter 1. Developing VSI C Programs

Also, in conjunction with the /EXTERN_MODEL qualifier, controls whether the initial

ext er n_nodel is shared or not shared (for those ext er n_nodel s where it is allowed). The
initial ext er n_nodel of the compiler is a fictitious pragma constructed from the settings of
the /EXTERN_MODEL and /SHARE_GLOBALS qualifiers.

The default value is /NOSHARE_GLOBALS. This default value is different from VAX C, which treats
external objects as shared by default. As a result, you may experience the following impact:

* Linking old object files or object libraries with newly produced object files might generate
“conflicting attributes for psect” messages. As long as you are not building shareable libraries, you
can safely ignore these messages.

* Building shareable libraries will be easier.
* On OpenVMS VAX systems, when linking external symbols against FORTRAN common blocks,

you should specify /SHARE_GLOBALS to suppress “conflicting attributes for psect” messages;
although they can otherwise be ignored. (VAX only)

/ SHOW =(option[, .])]

Sets or cancels listing options. You must use the /LIST qualifier with the /SHOW qualifier to use any of
the /SHOW options. Table 1.23 describes the /SHOW qualifier options.

Table 1.23. /SHOW Qualifier Options

Option Usage
ALL Prints all listing information.
[NO]BRIEF Creates the same listing as the option SYMBOLS except

that BRIEF eliminates from the list any identifiers that are
not referenced in the program, and are not members of a
structure or union that is referenced in the program.

The NOBRIEF option is the default.

[NO]JCROSS_REFERENCE Specifies whether the compiler generates cross-references. If
you specify /SHOW=CROSS_REFERENCE, the compiler
lists, for each variable referenced in the procedure, the line
numbers of the lines on which the variable is referenced.

You may use /SHOW=CROSS_REFERENCE

with /SHOW=SYMBOLS. Otherwise,

specifying /SHOW=CROSS_REFERENCE

also gives you /SSHOW=BRIEF. To obtain

any type of listing, you must specify /LIST.

Specifying /SHOW=[NO]CROSS_REFERENCE is the same
as specifying /[NO]JCROSS_REFERENCE.

The NOCROSS_REFERENCE option is the default.

[NO]DICTIONARY Places CDD/Repository definitions—included in the program
with the #pr agma di cti onary preprocessor directive—
into the listing file. These data definitions are marked in the
listing file with an uppercase letter D in the listing margin.

The NODICTIONARY option is the default.

54

Chapter 1. Developing VSI C Programs

Option

Usage

[NOJEXPANSION

Places final macro expansions in the program listing.
However, expansion text for preprocessing directives is not
shown. When you specify this option, the number printed
in the margin indicates the maximum depth of macro
substitutions that occur on each line.

The NOEXPANSION option is the default.

[NOJHEADER

Produces the header lines at the top of each page of a listing.

The HEADER option is the default.

[NOJINCLUDE

Places the contents of #i ncl ude files and modules in the
program listing.

The NOINCLUDE option is the default.

[NOJINTERMEDIATE (VAX only)

Places all intermediate and final macro expansions in the
program listing.

The NOINTERMEDIATE option is the default.

[NOIMESSAGES

Lists all messages that are in effect at compilation (based on
the settings of /STANDARD, /WARNINGS, and #pragma
message).

The NOMESSAGE option is the default.

NONE

Creates an empty listing file with only the header. If you
specify this option on a CC command line that contains /LIST
and /MACHINE_CODE, the compiler places machine code
in the listing file.

[NO]JSOURCE

Places the source program statements in the program listing.

The SOURCE option is the default.

[NO]JSTATISTICS

Places compiler performance statistics in the program listing.

The NOSTATISTICS option is the default.

[NO]JSYMBOLS

Places the symbol table of the compiled program in the
program listing. The symbol table includes a list of all
functions, the sizes and attributes of all variables referenced
in the program, and a program section summary and function
definition map.

The NOSYMBOLS option is the default.

[NO]TERMINAL (VAX only)

Displays compiler messages to the terminal.
Use /SSHOW=NOTERMINAL to suppress compiler messages
to the terminal or to a batch log file.

The TERMINAL option is the default.

[NOJTRANSLATION (VAX only)

Places into the listing file all UNIX system file specifications
that the compiler translates to OpenVMS file specifications.
See the VSI C Run-Time Library Reference Manual for
OpenVMS Systems [https://docs.vmssoftware.com/vsi-c-run-

55

https://docs.vmssoftware.com/vsi-c-run-time-library-reference-manual-for-openvms-systems/
https://docs.vmssoftware.com/vsi-c-run-time-library-reference-manual-for-openvms-systems/
https://docs.vmssoftware.com/vsi-c-run-time-library-reference-manual-for-openvms-systems/

Chapter 1. Developing VSI C Programs

Option Usage
time-library-reference-manual-for-openvms-systems/] for

more information on file translation.

The NOTRANSLATION option is the default.

/ [NOl STANDARD[=(opti on[, ..})]

Defines the compilation mode, directing the compiler to flag certain VSI C-specific constructs and VSI
C relaxations of conventional C language constructs and rules. For example, the conversions from pointer
to integer and back again are subject to more stringent tests when you specify /STANDARD=ANSIS9.

Table 1.24 describes the /STANDARD qualifier options.

Table 1.24. /STANDARD Qualifier Options

Option Usage
ANSIg89 Places the compiler in strict C Standard mode.
Cc99 Places the compiler in strict ISO/IEC C99 Standard mode. Note

that /STANDARD=C99 is not fully supported on VAX systems.
Specifying /STANDARD=C99 on OpenVMS VAX systems produces a warning
and puts the compiler into /STANDARD=RELAXED mode.

LATEST Places the compiler in the latest ISO C standard dialect. /
STANDARD=LATEST is currently equivalent to /STANDARD=C99, but is
subject to change when newer versions of the ISO C standard are released.

RELAXED Places the compiler in relaxed C Standard mode.

MS Interprets source programs according to certain language rules followed by
Microsoft's Visual C++ compiler.

ISOC94 Places the compiler in ISO C 94 mode, which enables digraph processing and
defines the macro __ STDC _VERSI ON__=1994009L.

Digraphs are pairs of characters that translate into a single character, much like
trigraphs, except that trigraphs get replaced inside string literals, but digraphs do
not. The digraphs are:

Digraph |Character Represented
< [

>]

<% {

%> }

%: #

%:%: ##

The ISOC94 option can be specified alone or in combination with any other
option except VAXC. If specified alone, ISOC94 provides a default major mode

of RELAXED.

COMMON Places the compiler in common C mode. This mode enforces K & R
programming style; that is, compatibility with older UNIX compilers such as
pcc and gcc.

VAXC Places the compiler in VAX C mode.

56

https://docs.vmssoftware.com/vsi-c-run-time-library-reference-manual-for-openvms-systems/

Chapter 1. Developing VSI C Programs

Option Usage

PORTABLE Places the compiler in RELAXED mode, and enables the issuance of diagnostics
that warn about any nonportable usages encountered.

/STANDARD=PORTABLE is supported for VAX C compatibility only. It
is equivalent to the recommended combination of qualifiers /STANDARD=
RELAXED/WARNINGS=ENABLE=PORTABLE.

MIA Places the compiler in strict C Standard mode with some behavior differences,
as required by the MIA standard:

* On OpenVMS VAX systems, G_floating becomes the default floating-point
format for doubl e variables. (VAX only)

On OpenVMS Alpha systems, G_floating is the default in any case. (Alpha
only)

* In structures, zero-length bit fields cause the next bit field to start on an
integer boundary, rather than on a character boundary.

Compiling a program with /STANDARD=MIA sets the __ M A predefined
macro to 1.

The default is /NOSTANDARD, which is equivalent to /STANDARD=RELAXED.
If you specify /STANDARD, you must supply at least one option.

With one exception, the /SSTANDARD qualifier options are mutually exclusive. Do not combine them.
The exception is that you can specify /STANDARD=ISOC94 with any other option except VAXC.

VSI C modules compiled in different modes can be linked and executed together.
Also see the __ HI DE_FORBI DDEN_NANES predefined macro (Section 6.1.7).
IINO TIE

Enables the compiled code to be used in combination with translated images, either because the code
might call into a translated image or might be called from a translated image. The default is /NOTIE.

/[NOl UNDEFI NE=(i dentifier[,.])
See /[NO]DEFINE in this section.
/ [NO UNSI GNED_CHAR

By default, char is a signed character type. The /UNSIGNED_CHAR qualifier lets you change
this default to an unsigned character type, which causes all plain char declarations to have

the same representation and set of values as unsi gned char declarations. The default
is /NOUNSIGNED_CHAR.

[/ VAXC (VAX only)
Invokes the VAX C compiler.

The CC command is used to invoke either the VAX C or VSI C compiler. If your system has a VAX
C compiler installed on it, the VSI C installation procedure provides the option of specifying which
compiler will be invoked by default when just the CC command is used. To invoke the compiler that is

57

Chapter 1. Developing VSI C Programs

not the default, use the CC command with the appropriate qualifier: CC/DECC for the VSI C compiler,
or CC/VAXC for the VAX C compiler.

If your system does not have a VAX C compiler installed on it, the CC command will invoke the VSI C
compiler, and the /VAXC qualifier is not supported.

/ [NO| VERSI ON

Directs the compiler to print out the compiler version and platform. The compiler version is the same as
in the listing file.

This qualifier makes it easier for you to report what compiler you are using.

Note

To display the compiler version and platform when issuing the CC command for a source file that does
not exist, enter:

CC/DECC/VERSION NL:

/[NO WARNI NGS[=(option[, ..])]

Controls the issuance of compiler diagnostic messages or groups of messages. It also allows for the
severity of messages to be modified. The default qualifier, /WARNINGS, enables all warning and
informational messages for the compiler mode you are using. The /NOWARNINGS qualifier suppresses
the warning and informational messages. Also see the #pr agma nmessage preprocessor directive.

Table 1.25 describes the /WARNING qualifier options.

For a description of what to specify for the message-list, see the #pr agma nessage preprocessor
directive (Section 5.4.14).

Table 1.25. /WARNINGS Qualifier Options

Option Usage

DISABLE=message-list Suppresses the issuance of the specified messages.

Only messages of severity Warning (W) or Information (I)
can be disabled. If the message has severity of Error (E) or
Fatal (F), it is issued regardless of any attempt to disable it.

ENABLE=message-list Enables issuance of the specified messages.
NOINFORMATIONALS Suppresses informational messages.
EMIT_ONCE=message-list Emits the specified messages only once per compilation.

Certain messages are emitted only the first time the compiler
encounters the causal condition. When the compiler
encounters the same condition later in the program, no
message is emitted. Messages about the use of language
extensions are an example of this kind of message. To emit
one of these messages every time the causal condition is
encountered, use the EMIT_ALWAYS option.

Errors and Fatals are always emitted. You cannot set them to
EMIT_ONCE.

58

Chapter 1. Developing VSI C Programs

Option

Usage

EMIT_ALWAYS=message-list

Emits the specified messages at every occurrence of the
causal condition.

ERRORS=message-list

Sets the severity of the specified messages to Error.

Supplied Error messages and Fatal messages cannot be made
less severe. (Exception: A message can be upgraded from
Error to Fatal, then later downgraded to Error again, but it
can never be downgraded from Error.)

Warnings and Informationals can be made any severity.

FATALS=message-list

Sets the severity of the specified messages to Fatal.

INFORMATIONALS=message-list

Sets the severity of the specified messages to Informational.
Note that Fatal and Error messages cannot be made less
severe.

WARNINGS=message-list

Sets the severity of the specified messages to Warning. Note
that Fatal and Error messages cannot be made less severe.

VERBOSE

Displays the full message information for every compiler
message encountered. This information includes the message
description and user action, as well as the identifier, severity,
and message text.

When /WARNINGS=VERBOSE is used with /LIST/
SHOW=MESSAGES, a list of all messages in effect at
compilation are added to the listing file, showing the full
information for each message.

Note

» If a message is on both the enabled and disabled list, it is disabled.

* If a message is on both the EMIT_ONCE and the EMIT_ALWAYS list, it is considered to be on the

EMIT_ONCE list.

* If a message is on more than one of the FATALS, ERRORS, WARNINGS, or INFORMATIONALS
lists, the message is given the least severe level.

* The NOINFORMATIONALS option is not the negation of INFORMATIONALS=msg-list. It is

valid to specify:

/WARNINGS= (INFORMATIONALS=message_list, NOINFORMATIONALS)

This has the effect of making the messages on the message_list informationals, and causing the
compiler to suppress any informational messages.

* One of the message groups described in the #pr agnma message description in Section 5.4.14 is
UNUSED, which enables messages that report apparently unnecessary #i ncl ude files and CDD

records.

However, unlike any other messages, these messages must be enabled on the command line
(/WARNINGS=ENABLE=UNUSED) to be effective. Any #pr agna nessage directives

59

Chapter 1. Developing VSI C Programs

within the source have no effect on these messages; their state is determined only by processing the
command line.

The default is /'WARNINGS=ENABLE=LEVELZ3.

1.3.5. Compiler Diagnostic Messages

If there are errors in your source file when you compile your program, the VSI C compiler signals
these errors and displays diagnostic messages. Reference the message, locate the error, and, if necessary,
correct the error. See Appendix D or the online help for a description of all compiler diagnostic
messages.

You can control the issuance of specific compiler diagnostic messages or groups of messages with the /
[NOJWARNINGS command-line qualifier (Section 1.3.4) and the #pr agnma nessage preprocessor
directive (Section 5.4.14).

To display a particular compiler diagnostic message online, enter the following command:

$ HELP CC/DECC MESSAGE mnemonic (VAX only)
S HELP CC MESSAGE mnemonic (Alpha, 1I64)

To display a list of all message mnemonics, enter the following command:

$ HELP /DECC MESSAGE (VAX only)
$ HELP CC MESSAGE (Alpha, I64)

Diagnostic messages have the following format:
%$CC-s—ident, message-text

Listing line number m
At line number n in name

%CC

The facility or program name of the VSI C compiler. This portion indicates that the message is being
issued by VSI C.

S

The severity of the error, represented in the following way:

F Fatal error. The compiler stops executing when a fatal error occurs and does not produce an
object module. You must correct the error before you can compile the program.

E Error. The compiler continues, but does not produce an object module. You must correct the
error before you can successfully compile the program.

w Warning. The compiler produces an object module. It attempts to correct the error in the
statement, but you should verify that the compiler's action is acceptable. Otherwise, your
program may produce unexpected results.

I Information. This message usually appears with other messages to inform you of specific
actions taken by the compiler. No action is necessary on your part.

i dent
The message identification. This is a descriptive abbreviation (mnemonic) of the message text.

60

Chapter 1. Developing VSI C Programs

message-t ext
The compiler's message. In many cases, it consists of more than one line of output. A message generally
provides you with enough information to determine the cause of the error so that you can correct it.

Li sting line nunber m
The integer m, which gives you the line number in the listing file where the error occurs. This
information is given when you specify the /LIST qualifier.

At |line nunmber n in name

The integer n, which gives you the number of the line where the error occurs. The number is relative to
the beginning of the file or text library module specified by name. You can use the #1 i ne directive to
change both the line number and name that appear in the message.

1.4. Linking a VSI C Program

After you compile a VSI C source program or module, use the DCL. command LINK to combine your
object modules into one executable image, which can then be executed by the OpenVMS system. A
source program or module cannot run on the OpenVMS system until it is linked.

When you execute the LINK command, the linker performs the following functions:
* Resolves local and global symbolic references in the object code

* Assigns values to the global symbolic references

* Signals an error message for any unresolved symbolic reference

* Allocates virtual memory space for the executable image

When using the LINK command on development systems, use the /DEBUG qualifier to link your
program module. The /DEBUG qualifier appends to the image all the symbol and line number
information appended to the object modules plus information on global symbols, and causes the image to
run under debugger control when it is executed.

The LINK command produces an executable image by default. However, you can also use the LINK
command to obtain shareable images and system images. The /SSHAREABLE qualifier directs the linker
to produce a shareable image; the /SYSTEM qualifier directs the linker to produce a system image. See
Section 1.4.2 for a complete description of these and other LINK command qualifiers.

For a complete discussion of the OpenVMS Linker, see the VSI OpenVMS Linker Utility Manual.

1.4.1. The LINK Command

The LINK command has the following format:

LINK[/command-qualifier]... {file-spec[/file-qualifier...]},...
/ command- qualifier..

Output file options.

file-spec

The input files to be linked.

61

Chapter 1. Developing VSI C Programs

[file-qualifier...
Input file options.

If you specify more than one input file, you must separate the input file specifications with a plus sign
(+) or a comma (,).

By default, the linker creates an output file with the name of the first input file specified and the file type
EXE. If you link more than one file, you should specify the file containing the main program first. Then,
the name of your output file will have the same name as your main program module.

The execution of a program will begin at the function whose identifier is mai n, or, if there is no
function with this identifier, at the first function seen by the VMS linker.

Note

Unexpected results might occur if you don't have a function called mai n.

The following command line links the object files MAINPROG.OBJ, SUBPROG1.0BJ, and
SUBPROG2.0BJ to produce one executable image called MAINPROG.EXE:

$ LINK MAINPROG.OBJ, SUBPROG1l.0OBJ, SUBPROG2.O0BJ

Note

Unlike VAX C, VSI C does not require you to define any LNK$SLIBRARY logicals.

1.4.2. LINK Command Qualifiers

You can use the LINK command qualifiers to modify the linker's output, as well as to invoke the
debugging and traceback facilities. Linker output consists of an image file and an optional map file.

The following list summarizes some of the most commonly used LINK command qualifiers. A brief
description of each qualifier follows this list. For a complete list of LINK qualifiers, see the ViSI
OpenVMS Linker Utility Manual.

Command Qualifiers Default

/BRIEF None.

/[INO]CROSS_REFERENCE /NOCROSS_REFERENCE
/[NO]DEBUG /NODEBUG
/[INOJEXECUTABLE][=file-spec] /EXECUTABLE=name. EXE
/FULL None

/[INOIMAP /MAP (batch) /NOMAP (interactive)
/[NO]SHAREABLE[=file-spec] /[NO]SHAREABLE[=file-spec]
/[INO]JTRACEBACK /TRACEBACK

/ BRI EF

Produces a summary of the image's characteristics and a list of contributing modules. This qualifier is
mutually exclusive with /FULL.

62

Chapter 1. Developing VSI C Programs

/ [NO CROSS_REFERENCE

Produces cross-reference information for global symbols; /NOCROSS_REFERENCE suppresses cross-
reference information. The default is /NOCROSS_REFERENCE.

/ [NO| DEBUG

Includes the OpenVMS Debugger in the executable image and generates a symbol table; /NODEBUG
causes the linker to prevent debugger control of the program. The default is /NODEBUG.

/ [NO EXECUTABLE [=fi | e- spec]

Produces an executable image. /NOEXECUTABLE suppresses production of an image file. The default
is EXECUTABLE.

/ FULL

Produces a summary of the image's characteristics, a list of contributing modules, listings of global
symbols by name and by value, and a summary of characteristics of image sections in the linked image.
This qualifier is mutually exclusive with /BRIEF.

I [N VAP

Generates a map file; /INOMAP suppresses the map. The default is /MAP in batch mode and /NOMAP
in interactive mode.

/ [NO SHAREABLE[=fi | e- spec]

Creates a shareable image. /NOSHAREABLE generates an executable image. The default
is NOSHAREABLE.

/ [NO| TRACEBACK

Generates symbolic traceback information when error messages are produced; NOTRACEBACK
suppresses traceback information. The default is /TRACEBACK.

1.4.3. Linker Input Files

You can specify the object modules to be included in an executable image in any of the following ways:
* Specify input file specifications for the object modules.

If no file type is specified, the linker searches for an object file with the file type OBJ.
» Specify one or more object module library files.

You can specify either the name of an object module library with the /LIBRARY qualifier or the
names of the object modules contained in an object module library with the /INCLUDE qualifier.
Section 1.4.6 describes the uses of object module libraries.

* Specify an options file.

An options file can contain additional file specifications for the LINK command, as well as special
linker options. You must use the /OPTIONS qualifier to specify an options file. For more information
on options files, see the VSI OpenVMS Linker Utility Manual.

63

Chapter 1. Developing VSI C Programs

Table 1.26 shows the default input file types for the linker.

Table 1.26. OpenVMS Linker Default File Types for Input Files

File Type File

OBJ Object module
OLB Library

OPT Options file

1.4.4. Linker Output Files

When you enter the LINK command interactively and do not specify any qualifiers, the linker creates
only an executable image file. By default, the resulting image file has the same file name as that of the
first object module specified with a file type of EXE.

In a batch job, the linker creates both an executable image file and storage map file by default. The
default file type for map files is MAP.

To specify an alternative name for a map file or image file or to specify an alternative output directory or
device, you can include a file specification on the /MAP or /EXECUTABLE qualifier. In the following
example, the LINK command creates the image file [PROJECT.EXE]JUPDATE.EXE and the map file
[PROJECT.MAP]UPDATE.MAP:

$ LINK UPDATE/EXECUTABLE=[PROJECT.EXE]/MAP=[PROJECT.MAP]

1.4.5. Linking Against Object Module Libraries and
Shareable Images

Linking against object modules (stored in object module libraries) or against shareable images are ways
of allowing your program to access data and routines outside of your compilation units. You can either
create the object module libraries and the shareable images or use the ones provided by VSI. To access
data in object modules and shareable images, you can use LINK command qualifiers, OpenVMS logical
names, and options files. For more information about object module libraries, see the VSI OpenVMS
Linker Utility Manual.

The VSI C Run-Time Library (RTL) for OpenVMS systems also provides two formats for you to choose
from: shareable images or object module libraries. Depending on which type of RTL you want to use
and on which type of functions you plan on calling from your programs, you need to supply information
to the linker that specifies which versions of the functions to access.

When you use the C RTL and its corresponding header files, remember that the C RTL ships with the
OpenVMS operating system and the header files ship with the VSI C compiler. Since the releases of the
compiler and of the operating system are not synchronized, there may be compatibility issues that you
need to consider to use the RTL properly. See the VSI C release notes (by entering HELP CC/DECC
RELEASE_NOTES on the DCL command line) for information that may pertain to this issue.

For a description of the various ways to link with the C RTL, see the VSI C Run-Time Library Reference
Manual for OpenVMS Systems [https://docs.vmssoftware.com/vsi-c-run-time-library-reference-manual-
for-openvms-systems/].

1.4.6. Object Module Libraries

64

https://docs.vmssoftware.com/vsi-c-run-time-library-reference-manual-for-openvms-systems/
https://docs.vmssoftware.com/vsi-c-run-time-library-reference-manual-for-openvms-systems/
https://docs.vmssoftware.com/vsi-c-run-time-library-reference-manual-for-openvms-systems/
https://docs.vmssoftware.com/vsi-c-run-time-library-reference-manual-for-openvms-systems/

Chapter 1. Developing VSI C Programs

You can make program modules accessible to other users by storing them in an object module library.
To link modules contained in an object module library, use the /INCLUDE qualifier and specify

the modules you want to link. The following example links the subprogram modules EGGPLANT,
TOMATO, BROCCOLI, and ONION with the main program module GARDEN:

$ LINK GARDEN, VEGGIES/INCLUDE= (EGGPLANT, TOMATO, BROCCOLI, ONION)

An object module library can also contain a symbol table with the names of each global symbol in the
library, and the name of the module in which they are defined. You specify the name of the object
module library containing symbol definitions with the /[LIBRARY qualifier. When you use the /
LIBRARY qualifier during a linking operation, the linker searches the specified library for all unresolved
references found in the included modules during compilation.

The following example uses the library RACQUETS to resolve undefined symbols in BADMINTON,
TENNIS, and RACQUETBALL:

$ LINK BADMINTON, TENNIS, RACQUETBALL, RACQUETS/LIBRARY

You can define an object module library to be your default library by using the DCL. command DEFINE
LNKS$LIBRARY. The linker searches default user libraries for unresolved references after it searches
modules and libraries specified in the LINK command. For more information about the DEFINE
command, see the VSI OpenVMS DCL Dictionary.

For more information about object module libraries, see the VSI OpenVMS Linker Utility Manual.

1.4.7. Linker Error Messages

If the linker detects any errors while linking object modules, it displays messages indicating the cause
and severity of the error. If any error or fatal error conditions occur (that is, errors with severities of E or
F), the linker does not produce an image file.

The messages produced by the linker are descriptive, and you do not usually need additional information
to determine the specific error. Some common errors that occur during linking are as follows:

* An object module has compilation errors.

This occurs when you try to link a module that produced warning messages during compilation. You
can usually link compiled modules for which the compiler generated messages, but verify that the
modules will produce the output you expect.

* The input file has a file type other than OBJ and no file type was specified on the command line.

If you do not specify a file type, the linker searches for a file that has a file type of OBJ by default. If
the file is not an object file and you do not identify it with the appropriate file type, the linker signals
an error message and does not produce an image file.

¢ You tried to link a nonexistent module.

The linker signals an error message if you misspell a module name on the command line or if the
compilation contains fatal diagnostics.

* A reference to a symbol name remains unresolved.

An error occurs when you omit required module or library names from the command line and the
linker cannot locate the definition for a specified global symbol reference. Consider, for example,

65

Chapter 1. Developing VSI C Programs

the following LINK command for a main program module, OCEAN.OBJ, that calls the subprogram
modules REEF.OBJ, SHELLS.OBJ, and SEAWEED.OBIJ:

$ LINK OCEAN, REEF, SHELLS

Because SEAWEED is not linked, the linker issues the following error messages:

SLINK-W-NUDFSYMS, 1 undefined symbol

$LINK-I-UDFSYMS, SEAWEED

$LINK-W-USEUNDEF, module "OCEAN" references undefined symbol "SEAWEED"
$LINK-W-DIAGISUED, completed but with diagnostics

If an error occurs when you link modules, you can often correct it by reentering the command and
specifying the correct modules or libraries. If an error indicates that a program module cannot be
located, you may be linking the program with the wrong RTL.

For a complete list of linker messages, see the OpenVMS System Messages and Recovery Procedures
Reference Manual.

1.5. Running a VSI C Program

After you link your program, you can use the DCL command RUN to execute it. The RUN command
has the following format:

RUN [/[NO]DEBUG] file-spec [/[NO]DEBUG]

/ [NO| DEBUG

An optional qualifier. Specify the /DEBUG qualifier to invoke the debugger if the image was not linked
with it. You cannot use /DEBUG on images linked with the /NOTRACEBACK qualifier. If the image
was linked with the /DEBUG qualifier and you do not want the debugger to prompt you, use the /
NODEBUG qualifier. The default action depends on whether the file was linked with the /DEBUG
qualifier.

file-spec
The file you want to run.

The execution of a program begins at the function whose identifier is mai n, or, if there is no function
with this identifier, at the first function seen by the VMS linker.

Note

Unexpected results might occur if you don't have a function called mai n.

The following example executes the image SAMPLE.EXE without invoking the debugger:
$ RUN SAMPLE/NODEBUG
For more information on debugging programs, see Section C.1.

During execution, an image can generate a fatal error called an exception condition. When an exception
condition occurs, the system displays an error message. Run-time errors can also be issued by the
operating system or by utilities.

66

Chapter 1. Developing VSI C Programs

When an error occurs during the execution of a program, the program is terminated and the OpenVMS
condition handler displays one or more messages on the currently defined SYSSERROR device.

A message is followed by a traceback. For each module in the image that has traceback information, the
condition handler lists the modules that were active when the error occurred, which shows the sequence
in which the modules were called.

For example, if an integer divide-by-zero condition occurs, a run-time message like the following
appears:

$SYSTEM-F-INTDIV, arithmetic trap, integer divide by zero
at PC=00000FC3, PSL=03C00002

This message is followed by a traceback message similar to the following:

$TRACE-F-TRACEBACK, symbolic stack dump follows

module name routine name line rel PC abs PC
A C 38 00000007 00000FC3
B main 1408 000002F7 00000B17

The information in the traceback message follows:
nodul e nane
The name or names of an image module that was active when the error occurred.

The first module name is that of the module in which the error occurred. Each subsequent line gives the
name of the caller of the module named on the previous line. In this example, the modules are A and B;
main called C.

routi ne name
The name of the function in the calling sequence.
line

The compiler-generated line number of the statement in the source program where the error occurred,
or at which the call or reference to the next procedure was made. Line numbers in these messages match
those in the listing file (not the source file).

rel PC

The value of the PC (program counter). This value represents the location in the program image at
which the error occurred or at which a procedure was called. The location is relative to the virtual
memory address that the linker assigned to the code program section of the module indicated by module
name.

abs PC

The value of the PC in absolute terms; that is, the actual address in virtual memory representing the
location at which the error occurred.

Traceback information is available at runtime only for modules compiled and linked with the traceback
option in effect. The traceback option is in effect by default for both the CC and LINK commands. You
may use the CC command qualifier /NODEBUG and the LINK command qualifier /NOTRACEBACK
to exclude traceback information. However, traceback information should be excluded only from
thoroughly debugged program modules.

67

Chapter 1. Developing VSI C Programs

1.6. Passing Arguments to the main Function

The mai n function in a VSI C program can accept arguments from the command line from which it was
invoked. The syntax for a mai n function is:

int main (int argc, char *argv[1, char *envp[1)

{..}

argc

The number of arguments in the command line that invoked the program.
ar gv

A pointer to an array of character strings that contain the arguments.
envp

The environment array. It contains process information such as the user name and controlling terminal.
It has no bearing on passing command-line arguments. Its primary use in VSI C programs is during
exec and get env function calls. (For more information, see the VSI C Run-Time Library Reference
Manual for OpenVMS Systems [https://docs.vmssoftware.com/vsi-c-run-time-library-reference-manual-
for-openvms-systems/]).

In the mai n function definition, the parameters are optional. However, you can access only the
parameters that you define. You can define the mai n function in any of the following ways:

int main
int main
int main
int main

)

int argc)

int argc, char *argv([1)

int argc, char *argv[], char *envpl[1)

—~ e~~~

To pass arguments to the mai n function, you must install the program as a DCL foreign command.
When a program is installed and run as a foreign command, the argc parameter is always greater than or
equal to 1, and argv[O]always contains the name of the image file.

The procedure for installing a foreign command involves using a DCL assignment statement to assign the
name of the image file to a symbol that is later used to invoke the image. For example:

$ ECHO == "DSK:COMMARG.EXE"

The symbol ECHO is installed as a foreign command that invokes the image in COMMARG.EXE. The
definition of ECHO must begin with a dollar sign ($) and include a device name, as shown.

For more information about the procedure for installing a foreign command, see the VSI OpenVMS DCL
Dictionary.

Example 1.1 shows a program called COMMARG.C, which displays the command-line arguments that
were used to invoke it.

Example 1.1. Echo Program Using Command-Line Arguments
/* This program echoes the command-line arguments. */

#include <stdio.h>

68

https://docs.vmssoftware.com/vsi-c-run-time-library-reference-manual-for-openvms-systems/
https://docs.vmssoftware.com/vsi-c-run-time-library-reference-manual-for-openvms-systems/
https://docs.vmssoftware.com/vsi-c-run-time-library-reference-manual-for-openvms-systems/
https://docs.vmssoftware.com/vsi-c-run-time-library-reference-manual-for-openvms-systems/

Chapter 1. Developing VSI C Programs

#include <stdlib.h>

int main (int argc, char *argvl([])
{
int 1i;
/* argv[0] is program name */
printf ("program: %s\n",argv[0]);

for (i = 1; 1 < argc; i++)
printf ("argument %d: %$s\n", i, argv[i]);

exit (EXIT_SUCCESS);
}

You can compile and link the program using the following DCL command lines:

$ CC COMMARG
$ LINK COMMARG

A sample output for Example 1.1 follows:

$ ECHO Long "Day's" "Journey into Night"
program: db7:[oneill.plays]commarg.exe; 1
argument 1: long

argument 2: Day's

argument 3: Journey into Night

DCL converts most arguments on the command line to uppercase letters. VSI C internally parses

and modifies the altered command line to make VSI C argument access compatible with C programs
developed on other systems. All alphabetic arguments in the command line are delimited by spaces or
tabs. Arguments with embedded spaces or tabs must be enclosed in quotation marks (" "). Uppercase
characters in arguments are converted to lowercase, but arguments within quotation marks are left
unchanged.

1.7. 64-bit Addressing Support

OpenVMS 64-bit virtual addressing support makes the 64-bit virtual address space defined by the Alpha
and Itanium architectures available to the OpenVMS operating system and its users. It also allows per-
process virtual addressing for accessing dynamically mapped data beyond traditional 32-bit limits.

The VSI C compiler supports 64-bit pointers on all hardware platforms where the OpenVMS operating
system supports 64-bit pointers; that is, on the Alpha and Itanium processors.

This support is provided through command-line qualifiers and pragma preprocessor directives that
control the size of the C pointer because:

* Typical C usage involves many objects accessed through pointers rather than single monolithic arrays
or structures.

* Huge declared objects would have an impact on object-module format and the linker.

Note

Single objects larger than 2 gigabytes are not fully supported, even with 64-bit virtual addressing in
effect.

69

Chapter 1. Developing VSI C Programs

* Minimal source-code edits are required to exploit the 64-bit space where needed. Because the
pragmas affect a region of source code, it is not necessary to modify every declaration.

No changes are required for existing 32-bit applications that do not need to exploit 64-bit addressing.

1.7.1. Qualifiers and Pragmas

The following qualifiers, pragmas, and predefined macro control pointer size:
* /[NOJPOINTER_SIZE={LONG | SHORT | 64 132}

* /[NOJCHECK=[NO]JPOINTER_SIZE=(option,...)

e #pragna pointer_size

* #pragma required_pointer_size

e I NITI AL_PQO NTER_SI ZE predefined macro

1.7.1.1. The /POINTER_SIZE Qualifier

The /POINTER_SIZE qualifier lets you specify a value of 64 or 32 (or LONG or SHORT) as the default
pointer size within the compilation unit. You can compile one set of modules using 32-bit pointers and
another set using 64-bit pointers. Take care when these two separate groups of modules call each other.

The default is /NOPOINTER_SIZE, which:

» Disables pointer-size features, such as the ability to use #pr agma poi nt er _si ze
* Directs the compiler to assume that all pointers are 32-bit pointers.

This default represents no change over previous versions of VSI C.

Specifying /POINTER_SIZE with a keyword value (32, 64, SHORT, or LONG) has the following
effects:

* Enables processing of #pr agma poi nt er _si ze.
» Sets the initial default pointer size to 32 or 64, as specified.

* Predefines the preprocessor macro __| NI TI AL_PQO NTER_SI ZE to 32 or 64, as specified.
If /POINTER_SIZE is omitted from the command line, __| NI TI AL_PO NTER_SI ZE is 0,
which allows you to use #i f def __| NI TI AL_PQO NTER_SI ZE to test whether or not the
compiler supports 64-bit pointers.

* For /POINTER_SIZE=64, the VSI C RTL name mapping table is changed to select the 64-bit
versions of mal | oc, cal | oc, and other RTL routines by default.

Use of the /POINTER_SIZE qualifier also influences the processing of VSI C RTL header files:

» For those functions that have both 32-bit and 64-bit implementations, specifying /POINTER_SIZE
enables function prototypes to access both functions, regardless of the actual value supplied to the
qualifier. The value specified to the qualifier determines the default implementation to call during
that compilation unit.

* Functions that require a second interface to be used with 64-bit pointers reside in the same object
libraries and shareable images as their 32-bit counterparts. Because no new object libraries or

70

Chapter 1. Developing VSI C Programs

shareable images are introduced, using 64-bit pointers does not require changes to your link
command or link options files.

See the VSI C Run-Time Library Reference Manual for OpenVMS Systems [https://
docs.vmssoftware.com/vsi-c-run-time-library-reference-manual-for-openvms-systems/] for more
information on the impact of 64-bit pointer support on VSI C RTL functions.

See Section 1.3.4 for more information about /POINTER_SIZE.

1.7.1.2. The __INITIAL_POINTER_SIZE Macro

The __| NI TI AL_PO NTER_SI ZE preprocessor macro is useful for header-file authors to determine:
* If the compiler supports 64-bit pointers.
» If the application expects to use 64-bit pointers.

Header-file code can then be conditionalized using the following preprocessor directives:

#if defined (__INITIAL_POINTER_SIZE) /* Compiler supports 64-bit pointers
*/

#if _ INITIAL POINTER_SIZE > 0 /* Application uses 64-bit pointers */

#if _ INITIAL_POINTER_SIZE == 32 /* Application uses some 64-bit

pointers, but default RTL
routines are 32-bit.*/

#if _ INITIAL_POINTER_SIZE == 64 /* Application uses 64-bit
pointers and default RTL
routines are 64-bit. */

1.7.1.3. The /CHECK=POINTER_SIZE Qualifier

Use the /CHECK=POINTER_SIZE qualifier to generate code that checks 64-bit pointer values at
runtime to make sure they can fit in a 32-bit pointer. If such a value cannot be represented by a 32-bit
pointer, the run-time code signals a range error (SS$_RANGEERR).

Be aware that the compiler generates the same kinds of warning messages for pointer-size mismatches
whether or not this qualifier is specified. The run-time checks can detect problems that cannot be
detected at compile time, and can help determine whether or not certain warnings are safe to suppress.

See Section 1.3.4 for more information about /CHECK=POINTER_SIZE, including defaults and an
example.

1.7.1.4. Pragmas

The #pragma poi nt er _si ze and #pragnma r equi r ed_poi nt er _si ze preprocessor
directives can be used to change the pointer size currently in effect within a compilation unit. You can
default pointers to 32-bits and then declare specific pointers within the module as 64-bits. In this case,
you also need to specifically call the _rmal | 0c64 form of mal | oc to obtain memory from the 64-bit
memory area.

These pragmas have the following format:
#pragma pointer_size keyword

#pragma required_pointer_size keyword

71

https://docs.vmssoftware.com/vsi-c-run-time-library-reference-manual-for-openvms-systems/
https://docs.vmssoftware.com/vsi-c-run-time-library-reference-manual-for-openvms-systems/
https://docs.vmssoftware.com/vsi-c-run-time-library-reference-manual-for-openvms-systems/

Chapter 1. Developing VSI C Programs

The keyword is one of the following:

{short 32} |32-bit pointer
{l ongl64} |64-bit pointer

save Saves the current pointer size

restore Restores the current pointer size to its last saved state

The #pragma poi nt er _si ze and #pr agma requi red_poi nt er _si ze directives work
essentially the same way, except that #pr agna r equi r ed_poi nt er _si ze always takes effect
regardless of command-line qualifiers, while #pr agma poi nt er _si ze is only in effect when the /
POINTER_SIZE command-line qualifier is used.

The #pr agma poi nt er _si ze behavior allows a program to be built using 64-bit features as purely
as a 32-bit program, just by changing the command-line qualifier.

The #pragma requi r ed_poi nt er _si ze is intended for use in header files where interfaces to
system data structures must use a specific pointer size regardless of how the program is compiled.

See Sections 5.4.19 and 5.4.20 for more information on the pointer-size pragmas.

1.7.2. Determining Pointer Size

The pointer-size qualifiers and pragmas affect only a limited number of constructs in the C language
itself. At places where the syntax creates a pointer type, the pointer-size context determines the size of
that type. Pointer-size context is defined by the most recent pragma (or command-line qualifier) affecting
pointer size.

Here are examples of places in the syntax where a pointer type is created:

e The * in a declaration or cast:

int **p; // Declaration
ip = (int **)i; // Cast

* The outer (leftmost) brackets [] in a formal parameter imply a *:
void foo(int ia[10]1[20]) {}
// Means the following:
void foo(int (*ia) [20]) {}
* A function declarator as a formal parameter imply a *:
void foo (int func()):
// Means the following:
void foo (int (*) () func);
* Any formal parameter of array or function type implies a *, even when bound in at ypedef :
typedef int a_typell0];

void foo (a_type ia);

72

Chapter 1. Developing VSI C Programs

// Means the following:
void foo (int *ia);

Note that a t ypedef binds the meaning of pointer syntax while a macro does not. Even though both
constructs can contain a * used in a declaration, the * in the macro definition is not affected by any
pointer-size controls until the point at which the macro is expanded. For example:

#pragma pointer_size 64

typedef int * Jj_ptr; // * is 64-bit
#define J_PTR int * // * is not analyzed
#pragma pointer_size 32

j_ptr 3; // j is a 64-bit pointer.
J_PTR J; // J is a 32-bit pointer.

1.7.2.1. Special Cases

The following special cases are not affected by pointer-size context:

» Formal parameters to mai n are always treated as if they were in a #pr agma. poi nt er _si ze
syst em def aul t context, which is 32-bit pointers for OpenVMS systems.

For example, regardless of the #pr agma poi nt er _si ze 64 directive, argv[0] is a 32-bit
pointer:

#pragma pointer_size 64

main (int argc, char **argv)
{ ASSERT (sizeof (argv[0]) == 4); }

* A string literal produces a 32-bit pointer when used as an rvalue:
#pragma pointer_size 64
ASSERT (sizeof ("x" + 0) == 4);

* The & operator yields a 32-bit pointer unless it is applied to pointer dereference, in which case it is
the size of the dereferenced pointer type:

sizeof (&foo) == 32
sizeof (&s —->next) == sizeof (s)

* An rvalue cast to a 32-bit pointer type does not modify the high-order 32 bits of a 64-bit operand.
si zeof yields 4 bytes, but the high bits are not lost unless a 4-byte assignment occurs:

#pragma pointer_size 64
typedef int * ip64;

#pragma pointer_size 32
typedef int * ip32;

ip64 a,b;
ip32 c;

a = (ip32)b; // No high-order bits are lost

73

Chapter 1. Developing VSI C Programs

c = (ip32)b; // High-order bits are lost
1.7.2.2. Mixing Pointer Sizes

An application can use both 32-bit and 64-bit addresses. The following semantics apply when mixing
pointers:

* Assignments (including arguments) silently promote a 32-bit pointer rvalue to 64 bits if other type
rules are met. Promotion means sign extension.

* A warning is issued for an assignment of a 64-bit rvalue to a 32-bit Ivalue (without an explicit cast).

* For purposes of type compatibility, a different size pointer is a different type (for example, when
matching a prototype to a definition, or other contexts involving redeclaration).

* The debugger knows the difference between pointers of different sizes.

1.7.3. Header File Considerations

The following general header-file considerations should be kept in mind:
* Header files usually define interfaces with types that must match the layout used in library modules.

* Header files often do not bind "top-level" pointer types. Consider, for example:

fprintf (FILE *, const char *, ...);
A "FILE * fp;" in a declaration in a different area of source code might be a different size.

* All pointer parameters occupy 64 bits in the OpenVMS Alpha and 164 calling sequence, so a top-
level mismatch of this kind is all right if the called function does not lose the high bits internally.

* Routines dealing with pointers to pointers (or data structures containing pointers) cannot be enabled
to work simply by passing them both 32-bit and 64-bit pointers. You need to have separate 32-bit
and 64-bit variants of the routine.

e The VSI C RTL header files and the compiler cooperatively provide dual implementations of
functions that need to know the pointer size used by the caller. They have different names. The
compiler automatically calls the appropriate name within the pointer-size context if the source code
calls the simple name. For example, a call to mal | oc becomes:

« mal | 0c64 if /POINTER_SIZE=64.
e mal | 0c32 if /POINTER_SIZE=32.
e mual |l oc if /POINTER_SIZE is omitted.

If /POINTER_SIZE is specified alone or with a value, _mal | 0c64 or _mal | 0c32 can be called
explicitly. If /POINTER_SIZE is not specified, the program is compiled to be unaware of 64-bit
pointers, and so the declarations of these alternate variants are suppressed.

Be aware that pointer-size controls are not unique in the way they affect header files; other features that
affect data layout have similar impact. For example, most header files should be compiled with 32-bit
pointers regardless of pointer-size context. Also, most system header files (on OpenVMS Alpha and 164
systems) must be compiled with memnber _al i gnnent regardless of user pragmas or qualifiers.

74

Chapter 1. Developing VSI C Programs

To address this issue more generally, the pr agma envi r onment directive can be used to save
context and set header defaults at the beginning of each header file, and then to restore context at the
end. See Section 5.4.4 for a description of pr agma envi r onnment .

For header files that have not yet been upgraded to use #pragma environment, the /POINTER_SIZE=64
qualifier can be difficult to use effectively. For such header files that are not 64-bit aware, the compiler
automatically applies user-defined prologue and epilogue files before and after the text of the included
header file. See Section 1.7.4 for more information on prologue/epilogue files.

1.7.4. Prologue/Epilogue Files

VSI C automatically processes user-supplied prologue and epilogue header files. This feature is an aid to
using header files that are not 64-bit aware within an application that is built to exploit 64-bit addressing.

1.7.4.1. Rationale

VSI C header files typically contain a section at the top that:

1. Saves the current state of the menber _al i gnnment , ext ern_nodel ,extern_prefi x, and
message pragmas.

2. Sets these pragmas to the default values for the system.
A section at the end of the header file then restores these pragmas to their previously-saved state.

Mixed pointer sizes introduce another kind of state that typically needs to be saved, set, and restored in
header files that define fixed 32-bit interfaces to libraries and data structures.

The #pragma envi ronment preprocessor directive allows headers to control all compiler states
(message suppression, ext er n_nodel , menber _al i gnnent , and poi nt er _si ze) with one
directive.

However, for header files that have not yet been upgraded to use #pr agnma. envi r onnent , the /
POINTER_SIZE=64 qualifier can be difficult to use effectively. In this case, the automatic mechanism to
include prologue/epilogue files allows you to protect all of the header files within a single directory (or
modules within a single text library). You do this by copying two short files into each directory or library
that needs it, without having to edit each header file or library module separately.

In time, you should modify header files to either exploit 64-bit addressing (like the VSI C RTL), or
to protect themselves with #pr agnma envi r onment . Prologue/epilogue processing can ease this
transition.

1.7.4.2. Using Prologue/Epilogue Files
Prologue/epilogue file are processed in the following way:

1. When the compiler encounters an #i ncl ude preprocessing directive, it determines the location of
the file or text library module to be included. It then checks to see if one or both of the two following
specially named files or modules exist in the same location as the included file:

_ DECC_INCLUDE_PROLOGUE.H
_ DECC_INCLUDE_EPILOGUE.H

The location is the OpenVMS directory containing the included file or the text library file containing
the included module. (In the case of a text library, the .h is stripped off.)

75

Chapter 1. Developing VSI C Programs

The directory is the result of using the SPARSE/$SEARCH system services with concealed device
name logicals translated. Therefore, if an included file is found through a concealed device logical
that hides a search list, the check for prologue/epilogue files is still specific to the individual
directories making up the search list.

2. If the prologue and epilogue files do exist in the same location as the included file, then the content
of each is read into memory.

3. The text of the prologue file is processed just before the text of the file specified by the #i ncl ude.
4. The text of the epilogue file is processed just after the text of the file specified by the #i ncl ude.

5. Subsequent #i ncl udes that refer to files from the same location use the saved text from any
prologue/epilogue file found there.

The prologue/epilogue files are otherwise treated as if they had been included explicitly: #| i ne
directives are generated for them if /PREPROCESS_ONLY output is produced, and they appear as
dependencies if /MMS_DEPENDENCY output is produced.

To take advantage of prologue/epilogue processing for included header files, you need to create two files,
__DECC | NCLUDE_PROLOGUE. Hand __ DECC_| NCLUDE_EPI LOGUE. H, in the same directory
as the included file.

Suggested content for a prologue file is:
_ DECC_INCLUDE_PROLOGUE.H:
#ifdef __ PRAGMA_ENVIRONMENT

fpragma environment save
fpragma environment header_defaults

#else

#error "_ DECC_INCLUDE_PROLOGUE.H: This compiler does not support
pragma environment"

#endif

Suggested content for an epilogue file is:
__DECC_INCLUDE_EPILOGUE.H:

#ifdef _ PRAGMA_ENVIRONMENT

#pragma __environment restore

#else

ferror "__DECC_INCLUDE_EPILOGUE.H: This compiler does not support
pragma environment"

#endif

1.7.5. Avoiding Problems

Consider the following suggestions to avoid problems related to pointer size:

* Write code to work with either 32-bit or 64-bit pointers by using only the /POINTER_SIZE
qualifier.

* Do bit manipulation on unsi gned i nt and unsi gned __i nt 64, and carefully cast pointers
to and from them.

76

Chapter 1. Developing VSI C Programs

* Heed compile-time warnings, using casts only where you are sure that pointers are not truncated.
* Enable the optional compile-time warning (/WARN=ENABLE=MAYHIDELOSS).

* Do thorough testing when compiling with /CHECK=POINTER_SIZE.

1.7.6. Examples

The following examples illustrate the use and misuse of 64-bit pointers.

Example 1.2. Watch Out for Pointers to Pointers (**)

/* CC/NAME=AS_IS/POINTER_SIZE=64 */

#include <stdio.h>

#pragma pointer_size 64

char *C[2] {"AB", "CD"}; /* sizeof(C) = 16 */

char **CPTRPTR = C;
char **CPTR;

#pragma pointer_size 32

char *c[2] = {"ab", "cd"}; /* sizeof(C) = 8 */
char **cptrptr = c;
char **cptr;
int main (void)
{
CPTR = cptr; /* No problem. */
cptr = CPTR; /* $CC-W-MAYLOSEDATA */
CPTRPTR = cptrptr; /* %CC-W-PTRMISMATCH */
cptrptr = CPTRPTR; /* MAYLOSEDATA & PTRMISMATCH */
puts (cptrptr[0]); /* ab */
puts (cptrptr[1]); /* cd */
puts (CPTRPTR[O0]) ; /* Bad address passed. */
puts (CPTRPTR[1]) ; /* Fetch off end of c. */
}
Compiling Example 1.2 produces:
$ cc examplel/name=as_is/pointer_size
cptr = CPTR; /* %$CC-W-MAYLOSEDATA */
$CC-W-MAYLOSEDATA, In this statement, "CPTR" has a larger
data size than "short pointer to char". Assignment may
result in data loss.)
CPTRPTR = cptrptr; /* %$CC-W-PTRMISMATCH */
$CC-W-PTRMISMATCH, In this statement, the referenced type
of the pointer value "cptrptr" is "short pointer to char",
which is not compatible with "long pointer to char".
cptrptr = CPTRPTR; /* MAYLOSEDATA & PTRMISMATCH */

A

$CC-W-MAYLOSEDATA, In this statement, "CPTRPTR" has a

Chapter 1. Developing VSI C Programs

larger data size than "short pointer to short pointer
to char". Assignment may result in data loss.)

cptrptr = CPTRPTR; /* MAYLOSEDATA & PTRMISMATCH */
$CC-W-PTRMISMATCH, In this statement, the referenced type
of the pointer wvalue "CPTRPTR" is "long pointer to char",
which is not compatible with "short pointer to char".

Example 1.3. Trivial 64-Bit Exploitation

#include <stdio.h>
#include <stdlib.h>
_ int64 limit, count;
size_t bytes;

char *cp, *prevcp;

int main (int argc, char **argv)
{
sscanf (argv[1l], "&%d", &bytes) ;
sscanf (argv[2], "%Ld", &limit);
printf ("bytes %d, limit %Ld, tot %Ld\n",

bytes, limit, bytes * limit);
for (count=0; count < limit; count++) {
if (!(cp = malloc(bytes))) {
printf ("Max %$Ld bytes.\n", bytes * (count + 1));
break;

} else if (!prevcp)
printf ("First addr %Lx.\n", cp);
}
prevcp = cp;
printf ("Last addr %Lx.\n", prevcp);

Compiling, linking, and running Example 1.3 produces:

$ cc example?2
$ link example?2

$ example2:==syslogin:[.john]lexample2 ! << set up a symbol
$ example2 65536 1234567890123456
bytes 65536, limit 1234567890123456, tot 7121664952292605952

First addr 610bO0.
First addr 730bO0.
First addr 850bO0.
First addr 970bO0.
First addr a%0bo0.

First addr £1c30bO0.
First addr £1d50bO0.
First addr £1e70bO0.
First addr £1£90bO.
First addr £20b0bO.

78

Chapter 1. Developing VSI C Programs

Max 225378304 bytes.
Last addr O.

$
$ cc/pointer_size=64 example?
$ link example?2

$ example2 65536 1234567890123456

bytes 65536, limit 1234567890123456, tot
7121664952292605952

First addr 1c0010010.

Max 42532864 bytes.

Last addr 1c2d8e010.

Example 1.4. Preceding Example No Longer Trivial

#include <stdio.h>
#include <stdlib.h>
_ int64 limit, count;
size_t bytes;

char *cp, *prevcp;

static void do_args (char **args)
{
sscanf (argv[1l], "&%d", &bytes) ;
sscanf (argv[2], "%Ld", &limit);
printf ("bytes %d, limit %Ld, tot %$Ld\n",
bytes, limit, bytes * limit);

int main (int argc, char **argv)
{

do_args (argv) ;

for (count=0; count < limit; count++) {
if (!(cp = malloc(bytes))) {
printf ("Max %$Ld bytes.\n", bytes * (count + 1));
break;

} else if (!'prevecp) |
printf ("First addr %Lx.\n", cp);
}
prevcp = cp;
printf ("Last addr %Lx.\n", prevcp);
}

Compiling Example 1.4 produces:

$ cc/pointer_size=64 example3

do_args (argv) ;

$CC-W-PTRMISMATCH, In this statement, the referenced type
of the pointer value "argv" is "short pointer to char",
which is not compatible with "long pointer to char".

79

Chapter 1. Developing VSI C Programs

80

Chapter 2. Using OpenVMS Record
Management Services

VSI C for OpenVMS systems provides a set of run-time library functions and macros to perform I/O.
Some of these functions perform in the same manner as I/O functions found on C implementations
running on UNIX systems. Other VSI C functions take full advantage of the functionality of the
OpenVMS file-handling system. You can also access the OpenVMS file-handling system from your VSI
C program without using the VSI C Run-Time Library (C RTL) functions. In any case, the system that
ultimately accesses files on OpenVMS systems is OpenVMS Record Management Services (RMS).

This chapter introduces you to the following RMS topics:

* RMS file organization (Section 2.1)

¢ Record access modes (Section 2.2)

¢ RMS record formats (Section 2.3)

e RMS functions (Section 2.4)

* Writing VSI C programs using RMS (Section 2.5)

* RMS example program (Section 2.6)

The file-handling capabilities of VSI C fall into two distinct categories:

* The VSI C RTL functions which, with little or no modification, are portable to other C
implementations

* The RMS functions, which are not portable to other C implementations, but do provide more
methods of file organization and more record access modes

This chapter briefly reviews the basic concepts and facilities of RMS and shows examples of their
application in VSI C programming. Because this is an overview, the chapter does not explain all RMS
concepts and features. For language-independent information about RMS, see the following manuals in
the OpenVMS documentation set:

* Guide to OpenVMS File Applications

This guide contains a general description of the record management services of the OpenVMS
operating system, and the file creation and run-time options available.

* OpenVMS Record Management Services Reference Manual

This manual describes the user interface to RMS. It includes introductory information on RMS
programming and detailed definitions of all RMS control block structures and macro instructions.

2.1. RMS File Organization

RMS supports three types of file organization:

* Sequential

81

Chapter 2. Using OpenVMS Record Management Services

* Relative
e Indexed
The following sections describe these types of file organization.

The organization of a file determines how a file is stored on the media and, consequently, the possible
operations on records. You specify the file's organization when you create the file; it cannot be changed.

However, you can use the File Definition Language Editor (FDL) and the CONVERT utility to define
the characteristics of a new file, and then fill the new file with the contents of the old file of a different
format. For more information, see the OpenVMS Utility Routines Manual.

2.1.1. Sequential File Organization

Sequential files have consecutive records. There are no empty records separating records that contain
data. This organization allows the following operations on the file:

* Positioning the file at a particular record, generally by sequentially moving from one record to the
next.

Direct access is also possible, either by key (relative record number) or by the record file address
(RFA). However, although allowed for any file organization, access by RFA is limited to files on
disk devices, and access by key is limited to disk files that also have fixed-length records. These
access modes are unusual because most application programs do not keep track of record positions in
sequential files.

* Reading data from any record.
* Writing data by adding records at the end of the file.

Sequential organization is the only kind permitted for magnetic tape files and other nondisk devices.

2.1.2. Relative File Organization

Relative files have records that occupy numbered, fixed-length cells. The records themselves need
not have the same length. Cells can be empty or can contain records so the following operations are
permitted:

* Positioning the file at a particular record, usually by direct access.

In direct access, RMS uses the relative record number—the number of a cell—as a key to locate
the cell and its record; there is no need to reference other cells. RMS can also access the records
sequentially by ignoring empty cells, or RMS can access the file directly with the record file address
(RFA). RMS returns the RFA in a parameter block whenever it writes a record, and you can access
and use the RFA to locate the appropriate record. You can access any file organization with the
RFA.

* Reading a record from any cell.
* Deleting a record from any cell.
* Writing a record into any cell.

Relative file organization is possible only on disk devices.

82

Chapter 2. Using OpenVMS Record Management Services

2.1.3. Indexed File Organization

Indexed files have records that contain, in addition to data and carriage-control information, one or
more keys. Keys can be character strings, packed decimal numbers, and 16-bit, 32-bit, or 64-bit signed
or unsigned integers. Every record has at least one key, the primary key, whose value in each record
cannot be changed. Optionally, each record can have one or more alternate keys, whose key values can
be changed.

Unlike relative record numbers used in relative files, key values in indexed files are not necessarily
unique. When you create a file, you can specify that a particular key have the same value in different
records (these keys are called duplicate keys). Keys are defined for the entire file in terms of their
position within a record and their length.

In addition to maintaining its records, RMS builds and maintains indexes for each of the defined
keys. As records are written to the file, their key values are inserted in order of ascending value in the
appropriate indexes. This organization allows the following operations:

* Positioning the file at a particular record by direct access.

In direct access reads, you use either a primary or alternate key, plus a specified key value, to
locate the record. In direct access writes (given a record that contains key values in the predefined
positions), RMS automatically adds the record to the file and adds the primary and alternate key
values to the appropriate indexes. You can also access records sequentially, where the sequence

is defined by the index for a specified key. Finally, you can access records directly by RFA; RMS
returns the RFA in a parameter block whenever it writes a record, and you can access and use the
RFA to locate the appropriate record. You can access any file organization with the RFA.

* Reading any record, including sequential reads controlled by a key's index.
* Deleting any record.
» Updating an alternate key's value, if the key's definition permits its value to change.

* Writing records selectively, based on the value of a key and, when allowed in the key's definition,
based on duplicate values. If duplicate values are permitted, you can write records containing key
values that are present in the key's index. If duplicate values are not permitted, such write operations
are rejected.

Indexed organization is possible only on disk devices.

2.2. Record Access Modes

The record access modes are sequential, direct by key, and direct by record file address. The direct
access modes are possible only with files that reside on disks.

Unlike a file's organization, the record access mode is not a permanent attribute of the file. During
the processing of a file, you can switch from one access mode to any other permitted for that file
organization. For example, indexed files are often processed by locating a record directly by key, and
then using that key's index to sequentially read all the indexed records in ascending order of their key
values; this method is sometimes called the indexed-sequential access method (ISAM).

2.3. RMS Record Formats

83

Chapter 2. Using OpenVMS Record Management Services

Records in RMS files can have the following formats:

* Fixed-length format, where the length of every record is defined at the time of the file's creation.
This format is permitted with any file organization.

* Variable-length format, where the maximum length of every record is defined at the time of the
file's creation. This format is permitted with any file organization.

e Variable-length format with a fixed-length control area (VFC), where every record is prefixed by a
fixed-length field. This format is permitted only with sequential and relative files.

» Stream format, where records are delimited by special characters called ferminators. Terminators are
part of the record they delimit. The three types of stream formatting are as follows:

e Stream, where records can be delimited with a form feed, vertical tab, new-line character, or
carriage-return/new-line character.

* Stream_cr, where records are delimited with the carriage-return character.

e Stream_If, where records are delimited with the line-feed character. This format variation is the
default format when you create files using the Standard I/O functions.

2.4. RMS Functions

RMS provides a number of functions that create and manipulate files. These functions use RMS data
structures to define the characteristics of a file and its records. The data structures are used as indirect
arguments to the function call.

The RMS data structures are grouped into four main categories, as follows:

* File Access Block (FAB) — Defines the file's characteristics, such as file organization and record
format.

* Record Access Block (RAB) — Defines the way in which records are processed, such as the record
access mode.

e Extended Attribute Block (XAB) — Various kinds of extended attribute blocks contain additional
file characteristics, such as the definition of keys in an indexed file. Extended attribute blocks are
optional.

* Name Block (NAM) — Defines all or part of a file specification to be used when an incomplete file
specification is given in an OPEN or CREATE operation. Name blocks are optional.

RMS uses these data structures to perform file and record operations. Table 2.1 lists some of the
common functions.

Table 2.1. Common RMS Run-Time Processing Functions

Category Function Description

File Processing sys$create Creates and opens a new file of any organization.
sys$open Opens an existing file and initiates file processing.
sys$close Terminates file processing and closes the file.

84

Chapter 2. Using OpenVMS Record Management Services

Category Function Description

sys$erase Deletes a file.

Record Processing |sys$connect Associates a file access block with a record access block to
establish a record access stream; a call to this function is
required before any other record-processing function can be
used.

sys$get Retrieves a record from a file.

sys$put Writes a new record to a file.

sys$update Rewrites an existing record to a file.

sys$delete Deletes a record from a file.

sys$rewind Positions the record pointer to the first record in the file.
sys$disconnect Disconnects a record access stream.

All RMS functions are directly accessible from VSI C programs. The syntax for any RMS function has

the following form:

int

sysS$Sname (struct rms_structure *pointer);

In this syntax, name is the name of the RMS function (such as OPEN or CREATE); rms_structure is the
name of the structure being used by the function.

The file-processing functions require a pointer to a file access block as an argument; the record-
processing functions require a pointer to a record access block as an argument. Since sys$create is a file-
processing function, its syntax is as follows:

int

sysS$Screate (struct FAB *fab);

These syntax descriptions do not show all the options available when you invoke an RMS function. For
a complete description of the RMS calling sequence, see the OpenVMS Record Management Services

Reference Manual.

Finally, all the RMS functions return an integer status value. The format of RMS status values follows
the standard format described in Chapter 3. Since RMS functions return a 32-bit integer, you do not
need to declare the type of an RMS function return before you use it.

2.5. Writing VSI C Programs Using RMS

The VSI C Run-Time Library (C RTL) supplies a number of header files that describe the RMS data
structures and status codes. Table 2.2 describes these header files.

Table 2.2. VSI C RMS Header Files

Header File Structure Tag(s) |Description

<fab.h> FAB Defines the file access block structure.

<rab.h> RAB Defines the record access block structure.
<nam.h> NAM Defines the name block structure.

<xab.h> XAB Defines all the extended attribute block structures.

<rmsdef.h>

Defines the completion status codes that RMS returns after
every file- or record-processing operation.

85

Chapter 2. Using OpenVMS Record Management Services

Header File

<rms.h>

Structure Tag(s) |Description

all tags Includes all the previous header files.

Most VSI C programmers include the <r ms. h> header file, which includes all the other header files.

These header files define all the data structures as structure tag names. However, they perform no
allocation or initialization of the structures; these header files describe only a template for the structures.
To use the structures, you must create storage for them and initialize all the structure members as
required by RMS. Note that these include files are part of VSI C for OpenVMS systems. RMS is part of
the OpenVMS environment and may contain other included header files not described here.

To assist in the initialization process, the C RTL provides initialized RMS data structure variables. You
can copy these variables to your uninitialized structure definitions with a structure assignment. You can
choose to take the default values for each of the structure members, or you can tailor the contents of the
structures to fit your requirements. In either case, you must use the structure types to allocate storage for
the structure and to define the members of the structure.

The initialized variables supply the RMS default values for each member in the structure; they specify
none of the optional parameters. To determine what default values are supplied by the initialized
variables, see the VSI OpenVMS Record Management Services Reference Manual.

Table 2.3 lists the initialized RMS data structure variables and the structures that they initialize.

Table 2.3. RMS Data Structures

Variable Structure Type Initialize Structure

cc$rms_fab struct FAB File access block

cc$rms_rab struct RAB Record access block

cc$rms_nam struct NAM Name block

cc$rms_xaball struct XABALL Allocation extended attribute block
cc$rms_xabdat struct XABDAT Date and time extended attribute block
cc$rms_xabfhe struct XABFHC File header characteristics extended attribute block
cc$rms_xabkey struct XABKEY |Indexed file key extended attribute block
cc$rms_xabpro struct XABPRO Protection extended attribute block
cc$rms_xabrdt struct XABRDT Revision date and time extended attribute block
cc$rms_xabsum struct XABSUM |Summary extended attribute block
cc$rms_xabtrm struct XABTRM | Terminal extended attribute block

The declarations of these structures are contained in the appropriate header file.

The names of the structure members conform to the following RMS naming convention:

typSs_£f1d

The identifier typ is the abbreviation for the structure, the letter s is the size of the member (such as 1

for longword or b for byte), and the identifier fId is the member name, such as sts for the completion
status code. The dollar sign ($) is a character used in OpenVMS system logical names. See the OpenVMS
Record Management Services Reference Manual for a description of the members in each structure.

2.5.1. Initializing File Access Blocks

86

Chapter 2. Using OpenVMS Record Management Services

The file access block defines the attributes of the file. To initialize a file access block, assign the values in
the initialized data structure cc$rms_fab to the address of the file access block defined in your program.
Consider the following example:

/* This example shows how to initialize a file access block. */
#include <rms.h> /* Declare all RMS data structs */
struct FAB fblock; /* Define a file access block */
main ()
{

fblock = cc$rms_fab; /* Initialize the structure */

}

Any of these RMS structures may be dynamically allocated. For example, another way to allocate a file
access block is as follows:

/* This program shows how to dynamically allocate RMS structures. */

#include <rms.h> /* Declare all RMS data structs */
main ()
{
/* Allocate dynamic storage */
struct FAB *fptr = malloc(sizeof (struct FAB));
fptr = ccSrms_fab; / Initialize the structure */

}

To change the default values supplied by a data structure variable, you must reinitialize the members of
the structure individually. You initialize a member by giving the offset of the member and assigning a
value to it. Consider the following example:

fblock.fab$l_xab = &primary_key;

This statement assigns the address of the extended attribute block named pri mary_key to the f ab
$l _xab member of the file access block named f bl ock.

2.5.2. Initializing Record Access Blocks

The record access block specifies how records are processed. You initialize a record access block the
same way you initialize a file access block. For example:

/* This example shows how to initialize a file access block. */

#include <rms.h>
struct FAB fblock;

87

Chapter 2. Using OpenVMS Record Management Services

struct RAB rblock; /* Define a record access block */
main ()
{
fblock = cc$Srms_fab; /* Initialize the structure */
rblock = cc$rms_rab;
/* Initialize the FAB member */
rblock.rab$l_fab = &fblock;

}

2.5.3. Initializing Extended Attribute Blocks

There is only one extended attribute block structure (XAB), but there are seven ways to initialize it. The
extended attribute blocks define additional file attributes that are not defined elsewhere. For example, the
key extended attribute block is used to define the keys of an indexed file.

All extended attribute blocks are chained off a file access block in the following manner:

1. 1In a file access block, you initialize the fab$]_xab field with the address of the first extended attribute
block.

2. You designate the next extended attribute block in the chain in the xab$l_nxt field of any subsequent
extended attribute blocks. You chain each subsequent extended attribute block in order by the key
of reference (first the primary key, then the first alternate key, then the second alternate key, and so
forth).

3. You initialize the xab$]l nxt member of the last extended attribute block in the chain with the value 0
(the default) to indicate the end of the chain.

You go through the same steps to declare extended attribute blocks as you would to declare the other
RMS data structures:

1. Define the structures by including the appropriate header file.
2. Assign a specific data structure variable to the structure in your program.
3. Initialize the members of the structure with the desired values.

The following example declares two extended attribute block structures. They are initialized as key
extended attribute blocks with the cc$rms_xabkey data structure variable. The xab$l_nxt member of the
primary key is initialized with the address of the alternate_key extended attribute block.

/* This example shows how to initialize the extended *
* attribute block. */

#include <rms.h>

struct XABKEY primary_key,alternate_key;

main ()

{

88

Chapter 2. Using OpenVMS Record Management Services

primary_key ccSrms_xabkey;
alternate_key = cc$rms_xabkey;
primary_key.xab$l_nxt &alternate_key;

}

2.5.4. Initializing Name Blocks

The name block contains default file name values, such as the directory or device specification, file
name, or file type. If you do not specify one of the parts of the file specification when you open the file,
RMS uses the values in the name block to complete the file specification and places the complete file
specification in an array.

You create and initialize name blocks in the same manner used to initialize the other RMS data
structures. Consider the following example:

/* This example shows how to initialize a name block. */
#include <rms.h>

struct NAM nam;
struct FAB fab;

main ()

{
fab = ccS$rms_fab;
nam = cc$rms_nam;

/* Define an array for the *
* expanded file specification */
char expanded_name [NAMSC_MAXRSS] ;

/* Initialize the appropriate *
* members */
fab.fab$l_nam = &nam;
nam.nam$1l_esa = &expanded_name;
nam.nam$b_ess sizeof expanded_name;

}

2.6. RMS Example Program

The example program in this section uses RMS functions to maintain a simple employee file. The file
is an indexed file with two keys: social security number and last name. The fields in the record are
character strings defined in a structure with the tag record.

The records have the carriage-return attribute. Individual fields in each record are padded with blanks
for two reasons. First, because RMS requires that the key fields be a fixed length and occur in a fixed
position in each record, key fields must be padded in some way. The example program pads short fields;
its use of the space character for padding is arbitrary. Second, the choice of blank padding (as opposed

89

Chapter 2. Using OpenVMS Record Management Services

to null padding) allows the file to be printed or typed without conversion. Note that both the position and
size of the key are attributes of the file, not of each I/O that gets done.

The program does not perform range or bounds checking. Only the error checking that shows the
mapping of VSI C to RMS is performed. Any other errors are considered fatal.

The program is divided into the following sections:
* External data declarations and definitions

* Main program section

* Function to initialize the RMS data structures

* Internal functions to open the file, display HELP information, pad the records, and process fatal
errors

* Utility functions

» ADD

» DELETE
» TYPE

* PRINT

» UPDATE

To run this program, perform the following steps:

1. Create a source file. The name of the source file in this example is RMSEXP.C. For more
information about creating source files, see Chapter 1.

2. Compile the source file with the following command:

$ CC RMSEXP

For more information about the compiling process, see Chapter 1.
3. Link the program with the following command:

$ LINK RMSEXP

For more information about the linking process, see Chapter 1.

4. Because the program expects command-line arguments, it must be defined as a foreign command.
You can do this with the following command line:

$ RMSEXP :== $device: [directory] RMSEXP

The identifier device is the logical or physical name of the device containing your directory; the
identifier directory is the name of your directory. The device name must be preceded by the dollar
sign ($) to be recognized as a foreign command by the DCL interpreter.

5. Run the program using the following foreign command:

$ RMSEXP filename

90

Chapter 2. Using OpenVMS Record Management Services

The complete listing of the sample program follows. The listing is broken into sections and shown in
Examples 2.1 through 2.9. Notes on each section are keyed to the numbers in the listing.

Example 2.1 shows the external data declarations and definitions.

Example 2.1. External Data Declarations and Definitions

/* This segment of RMSEXP.C contains external data *
* definitions. */

Q#include <rms.h>
#include <stdio.h>
#include <ssdef.h>
#include <string.h>
#include <stdlib.h>
#include <starlet.h>

@#define DEFAULT_FILE_EXT ".dat"
#define RECORD_SIZE (sizeof record)
#define SIZE_SSN 15

#define SIZE_LNAME 25

#define SIZE_FNAME 25

#define SIZE_COMMENTS 15

#define KEY_SIZE \

(SIZE_SSN > SIZE_LNAME ? SIZE_SSN: SIZE_LNAME)

Ostruct FAB fab;
struct RAB rab;
struct XABKEY primary_key,alternate_key;

Ostruct
{
char ssn[SIZE_SSN], last_name[SIZE_LNAME];
char first_name[SIZE_FNAME],

comments [SIZE_COMMENTS] ;
} record;

Ochar response[BUFSIZ], *filename;
Oint rms_status;

void open_file (void);

void type_options (void);
void pad_record(void);

vold error_exit (char *);
void add_employee (void);
void delete_employee (void);
void type_employees (void);
void print_employees (void);
void update_employee (void) ;
void initialize (char *);

Key to Example 2.1:

® The <r ms. h> header file defines the RMS data structures. The <st di 0. h> header file contains
the Standard I/O definitions. The <ssdef . h> header file contains the system services definitions.

® Preprocessor variables and macros are defined. A default file extension .DAT is defined.

91

Chapter 2. Using OpenVMS Record Management Services

The sizes of the fields in the record are also defined. Some (such as the social security number
field) are given a constant length. Others (such as the record size) are defined as macros; the size
of the field is determined with the Si zeof operator. VSI C evaluates constant expressions, such as
KEY_SI ZE, at compile time. No special code is necessary to calculate this value.

® Static storage for the RMS data structures is declared. The file access block, record access block,
and extended attribute block types are defined by the <r ms. h> header file. One extended
attribute block is defined for the primary key and one is defined for the alternate key.

O The records in the file are defined using a structure with four fields of character arrays.

©® The BUFSI Z constant is used to define the size of the array that will be used to buffer input from
the terminal. The file-name variable is defined as a pointer to char .

O The variable r n5_St at us is used to receive RMS return status information. After each function
call, RMS returns status information as an integer. This return status is used to check for specific
errors, end-of-file, or successful program execution.

The mai n function, shown in Example 2.2, controls the general flow of the program.

Example 2.2. Main Program Section

/* This segment of RMSEXP.C contains the main function *
* and controls the flow of the program. */

Omain (int argc, char **argv)
{
(2] if (argc < 1 || argc > 2)
printf ("RMSEXP - incorrect number of arguments");
else

{

printf ("RMSEXP - Personnel Database \
Manipulation Example\n");

(3] filename = (argc == 2 ? *++argv : "personnel.dat");
(4] initialize (filename);
(5] open_file();
for(;;)
{
(6] printf ("\nEnter option (A,D,P,T,U) or \
? for help :");
gets (response) ;
if (feof (stdin))
break;
printf ("\n\n");
(7] switch (response[0])
{
case 'a': case 'A': add_employee();
break;
case 'd': case 'D': delete_employee();
break;
case 'p': case 'P': print_employees{();
break;

92

Chapter 2. Using OpenVMS Record Management Services

case 't': case 'T': type_employees();
break;

case 'u': case 'U': update_employee();
break;

default: printf ("RMSEXP - \

Unknown Operation.\n");

case '?': case '\0':
type_options () ;
}
}
(8] rms_status = sysSclose (&fab);
(9] if (rms_status != RMS$_NORMAL)
error_exit ("$CLOSE") ;
}
}
Key to Example 2.2:
©® The main function is entered with two parameters. The first is the number of arguments used to
call the program; the second is a pointer to the first argument (file name).
® This statement checks that you used the correct number of arguments when invoking the program.
©® If afile name is included in the command line to execute the program, that file name is used. If
a file extension is not given, .DAT is the file extension. If no file name is specified, then the file
name is PERSONNEL.DAT.
O The file access block, record access block, and extended attribute blocks are initialized.
® The file is opened using the RMS sys$open function.
O The program displays a menu and checks for end-of-file (the character Ctrl/Z).
©® A swi tch statement and a set of case statements control the function to be called, which is
determined by the response from the terminal.
©® The program ends when Ctrl/Z is entered in response to the menu. At that time, the RMS
sys$close function closes the employee file.
©® Ther ns_st at us variable is checked for a return status of RMS$_NORMAL. If the file is not

closed successfully, then the error-handling function terminates the program.

Example 2.3 shows the function that initializes the RMS data structures. See the RMS documentation
for more information about the file access block, record access block, and extended attribute block
structure members.

Example 2.3. Function Initializing RMS Data Structures

/* This segment of RMSEXP.C contains the function that
* initializes the RMS data structures. */

void initialize (char *fn)

{

(1]

fab = ccSrms_fab; /* Initialize FAB */
fab.fab$b_bks = 4;
fab.fab$l_dna = DEFAULT_FILE_EXT;
fab.fab$b_dns = sizeof DEFAULT_FILE_EXT -1;
fab.fab$b_fac = FABSM_DEL | FABSM_GET |

93

Chapter 2. Using OpenVMS Record Management Services

FABSM_PUT | FABSM_UPD;
fab.fab$l_fna = fn;
fab.fab$b_fns = strlen(fn);
(2] fab.fab$l_fop = FABSM_CIF;
fab.fab$w_mrs = RECORD_SIZE;
fab.fabS$b_org = FABSC_IDX;
(3] fab.fab$b_rat = FABSM_CR;
fab.fabSb_rfm = FABSC_FIX;
fab.fabSb_shr = FABSM NIL;
fab.fab$l_xab = &primary_key;
(4] rab = ccSrms_rab; /* Initialize RAB */
rab.rab$l_fab = &fab;
(5] primary_key = cc$rms_xabkey; /* Initialize Primary
* Key XAB */
primary_key.xab$b_dtp = XABSC_STG;
primary_key.xab$b_flg = 0;
(6 primary_key.xab$w_posO0 = (char *) &record.ssn -—
(char *) &record;
primary_key.xabSb_ref = 0;
primary_key.xab$b_siz0 = SIZE_SSN;
primary_key.xab$l_nxt = &alternate_key;
primary_key.xab$l_knm = "Employee Social Security \
Number ",
(7] alternate_key = ccSrms_xabkey; /* Initialize Alternate *
* Key XAB */
alternate_key.xabSb_dtp = XABSC_STG;
(8] alternate_key.xab$b_flg = XABSM _DUP | XABSM_CHG;
alternate_key.xabSw_pos0 = (char *) &record.last_name -
(char *) &record;
alternate_key.xabSb_ref = 1;
alternate_key.xabSb_siz0 = SIZE_LNAME;
o alternate_key.xab$l_knm = "Employee Last Name \

"w.
14

}
Key to Example 2.3:

® The data structure variable cc$rms_fab initializes the file access block with default values. Some
members have no default values; they must be initialized. Such members include the file-name
string address and size. Other members can be initialized to override the default values.

This statement initializes the file-processing options member with the create-if option. A file is
created if one does not exist.

This statement initializes the record attributes member with the carriage-return control attribute.
Records are terminated with a carriage return/line feed when they are printed on the printer or
displayed at the terminal.

The data structure variable cc$rms_rab initializes the record access block with the default values. In
this case, the only member that must be initialized is the rab$l_fab member, which associates a file
access block with a record access block.

The data structure variable cc$rms_xabkey initializes an extended attribute block for one key of an
indexed file.

The position of the key is specified by subtracting the offset of the member from the base of the
structure.

94

Chapter 2. Using OpenVMS Record Management Services

@ A separate extended attribute block is initialized for the alternate key.
© This statement specifies that more than one alternate key can contain the same value
(XABSM_DUP), and that the value of the alternate key can be changed (XAB$M_CHG).

Note

RMS constants shown here are in the form xxx$M_yyy (for example, RAB$M_FIX) or
xxx$C_yyy (for example, RABSC_FIX). The OpenVMS RMS documentation cites the constants
in the form xxx$V_yyy (for example, rab$v_fix), the difference being:

* The $M type constant signifies a bit mask, and should be OR'ed to an existing value.

* The $V type constant represents the bit position of a constant, and a shift operation is
necessary for setting the appropriate bit.

Using a $V type constant the same way as a $M type constant is a common problem.

© The key-name member is padded with blanks because it is a fixed-length, 32-character field.

Example 2.4 shows the internal functions for the program.

Example 2.4. Internal Functions

/* This segment of RMSEXP.C contains the functions that *
* control the data manipulation of the program. */

void open_file(void)

{

(1] rms_status = sysScreate(&fab);
if (rms_status != RMSS$_NORMAL &&
rms_status != RMSS$S_CREATED)

error_exit ("SOPEN") ;

if (rms_status == RMSS$S_CREATED)
printf ("[Created new data file.]\n");

(2] rms_status = sysS$Sconnect (&rab);
if (rms_status != RMSS$_NORMAL)
error_exit ("SCONNECT") ;

Ovoid type_options (void)
{
printf ("Enter one of the following:\n\n");

(
printf ("A Add an employee.\n");
printf ("D Delete an employee specified by SSN.\n");
printf ("P Print employee(s) by ascending SSN on \

line printer.\n");

printf("T Type employee(s) by ascending last name \
on terminal.\n");

printf ("U Update employee specified by SSN.\n\n");

printf ("? Type this text.\n");

printf (""2z Exit this program.\n\n");

95

Chapter 2. Using OpenVMS Record Management Services

Ovoid pad_record(void)

{

int i;

for(i = strlen(record.ssn); 1 < SIZE_SSN; i++)

record.ssn[i] = "' ';
for(i = strlen(record.last_name); i < SIZE_LNAME; i++)
record.last_name[i] = "' ';

for(i = strlen(record.first_name); 1 < SIZE_FNAME; i++)
record.first_name([i] = "' ';

for(i = strlen(record.comments);i < SIZE_COMMENTS; i++)
record.comments([i] = "' ';

/* This subroutine is the fatal error—-handling routine. */

Ovoid error_exit (char *operation)

{
printf ("RMSEXP - file %s failed (%s)\n",
operation, filename);
exit (rms_status);

}
Key to Example 2.4:

©® Theopen_fil e function uses the RMS sys$create function to create the file, giving the
address of the file access block as an argument. The function returns status information to the
rms_st at us variable.

® The RMS sys$connect function associates the record access block with the file access block.

® Thetype_opti ons function, called from the mai n function, prints help information. Once the
help information is displayed, control returns to the mai n function, which processes the response
that is typed at the terminal.

O For each field in the record, the pad_r ecor d function fills the remaining bytes in the field with
blanks.

© This function handles fatal errors. It prints the function that caused the error, returns an OpenVMS
error code (if appropriate), and exits the program.

Example 2.5 shows the function that adds a record to the file. This function is called when 'a’ or ’A’ is
entered in response to the menu.

Example 2.5. Utility Function: Adding Records

/* This segment of RMSEXP.C contains the function that *
* adds a record to the file. */

void add_employee (void)

{
(1] do

{
printf (" (ADD) Enter Social Security Number:");

gets (response) ;

96

Chapter 2. Using OpenVMS Record Management Services

while (strlen (response) == 0);

strncpy (record.ssn, response, SIZE_SSN) ;

do
{
printf (" (ADD) Enter Last Name:");
gets (response) ;
}
while (strlen (response) == 0);

strncpy (record. last_name, response, SIZE_LNAME) ;

do
{
printf (" (ADD) Enter First Name:");
gets (response) ;
}
while (strlen (response) == 0);

strncpy (record.first_name, response, SIZE_FNAME) ;

do
{
printf (" (ADD) Enter Comments:");
gets (response);
}
while (strlen (response) == 0);

strncpy (record.comments, response, SIZE_COMMENTS) ;

(2] pad_record() ;

(3] rab.rabSb_rac = RABSC_KEY;
rab.rab$l_rbf = (char *) &record;
rab.rab$w_rsz = RECORD_SIZE;
(4] rms_status = sysS$Sput (&rab);
(5] if (rms_status !'= RMS$_NORMAL && rms_status !=
RMSS$_DUP && rms_status != RMSS$S_OK_DUP)
error_exit ("$PUT");
else
if (rms_status == RMSS$S_NORMAL || rms_status ==

RMSS$_OK_DUP)
printf (" [Record added successfully.]l\n");
else
printf ("RMSEXP - Existing employee with same SSN, \
not added.\n");
}

Key to Example 2.5:

©® A series of do loops controls the input of information. For each field in the record, a prompt is
displayed. The response is buffered and the field is copied to the structure.
® When all fields have been entered, the pad_r ecor d function pads each field with blanks.

97

Chapter 2. Using OpenVMS Record Management Services

® Three members in the record access block are initialized before writing the record. The record
access member (rab$b_rac) is initialized for keyed access. The record buffer and size members
(rab$1_rbf and rab$w_rsz) are initialized with the address and size of the record to be written.

O The RMS sys$put function writes the record to the file.

© Ther ns_st at us variable is checked. If the return status is normal, or if the record has a
duplicate key value and duplicates are allowed, the function prints a message stating that the record
was added to the file. Any other return value is treated as a fatal error causing er r or _exi t to be
called.

Example 2.6 shows the function that deletes records. This function is called when d’ or D’ is entered in
response to the menu.

Example 2.6. Utility Function: Deleting Records

/* This segment of RMSEXP.C contains the function that *
* deletes a record from the file. */

void delete_employee (void)

{

int 1i;
o do
{
printf (" (DELETE) Enter Social Security Number ")
gets (response) ;
i = strlen(response);
}
while (i == 0);

(2] while (i < SIZE_SSN)

response [i++] = ' ';
(3] rab.rab$b_krf = 0;
rab.rab$1l_kbf = response;
rab.rab$b_ksz = SIZE_SSN;

rab.rab$b_rac RABSC_KEY;

(4] rms_status = sys$find(&rab);
(5] if (rms_status != RMSS$_NORMAL && rms_status != RMSS$S_RNF)
error_exit ("$SFIND") ;
else
if (rms_status == RMSS$_RNF)

printf ("RMSEXP - specified employee does not \
exist.\n");

else

{

(6] rms_status = sysS$Sdelete (&rab);
if (rms_status != RMS$_NORMAL)
error_exit ("$SDELETE") ;

}
}
Key to Example 2.6:

©® A do loop prompts you to type a social security number at the terminal and places the response in
the response buffer.

98

Chapter 2. Using OpenVMS Record Management Services

(6]

The social security number is padded with blanks.

Some members in the record access block must be initialized before the program can locate the
record. Here, the key of reference (0 specifies the primary key), the location and size of the search
string (this is the address of the response buffer and its size), and the type of record access (in this
case, keyed access) are given.

The RMS sys$find function locates the record specified by the social security number entered from
the terminal.

The program checks the r ms_st at us variable for the values RMS$_NORMAL and
RMS$_RNF (record not found). A message is displayed if the record cannot be found. Any other
error is a fatal error.

The RMS sys$delete function deletes the record. The return status is checked only for success.

Example 2.7 shows the function that displays the employee file at the terminal. This function is called
from the mai n function when ’t * or "T is entered in response to the menu.

Example 2.7. Utility Function: Typing the File

/* This segment of RMSEXP.C contains the function that *
* displays a single record at the terminal. */

void type_employees (void)

{

(1
(2
(3

int number_employees;

rab.rab$b_krf = 1;
rms_status = sysSrewind(&rab);
if (rms_status != RMSS$_NORMAL)

error_exit ("SREWIND") ;

printf ("\n\nEmployees (Sorted by Last Name) \n\n");
printf ("Last Name First Name SSN \
Comments\n") ;

———————— \n\n");
rab.rab$b_rac = RABSC_SEQ;
rab.rab$l_ubf = (char *) &record;
rab.rab$w_usz = RECORD_SIZE;

for (number_employees = 0; ; number_employees++)
{
rms_status = sys$get (&rab);
if (rms_status != RMSS$S_NORMAL && rms_status !=
RMSS$_EOF)
error_exit ("$GET") ;
else
if (rms_status == RMSS$_EOF)
break;
printf ("%$.*s%.*s%.*s%.*s\n",
SIZE_LNAME, record.last_name,
SIZE_FNAME, record.first_name,
SIZE_SSN, record.ssn,
SIZE_COMMENTS, record.comments);

99

Chapter 2. Using OpenVMS Record Management Services

(7] if (number_employees)
printf ("\nTotal number of employees = %d.\n",
number_employees) ;
else
printf (" [Data file is empty.]\n");
}

Key to Example 2.7:

©® A running total of the number of records in the file is kept in the nunber _enpl oyees variable.

® The key of reference is changed to the alternate key so that the employees are displayed in
alphabetical order by last name.

® The file is positioned to the beginning of the first record according to the new key of reference, and

the return status of the sys$rewind function is checked for success.

A heading is displayed.

Sequential record access is specified, and the location and size of the record is given.

A f or loop controls the following operations:

©@060

* Incrementing the nunber _enpl oyees counter
* Locating a record and placing it in the record structure, using the RMS sys$get function
* Checking the return status of the RMS sys$get function

» Displaying the record at the terminal
© Thisi f statement checks for records in the file. The result is a display of the number of records or
a message indicating that the file is empty.

Example 2.8 shows the function that prints the file on the printer. This function is called by the mai n
function when ’p’ or ’P’ is entered in response to the menu.

Example 2.8. Utility Function: Printing the File

/* This segment of RMSEXP.C contains the function that *
* prints the file. */

void print_employees (void)
{

int number_employees;

FILE *fp;
o fp = fopen("personnel.lis", "w", "rat=cr",
"rfm=var", "fop=spl");
if (fp == NULL)

{
perror ("RMSEXP - failed opening listing \

file");
exit (SS$S_NORMAL) ;
}
(2] rab.rabS$b_krf = 0;
(3] rms_status = sysSrewind(&rab);
if (rms_status != RMSS$S_NORMAL)

error_exit ("SREWIND") ;

100

Chapter 2. Using OpenVMS Record Management Services

(4] fprintf (fp, "\n\nEmployees (Sorted by SSN)\n\n");
fprintf (fp, "Last Name First Name SSN \
Comments\n") ;

fprintf (fp,"--—-————"--- = —————— \
———————— \n\n")
(5] rab.rabSb_rac = RABSC_SEQ;
rab.rab$l_ubf = (char *) &record;
rab.rab$w_usz = RECORD_SIZE;
(6] for (number_employees = 0; ; number_employees++)
{
rms_status = sys$get (&rab);
if (rms_status != RMSS$S_NORMAL &&
rms_status != RMSS$S_EOF)
error_exit ("$SGET") ;
else
if (rms_status == RMSS$S_EOF)
break;

fprintf (fp, "%.*s%.*s%.*s%.*s",

SIZE_LNAME, record.last_name,
SIZE_FNAME, record.first_name,
SIZE_SSN, record.ssn,
SIZE_COMMENTS, record.comments) ;

}

(7] if (number_employees)
fprintf (fp, "Total number of employees = %d.\n",
number_employees) ;
else
fprintf (fp, "[Data file is empty.]l\n");

(8] fclose (fp);

printf (" [Listing file\"personnel.lis\"spooled to \
SYSSPRINT.]\n");
}

Key to Example 2.8:

©® This function creates a sequential file with carriage-return carriage-control, variable-length records.
It spools the file to the printer when the file is closed. The file is created using the standard I/0O
library function f open, which associates the file with the file pointer, f p.

® The key of reference for the indexed file is the primary key.

® The RMS sys$rewind function positions the file at the first record. The return status is checked for
success.

O A heading is written to the sequential file using the standard I/O library function f pri nt f .

©® The record access, user buffer address, and user buffer size members of the record access block are
initialized for keyed access to the record located in the record structure.

6 Afor loop controls the following operations:

* Initializing the running total and then incrementing the total at each iteration of the loop

» Locating the records and placing them in the record structure with the RMS sys$get function,
one record at a time

* Checking the r ms_st at us information for success and end-of-file

101

Chapter 2. Using OpenVMS Record Management Services

* Writing the record to the sequential file

® The nunber _enpl oyees counter is checked. If it is 0, a message is printed indicating that the
file is empty. If it is not 0, the total is printed at the bottom of the listing.

O The sequential file is closed. Since it has the spl record attribute, the file is automatically spooled
to the printer. The function displays a message at the terminal stating that the file was successfully
spooled.

Example 2.9 shows the function that updates the file. This function is called by the mai n function when
U’ or "U is entered in response to the menu.

Example 2.9. Utility Function: Updating the File

/* This segment of RMSEXP.C contains the function that *
* updates the file. */

void update_employee (void)
{

int 1i;
(1] do

{
printf (" (UPDATE) Enter Social Security Number\

");

gets (response) ;
i = strlen(response);

}

while (i == 0);

(2] while (i < SIZE_SSN)

response [i++] = ' ';
©® rab.rabSb_krf = 0;
rab.rab$1l_kbf = response;
rab.rab$b_ksz = SIZE_SSN;
rab.rab$b_rac = RABSC_KEY;
rab.rab$l_ubf = (char *) &record;
rab.rab$w_usz = RECORD_SIZE;
(4] rms_status = sys$get (&rab);
if (rms_status != RMSS$S_NORMAL && rms_status != RMSS_RNF)
error_exit ("S$SGET");
else
if (rms_status == RMSS$S_RNF)

printf ("RMSEXP - specified employee does not \
exist.\n");

(5] else

{
printf ("Enter the new data or RETURN to leave \

data unmodified.\n\n");

printf ("Last Name:");
gets (response) ;
if (strlen(response))

102

Chapter 2. Using OpenVMS Record Management Services

strncpy (record.last_name, response,
SIZE_LNAME) ;

printf ("First Name:");
gets (response) ;
if (strlen(response))
strncpy (record.first_name, response,
SIZE_FNAME) ;

printf ("Comments:");
gets (response) ;
if (strlen(response))
strncpy (record.comments, response,
SIZE_COMMENTS) ;

(6] pad_record() ;
(7] rms_status = sysSupdate (&rab);
if (rms_status != RMSS$_NORMAL)

error_exit ("SUPDATE") ;

printf (" [Record has been successfully \
updated.]\n");
}
}

Key to Example 2.9:

©® A do loop prompts for the social security number and places the response in the response buffer.

® The response is padded with blanks so that it will correspond to the field in the file.

® Some of the members in the record access block are initialized for the operation. The primary key
is specified as the key of reference, the location and size of the key value are given, keyed access is
specified, and the location and size of the record are given.

O The RMS sys$get function locates the record and places it in the record structure. The function
checks the r ns_st at us value for RMS$_NORMAL and RMS$_RNF (record not found). If the
record is not found, a message is displayed. If the record is found, the program prints instructions
for updating the record.

O If you press the Return key, the record is placed in the record structure unchanged. If you make a
change to the record, the new information is placed in the record structure.

O The fields in the record are padded with blanks.

©@ The RMS sys$update function rewrites the record. The program then checks that the update
operation was successful. Any error causes the program to call the fatal error-handling routine.

103

Chapter 2. Using OpenVMS Record Management Services

104

Chapter 3. Using VSI C in the
Common Language Environment

This chapter discusses the following topics:

* OpenVMS calling standard conventions (Section 3.1)

* Parameter-passing mechanisms (Section 3.2)

* Interlanguage calling (Section 3.3)

» Sharing global data (Section 3.4)

* OpenVMS Run-Time Library (RTL) routines (Section 3.5)

* OpenVMS system services routines (Section 3.6)

* (alling routines (Section 3.7)

* Variable-length argument lists in system services (Section 3.8)

e Return status values (Section 3.9)

* Examples of calling system routines (Section 3.10)

The VSI C compiler is part of the OpenVMS common language environment. This environment defines
certain calling procedures and guidelines that allow you to call routines written in different languages
from VSI C programs, to call VSI C functions from programs written in other languages, or to call
prewritten system routines from VSI C programs. You can call any one of the following routine types
from VSI C:

* Routines written in other OpenVMS languages

* OpenVMS RTL routines

* OpenVMS system services

* OpenVMS utility routines

The terms routine, procedure, and function are used throughout this chapter. A routine is a closed,
ordered set of instructions that performs one or more specific tasks. Every routine has an entry point
(the routine name), and optionally an argument list. Procedures and functions are specific types of
routines: a procedure is a routine that does not return a value; a function is a routine that returns a value
by assigning that value to the function's identifier.

System routines are prewritten OpenVMS routines that perform common tasks, such as finding the
square root of a number or allocating virtual memory. You can call any system routine from your
program, provided that VSI C supports the data structures required to call the routine. The system
routines used most often are OpenVMS RTL routines and system services. System routines, which are

discussed later in this chapter, are documented in detail in the VMS Run-Time Library Routines Volume
and the VSI OpenVMS System Services Reference Manual.

105

Chapter 3. Using VSI C in the Common Language Environment

3.1. Basic Calling Standard Conventions

The VSI OpenVMS Calling Standard describes the concepts used by all OpenVMS languages to invoke
routines and pass data between them. It also describes the differences between the VAX and Alpha
parameter-passing mechanisms. The OpenVMS calling standard specifies the following attributes:

* Register usage

» Stack usage

* Function return value

* Argument list

The following sections discuss these attributes in more detail for OpenVMS VAX systems. For more
detail on OpenVMS Alpha systems, see the VSI OpenVMS Calling Standard.

The calling standard also defines such attributes as the calling sequence, the argument data types and

descriptor formats, condition handling, and stack unwinding. These attributes are discussed in detail in
the OpenVMS Programming Interfaces: Calling a System Routine.

3.1.1. Register and Stack Usage

The calling standard defines several registers and their uses, as listed in Table 3.1 for VAX systems and
Table 3.2 for Alpha systems.

Table 3.1. VAX Register Usage

Register Use

PC Program counter

Sp Stack pointer

FP Current stack frame pointer

AP Argument pointer

R1 Environment value (when necessary)
RO, R1 Function return value registers

Table 3.2. Alpha Register Usage

Register Use

PC Program counter

Sp Stack pointer

FpP Frame pointer for current procedure
R25 Argument information register

R16 to R21, Argument list registers

F16 to F21

RO Function return value register

106

Chapter 3. Using VSI C in the Common Language Environment

By definition, any called routine can use registers R2 through R11 for computation, and the AP register
as a temporary register.

In the calling standard, a stack is defined as a last-in/first-out (LIFO) temporary storage area that the
system allocates for every user process. The system keeps information about each routine call in the
current image on the call stack. Then, each time you call a routine, the system creates a structure on this
call stack, known as the call frame. The call frame for each active process contains the following data:

* A pointer to the call frame of the previous routine call. This pointer corresponds to the frame pointer
(FP).

* The argument pointer (AP) of the previous routine call.

* The storage address of the point at which the routine was called; that is, the address of the
instruction following the call to the current routine. This address is called the program counter (PC).

* The contents of other general registers. Based on a mask specified in the control information, the
system restores the saved contents of these registers to the calling routine when control returns to it.

When a routine completes execution, the system uses the frame pointer in the call frame of the current
routine to locate the frame of the previous routine. The system then removes the call frame of the current
routine from the stack.

Figure 3.1 shows the call stack and several call frames for VAX processors. Function A calls function B,
which calls function C. When a function reaches a r et ur n statement or when control reaches the end
of the function, the system uses the frame pointer in the call frame of the current function to locate the
frame of the previous function. It then removes the call frame of the current function from the stack.

Figure 3.1. The Call Stack

A 2 - Indiaf zem valie (set by
hardware): set te non-
zere if routine either
has exceplion hander
oF can generale a

predefined exception
31 o B AP — Copy of argument pointer
a for furclion A
il i) Mask PSW FP - Pointerto A's call frame
7 T AP PG - Memory Jocation in A at

which B was inveked

FP
pe R2 - Contents of A's general
: registers B2 through BT7T
Rz !
R11
= : = c
R11

ZK-0080-GE

107

Chapter 3. Using VSI C in the Common Language Environment

3.1.2. Return of the Function Value

A function is a routine that returns a single value to the calling routine. The function value represents the
value of the expression in the r et ur n statement. According to the calling standard, a function value
may be returned as either an actual value or a condition value that indicates success or failure.

3.1.3. The Argument List

The VSI OpenVMS Calling Standard also defines a data structure called the argument list. You use an
argument list to pass information to a routine and receive results.

On OpenVMS Alpha systems, an argument list is formed using registers R16 to R21 or F16 to F21, and
a collection of quadwords in memory (depending on the number and type of the arguments).

On OpenVMS VAX systems, an argument list is a collection of longwords in memory that represents a
routine parameter list and possibly includes a function value. Figure 3.2 shows the structure of a typical
OpenVMS VAX argument list.

Figure 3.2. Structure of an OpenVMS VAX Argument List

0 n
argl
arg?
argn
ZK-5503-GE

The first longword must be present; this longword stores the number of arguments (the argument count:
n) as an unsigned integer value in the low byte of the longword with a maximum of 255 arguments. The
remaining 24 bits of the first longword are reserved for use by VSI and should be 0. The longwords
labeled argl through argn are the actual parameters, which can be any of the following addresses or
value:

* An uninterpreted 32-bit value that is passed by value
* An address that is passed by reference
* An address of a descriptor that is passed by descriptor

The argument list contains the parameters that are passed to the routine. Depending on the passing
mechanisms for these parameters, the forms of the arguments contained in the argument list vary.

For example, if you pass three arguments, the first by value, the second by reference, and the third by
descriptor, the argument list would contain the value of the first argument, the address of the second, and
the address of the descriptor of the third. Figure 3.3 shows this argument list.

108

Chapter 3. Using VSI C in the Common Language Environment

Figure 3.3. Example of an OpenVMS VAX Argument List

0 3

value of the first parameter

address of the second parameter

address of descriptor of the third parameter

ZK-5504-GE

For additional information on the OpenVMS calling standard, see the VSI OpenVMS Calling Standard.

3.2. Specifying Parameter-Passing
Mechanisms

When you pass data between routines that are not written in the same OpenVMS language, you have to
specify how you want that data to be represented and interpreted. You do this by specifying a parameter-
passing mechanism.

The calling standard defines three ways to pass data in an argument list. When you code a reference to
a non-VSI C procedure, you must know how to pass each argument and write the function reference
accordingly.

The following list describes the three argument-passing mechanisms:

* By immediate value
When an argument is passed by immediate value, the actual value of the argument is present in the
argument list. This is the default argument-passing mechanism for all function references written in
VSIC.

* By reference

When an argument is passed by reference, the address of the argument is present in the argument
list. Use the C ampersand operator (&) to pass the address of an argument, or pass a pointer to the
argument by value.

* By descriptor
When an argument is passed by descriptor, the address of a data structure describing the argument
is present in the argument list. From a VSI C program, you pass a descriptor first by creating a
structure (St r uct) that meets the descriptor requirements of the called procedure and then by

passing the structure's address with the ampersand operator or by passing a pointer to that structure
by value.

The following sections outline each of these parameter-passing mechanisms in more detail.

3.2.1. Passing Arguments by Immediate Value

109

Chapter 3. Using VSI C in the Common Language Environment

By default, all values or expressions in a VSI C function's argument list are passed by immediate value
(except for X_FLOATING on OpenVMS Alpha systems, which is passed by reference). The expressions
are evaluated and the results placed directly in the argument list of the CALL machine instruction.

The following statement declares the entry point of the Set Event Flag SYS$SETEF system service,
which is used to set a specific event flag to 1:

/* Declare the function as a function returning type int. */
int SYSSSETEF () ;

The SYS$SETEEF system service call requires one argument—the number of the event flag to be set
—to be passed by immediate value. VSI C for OpenVMS systems converts linker-resolved variable
names (such as the entry-point names of system service calls) to uppercase. You do not have to declare
them in uppercase in your program (unless you compile your module with /NAMES=AS_IS). However,
linker-resolved variable names must be declared and used with identical cases in each module. The
documentation uses uppercase as a convention for referring to system service calls to highlight them in
the text and examples.

VSI C does not require you to declare a function or to specify the number or types of the function's
arguments. However, if you call a function without declaring it or without providing argument
information in the declaration, VSI C does not check the types of the arguments in a call to that function.
If you declare a function prototype, the compiler does check the arguments in a call to make sure

that they have the same type. (See the VSI C Reference Manual [https://docs.vmssoftware.com/vsi-c-
language-reference-manual/] for more information on function prototypes.)

Like all system services, SYS$SETEF returns an integer value (the return status of the service) in register
0. Most system services return an integer completion status; therefore, the system service does not
always have to be declared before it is used. The examples in this chapter declare system services for
completeness.

In the VSI OpenVMS System Services Reference Manual, you can find the specification of each service's
arguments. SYSSSETEEF, for example, takes one argument, an event flag number. It returns one of four
status values, which are represented by the symbolic constants shown in Table 3.3.

Table 3.3. Status Values of SYS$SETEF

Returned Status Description

SS$_WASCLR Success Flag was previously clear

SS$_WASSET Success Flag was previously set

SS$_ILLEFC Failure Illegal event flag number

SS$_UNASEFC Failure Event flag not in associated
cluster

The system services manual also defines event flags as integers in the range O to 127, grouped in clusters
of 32. Clusters 0 and 1, comprising flags O to 31 and 32 to 63, respectively, are local clusters available to
any process, with the restriction that flags 24 to 31 are reserved for use by the OpenVMS system. There
are many ways of passing valid event flag numbers from your VSI C program to SYS$SETEF. One way
is to use enumto define a subset of integers, as follows:

enum cluster0 {completion, breakdown, beginning} event;

After the flag numbers are defined, call the SYS$SETEF service with the following code:

110

https://docs.vmssoftware.com/vsi-c-language-reference-manual/
https://docs.vmssoftware.com/vsi-c-language-reference-manual/
https://docs.vmssoftware.com/vsi-c-language-reference-manual/

Chapter 3. Using VSI C in the Common Language Environment

int status;
event = completion;

status = SYSSSETEF (event) ; /* Set event flag. */

Figure 3.4 shows an argument being passed by immediate value; in this case, the event flag number
passed to SYS$SSETEF.

Figure 3.4. Passing Arguments by Immediate Value

{main{) Argument pointer (AP) \

number of arguments: 1

_}. SYS$SETEF {4); first argument: 4

ZK-0092-GE

Since argument lists consist of longwords, the calling standard dictates that immediate-value arguments
be expressed in 32 bits. A single-precision, floating-point (F_floating) value is only 32 bits long, but the
compiler promotes all arguments of type f | oat to doubl e (64 bits on a VAX processor) unless a
function prototype declaration is used for the called function. This double-precision value is passed as
two immediate values (two longwords).

Note

The passing of double-precision immediate values is a violation of the calling standard for OpenVMS
VAX systems, but is an allowed exception for VSI C.

On rare occasions, the f | oat -to-doubl e promotion requires some additional programming. For
instance, the function OTS$POWRYJ, in the VAX Common Run-Time Procedure Library, computes

the value of a floating-point number raised to the power of a signed longword (in C terms, a f | oat

to the power of an i nt). This function (and others like it) is called implicitly by high-level OpenVMS
languages that have an exponentiation operator as part of the language. It requires that both its arguments
be passed as immediate values, and it returns a single-precision (f | oat) result. To pass a floating-

point base to the procedure, you must use some method to avoid promoting f | oat arguments. The
recommended method is to declare the procedure using a function prototype declaration, as shown in
Example 3.1.

Example 3.1. Passing Floating-Point Arguments by Immediate Value

/* This program shows how to pass a floating-point value,
* using prototypes to avoid promoting floating

111

Chapter 3. Using VSI C in the Common Language Environment

* arguments to arguments of type double. */

#include <stdio.h>

/* This declared function returns a value of type float. It *
* should be called as follows: OTSSPOWRJ (base, power), *
* where base is of type float and power is of type int. */

float OTSSPOWRJ (float, int);

main (void)

{

/* To hold result of *
* OTSSPOWRJ */
float result;
int power; /* Power argument */
float base;
base = 3.145; /* Assign constant to base */
power = 2;
result = OTSS$SPOWRJ (base, power);

printf ("Result= %$f\n", result);

Note

To get the correct results on 164 systems, compile the preceding example with /FLOAT=G_FLOAT.

The example does not show the methods for handling arithmetic errors that result from the operation
performed. For more information on error handling in this context, and on the run-time library in
general, see the VMS Run-Time Library Routines Volume.

When you pass a parameter by value, you pass a copy of the parameter value to the routine instead of
passing its address. Because the actual value of the parameter is passed, the routine does not have access
to the storage location of the parameter; therefore, any changes that you make to the parameter value in
the routine do not affect the value of that parameter in the calling routine.

3.2.2. Passing Arguments by Reference

Some system services and run-time library procedures expect arguments passed by reference. This
means that the argument list contains the address of the argument rather than its value. This mechanism
is also used by default by some programming languages, such as PL/I, and is available as an option in
others, such as Pascal.

In C, you can use the ampersand operator (&) to pass an argument by reference; that is, the ampersand
operator causes the argument's address to be passed. Note that an array name without brackets or a
function name without parentheses in an argument list always results in passing the address of the array
or function; the ampersand is unnecessary. You can also pass a pointer by value, which is the same as
passing the item it points to by reference.

In the special case of argument lists, VSI C in VAX C mode allows the ampersand operator to be used
on constants as well. You should limit this use of the ampersand solely to calls to OpenVMS system
functions to ensure portability of your VSI C programs to other C compilers.

112

Chapter 3. Using VSI C in the Common Language Environment

For example, the Read Event Flags (SYS$SREADEF) system service requires that its first argument be
passed by immediate value and its second argument be passed by reference. SYSSREADEEF returns the
status of all the event flags in a particular cluster. (Event flags are numbered from O to 127 and arranged
in clusters of 32, such that flags O to 31 comprise cluster 0, flags 32 to 63, cluster 1, and so forth.)

The first SYSSREADEF argument is any event flag number in the cluster of interest. The second
argument is the address of a longword that receives the status of all 32 event flags in that cluster. In
addition to the event-flag status value, the system service returns one of the status values shown in

Table 3.4 expressed as a global symbol.

Table 3.4. Status Values of SYS$READEF

Returned Status Description

SS$_WASCLR Success Specified event flag was clear

SS$_WASSET Success Specified event flag was set

SS$_ACCVIO Failure Could not write to status
longword

SS$_ILLEFC Failure Event flag number was illegal

SS$_UNASEFC Failure Cluster of interest not accessible

Example 3.2 shows a call to the SYSSREADEF system service from a VSI C program.

Example 3.2. Passing Arguments by Reference

/* This program shows how to call system service SYSSREADEF. */

#include <ssdef.h>
#include <stdio.h>

int SYSS$SREADEF () ;

main (void)

{

unsigned cluster_status;

int return_status;

enum cluster0

completion, breakdown,
} event;

event = completion;

/* Longword that receives *
* the status of the
* event flag cluster. */
/* Status: SYSSREADEF. */
/* Argument values for
* SYSSREADEF . */
beginning

/*

/*
*

*

Event flag in cluster 0. */

Obtain status of *
cluster 0. Pass value
of event and address *

113

Chapter 3. Using VSI C in the Common Language Environment

* of cluster_status. */
return_status = SYSSREADEF (event, &cluster_status);
/* Check for successful *
* call */
if (return_status != SSSWASCLR && return_status != SSSWASSSET)
{
/* Handle the error here. */
}
else
{
/* Check bits of interest in cluster_status here. */

}

3.2.3. Passing Arguments by Descriptor

A descriptor is a structure that describes the data type, size, and address of a data structure. According
to the VSI OpenVMS Calling Standard, you must pass a descriptor by placing its address in the argument
list. To pass an argument by descriptor from a VSI C program, perform the following steps:

1. Write a structure declaration that models the required descriptor. This involves including the
<descri p. h> header file to define St r uct tags for all the forms of descriptors.

2. Assign appropriate values to the structure members.

3. Use the structure name, with an ampersand operator (&) in the function reference, to put the
structure's address in the argument list.

VSI C never passes arguments by descriptor by default; you must take explicit action to pass an argument
by descriptor. Also, if you write structure or union names in a function's argument list without the
ampersand operator, the structure or union is passed by immediate value to the called function. You

pass arguments by descriptor only when the called function is written in another language and explicitly
requires this mechanism.

Note

The passing of structures as immediate values can be a violation of the OpenVMS calling standard if
the entire structure is larger than one longword of memory. This type of argument passing is an allowed
exception for VSI C.

There are several classes of descriptor. Each class requires that certain bits be set in the first longword
of the descriptor. For more information about the descriptors and their formats, see the OpenVMS
Programming Interfaces: Calling a System Routine. You can model descriptors in VSI C as follows:

struct dsc$Sdescriptor

{
unsigned short dscS$w_length; /* Length of data */

114

Chapter 3. Using VSI C in the Common Language Environment

char dscS$Sb_dtype /* Data type code */
char dsc$b_class /* Descriptor class code */
char *dsc$a_pointer /* Address of first byte */

}i

In this model, the variable dsc$w_| engt h is a 16-bit word containing the length of the entire data;
the unit (for example, bit or byte) in which the length is measured depends on the descriptor class. The
member dsc$b_dt ype is a byte containing a numeric code; the code denotes the data type of the
data. The class member dsc$b_cl ass is another byte code giving the descriptor class. Table 3.5
shows the valid class codes.

Table 3.5. Valid Class Codes

Class Symbolic Name Descriptor Class

Code

1 DSC$K_CLASS_S Scalar, string

2 DSC$K_CLASS_D Dynamic string descriptor

3 — Reserved by VSI

4 DSC$K_CLASS_A Array

5 DSC$K_CLASS_P Procedure

6 DSC$K_CLASS_PI Procedure incarnation

7 DSC$K_CLASS_J Reserved by VSI

8 DSK$K_CLASS_JI This is obsolete

9 DSC$K_CLASS_SD Decimal scalar string

10 DSC$K_CLASS_NCA Noncontiguous array

11 DSC$K_CLASS_VS Varying string

12 DSC$K_CLASS_VSA Varying string array

13 DSC$K_CLASS_UBS Unaligned bit string

14 DSC$K_CLASS_UBA Unaligned bit array

15 DSC$K_CLASS_SB String with bounds descriptor
16 DSC$K_CLASS_UBSB Unaligned bit string with bounds descriptor
17-190 |— Reserved by VSI

191 DSC$K_CLASS_BFA Basic file array

192-255 |— Reserved for customer applications

The atomic data types shown in Table 3.6 are supported by VSI C; all others are not directly supported
by the language. See the OpenVMS Programming Interfaces: Calling a System Routine manual for a
complete list of atomic class codes.

Table 3.6. Atomic Data Types

Class Symbolic Name Descriptor Class
Code

2 DSC$K_DTYPE_BU Byte (unsigned)

3 DSC$K_DTYPE_WU Word (unsigned)

4 DSC$K_DTYPE_LU Longword (unsigned)

115

Chapter 3. Using VSI C in the Common Language Environment

Class Symbolic Name Descriptor Class
Code

6 DSC$K_DTYPE_B Byte integer (signed)
7 DSC$K_DTYPE_W Word integer (signed)
8 DSC$K_DTYPE_L Longword integer (signed)
10 DSC$K_DTYPE_F F_floating

11 DSC$K_DTYPE_D D_floating

14 DSC$K_DTYPE_T Character string

27 DSC$K_DTYPE_G G_floating

52 DSC$K_DTYPE_FS IEEE S_floating

53 DSC$K_DTYPE FT IEEE T_floating

The last member of the structure model, dsc$a_poi nt er, points to the first byte of the data.

To pass an argument by descriptor, you define and assign values to the data following normal C
programming practices. You must define a dsc$descr i pt or structure and assign the data's address
to the dsc$a_poi nt er member. You must also assign appropriate values to the members dsc

$w_| engt h, dsc$b_dt ype, and dsc$b_cl ass. For the specific requirements of each descriptor
class, see the OpenVMS Programming Interfaces: Calling a System Routine manual.

For example, the Set Process Name (SYS$SETPRN) system service, which enables a process to
establish or change its process name, accepts a process name as a fixed-length character string passed
by descriptor. The character string can have from 1 to 15 characters. The system service returns status
values that are represented by the symbolic constants shown in Table 3.7.

Table 3.7. Status Values of SYS$SETPRN

Returned Status Description

SS$ NORMAL Success Normal completion
SS$_ACCVIO Failure Inaccessible descriptor
SS$_DUPLNAM Failure Duplicate process name
SS$ IVLOGNAM Failure Invalid length

Example 3.3 shows a call to this system service from a VSI C program.

Example 3.3. Passing Arguments by Descriptor

/* This program shows a call to system service SYS$SETPRN. */

#include <ssdef.h>
#include <stdio.h>

/* Define structures for *
* descriptors */
#include <descrip.h>
int SYSS$SETPRN () ;
int main (void)
{
int ret; /* Define return status of *

116

Chapter 3. Using VSI C in the Common Language Environment

* SYSSSETPRN */

/* Name the descriptor */
struct dsc$descriptor_s name_desc;

char *name = "NEWPROC"; /* Define new process name */

/* Length of name WITHOUT *

* null terminator */
name_desc.dsc$w_length = strlen (name);
/* Put address of *
* shortened string in *
* descriptor */

name_desc.dsc$a_pointer = name;

/* String descriptor class */
name_desc.dscS$Sb_class = DSCSK_CLASS_S;

/* Data type: ASCII string */

name_desc.dsc$b_dtype = DSCSK_DTYPE_T;
ret = SYSSSETPRN (&name_desc);
if (ret != SS$_NORMAL) /* Test return status */

fprintf (stderr, "Failed to set process name\n"),
exit (ret);

}

In Example 3.3, the call to SYSSSETPRN must use the ampersand operator; otherwise, nanme_desc,
rather than its address, is passed.

Although this example explicitly sets individual fields in its nanme_desc string descriptor, in practice,
the run-time initialization of compile-time constant string descriptors is not performed in this manner.

Instead, the fields of compile-time constant descriptors are usually initialized with initialized structures
of storage class st ati c.

For the purpose of string descriptor initialization, VSI C provides a simple preprocessor macro in the
<descr i p. h> header file. This macro is named $DESCRIPTOR. It takes two arguments, which it
uses in a standard VSI C structure declaration. The first argument is an identifier specifying the name

of the descriptor to be declared and initialized. The second argument is a pointer to the data byte to

be used as the value of the descriptor. Since a character-string constant is interpreted as an initialized
pointer to char , you may specify the second argument as a simple string constant. You may use the
$DESCRIPTOR macro in any context where a declaration may be used. The scope of the declared string
descriptor identifier name is identical to the scope of a simple St r uct definition as expanded by the
macro.

Example 3.4 shows a variant of the program in Example 3.3. Here, the $DESCRIPTOR macro is used
to create a compile-time string descriptor and to pass it to the SYS$SSETPRN system service routine. In
Example 3.4, the program returns the status value returned by SYS$SETPRN to DCL for interpretation.

117

Chapter 3. Using VSI C in the Common Language Environment

Example 3.4. Passing Compile-Time String Descriptors

/* This program returns the status value returned by *
* SYSSSETPRN. */
#include <descrip.h> /* Define $DESCRIPTOR macro. */

int SYSSSETPRN();

int main (void)
{
/* Initialize structure name_desc *
* as string descriptor. */
static S$DESCRIPTOR (name_desc, "NEWPROC") ;

return SYSS$SSETPRN (&name_desc) ;
}

To test the results of the preceding example, do the following:

$ SHOW PROCESS ! Note the process name.
$ RUN example ! Run the example.
$ SHOW PROCESS ! Note that the process name has changed.

The $DESCRIPTOR macro is used in further examples in this chapter.

3.2.4. VSI C Default Parameter-Passing Mechanisms

There are default parameter-passing mechanisms established for every data type you can use with VSI
C. Table 3.8 lists the VSI C data types you can use with each parameter-passing mechanism. Asterisks
appear next to the default parameter-passing mechanism for that particular data type.

Table 3.8. Valid Parameter-Passing Mechanisms in VSI C

Data Type By Reference By Descriptor By Value
Variables Yes Yes Yes*
Constants Yes (VAX C mode only) | Yes Yes*
Expressions No No Yes*
Array elements Yes Yes Yes*
Entire array Yes* Yes No
String constants Yes* Yes No
Structures and unions Yes Yes Yes*
Functions Yes* Yes No

You must use the appropriate parameter-passing mechanisms whenever you call a routine written in
some other OpenVMS language or some prewritten system routine.

3.3. Interlanguage Calling

In VSI C, you can call external routines written in other languages or VSI C routines from routines
written in other languages as either functions or subroutines. When you call an external routine as a

118

Chapter 3. Using VSI C in the Common Language Environment

function, a single value is returned. When you call an external routine as a subroutine (a Voi d function),
any values are returned in the argument list.

By default, VSI C passes all arguments by immediate value with the exception of arrays and functions;

these are passed by reference. Table 3.9 lists the default passing mechanisms for other OpenVMS
languages.

Table 3.9. Default Passing Mechanisms

Language Arrays Numeric Data Character Data
MACRO No default No default No default
Pascal Reference Reference Descriptor
BASIC Descriptor Reference Descriptor
COBOL N/A Reference Reference
FORTRAN Reference Reference Descriptor

The following sections describe the methods involved in using VSI C with routines written in other
OpenVMS languages.

3.3.1. Calling FORTRAN

When calling VSI Fortran from VSI C or vice versa, note these considerations. VSI Fortran argument
lists and argument descriptors are usually allocated statically. When it is possible, and to optimize
space and time, the VSI Fortran compiler pools the argument lists and initializes them at compile time.
Sometimes several calls may use the same argument list.

In VSI C, you often use arguments as local variables, and modify them at will. If a VSI C routine that
modifies an argument is called from a VSI Fortran routine, unintended and incorrect side effects may

occur.

The following example shows a VSI C routine that is invalid when called from VSI Fortran:

void f (int *x) /* x is a FORTRAN INTEGER passed by reference */
{
/* The next assignment is OK. It is permitted to modify what a
* FORTRAN argument list entry points to. */
x = 0; / ok */
/* The next assignment is invalid. It is not permitted to modify
* a FORTRAN argument list entry itself. */
x =x + 1; /* Invalid */

}

Another problem is the semantic mismatch between strings in C and strings in VSI Fortran. Strings in C
vary in length and end in a null character. Strings in VSI Fortran do not end in a null character and are
padded with spaces to some fixed length. In general, this mismatch means that strings may not be passed
between VSI C and VSI Fortran unless you do additional work. You may make a VSI Fortran routine
add a null character to a CHARACTER string before calling a VSI C function. You may also write code
that explicitly gets the length of a VSI Fortran string from its descriptor and carefully pads the string with
spaces after modifying it. An example later in this section shows a C function that carefully produces a
proper string for VSI Fortran.

119

Chapter 3. Using VSI C in the Common Language Environment

Example 3.5 shows a VSI C function calling a VSI Fortran subprogram with a variety of data types. For
most scalar types, VSI Fortran expects arguments to be passed by reference but character data is passed
by descriptor.

Example 3.5. VSI C Function Calling a VSI Fortran Subprogram

/*
* Beginning of VSI C function:

*/

#include <stdio.h>
#include <descrip.h> /* Get layout of descriptors */

extern int fort (); /* Declare FORTRAN function */

main (void)
{
int i = 508;
float £ = 649.0;
double d = 91.50;
struct |
short s;
float £,
} s = {-2, -3.14};
auto S$SDESCRIPTOR (stringl, "Hello, FORTRAN");
struct dscSdescriptor_s string2;

/* "stringl" is a FORTRAN-style string declared and initialized using
the
* SDESCRIPTOR macro. "string2" is also a FORTRAN-style string, but we
are
* declaring and initializing it by hand. */
string2.dsc$b_dtype = DSC$K_DTYPE_T; /* Type is CHARACTER */
string2.dscS$b_class = DSC$K_CLASS_S; /* String descriptor */
string2.dsc$w_length = 3; /* Three characters in string */
string2.dsc$a_pointer = "bye"; /* Pointer to string value */

printf ("FORTRAN result is %d\n", fort(&i, &f, &d, &s, &stringl,
&string2));
} /* End of VSI C function */

[ON@]

Beginning of FORTRAN subprogram:

INTEGER FUNCTION FORT (I, F, D, S, STRING1l, STRINGZ2)
INTEGER I

REAL F

DOUBLE PRECISION D

STRUCTURE /STRUCT/

INTEGER*2 SHORT

REAL FLOAT

END STRUCTURE

RECORD /STRUCT/ S

C You can tell FORTRAN to use the length in the descriptor
C as done here for STRING1, or you can tell FORTRAN to ignore the

120

Chapter 3. Using VSI C in the Common Language Environment

C descriptor and assume the string has a particular length as done
C for STRING2. This choice is up to you.

CHARACTER* (*) STRING1

CHARACTER*3 STRING2

WRITE (5, 10) I, F, D, S.SHORT, S.FLOAT, STRING1, STRING2

10 FORMAT (1X, I3, F¥8.1, D10.2, 17, F10.3, 1X, A, 2X, A)
FORT = -15
RETURN
END

C End of FORTRAN subprogram

Example 3.5 produces the following output:

508 649.0 0.92D+02 -2 -3.140 Hello, FORTRAN bye
FORTRAN result is -15

Example 3.6 shows a VSI Fortran subprogram calling a VSI C function. Since the VSI C function is
called from VSI Fortran as a subroutine and not as a function, the VSI C function is declared to have a
return value of voi d.

Example 3.6. VSI Fortran Subprogram Calling a VSI C Function

C
C Beginning of FORTRAN subprogram:
C
INTEGER I
REAL F (3)
CHARACTER*10 STRING
C Since this program does not have a C main program and you want
C to use VSI C RTL functions from the C subroutine, you must call

C DECCSCRTL_INIT to initialize the run-time library.
CALL DECCS$SCRTL_INIT

I = -617

F(l) = 3.1

F(2) = 0.04

F(3) = 0.0016
STRING = 'HELLO'

CALL CSUBR(I, F, STRING)
END
C End of FORTRAN subprogram

/*
* Beginning of VSI C function:
*/
#include <stdio.h>
#include <descrip.h> /* Get layout of descriptors */

void csubr (int *i, /* FORTRAN integer, by reference
*/
float f[3], /* FORTRAN array, by reference
*/

121

Chapter 3. Using VSI C in the Common Language Environment

struct dsc$descriptor_s *string) /* FORTRAN character, by
descriptor */

{

int J;
printf("i = %d\n", *i);

for (j = 0; j < 3; ++73)
printf("f[%d] = $f\n", 3, f£[31);

/* Since FORTRAN character data is not null-terminated, you must use
* a counted loop to print the string.
*/
printf ("string = \"");
for (j = 0; Jj < string->dscS$w_length; ++73)
putchar (string—->dsc$a_pointer[j]);
printf ("\"\n");

} /* End of VSI C function */

Example 3.6 produces the following output:

i = -617

£[0] = 3.100000

£f[1] = 0.040000

f[2] = 0.001600
string = "HELLO "

Example 3.7 shows a C function that acts like a CHARACTER*(*) function in VSI Fortran.

Example 3.7. VSI C Function Emulating a VSI Fortran CHARACTER*(*) Function

C
C Beginning of FORTRAN program:
C
CHARACTER*9 STARS, C
C Call a C function to produce a string of three "*" left-justified
C in a nine-character field.
C = STARS (3)
WRITE (5, 10) C
10 FORMAT (1X, '"', A, '"")
END
C End of FORTRAN program
/*
* Beginning of VSI C function:
*/
#include <descrip.h> /* Get layout of descriptors */

/* Routine "stars" is equivalent to a FORTRAN function declared as
* follows:
*

* CHARACTER* (*) FUNCTION STARS (NUM)

122

Chapter 3. Using VSI C in the Common Language Environment

L S R *

*

INTEGER NUM

Note that a FORTRAN CHARACTER function has an extra entry added to
the argument list to represent the return value of the CHARACTER
function. This entry, which appears first in the argument list,

is the address of a completely filled-in character descriptor. Since
the C version of a FORTRAN character function explicitly uses this
extra argument list entry, the C version of the function is wvoid!

This example function returns a string that contains the specified

* number of asterisks (or "stars").

*/

void stars(struct dsc$descriptor_s *return_value, /* FORTRAN return value

{

}

*/

*/

int *num_stars) /* Number of "stars" to create

int i, limit;

/* A FORTRAN string is truncated if it is too large for the memory area

* allocated, and it is padded with spaces if it is too short. Set
* limit to the number of stars to put in the string given the size
* of the area used to store it. */
if (*num_stars < return_value->dscS$w_length)
limit = *num_stars;
else
limit = return_value->dsc$w_length;

/* Create a string of stars of the specified length up to the limit of

the string size. */
for (1 = 0; 1 < limit; ++1i)
return_value—->dsc$a_pointer[i] = '*';

/* Pad rest of string with spaces, if necessary. */

for (; 1 < return_value->dsc$w_length; ++1)
return_value->dsc$a_pointer[i] = "' ';

/* End of VSI C Function */

Example 3.7 produces the following output:

LU n

3.3.2. Calling VAX MACRO

You can call a VAX MACRO routine from VSI C or vice versa. However, like all interlanguage calls, it
is necessary to make sure that the actual arguments correspond to the expected formal parameter types.
Also, it is necessary to remember that C strings are null-terminated and to take special action in either
the MACRO routine or the C routine to allow for this.

Example 3.8 shows a MACRO routine that calls a C routine with three arguments, passing one by value,
one by reference, and one by descriptor. It is followed by the source for the called C routine.

123

Chapter 3. Using VSI C in the Common Language Environment

Example 3.8. VAX MACRO Program Calling a VSI C Function

.extrn dbroutine ; The C routine

.psect data rd, nowrt, noexe
ft$St_part_num: .ascii /WidgitGadget/
ft$St_query_mode: .ascii /1I/
ft$$s_query_mode = <. - ftSt_query_mode>
ft$$1_protocol_buff: .blkl 1
ft$Skd_part_num_dsc:

.word 12

.word 0

.address ft$$t_part_num

.psect ft_code rd, nowrt, exe

.entry dbtest “m<r2,r3,r4,r5,r6,r7,r8>

; call C routine for data base lookup

number

99$:

movl #1,r3

pushal ft$Skd_part_num_dsc
pushal ft$St_query_mode
pushl #1

calls #3, dbroutine

ret

.end dbtest

Descriptor for part

Mode to call
Status
Check the data base

/*

* Beginning of VSI C code for dbroutine:

*/

#include
#include
#include
#include

<stdio.h>
<descrip.h>
<stdlib.h>
<string.h>

/* Structure pn_desc is the format of the descriptor
passed by the macro routine. */

124

Chapter 3. Using VSI C in the Common Language Environment

extern struct
mydescript {
short pn_len;
short ©pn_zero;

char *pn_addr;
bi
int dbroutine (int status, /* Passed by value */
char *action, /* Passed by reference */
struct mydescript *name_dsc) /* Passed by descriptor */

char *part_name;
/* Allocate space to put the null-padded name string. */
part_name = malloc (name_dsc->pn_1len + 1);

memcpy (part_name, name_dsc -> pn_addr ,name_dsc -> pn_len);

/* Remember that C array bounds start at 0 */

part_name [name_dsc —-> pn_len] = '\0';

printf (" Status is %d\n", status);

printf (" Length is %d\n",name_dsc -> pn_len);
printf (" Part_name is %s\n",part_name);

printf (" Request is %c\n", *action);

status = 1;

return (status) ;
} /* End of VSI C code for dbroutine */

Example 3.8 produces the following output:

Status is 1

Length is 12

Part_name is WidgitGadget
Request is I

Example 3.9 shows a VSI C program that calls a VAX MACRO program.

Example 3.9. VSI C Program Calling a VAX MACRO Program

/* Beginning of VSI C function */

#include <stdio.h>
#include <descrip.h>

int zapit(int status, int *action, struct dscS$Sdescriptor_s *descript);

main (void)

{
int status=255, argh = 99;
int *action = &argh;
SDESCRIPTOR (name_dsc, "SuperEconomySize") ;

printf (" Before calling ZAPIT: \n");

printf (" Status was %d \n",status);

printf (" Action contained %d and *action contained %d \n" ,action,
*action);

125

Chapter 3. Using VSI C in the Common Language Environment

printf (" And the thing described by the descriptor was %s\n",
name_dsc.dsc$a_pointer);

if (zapit(status,action, &name_dsc) && 1)
{
printf (" Ack, the world has been zapped! \n");
printf (" Status is %d \n",status);
printf (" Action contains %d and *action contains %d \n" ,action,
*action);
printf (" And the address of the thing described by the descriptor is
%d\n",
name_dsc.dsc$a_pointer);

} /* End of VSI C function */

.psect ft_code rd, nowrt, exe
.entry zapit “m<r2,r3,r4,r5,r6,r7,r8>

;+
14
; Maliciously change parameters passed by the C routine.
7
; The first parameter is passed by value, the second by
; reference, and the third by descriptor.
;-
mov1l 4 (ap), @8(ap) ;Change the by-reference parameter
;jto the first parameter's value.

movl 12 (ap), r2
movl #0,4 (xr2) ; Zap address of string in
;descriptor.

; Return -1 to signal successful destruction.
movl #-1,r0
ret

Example 3.9 produces the following output:

Before calling ZAPIT:

Status was 255

Action contained 2146269556 and *action contained 99

And the thing described by the descriptor was SuperEconomySize
Ack, the world has been zapped!

Status is 255

Action contains 2146269556 and *action contains 255

126

Chapter 3. Using VSI C in the Common Language Environment

And the address of the thing described by the descriptor is 0

3.3.3. Calling VSI BASIC

Calling routines written in VSI BASIC from VSI C programs or vice versa is straightforward. By default,
VSI BASIC passes arguments by reference, except for arrays and strings, which are passed by descriptor.
In some cases, these defaults may be overridden by explicitly specifying the desired parameter-passing
mechanisms in the VSI BASIC program. However, if an argument is a constant or an expression, the
actual argument passed refers to a local copy of the specified argument's value.

Strings in VSI BASIC are not terminated by a null character, which is done by VSI C. As a result,
passing strings between VSI BASIC and VSI C routines requires you to do additional work. You may
choose to add an explicit null character to a VSI BASIC string before passing it to a VSI C routine, or
you may prefer to code the VSI C routine to obtain the string's length from its descriptor.

Example 3.10 shows a VSI C program that calls a VSI BASIC function with a variety of argument data
types.

Example 3.10. VSI C Function Calling a VSI BASIC Function
/ *
* Beginning of VSI C function:

*/

#include <stdio.h>
#include <descrip.h>

extern int basfunc ();

main (void)

{

int i = 508;
float f = 649.0;
double d = 91.50;
struct
{
short s;
float £;
} s = { -2, -3.14 };

SDESCRIPTOR (stringl, "A C string");

printf ("BASIC returned %d\n",
basfunc (&i, &f, &d, &s, &stringl, "bye"));
} /* End of VSI C function */

! Beginning of the BASIC program

FUNCTION INTEGER basfunc (INTEGER i, REAL f, DOUBLE d, x s, &
STRING stringl, &
STRING string2 = 3 BY REF)

RECORD X
WORD s
REAL f

END RECORD x

127

Chapter 3. Using VSI C in the Common Language Environment

PRINT 'i = "'; 1

PRINT 'f = "'; £

PRINT 'd = '; d

PRINT 's::s = '; s::s

PRINT 's::f = '; s::f

PRINT 'stringl = '; stringl
PRINT 'string2 = '; string2

END FUNCTION -15
! End of the BASIC program

Example 3.10 produces the following output:

= 508

= 649

= 091.5

tis = -2

::f = -3.14

stringl = A C string
string2 = bye

BASIC returned -15

n n O rH -

Example 3.11 shows a VSI BASIC program that calls a VSI C function.

Example 3.11. VSI BASIC Program Calling a VSI C Function

! Beginning of the BASIC program:
PROGRAM example

EXTERNAL STRING FUNCTION cfunc (INTEGER BY VALUE,
INTEGER BY VALUE,
STRING BY DESC)

s$ = cfunc (5, 3, "abcdefghi")
PRINT "substring is "; sS$

END PROGRAM

! End of the BASIC program

/*
* Beginning of VSI C function:

*/

#include <descrip.h>
int str$copy_dx();

characters long, starting from the offset "offset'’

by “in_str'.

b S R S

void cfunc (struct dscS$Sdescriptor_s *out_str,
int offset,
int length,
struct dscS$descriptor_s *in_str)

This routine simulates a BASIC function whose return
value is a STRING. It returns the substring that is
(0-based)
in the input string described by the descriptor pointed to

128

Chapter 3. Using VSI C in the Common Language Environment

/* Declare a string descriptor for the substring. */
struct dsc$descriptor temp;

/* Check that the desired substring is wholly
within the input string. */
if (offset + length > in_str —-> dscS$w_length)
return;

/* Fill in the substring descriptor. */
temp.dsc$w_length = length;

temp.dsc$a_pointer = in_str -> dscS$a_pointer + offset;
temp.dscS$Sb_dtype = DSCSK_DTYPE_T;

temp.dsc$b_class DSCSK_CLASS_S;

/* Copy the substring to the return string. */
str$Scopy_dx (out_str, & temp);
} /* End of VSI C function */

Example 3.11 produces the following output:

substring is fgh

3.3.4. Calling VSI Pascal

Like VSI Fortran and VSI BASIC, there are certain considerations that you must take into account when
calling VSI Pascal from VSI C and vice versa. When calling VSI Pascal from VSI C, VSI Pascal expects
all parameters to be passed by reference. In VSI Pascal, there are two different types of semantics: value
and variable. The value semantics in VSI Pascal are different from passing by value in VSI C. Because
they are different, you must specify the address of the C parameter.

VSI Pascal also expects all strings to be passed by descriptor. If you use the CLASS_S descriptor, the
string is passed by using VSI Pascal semantics. If the content of the string is changed, it is not reflected
back to the caller.

Example 3.12 is an example of how to call a VSI Pascal routine from VSI C.

Example 3.12. VSI C Function Calling a VSI Pascal Routine
/ *

* Beginning of VSI C function:

*/
#include <descrip.h>

/* This program demonstrates how to call a Pascal routine
from a C function. */

/* A Pascal routine called by a C function. */
extern void Pascal_Routine ();

main ()

{
struct dscS$descriptor_s to_Pascal_by_desc;
char *Message = "The_Max_Num";
int to_Pascal_by_value = 100,
to_Pascal_by_ref = 50;

129

Chapter 3. Using VSI C in the Common Language Environment

/* Construct the descriptor. */
to_Pascal_by_desc.dsc$a_pointer = Message;
to_Pascal_by_desc.dscSw_length = strlen (Message);
to_Pascal_by_desc.dscSb_class = DSCSK_CLASS_S;
to_Pascal_by_desc.dscSb_dtype DSCSK_DTYPE_T;

/* Pascal expects a calling routine to pass parameters by reference. */

Pascal_Routine (&to_Pascal_by_value, &to_Pascal_by_ref,
&to_Pascal_by_desc);

printf ("\nWhen returned from Pascal:\nto_Pascal_by_value is still \
$d\nBut to_Pascal_by_ref is %d\nand Message is still %s\n",
to_Pascal_by_value, to_Pascal_by_ref,
to_Pascal_by_desc.dsc$a_pointer);
} /* End of VSI C function */

Beginning of Pascal routine

MODULE C_PASCAL (OUTPUT) ;

{ This Pascal routine calls the Pascal MAX function
to determine the maximum value between
'from_c_by_value® and 'from_c_by_ref ', and then
assigns the result back to 'from_c_by_ref .

It also tries to demonstrate the results of passing
a by-descriptor mechanism.
It is called from a C main function.
}
[GLOBAL]PROCEDURE Pascal_Routine
(from_c_by_value :INTEGER;
VAR from_c_by_ref :INTEGER;
from_c_by_desc :[CLASS_S] PACKED ARRAY [1l1..ul:INTEGER] OF CHAR
)i

VAR
today_1is : PACKED ARRAY [1..11] OF CHAR;

BEGIN

{ Display the contents of formal parameters. }

WRITELN;

WRITELN ('Parameters passed from C function: ');
WRITELN ('from_c_by_value: ', from_c_by_value:4);
WRITELN ('from_c_by_ref: ', from_c_by_ref:4);
WRITELN ('from_c_by_desc: ', from_c_by_desc);

{ Assign the maximum value into 'from_c_by_ref"® }
from_c_by_ref := MAX (from_c_by_value, from_c_by_ref);

{ Change the content of 'from_Pascal_by_value --
to show that the value did not get

130

Chapter 3. Using VSI C in the Common Language Environment

reflected back to the caller.
}

from_c_by_value := 20;

{ Put the results of DATE into 'from_c_by_desc"
to show that the CLASS_S is only valid with
comformant strings passed by value.

}
DATE (today_is);

from_c_by_desc := today_is;
WRITELN ('***********************');
WRITELN ('from_c_by_desc is changed to today''s date: "',
from_c_by_desc, '""');
WRITELN ('BUT, this will not reflect back to the caller.');
END;

END.
{

End of Pascal routine

}
Example 3.12 produces the following output:

from_c_by_value: 100
from_c_by_ref: 50

from_c_by_desc: The_Max_Num
Rk I I e b b b b b b b A b b b b b b b i 4

from_c_by_desc is changed to today's date "26-MAY-1992"
BUT, this will not reflect back to the caller.

When returned from Pascal:
to_Pascal_by_value is still 100
to_Pascal_by_ref is 100

and Message is still The_Max_Num

There are also some considerations when calling VSI C from VSI Pascal. For example, you can use
mechanism specifiers such as %IMMED, %REF, and %STDESCR in VSI Pascal. When you use the
9%IMMED mechanism specifier, the compiler passes a copy of a value rather than an address. When you
use the %REF mechanism specifier, the address of the actual parameter is passed to the called routine,
which is then allowed to change the value of the corresponding actual parameter. When you use the
%STDESCR mechanism specifier, the compiler generates a fixed-length descriptor of a character-string
variable and passes its address to the called routine. For more information on these mechanism specifiers
and others, see the VSI Pascal documentation.

Another consideration is that VSI Pascal does not null-pad strings. Therefore, you must add a null
character to make the string a C string. Also, when passing a string from VSI Pascal to VSI C, you
can declare a structure declaration in VSI C that corresponds to the VSI Pascal VARYING TYPE
declaration.

Example 3.13 shows an example of how to call VSI C from VSI Pascal.
Example 3.13. VSI Pascal Program Calling a VSI C Function
{

Beginning of Pascal function:

PROGRAM PASCAL_C (OUTPUT);

131

Chapter 3. Using VSI C in the Common Language Environment

CONST

STRING_LENGTH = 80;
TYPE

STRING = VARYING [STRING_LENGTH] OF CHAR;
VAR

by_value : INTEGER;
by_ref : STRING;
by_desc: PACKED ARRAY [1..10] OF CHAR;

[EXTERNAL]
PROCEDURE DECCSCRTL_INIT; EXTERN;

[EXTERNAL]
PROCEDURE c_function
($immed by_value : INTEGER;
$ref by_ref : STRING ;
$stdescr by_desc: PACKED ARRAY [11..ul:INTEGER] OF CHAR
) ; EXTERN;
BEGIN

{ Establish the appropriate VSI C RTL environment for
calling the VSI C RTL from Pascal.

}
DECCSCRTL_INIT;

by_value := 1;

{ NOTE
Pascal does not null pad a string.
Therefore, the LENGTH built-in function counts
the null pad character while the VSI C library function strlen
does not include the terminating null character.

by_ref := '"TO_C_BY_REF'(0)'"';
by_desc := 'TERM'(0)'"';

{ Call a C function by passing parameters
using foreign semantics.

}

c_function (by_value, by_ref, by_desc);

WRITELN;

WRITELN;

WRITELN (' %%k ko kkkkkkkkkkkkk 1) .
WRITELN ('After calling C_FUNCTION: ');
WRITELN;

WRITELN ('by_value is still ', by_value:3);
WRITELN ('however, by_ref contains ',6 by_ref,

' (aka Your Terminal Type)');
WRITELN ('and, by_desc still contains ',by_desc);

132

Chapter 3. Using VSI C in the Common Language Environment

END.

End of Pascal program

Beginning of VSI C function:

A C function called from the Pascal routine.
The parameters are passed to a C function
by value, by reference, and by descriptor,
respectively.

/

#include <descrip.h>

L S R R . S

/* A Pascal style of VARYING data type. */
struct Pascal_VARYING
{
unsigned short length;
char string[80];
bi

/* This C function calls the VSI C RTL function getenv () and puts
* your terminal type in 'from_Pascal_by_ref’ .
* It is called from a Pascal program.

*/
void c_function (unsigned char from_Pascal_by_value,
struct Pascal_VARYING *from_Pascal_by_ref,
struct dscS$descriptor_s *from_Pascal_by_desc
)
{
char *term;
/* Display the contents of formal parameters. */
printf ("\nParameters passed from Pascal:\n");
printf ("from_Pascal_by_value: %$d\nfrom_Pascal_by_ref: %s\n\
from_Pascal_by_desc: %$s\n", from_Pascal_by_value,

from_Pascal_by_ref -> string,
from_Pascal_by_desc —-> dsc$a_pointer);

if ((term = getenv (from_Pascal_by_desc —-> dsc$a_pointer)) != 0)
{
/* Fill 'from_Pascal_by_ref’ with new value. */
strcpy (from_Pascal_by_ref -> string, term);
from_Pascal_by_ref -> length = strlen (term);

/* Change the contents of 'from_Pascal_by_value --
* to demonstrate that the value did not get
reflected back to the calling routine.
*/
from_Pascal_by_value = from_Pascal_by_desc -> dscS$Sw_length
+ from_Pascal_by_ref -> length;

133

Chapter 3. Using VSI C in the Common Language Environment

else
printf ("\ngetenv\ (\"TERM\"\) is undefined.");

} /* End of VSI C function */

Example 3.13 produces the following output:

Parameters passed from Pascal:
from_Pascal_by_value: 1
from_Pascal_by_ref: TO_C_BY_ REF
from_Pascal_by_desc: TERM

R R S b S b I S b I S b I Sh b I S db I S 4

After calling C_FUNCTION:

by_value is still 1
however, by_ref contains vt200-80 (aka Your Terminal Type)
and, by_desc still contains TERM

3.4. Sharing Global Data

The following sections describe the methods involved in sharing VSI C program sections with data
declared in other OpenVMS languages.

3.4.1. Sharing Program Sections with FORTRAN
Common Blocks

In a FORTRAN program, separately compiled procedures can share data in declared common blocks,
which specify the names of one or more variables to be placed in them. Each named common block
represents a separate program section. Each procedure that declares the common block with the same
name can access the same variable.

Example 3.14 shows a VSI C ext er n variable that corresponds to a FORTRAN common block with
the same name.

Example 3.14. Sharing Data with a FORTRAN Program in Named Program Sections
C FORTRAN program PRSTRING.FOR contains the following lines of code:

SUBROUTINE PRSTRING
CHARACTER*20 STRING
COMMON /XYZ/ STRING

TYPE 20, STRING
20 FORMAT (' ',A20)

RETURN

END

C End of FORTRAN program

134

Chapter 3. Using VSI C in the Common Language Environment

/* VSI C program STRING.C contains the following lines of *
* code: */

main (void)
{
#fpragma extern_model common_block // Alpha only. On VAX systems, use
// #pragma extern_model common_block
shr
extern char xyz[20];

strncpy (xyz,"This is a string ", sizeof xyz);
prstring();

In Example 3.14, the VSI C ext er n variable Xyz corresponds to the FORTRAN common block
named XYZ. The FORTRAN procedure displays the data in the block. When sharing program sections,
both programs should declare corresponding variables to be of the same type.

Note the #pr agna ext er n_nodel comon_bl ock preprocessor directive. This directive sets
the model for external variables to the conmon_bl ock model, which is the one used by VAX C.
The default external model for VSI C is the r el axed_r ef def model. For more information on the
#pragma ext ern_nodel comon_bl ock preprocessor directive, see Section 5.4.5.

To share data in more than one variable in a program section with a FORTRAN program, the VSI C
variables must be declared within a structure, as shown in Example 3.15.

Example 3.15. Sharing Data with a FORTRAN Program in a VSI C Structure
C FORTRAN program FNUM.FOR contains the following lines of code:

SUBROUTINE FNUM
INTEGER*4 INUM, JNUM, KNUM
COMMON /NUMBERS/ INUM, JNUM, KNUM

TYPE 10, (INUM,JNUM,KNUM)
10 FORMAT (3I8)

RETURN

END

C End of FORTRAN program

/* VSI C program NUMBERS.C contains the following lines of *
* code: */
struct xs

{
int first;
int second;
int third;
bi

#pragma extern_model common_block
main ()

{

extern struct xs numbers;

135

Chapter 3. Using VSI C in the Common Language Environment

numbers.first = 1;
numbers.second = 2;
numbers.third = 3;
fnum() ;

}

In Example 3.15, the i nt variables declared in the VSI C structure numbers correspond to the
FORTRAN INTEGER*4 variables in the COMMON of the same name.

Also, note the #pr agma ext er n_nodel conmon_bl ock preprocessor directive. This directive
sets the model for external variables to the conmon_bl ock model, which is the one used by VAX C.
The default external model for VSI C is the r el axed_r ef def model. For more information on the

#pragma extern_nodel comon_bl ock preprocessor directive, see Section 5.4.5.

3.4.2. Sharing Program Sections with PL/l Externals

A P/LI variable with the EXTERNAL attribute corresponds to a FORTRAN common block and to a
VSI C ext er n variable in the cormon_Dbl ock external model. Example 3.16 and Example 3.17
show how a program section is shared between VSI C and P/LIL

A PL/TI EXTERNAL CHARACTER attribute corresponds to a VSI C ext er n char variable, but PL/
I character strings are not necessarily null-terminated. In Example 3.16, VSI C and P/LI use the same
variable to manipulate the character string that resides in a program section named XYZ.

Example 3.16. Sharing Data with a PL/I Program in Named Program Sections
/* PL/I program PRSTRING.PLI contains the following lines of code: */
PRSTRING: PROCEDURE;

DECLARE XYZ EXTERNAL CHARACTER(20);

PUT SKIP LIST (XYZ);
RETURN;

END PRSTRING;

/* End of PL/I program */

/* VSI C program STRING.C contains the following lines of *
* code: */

main (void)
{

extern char xyz[20];

strncpy (xyz,"This is a string , Sizeof xyz);
prstring();
}

The PL/I procedure PRSTRING writes out the contents of the external variable XYZ.

PL/T also has a structure type similar (in its internal representation) to the st r uct keyword in VSI
C. Moreover, P/LI can output aggregates, such as structures and arrays, in fairly simple stream-output
statements; consider Example 3.17.

136

Chapter 3. Using VSI C in the Common Language Environment

Example 3.17. Sharing Data with a PL/I Program in a VSI C Structure
/* PL/I program FNUM.PLI contains the following lines of code: */

FNUM: PROCEDURE;
/* EXTERNAL STRUCTURE CONTAINING THREE INTEGERS */
DECLARE 1 NUMBERS EXTERNAL,
2 FIRST FIXED(31),
2 SECOND FIXED(31),
2 THIRD FIXED(31);

PUT SKIP LIST('Contents of structure:',6K NUMBERS) ;
RETURN;
END FNUM;

/* End of PL/I program */

/* VSI C program NUMBERS.C contains the following lines of *
* code: */

struct xs
{
int first;
int second;
int third;
bi

main ()

{

extern struct xs numbers;

numbers.first = 1
numbers.second
numbers.third = 3;
fnum () ;

Il
N ~e
~.

The PL/I procedure FNUM writes out the complete contents of the external structure NUMBERS; the
structure members are written out in the order of their storage in memory, which is the same as for a VSI
C structure.

3.4.3. Sharing Program Sections with MACRO
Programs

In a MACRO program, the .PSECT directive sets up a separate program section that can store data
or MACRO instructions. The attributes in the .PSECT directive describe the contents of the program
section.

Example 3.18 shows how to set up a psect in a MACRO program that allows data to be shared with a
VSI C program.

Example 3.18. Sharing Data with a MACRO Program in a VSI C Structure

; MACRO source file SET_VALUE.MAR contains the following lines of code:

137

Chapter 3. Using VSI C in the Common Language Environment

.entry set_value, "M<>

movl #1, first

movl #2, second
movl #3,third

ret

.psect example pic,usr,ovr,rel,gbl,noshr,—
noexe, rd,wrt,novec, long

first: .blkl
second: .blkl
third: .blkl

.end

; End of MACRO source file

/* VSI C program NUMBERS.C contains the following lines of *
* code: */

#pragma extern_model common_block

struct xs

{
int first;
int second;
int third;
} example;

main ()

{

set_value();

printf ("example.first = %d\n", example.first);

printf ("example.second = %d\n", example.second);

printf ("example.third = %d\n", example.third);
}

The MACRO program initializes the locations first, second, and third in the psect named exanpl e
and passes these values to the VSI C program. The locations are referenced in the VSI C program as
members of the external structure named exanpl e.

Also, note the #pr agma ext er n_nodel conmon_bl ock preprocessor directive. This directive
sets the model for external variables to the conmon_bl ock model, which is the one used by VAX C.
The default external model for VSI C is the r el axed_r ef def model. For more information on the
#pragma extern_nodel comon_bl ock preprocessor directive, see Section 5.4.5.

3.5. OpenVMS Run-Time Library Routines

The OpenVMS Run-Time Library (RTL) is a library of prewritten, commonly used routines that
perform a wide variety of functions. These routines are grouped according to the types of tasks they
perform, and each group has a prefix that identifies those routines as members of a particular OpenVMS
RTL facility. Table 3.10 lists all the language-independent, run-time library facility prefixes and the types
of tasks each facility performs.

138

Chapter 3. Using VSI C in the Common Language Environment

Table 3.10. OpenVMS Run-Time Library Facilities

Facility Types of Tasks Performed
Prefix
LIB$ Library routines that obtain records from devices, manipulate strings, convert data

types for I/O, allocate resources, obtain system information, signal exceptions, establish
condition handlers, enable detection of hardware exceptions, and process cross-reference

data.
MTHS$ Mathematics routines that perform arithmetic, algebraic, and trigonometric calculations.
OTS$ General-purpose routines that perform tasks such as data-type conversions as part of a

compiler's generated code.

SMG$ Screen management routines that are used in designing, composing, and keeping track
of complex images on a video screen.

STR$S String manipulation routines that perform such tasks as searching for substrings,
concatenating strings, and prefixing and appending strings.

The OpenVMS run-time library routines are documented in detail in the following operating system
documentation:

* VSI OpenVMS RTL Library (LIBS$) Manual

e OpenVMS VAX RTL Mathematics (MTHS) Manual

* Portable Mathematics Library

* VSI OpenVMS RTL General Purpose (OTS$) Manual

e VSI OpenVMS RTL Screen Management (SMG$) Manual

e VSI OpenVMS RTL String Manipulation (STR$) Manual

3.6. OpenVMS System Services Routines

System services are prewritten system routines that perform a variety of tasks, such as controlling
processes, communicating among processes, and coordinating I/0.

Unlike the OpenVMS Run-Time Library (RTL) routines, which are divided into groups by facility, all
system services share the same facility prefix (SYS$). However, these services are logically divided into
groups that perform similar tasks. Table 3.11 describes these groups.

Table 3.11. OpenVMS System Services

Group Types of Tasks Performed

AST Allows processes to control the handling of asynchronous system traps
(ASTs).

Change mode Changes the access mode of particular routines.

Condition handling Designates condition handlers for special purposes.

Event flag Clears, sets, reads, and waits for event flags, and associates with event flag
clusters.

Information Returns information about the system, queues, jobs, processes, locks, and
devices.

139

Chapter 3. Using VSI C in the Common Language Environment

Group Types of Tasks Performed

Input/Output Performs I/O directly without going through RMS.

Lock management Enables processes to coordinate access to shareable system resources.
Logical names Provides methods of accessing and maintaining pairs of character-string

logical names and equivalence names.

Memory management |Increases or decreases available virtual memory, controls paging and
swapping, and creates and accesses shareable files of code or data.

Process control Creates, deletes, and controls execution of processes.
Security Enhances the security of OpenVMS systems.
Time and Timing Schedules events and obtains and formats binary time values.

System services are documented in detail in the VST OpenVMS System Services Reference Manual.

The routines that provide a programming interface to various OpenVMS utilities are described in the
VSI OpenVMS Utility Routines Manual.

3.7. Calling Routines

The basic steps for calling routines are the same whether you are calling a routine written in VSI C, a
routine written in some other OpenVMS language, a system service, or an OpenVMS Run-Time Library
(RTL) routine. The following sections outline the procedures for calling non-VSI C routines.

3.7.1. Determining the Type of Call

Before calling an external routine, you must first determine whether the call should be a procedure call
or a function call. Call a routine as a procedure if it does not return a value. Call a routine as a function if
it returns any type of value.

3.7.2. Declaring an External Routine and Its Arguments

To call an external routine or system routine, you need to declare it as an external function and to declare
the names, data types, and passing mechanisms of its arguments. Arguments can be either required or
optional.

Include the following information in a routine declaration:

* The name of the external routine

* The data types of all the routine parameters (optional)

* The data type of the return value if it is a function

* The voi d keyword if it is a procedure

The following example shows how to declare an external routine and its arguments:
char func_name (int x, char y);

Header files are available to declare commonly used external routines. Using them will save you a lot of
work. See Sections 1.3.1.1 and 1.3.1.2 in this manual for information on listing and including header
files.

3.7.3. Calling the External Routine

140

Chapter 3. Using VSI C in the Common Language Environment

After declaring an external routine, you can invoke it. To invoke a function, you must specify the name
of the routine being invoked and all arguments required for that routine. Make sure the data types for
the actual arguments you are passing coincide with those of the parameters you declared earlier, and
with those declared in the routine. The following example shows how to invoke the function declared in

Section 3.7.2:

ret_status = func_name(l,'a');

3.7.4. System Routine Arguments

All system routine arguments are described in terms of the following information:

* OpenVMS usage
e Data type
* Type of access allowed

* Passing mechanism

OpenVMS usages are data structures that are layered on the standard OpenVMS data types. For example,
the OpenVMS usage mask_longword signifies an unsigned longword integer that is used as a bit mask,
and the OpenVMS usage floating_point represents any OpenVMS floating-point data type. Table 3.12
lists all the OpenVMS usages and the VSI C types you need to implement them.

Table 3.12. VSI C Implementation

OpenVMS Data Type

VSI C Declaration

access_bit_names

user-defined'

access_mode

unsigned char

address

int *pointer 24

address_range

int *array [2] 234

arg_list

user-defined'

ast_procedure

pointer to a function’

boolean

unsigned long int

byte_signed

char

byte_unsigned

unsigned char

channel

unsigned short int

char_string

char array[n]35

complex_number

user-defined!

cond_value unsigned long int
context unsigned long int
date_time user-defined’

device_name

char array[n]35

ef cluster_name

char array[n]35

ef _number

unsigned long int

exit_handler_block

user-defined’

fab

#include fab from text library struct FAB

141

Chapter 3. Using VSI C in the Common Language Environment

OpenVMS Data Type

VSI C Declaration

file_protection

unsigned short int, or user-defined!

floating_point

float or double

function_code

unsigned long int or user-defined!

identifier

int >’<pointer24

10_status_block

user-defined'

item_list_2

user-defined’

item_list_3

user-defined!

item_list_pair

user-defined'

item_quota_list

user-defined'

lock_id

unsigned long int

lock_status_block

user-defined!

lock_value_block

user-defined'

logical_name

char array[n]35

longword_signed

long int

longword_unsigned

unsigned long int

mask_byte

unsigned char

mask_longword

unsigned long int

mask_quadword

user-defined’

mask_word

unsigned short int

null_arg

unsigned long int

octaword_signed

user-defined'

octaword_unsigned

user-defined’

page_protection

unsigned long int

procedure

pointer to function’

process_id

unsigned long int

process_name

char array[n]35

quadword_signed

user-defined!

quadword_unsigned

user-defined'

rights_holder

user-defined'

rights_id unsigned long int

rab #include rab
struct RAB

section_id user-defined'

section_name

char array[n]35

system_access_id

user-defined’

time_name char array[n]35
uic unsigned long int
user_arg user-defined'

142

Chapter 3. Using VSI C in the Common Language Environment

OpenVMS Data Type

VSI C Declaration

varying_arg

user-defined'

vector_byte_signed

char .au‘ray[n]35

vector_byte_unsigned

unsigned char array[n]35

vector_longword_signed

long int array[n]35

vector_longword_unsigned

unsigned long int array[n]

35

vector_quadword_signed

user-defined’

vector_quadword_unsigned

user-defined’

vector_word_signed

short int array[n]35

vector_word_unsigned

unsigned short int array[n]

35

word_signed short int

word_unsigned unsigned short int

!The declaration of a user-defined data structure depends on how the data will be used. Such data structures can be declared in a variety of
ways, each of which is more suitable to specific applications.

The term pointer refers to several declarations involving pointers. Pointers are declared with special syntax and are associated with the data
type of the object being pointed to. This object is often user-defined.

“The data type specified can be changed to any valid VSI C data type.
3The term array denotes the syntax of a VSI C array declaration.
5The size of the array must be substituted for n.

If a system routine argument is optional, it will be indicated in the format section of the routine
description in one of two ways, as follows:

* [,optional-argument]
* ,[optional-argument]

If the comma appears outside the brackets, you must pass a 0 by value to indicate the place of the
omitted argument. If the comma appears inside the brackets, you can omit the argument if it is the last
argument in the list.

For more information, see the OpenVMS Programming Interfaces: Calling a System Routine manual. This
manual describes the OpenVMS programming interface and defines the standard conventions to call an
OpenVMS system routine from a user procedure. The Alpha and VAX data type implementations for
various high-level languages are also presented.

3.7.5. Symbol Definitions

Many system routines depend on values that are defined in separate symbol definition files. OpenVMS
RTL routines require you to include symbol definitions when you are calling a Screen Management
facility routine or a routine that is a jacket to a system service. A jacket routine provides an interface to
the corresponding system service. For example, the routine LIB$SYS_ASCTIM is a jacket routine for
the $ASCTIM system service.

If you are calling a system service, you must include the <ssdef . h> header file to check the status.
Many system services require other symbol definitions as well. To determine whether you need to
include other symbol definitions for the system service you want to use, see the documentation for
that particular system service. If the documentation states that values are defined in a macro, you must
include those symbol definitions in your program.

For example, the description for the flags parameter in the SYS$SMGBLSC (Map Global Section) system
service states that “Symbolic names for the flag bits are defined by the $SECDEF macro.” Therefore,

143

Chapter 3. Using VSI C in the Common Language Environment

when you call SYSSMGBLSC you must include the definitions provided in the $SECDEF macro by
including the <secdef . h> header file.

In VSI C, a header file is included as follows:

#include <ssdef.h>

To obtain a list of all VSI C header files, see Section 1.3.1.2.

3.7.6. Condition Values

Many system routines return a condition value that indicates success or failure; this value can be
either returned or signaled. If a condition value is returned, then you must check the returned value
to determine whether the call to the system routine was successful. Otherwise, the condition value is
signaled to your program instead of being written to a storage location.

Condition values indicating success appear first in the list of condition values for a particular routine, and
success codes have odd values. A success code that is common to many system routines is the condition
value SS$_NORMAL, which indicates that the routine completed normally and successfully. If the
condition value is returned, then you can test for SS$_NORMAL as follows:

if (ret_status != SS$_NORMAL)
LIBSSTOP () ;

Because all success codes have odd values, you can check a return status for any success code. For
example, you can cause execution to continue only if a success code is returned by including the
following statements in your program:

if ((ret_status & 1) != 0)
LIBSSTOP (ret_status);

In general, you can check a return status for a particular success or failure code or you can test the
condition value returned against all success codes or all failure codes.

3.7.7. Checking System Service Return Values

It is customary in OpenVMS programming to compare the return status of a system service with a global
symbol, not with the literal value associated with a particular return status. Consequently, a high-level
language program should define the possible return status values for a service as symbolic constants. In
VSI C, you can do this by including the <ssdef . h> header file; Example 3.19 shows how this is done.

Example 3.19. Checking System Service Return Values

/* This program shows how to compare the status of a system
* service with a global symbol. */
#include <stdlib.h>

/* Define system service *
* status values */
#include <ssdef.h>
#include <stdio.h>
/* Declaration of the *
* service (not required) */

int SYSSSETEF () ;

int main (void)

{

144

Chapter 3. Using VSI C in the Common Language Environment

/* To hold the status of

* SYS$SETEF */
int efstatus;

/* Argument values for

* SYS$SETEF */
enum cluster0

completion, breakdown, beginning
} event;

event = completion;

/* Set the event flag */
efstatus = SYSSSETEF (event) ;
/* Test the return status */
if (efstatus == SSS$S_WASSET)
fprintf (stderr,"Flag was already set\n");
else
if (efstatus == SS$_WASCLR)
fprintf (stderr, "Flag was previously clear\n");
else

fprintf (stderr,
"Could not set completion event flag.\n \
Possible programming error.\n");

exit (efstatus);

}

The system service return status values (SS$_WASSET and SS$_WASCLR) in Example 3.19 are
defined by the <ssdef . h> header file.

Error handling in Example 3.19 is typical of programs running on OpenVMS systems. Using the
following statements, the example program attempts to provide a program-specific error message and
then passes the offending error status to the caller:

else
fprintf (stderr,
"Could not set completion event flag.\n \
Possible programming error.\n");

exit (efstatus);

If you execute the program with DCL, it interprets any status value the program returns. DCL prints
a standard error message on the terminal to provide you with more information about the failure.
For example, if the program encounters the SS$_ILLEFC return status, DCL displays the following
messages:

Could not set completion event flag.
Possible programming error.
$SYSTEM-F-ILLEFC, illegal event flag cluster.

3.8. Variable-Length Argument Lists in System
Services

145

Chapter 3. Using VSI C in the Common Language Environment

Most system services and other external procedures require a specific number of arguments, but some
accept a variable number of optional arguments. Because VSI C function declarations do not show the
number of parameters expected by external functions unless a function prototype is used, the way you
call an external function from a VSI C program depends on the semantics of the called function. You

must supply the number of arguments that the external function expects. The rules are as follows:

* When optional arguments occur between required arguments, they cannot be omitted. If omitting
such an argument is necessary—for example, to select a default action—the argument must be
written as a zero.

* When optional arguments occur at the end of an argument list, the format of the function reference
depends on the action of the called function as follows:

» If the called function checks the number of arguments passed, you can omit optional trailing
arguments from the function reference. System services generally do not check the length of the
argument list.

* If the called function does not check the number of arguments passed, all arguments must be
present in the function reference.

For example, the function STR$CONCAT, in the Common Run-Time Library, concatenates from 2 to
254 strings into a single string. It has the following call format:

ret = STRSCONCAT (dst, srcli,
src2[, src3,..src254]1);

For more information about the STR$CONCAT function, see the VMS Run-Time Library Routines
Volume.

The identifier dst is the destination for the concatenated string, and srcl, src2, ... src254 are the source
strings. All arguments are passed by descriptor. All but the first two source strings are optional. The
function checks to see how many arguments are present in the call; if fewer than three (the destination
and two sources) are present, the function returns an error status value. Example 3.20 shows a call to the
STR$CONCAT function from VSI C.

Example 3.20. Using Variable-Length Argument Lists

/* This example shows a call to STRSCONCAT. */
#include <stdlib.h>

#include <stdio.h>

#include <descrip.h>

#include <ssdef.h>

int STRSCONCAT () ;

int main (void)

{

int ret; /* Return status of *
* STRSCONCAT */
/* Destination array of *
* concatenated strings */

char dest[21];

146

Chapter 3. Using VSI C in the Common Language Environment

/* Create compile-time *
* descriptors: */
SDESCRIPTOR (dst, dest);
static SDESCRIPTOR(srcl, "abcdefghiij");
static SDESCRIPTOR(src2, "klmnopgrst");

/* Concatenate strings */
ret = STRSCONCAT (&dst, &srcl, &src2);

/* Test return status value */
if (ret != SS$_NORMAL)
fprintf (stderr, "Failed to concatenate strings.\n"),
exit (ret);

/* Process string */
else

dest[20] = '\O',
printf ("Resultant string: %s\n",dest);

3.9. Return Status Values

The status values from OpenVMS system service procedures are returned in general register RO. This
return status value indicates the success or failure of the operation performed by the called procedure. In
VSI C, passing a return status value in RO is equivalent to a function returning i nt .

To obtain a return status value from any system procedure, declare the procedure as a function, as shown
in the following example:

int SYSSSETEF () ;

After declaring a procedure in this way, you can invoke the procedure as a function and obtain a return
status value. In VSI C, such a declaration is needed only as program documentation; SYS$SETEF can be
called without explicit declaration and will be interpreted by default as a function returning i nt .

This section describes the following topics:

* The format of a return status value, that is, the meaning of particular bits within the value

* The way to manipulate return status values

* The recommended techniques for testing a return status value for success or failure or for a specific
condition

3.9.1. Format of Return Status Values

All OpenVMS system procedures and programs use a longword value to communicate return status
information. When a VSI C main function executing under the control of the DCL interpreter executes
ar et ur n statement to return control to the command level, the command interpreter uses the return
status value to conditionally display a message on the current output device.

To provide a unique means of identifying every return condition in the system, bit fields within the value
are defined as shown in Figure 3.5.

147

Chapter 3. Using VSI C in the Common Language Environment

Figure 3.5. Bit Fields Within a Return Status Value

control bits saverity

— = —

31 28 27 32 0

condition identification

hd
27 16 15 3

facility mB55age
number number

ZK-02B3-GE

The following list describes the division of this bit field:
control bits (31-28)

Define special action(s) to be taken. At present, only bit 28 is used. When set, it inhibits the printing of
the message associated with the return status value at image exit. Bits 29 through 31 are reserved for
future use by VSI and must be 0.

facility number (27-16)

A unique value assigned to the system component, or facility, that is returning the status value. Within
this field, bit 27 has a special significance. If bit 27 is clear, the facility is a VSI facility: the remaining
value in the facility number field is a number assigned by the operating system. If bit 27 is set, the
number indicates a customer-defined facility.

message number (15-3)

An identification number that specifically describes the return status or condition. Within this field, bit
15 has a special significance. If bit 15 is set, the message number is unique to the facility issuing the
message. If bit 15 is clear, the message is issued by more than one system facility.

severity (2-0)

A numeric value indicating the severity of the return status. Table 3.13 shows the possible values in these
three bits, and their meanings.

Table 3.13. Possible Severity Values

Value |Meaning

0 Warning

1 Success

2 Error

3 Informational

4 Severe error, FATAL
5-7 Reserved

148

Chapter 3. Using VSI C in the Common Language Environment

Odd values indicate success (an informational condition is considered a successful status) and even
values indicate failures (a warning is considered an unsuccessful status).

The following names are associated with these fields:

control bits CONTROLINHIB_MSG
bit 28 (inhibit message)

facility number FAC_NOCUST_DEF

bit 27 (customer facility)

message number MSG_NOFAC_SpP

bit 15 (facility specific)

severity SEVERITYSUCCESS
bit O (success)

When testing return values in a VSI C program, either you can test only for successful completion of a
procedure or you can test for specific return status values.

3.9.2. Manipulating Return Status Values

You can construct a structure or union that describes a return status value, but this method of
manipulating return status values is not recommended. A status value is usually constructed or checked
using bitwise operators. VSI C provides the <st sdef . h> header file, which contains preprocessor
definitions to make this job easier. All the preprocessor symbols are named according to the following
OpenVMS naming convention:

STSStype_name

STS

Identifies standard return status values.
type

One of the following characters denoting the type of the constant:

K Represents a constant value

M Represents a bit mask

S Represents the bit size of a field
v Defines the bit offset to the field
namne

An abbreviation for the field name.

For example, the following constants are defined in <st sdef . h> for the facility number field,
FAC_NO, which spans bits 16 through 27:

/* Size of field in bits */
#define STSSS_FAC_NO 12

/* Bit offset to the *
* Dbeginning of the field */
#define STSSV_FAC_NO 16

149

Chapter 3. Using VSI C in the Common Language Environment

/* Bit mask of the field
#define STSSM_FAC_NO OxXFFF0000

Figure 3.6 shows how the status value is represented internally.

Figure 3.6. Internal Representation of a Status Value

STS$S_FAC _NO STS$V_FAC_NO
3 274 b 0

00001111 | 11111111 | 000D0O000 | QOOO00O0D

\ /
hd

STS$M_FAC_NO

ZK-0528-GE

*/

Use the following expression to extract the facility number from a particular status value contained in the

variable named status:

(status & STS$M_FAC_NO) >> STSSV_FAC_NO

In the previous example, the parentheses are required for the expression to be evaluated properly; the
relative precedence of the bitwise AND operator (&) is lower than the precedence of the binary shift

operator (>>).

3.9.3. Testing for Success or Failure

To test a return status value for success or failure, you need only test the success bit. A value of true in

this bit indicates that the return value is a successful value.

Example 3.21 shows a program that checks the success bit.

Example 3.21. Testing for Success
/* This program shows how to test the success bit.

#include <stdio.h>
#include <descrip.h>
#include <stsdef.h>
#include <starlet.h>
#include <stdlib.h>

int main (void)
{
int status;
SDESCRIPTOR (name, "student");

status = sys$setprn (&name) ;
if (status & STSSM_SUCCESS)

/* Success code
fprintf (stderr, "Successful completion");

*/

*/

150

Chapter 3. Using VSI C in the Common Language Environment

else

/* TFailure code */
fprintf (stderr, "Failed to set process name.\n");
exit (status);

}

The failure code in Example 3.21 causes the printing of a program-specific message indicating the
condition that caused the program to terminate. The error status is passed to the DCL by the exi t
function, which then interprets the status value.

3.9.4. Testing for Specific Return Status Values

Each numeric return status value defined by the system has a symbolic name associated with it. The

names of these values are defined as system global symbols, and you can access their values by referring
to their symbolic names.

The global symbol names for OpenVMS return status values have the following format:

facility$_code

facility

An abbreviation or acronym for the system facility that defined the global symbol.
code

A mnemonic for the specific status value.

Table 3.14 shows some examples of facility codes used in global symbol names.

Table 3.14. Facility Codes

Facility Description

SS System services; these status codes are listed in the VSI OpenVMS System Services
Reference Manual.

RMS File system procedures; these status codes are listed in the VSI OpenVMS Record
Management Services Reference Manual.

SOR SORT procedures; these status codes are listed in the VMS Sort/Merge Utility Manual.

The definitions of the global symbol names for the facilities listed are located in the default VSI C object
module libraries, so they are automatically located when you link a VSI C program that references them.

When you write a VSI C program that calls system procedures and you want to test for specific return
status values using the symbol names, you must perform the following tasks:

1. Determine, from the documentation of the procedure, the status values that can be returned, and
choose the values for which you want to provide specific tests.

2. Declare the symbolic name for each value of interest. The <ssdef . h> and <r nsdef . h> header
files define the system service and RMS return status values, respectively. If you are checking return
status values from other facilities, such as the SORT utility, you must explicitly declare the return
values as gl obal val ue i nt. Consider the following example:

globalvalue int SORS$S_OPENIN;

151

Chapter 3. Using VSI C in the Common Language Environment

3. Reference the symbols in your program.

Example 3.22 shows a program that checks for specific return status values defined in the <ssdef . h>
header file.

Example 3.22. Testing for Specific Return Status Values

/* This program checks for specific return status values. */
#include <stdlib.h>

#include <ssdef.h>

#include <stdio.h>

#include <descrip.h>

SDESCRIPTOR (message, "\07**Lunch_time**\07") ;

int main (void)

{

int status = SYSSBRDCST (&message, 0);
if (status != SS$_NORMAL)
{
if (status == SS$_NOPRIV)

fprintf (stderr, "Can't broadcast; requires OPER \
privilege.");

else
fprintf (stderr, "Can't broadcast; some fatal \
error.");

exit (status);

3.10. Examples of Calling System Routines

This section provides complete examples of calling system routines from VSI C. Example 3.23 shows the
three mechanisms for passing arguments to system services and also shows how to test for status return
codes. Example 3.24 shows various ways of testing for successful $QIO completion. Example 3.25 shows
how to use time conversion and set timer routines.

In addition to the examples provided here, the VMS Run-Time Library Routines Volume and the VSI
OpenVMS System Services Reference Manual also provide examples for selected routines. See these
manuals for help on using a specific system routine.

Example 3.23. Passing Arguments to System Services

/* GETMSG.C
This program is an example showing the three mechanisms
for passing arguments to system services. It also
shows how to test for specific status return
codes from a system service call. */

152

Chapter 3. Using VSI C in the Common Language Environment

#include <stdio.h>
#include <descrip.h>
#include <ssdef.h>
#include <lib$routines.h>

int main (void)

{

int message_id;

short message_len;

char text[133];

SDESCRIPTOR (message_text, text);
register status;

while

scanf ("%d", &message_id) != EOF)
{
/* Retrieve message associated with the number. */
status = SYSSGETMSG (message_id, &message_len,
&message_text, 15, 0);

/* Check for status conditions. */
if (status == SS$_NORMAL)
printf ("\n%.*s\n", message_len, text);
else if (status == SS$_BUFFEROVF)
printf ("\nBUFFER OVERFLOW - Text is: %.*s\n",
message_len, text);

else if (status == SS$_MSGNOTFND)
printf ("\nMESSAGE NOT FOUND.\n");
else

{
printf ("\nUnexpected error in S$GETMSG call.\n");
LIBSSTOP (status) ;

}

Example 3.24. Determining $QIO Completion

/* ASYNCH.C

This program shows various ways to determine
$QIO completion. It also shows the use of an

IOSB to obtain information about the I/O operation.

#include <iodef.h>
#include <ssdef.h>
#include <descrip.h>
#include <lib$routines.h>
#include <stdio.h>
#include <starlet.h>
#include <string.h>

typedef struct

{
short cond_value;
short count;

(printf ("\nEnter a message number <Ctrl/Z to quit>:

*/

153

Chapter 3. Using VSI C in the Common Language Environment

int info;
} io_statblk;

main (void)

{

char text_string[] = "This was written by the $QIO0.";
register status;

short chan;

io_statblk status_block;

int AST_PROC();

SDESCRIPTOR (terminal, "SYSSCOMMAND") ;

/* Assign I/0 channel. */
if (((status = SYSSASSIGN (&terminal, &chan,0,0)) & 1) != 1)
LIBSSTOP (status);

/* Queue the I/0. */

if (((status = SYSS$SQIO (1, chan, IO$_WRITEVBLK, &status_block,
AST_PROC, &status_block, text_string,
strlen(text_string),0,32,0,0)) & 1) != 1)

LIBSSTOP (status);

/* Wait for the I/O operation to complete. */

if (((status = SYSSSYNCH (1, &status_block)) & 1) != 1)
LIBSSTOP (status);
if ((status_block.cond_value &1) != 1)

LIBSSTOP (status_block.cond_value);

printf ("\nThe I/O operation and AST procedure are done.");

}

AST _PROC (*write_status)
io_statblk *write_status;

/* This function is called as an AST procedure. It uses
the AST parameter passed to it by $QIO to determine
how many characters were written to the terminal. */

{

printf ("\nNumber of characters output is %d", write_status->count);
printf ("\nI/O completion status is %d", write_status—->cond_value);

}

Example 3.25. Using Time Routines

/* ALARM.C
This program shows the use of time conversion
and set timer routines. */

#include <stdio.h>
#include <descrip.h>
#include <ssdef.h>
#include <lib$routines.h>
#include <starlet.h>

main (void)

{
#define event_flag 2

154

Chapter 3. Using VSI C in the Common Language Environment

#define timer_id 3
typedef int quadword[2];

quadword delay_int;

SDESCRIPTOR (offset, "0 ::15.00");
char cur_time[24];

SDESCRIPTOR (cur_time_desc, cur_time);
int 1i;

unsigned state;

register status;

/* Convert offset from ASCII to binary format. */
if (((status=SYSSBINTIM(&offset, delay_int)) &1) != 1)
LIBSSTOP (status) ;

/* Output current time. */

if (((status=LIBSDATE_TIME (&cur_time_desc)) &l1) != 1)
LIBSSTOP (status) ;

cur_time[23] = '\0';

printf ("The current time is : %s\n", cur_time);

/* Set the timer to expire in 15 seconds. */
if (((status=SYSSSETIMR (event_flag, &delay_int,
0, timer_id)) &1) != 1)
LIBSSTOP (status) ;

/* Count to 1000000. */
printf ("beginning count...\n");
for (i=0; i<=1000000; 4i++)

14

/* Check if the timer expired. */
switch (status = SYSSREADEF (event_flag, &state))
{

case SSS$_WASCLR : /* Cancel timer */

if (((status=SYSSCANTIM (timer_id, 0)) &1) != 1)
LIBSSTOP (status) ;

printf ("Count completed before timer expired.\n");
printf ("Timer canceled.\n");

break;

case SSS_WASSET : printf ("Timer expired before count completed.\n");
break;

default : LIBSSTOP (status) ;
break;

155

Chapter 3. Using VSI C in the Common Language Environment

156

Chapter 4. Data Storage and
Representation

This chapter presents the following topics concerning VSI C data storage and representation on
OpenVMS systems:

» Storage allocation (Section 4.1)

* Standard-conforming method of controlling external objects (Section 4.2)
* Global storage classes (Section 4.3)

* Storage-class modifiers (Section 4.4)

* Floating-point numbers (Section 4.5)

¢ Pointer conversions (Section 4.6)

* Structure alignment (Section 4.7)

* Program sections (Section 4.8)

4.1. Storage Allocation

When you define a VSI C variable, the storage class determines not only its scope but also its location
and lifetime. The lifetime of a variable is the length of time for which storage is allocated. For
OpenVMS systems, storage for a VSI C variable can be allocated in the following locations:

* On the run-time stack
* In a machine register
* In a program section (psect)

Variables that are placed on the stack or in a register are temporary. For example, variables of the aut o
and r egi st er storage classes are temporary. Their lifetimes are limited to the execution of a single
block or function. All declarations of the internal storage classes (aut 0 and r egi st er) are also
definitions; the compiler generates code to establish storage at this point in the program.

Program sections, or psects, are used for permanent variables; the lifetime of identifiers extends through
the course of the entire program. A psect represents an area of virtual memory that has a name, a size,
and a series of attributes that describe the intended or permitted usage of that portion of memory. For
example, the compiler places variables of the static, external, and global storage classes in psects; you
have some control as to which psects contain which identifiers. All declarations of the static storage
class are also definitions; the compiler creates the psect at that point in the program. In VSI C, the first
declaration of the external storage class is also a definition; the linker initializes the psect at that point in
the program.

Note

The compiler does not necessarily allocate distinct variables to memory locations according to the
order of appearance in the source code. Furthermore, the order of allocation can change as a result of

157

Chapter 4. Data Storage and Representation

seemingly unrelated changes to the source code, command-line options, or from one version of the
compiler to the next; it is essentially unpredictable. The only way to control the placement of variables
relative to each other is to make them members of the same St r uct type or, on OpenVMS Alpha
and 164 systems, by using the nor eor der attribute on a named #pr agma ext er n_nodel
strict_refdef.

Table 4.1 shows the location and lifetime of a variable when you use each of the storage-class keywords.

Table 4.1. Location, Lifetime, and the Storage-Class Keywords

Storage Class Location Lifetime

(Internal null) Stack or register Temporary
[aut 0] Stack or register Temporary
register Stack or register Temporary
static Psect Permanent
extern Psect Permanent
gl obal def : Psect Permanent
gl obal ref! Psect Permanent
gl obal val ue' No storage allocated Permanent

"The gl obal def, gl obal r ef , and gl obal val ue storage-class specifiers are available only when compiling in VAX C compatibility
mode.

For a comparison between the global and external storage classes, see Section 4.3.2.

For more information about psects, see Section 4.8.

4.2. Standard-Conforming Method of
Controlling External Objects

Sections 4.3 and 4.4 describe the following external linkage storage-class specifiers and modifiers that
are specific to VSI C for OpenVMS systems:

gl obal def

gl obal r ef

gl obal val ue
noshare
readonl y
_align

These keywords are supported by the VSI C compiler for compatibility purposes, and are available only
in VAX C mode (/STANDARD=VAXC) and relaxed mode (/STANDARD=RELAXED).

However, the VSI C compiler also provides an alternative, standard-conforming method of

controlling objects that have external linkage. To take advantage of this method, use the #pr agna
ext er n_nodel preprocessor directive and the /EXTERN_MODEL and /[NO]SHARE_GLOBALS
command-line qualifiers.

The pragma and command-line qualifiers replace the VAX C mode storage-class specifiers
(gl obal def, gl obal r ef , gl obal val ue) and storage-class modifiers (noshar e and

158

Chapter 4. Data Storage and Representation

r eadonl y). They allow you to select the implementation model of external data and control the psect
usage of your programs. The _al i gn storage-class modifier is still used to ensure object alignment.

The pragma and command-line qualifier approach also has these advantages:

* Since the VAX C mode keywords do not follow standard C spelling rules, they cannot be provided
in strict ANSI C mode. The pragma and qualifiers, however, can be used in any mode of the VSI C
compiler.

* The pragma and qualifiers allow ext er n on OpenVMS systems to function in a manner more
similar to other systems.

* The pragma and qualifiers make it easier for you to write OpenVMS shareable images with VSI C.
Previously, that task required you to add an additional keyword to every declaration of external data.

For a description of the #pr agma ext er n_nodel preprocessor directive and its relationship to the
external storage classes it replaces, see Section 5.4.5.

For a description of the _al i gn storage-class modifier, see Section 4.4.3.

For a description of the /EXTERN_MODEL and /[NO]SHARE_GLOBALS command-line qualifiers,
see Section 1.3.4.

4.3. Global Storage Classes

In addition to the storage-class specifiers described in the VSI C Reference Manual [https://
docs.vmssoftware.com/vsi-c-language-reference-manual/], the VAX C compatibility mode of VSI C
provides the gl obal def , gl obal r ef , and gl obal val ue storage-class specifiers. These specifiers
allow you to assign the global storage classes to identifiers. The global storage classes are specific to VSI
C for OpenVMS systems and are not portable.

4.3.1. The globaldef and globalref Specifiers

Use the gl obal def specifier to define a global variable. Use the gl obal r ef specifier to refer to a
global variable defined elsewhere in the program.

When you use the gl obal def specifier to define a global symbol, the symbol is placed in one of three
program sections: the $DATA (VAX only) or $DATAS (Alpha, 164) psect using gl obal def alone,
the SCODE (VAX only) or SREADONLY$ (Alpha, 164) psect using gl obal def with r eadonly

or const , or a user-named psect. You can create a user-named psect by specifying the psect name as

a string constant in braces immediately following the gl obal def keyword, as shown in the following
definition:

globaldef{"psect_name"} int x = 2;

This definition creates a program section called psect _nanme and allocates the variable X in that psect.
You can add any number of global variables to this psect by specifying the same psect name in other

gl obal def declarations. In addition, you can specify the noshar e modifier to create the psect with
the NOSHR attribute. Similarly, you can specify the r eadonl y or const modifier to create the psect
with the NOWRT attribute. For more information about the possible combinations of specifiers and
modifiers, and the effects of the storage-class modifiers on program section attributes, see Section 4.8.

Variables declared with gl obal def can be initialized; variables declared with gl obal r ef cannot,
because these declarations refer to variables defined, and possibly initialized, elsewhere in the program.

159

https://docs.vmssoftware.com/vsi-c-language-reference-manual/
https://docs.vmssoftware.com/vsi-c-language-reference-manual/
https://docs.vmssoftware.com/vsi-c-language-reference-manual/

Chapter 4. Data Storage and Representation

Initialization is possible only when storage is allocated for an object. This distinction is especially
important when the r eadonl y or const modifier is used; unless the global variable is initialized
when the variable is defined, its permanent value is 0.

Note

In the VAX MACRO programming language, it is possible to give a global variable more than one name.
However, in VSI C, only one global name can be used for a particular variable. VSI C assumes that
distinct global variable names denote distinct objects; the storage associated with different names must
not overlap.

Example 4.1 shows the use of global variables.

Example 4.1. Using Global Variables

/* This example shows how global variables are used *
* in VSI C programs. */

#include <stdlib.h>
#include <stdio.h>

extern void fn{();

Qint ex_counter = 0;
BOglobaldef double velocity = 3.0el0;
Oglobaldef {"distance"} long miles = 100;

int main ()

{

printf (" *%% FPTIRST COMP UNIT ***\n");
printf ("counter:\t%d\n", ex_counter);
printf ("velocity:\t%g\n", velocity);
printf ("miles:\t\t%d\n\n", miles);
fn();

printf (" *%% FPTRST COMP UNIT ***\n");

printf ("counter:\t%d\n", ex_counter);

o printf ("velocity:\t%g\n", velocity);
printf ("miles:\t\t%d\n\n", miles);

exit (EXIT_SUCCESS);

}

/* __ *
* The following code is contained in a separate *
* compilation unit. *
<, */

#include <stdio.h>

static ex_counter;
Oglobalref double velocity;
globalref long miles;

fn(void)

160

Chapter 4. Data Storage and Representation

++ex_counter;
printf (" **% SECOND COMP UNIT ***\n");
if (miles > 50)

velocity = miles * 3.1 / 200 ;
printf ("counter:\t%d\n", ex_counter);
printf ("velocity:\t%g\n", velocity);
printf ("miles:\t\t%d\n", miles);

Key to Example 4.1:

©® In the first compilation unit, the eX_count er integer variable has a storage class of ext er n.
In the second compilation unit, a variable named ex__count er is of storage class st ati c.
Even though they have the same identifier, the two ex__count er variables are different variables
represented by two separate memory locations. The link-time scope of the second ex_count er
is the module created from the second compilation unit. When control returns to the main function,
the ex_count er external variable retains its original value.

® The variable vel oci t y has storage class gl obal def and is stored in the $DATA psect (VAX
only) or $DATAS psect (Alpha, 164).

® The mi | es variable also has storage class gl obal def but is stored in the user-specified psect
“di stance".

©® Whenthe vel oci t y variable prints after the function f n executes, the value will have changed.
Global variables have only one storage location.

® When you reference global variables in another module, you must declare those variables in that
module. In the second module, the global variables are declared with the gl obal r ef keyword.

Sample output from Example 4.1 is as follows:

$ RUN EXAMPLE.EXE
***x FIRST COMP UNIT ***

counter: 0
velocity: 3.000000e+10
miles: 100

*** SECOND COMP UNIT ***
counter: 1
velocity: 1.55
miles: 100

%*x FIRST COMP UNIT *
counter: 0
velocity: 1.55
miles: 100

4.3.2. Comparing the Global and the External Storage
Classes

The global storage-class specifiers define and declare objects that differ from external variables both

in their storage allocation and in their correspondence to elements of other languages. Global variables
provide a convenient and efficient way for a VSI C function to communicate with assembly language
programs, with OpenVMS system services and data structures, and with other high-level languages that
support global symbol definition, such as PL/I. For more information about multilanguage programming,
see Chapter 3.

161

Chapter 4. Data Storage and Representation

VSI C imposes no limit on the number of external variables in a single program.
There are other functional differences between the external and global variables. For example:

» If you have a limited amount of storage available, you may use the gl obal val ue specifier
(see Section 4.3.3) since an object defined as a gl obal val ue does not occupy storage in your
program; the external variables create program sections.

* You can declare a global variable, using gl obal def , inside a function or block, and by using a
gl obal r ef specifier, access the identifier from another compilation unit. With external variables,
you must define the variable outside all functions and blocks, and then access that variable in other
compilation units by using ext er n declarations.

* The global variables correspond to global symbols declared in assembly language programs, but
external variables (ext er n) correspond with FORTRAN common blocks.

* Agl obal ref declaration causes the linker to load the module containing the corresponding
gl obal def into the image (unless the gl obal r ef is not referenced, in which case VSI C
optimizes it away). An eXt er n declaration does not cause the linker to do so. An ext ern
declaration causes an overlaying of a psect (see Section 4.8 for details about psects).

In programming environments other than the OpenVMS environment, C programmers may be
accustomed to ext er n declarations causing the loading of a module into the program's executable
image. If transportability is an issue, you can define the following symbols—at the compilation-unit
level, outside of all functions—to allocate storage differently depending on the system you are using:

#ifdef _ DECC

#define EXPORT globaldef
#define IMPORT globalref
felse

#define EXPORT

#define IMPORT extern
#endif

IMPORT int foo;
EXPORT int foo = 53;

One similarity between the external and global storage classes is in the way the compiler recognizes
these variables internally. External and global identifiers are not case-sensitive. No matter how the
external and global identifiers appear in the source code, the compiler converts them to uppercase letters.
For ease in debugging programs, express all global and external variable identifiers in uppercase letters.

Another similarity between the external and global storage classes is that you can place the external
variables and the global variables (optionally) in psects with a user-defined name and, to some degree,
user-defined attributes. The compiler places external variables in psects of the same name as the variable
identifier, viewed by the linker in uppercase letters. The compiler places gl obal def {“name”
variables in psects with names specified in quotation marks, delimited by braces, and located directly
after the gl obal def specifier in a declaration. Again, the linker considers the psect name to be in
uppercase letters.

The compiler places a variable declared using only the gl obal def specifier and a data-type keyword
into the $DATA (VAX only) or $DATAS (Alpha, 164) psect. For more information about the possible
combinations of specifiers and modifiers, and the effects of the storage-class modifiers on program
section attributes, see Section 4.8.

162

Chapter 4. Data Storage and Representation

4.3.3. The globalvalue Specifier

A global value is an integral value whose identifier is a global symbol. Global values are useful because
they allow many programmers in the same environment to refer to values by identifier, without regard

to the actual value associated with the identifier. The actual values can change, as dictated by general
system requirements, without requiring changes in all the programs that refer to them. If you make
changes to the global value, you only have to recompile the defining compilation unit (unless it is defined
in an object library), not all of the compilation units in the program that refer to those definitions.

Note

You can use the gl obal val ue specifier only with identifiers of type enum i nt , or with pointer
variables.

An identifier declared with gl obal val ue does not require storage. Instead, the linker resolves

all references to the value. If an initializer appears with gl obal val ue, the name defines a global
symbol for the given initial value. If no initializer appears, the gl obal val ue construct is considered a
reference to some previously defined global value.

Predefined global values serve many purposes in OpenVMS system programming, such as defining
status values. It is customary in OpenVMS system programming to avoid explicit references to such
values as those returned by system services, and to use instead the global names for those values.

4.4. Storage-Class Modifiers

VSI C for OpenVMS systems provides support for the storage-class modifiers noshar e, r eadonl y,
and _al i gn as VAX C keywords. The recognition of these three storage-class modifiers as

keywords (along with the other VAX C specific keywords) is controlled by a combination of the
compiler mode and the /ACCEPT command-line qualifier. The default behavior on OpenVMS

systems is for the compiler to recognize these storage-class modifiers as keywords in the VAX C
compatibility mode and relaxed mode (assuming that /ACCEPT=NOVAXC_KEYWORDS is not

also specified.) Conversely, they are not recognized by default in all other modes unless overridden

by /ACCEPT=VAXC_KEYWORDS.

VSI C also provides the __i nl i ne, __forceinlineand__align storage-class modifiers.
These are recognized as valid keywords in all compiler modes on all platforms. They are in the
namespace reserved to the C implementation, so it is not necessary to allow them to be treated as user-
declared identifiers. They have the same effects on all platforms, except that on VAX systems, the
__forceinl i ne modifier does not cause any more inlining than the __i nl i ne modifier does.

VSI C also provides the i nl i ne storage-class modifier. This modifier is supported in relaxed mode
(/STANDARD=RELAXED) or if the /ACCEPT=C99_KEYWORDS or /ACCEPT=GCCINLINE
qualifier is specified.

For additional information aboutthe __inline, __forceinline, _align,andinline
storage-class modifiers, see the VSI C Reference Manual [https://docs.vmssoftware.com/vsi-c-language-

reference-manual/].

You can use a storage-class specifier and a storage-class modifier in any order; usually, the modifier is
placed after the specifier in the source code. For example:

extern noshare int x;

163

https://docs.vmssoftware.com/vsi-c-language-reference-manual/
https://docs.vmssoftware.com/vsi-c-language-reference-manual/
https://docs.vmssoftware.com/vsi-c-language-reference-manual/

Chapter 4. Data Storage and Representation

/* Or, equivalently.. */
int noshare extern x;

The following sections describe each of the VSI C storage-class modifiers.

4.4.1. The noshare Modifier

The noshar e storage-class modifier assigns the attribute NOSHR to the program section of the
variable. Use this modifier to allow other programs, used as shareable images, to have a copy of the
variable's psect without the shareable images changing the variable's value in the original psect.

When a variable is declared with the noshar e modifier and a shared image that has been linked to
your program refers to that variable, a copy is made of the variable's original psect to a new psect in
the other image. The other program may alter the value of that variable within the local psect without
changing the value still stored in the psect of the original program.

For example, if you need to establish a set of data that will be used by several programs to initialize local
data sets, then declare the external variables using the noshar e specifier in a VSI C program. Each
program receives a copy of the original data set to manipulate, but the original data set remains for the
next program to use. If you define the data as ext er n without the noshar e modifier, a copy of the
psect of that variable is not made; each program would be allowed access to the original data set, and
the initial values would be lost as each program stores the values for the data in the psect. If the data is
declared as const or r eadonl y, each program is able to access the original data set, but none of the
programs can then change the values.

You can use the noshar e modifier with the st at i ¢, ext er n, gl obal def, and

gl obal def {“name”} storage-class specifiers. For more information about the possible combinations
of specifiers and modifiers, and the effects of the storage-class modifiers on program-section attributes,
see Section 4.8.

You can use noshar e alone, which implies an external definition of storage class ext er n. Also, when
declaring variables using the ext er n and gl obal def {“name”} storage-class specifiers, you can

use hoshar e, const , and r eadonl y, together, in the declaration. If you declare variables using

the st at i ¢ or the gl obal def specifiers, and you use both of the modifiers in the declaration, the
compiler ignores noshar e and accepts const orr eadonl y.

4.4.2. The readonly Modifier

The r eadonl y storage-class modifier, like the const data-type qualifier, assigns the NOWRT
attribute to the variable's program section; if used with the st at i ¢ or gl obal def specifier, the
variable is stored in the $CODE psect, which has the NOWRT attribute by default.

You can use both the r eadonl y and const modifiers with the st at i ¢, ext ern, gl obal def,
and gl obal def {“psect”} storage-class specifiers.

In addition, both the r eadonl y modifier and the const maodifier can be used alone. When you
specify these modifiers alone, an external definition of storage class ext er n is implied.

The const modifier restricts access to data in the same manner as the r eadonl y modifier.
However, in the declaration of a pointer, the r eadonl y modifier cannot appear between the asterisk
and the pointer variable to which it applies.

164

Chapter 4. Data Storage and Representation

The following example shows the similarity between the const and r eadonl y modifiers. In both
instances, the poi Nt variable represents a constant pointer to a nonconstant integer.

readonly int * point;

int * const point;

Note

For new program development, VSI recommends that you use the const modifier, because const is
standard-conforming and r eadonl y is not.

4.4.3. The _align Modifier

The _al i gnand __al i gn storage-class modifiers have the same semantic meaning. The difference
isthat __al i gn is a keyword in all compiler modes while _al i gn is a keyword only in modes that
recognize VAX C keywords. For new programs, using __al i gn is recommended.

The _al i gnand __al i gn storage-class modifiers align objects of any of the VSI C data types on a
specified storage boundary. Use these modifiers in a data declaration or definition.

See the VSI C Reference Manual [https://docs.vmssoftware.com/vsi-c-language-reference-manual/] for a

detailed description of __al i gn and _al i gn.

4.5. Floating-Point Numbers (float, double,
long double)

When declaring floating-point variables, you determine the amount of precision needed for the stored
object. In VSI C, you can have single-precision, double-precision, and extended double-precision
variables.

The f | oat keyword declares a single-precision, floating-point variable. A f | oat variable is
represented internally in the VAX compatible, F_floating-point binary format.

For double-precision variables, you can choose D_floating or G_floating. On Alpha and 164 systems,
you can also choose single- and double-precision IEEE formats (S_floating and T_floating, respectively),
and extended double-precision format (X_floating).

The doubl e keyword declares a double-precision, floating-point variable. VSI C provides two VAX C
compatible formats for specifying doubl e variables: D_floating or G_floating.

The G_floating precision of approximately 15 digits is less than that of variables represented in
D_floating format. Although there are more bits allocated to the exponent in G_floating precision, fewer
bits are allocated to the mantissa, which determines precision (see Table 4.2).

Note

When the compiler is run with the /STANDARD=VAXC qualifier, the use of the | ong f| oat
keyword, which is interchangeable with the doubl e keyword, is allowed but elicits a warning that
this is obsolete usage. The | ong f | oat keyword is not allowed when the compiler is run with
the /STANDARD=ANSI89 qualifier.

165

https://docs.vmssoftware.com/vsi-c-language-reference-manual/
https://docs.vmssoftware.com/vsi-c-language-reference-manual/

Chapter 4. Data Storage and Representation

In VAX C, the default representation of doubl e variables is D_floating. To select the G_floating
representation, compile with the /G_FLOAT qualifier.

In VSI C, the /FLOAT qualifier replaces the /G_FLOAT qualifier, but /G_FLOAT is retained for
compatibility.

When compiling with VSI C on OpenVMS VAX systems, if you omit both /G_FLOAT and /FLOAT, the
default representation of doubl e variables is D_floating (unless /MIA is specified, in which case the
default is G_floating).

When compiling with VSI C on OpenVMS Alpha systems, if you omit both /G_FLOAT and /FLOAT,
the default representation of doubl e variables is G_floating.

When compiling with VSI C on OpenVMS 164 systems, the default representation of Si ngl e and
doubl e variables is IEEE_floating. See the /FLOAT qualifier for more information on floating-point
representation on 164 systems.

For OpenVMS Alpha and 164 systems, the /FLOAT qualifier accepts the additional option
IEEE_FLOAT. If you specify /FLOAT=IEEE_FLOAT, single and doubl e variables are represented in
IEEE _floating format (S_floating for single float, and T_floating for doubl e float).

You cannot specify both the /FLOAT and /G_FLOAT qualifiers on the command line.

Note

The VAX D_floating double-precision floating-point type is minimally supported on OpenVMS Alpha
and 164 systems. When compiling with this type, all data transfer is done with the data in D_floating
format, but for each arithmetic operation the data is converted first to G_floating and then back to
D_floating format when the operation is complete. Therefore, it is possible to lose three binary digits
of precision in arithmetic operations. This floating-point type is provided for compatibility with VAX
systems.

Modules compiled with the D_floating representation should not be linked with modules compiled with
the G_floating representation. Since there are no functions in the VSI C Run-Time Library (C RTL) that
perform floating-point format conversions on files, use the OpenVMS RTL functions MTH$CVT_D_G,
MTH$CVT_G_D, MTHSCVT_DA_GA, and MTH$CVT_GA_DA if you do not wish to recompile

the program. For more information about using the OpenVMS RTL, see the VMS Run-Time Library
Routines Volume.

On VAX systems, VSI C maps the standard C defined | ong doubl e type to the G_floating or
D_floating format.

On OpenVMS Alpha and 164 systems, | ong doubl e variables are represented by default in the
software-emulated X_floating format. If you specify /L._DOUBLE_SIZE=64, | ong doubl e variables
are represented as G_floating, D_floating, or T_floating, depending on the value of the /FLOAT

or /G_FLOAT qualifier.

Note

Modules must be linked to the appropriate run-time library. For more information about linking against
the VSI C RTL shareable image and object libraries, see the VSI C Run-Time Library Reference Manual

or OpenVMS Systems [https://docs.vmssoftware.com/vsi-c-run-time-library-reference-manual-for-

openvms-systems/].

166

https://docs.vmssoftware.com/vsi-c-run-time-library-reference-manual-for-openvms-systems/
https://docs.vmssoftware.com/vsi-c-run-time-library-reference-manual-for-openvms-systems/
https://docs.vmssoftware.com/vsi-c-run-time-library-reference-manual-for-openvms-systems/
https://docs.vmssoftware.com/vsi-c-run-time-library-reference-manual-for-openvms-systems/

Chapter 4. Data Storage and Representation

Table 4.2 shows the supported floating-point formats, and their approximate sizes and range of values.

Table 4.2. Floating-Point Formats

Data type Floating- Length of Range of Values Precision (decimal
Point Format | Variable digits)

f1 oat F_floating |32-bit 2.9 %10 10 1.7 %108 6

doubl e D_floating |64-bit 2.9 %10 10 1.7 %1038 16

doubl e G_floating |64-bit 56%10°%09.0%10% |15

f1 oat S_floating |32-bit 1.2%10 B0 3.4%10 6
(Alpha, 164)

doubl e T_floating | 64-bit 22510 %0 1.8%10°%® |15
(Alpha, 164)

| ong doubl e |X_floating |128-bit 3.4 %10 %0 1.2 104%? |33
(Alpha, 164)

4.6. Pointer Conversions

When running the compiler in VAX C mode, relaxed pointer and pointer/integer compatibility is
allowed. That is, all pointer and integer types are compatible, and pointer types are compatible with each
other regardless of the type of the object they point to. Therefore, in VAX C mode, a pointer to f | oat
is compatible with a pointer to i nt . This is not true in ANSI C mode.

Although pointer conversions do not involve a representation change when compiling in VAX C mode,
because of alignment restrictions on some machines, access through an unaligned pointer can result in
much slower access time, a machine exception, or unpredictable results.

4.7. Structure Alignment

The alignment and size of a structure is affected by the alignment requirements and sizes of the structure
components for each VSI C platform. A structure can begin on any byte boundary and occupy any
integral number of bytes. However, individual architectures or operating systems can specify particular
alignment and padding requirements.

VSI C on VAX processors does not require that structures or structure members be aligned on any
particular boundaries.

The components of a structure are laid out in memory in the order they are declared. The first
component has the same address as the entire structure. On VAX processors, each additional component
follows its predecessor in the immediately following byte.

For example, the following type is aligned as shown in Figure 4.1:

struct {char cil;
short sl;
float £f;
char c2;

}

167

Chapter 4. Data Storage and Representation

Figure 4.1. VAX Structure Alignment

a1 24 23 B 7 D

float f short s1 char ¢l

charc? float f

ZK-5432A-GE

The alignment of the entire structure can occur on any byte boundary, and no padding is introduced. The
f | oat variable f may span longwords, and the shor t variable S1 may span words.

The following pragma can be used to force specific alignments:

#pragma member_alignment

Structure alignment for VSI C for OpenVMS systems on VAX processors is achieved by the default,
#pragma nomenber _al i gnment , which causes data structure members to be byte-aligned (with
the exception of bit-field members).

Structure alignment for VSI C for OpenVMS systems on Alpha and Itanium processors is achieved by
the default, #pr agma nenber _al i gnnment , which causes data structure members to be naturally
aligned. This means that data structure members are aligned on the next boundary appropriate to the
type of the member, rather than on the next byte.

For more information on the #pr agma nmenber _al i gnment preprocessor directive, see
Section 5.4.13.

4.7.1. Bit-Field Alignment

Bit fields can have any integral type. However, the compiler issues a warning if /STANDARD=ANSI89
is specified, and the type is something other than i nt , unsi gned i nt,orsi gned i nt. Bit fields
are allocated within the unit from low order to high order. If a bit field immediately follows another bit
field, the bits are packed into adjacent space, even if this overflows into another byte. Howeyver, if an
unnamed bit field is specified to have length O, filler is added so the bit field immediately following starts
on the next byte boundary.

For example, the following type is aligned as shown in Figure 4.2:
struct {int i:2;
int i1i:2;
unsigned int ui: 30;

}

Figure 4.2. OpenVMS Bit-Field Alignment

21 43 21 0

Ll il i

ZK-5431A-GE

168

Chapter 4. Data Storage and Representation

Bit field i i is positioned immediately following bit field i . Because there are only 28 bit positions
remaining and Ui requires 30 bits, the first 28 bits of ui are put into the first longword, and the
remaining two bits overflow into the next longword.

4.7.2. Bit-Field Initialization

The VSI C compiler initializes bit fields in St r uct s differently than VAX C does. The following
program compiles without error using both compilers but the results are different. VSI C skips over
unnamed bits but VAX C does not.

#include <stdio.h>

int t ()
{
static struct bar {unsigned :1;
unsigned one : 1;
unsigned two : 1;
bi
struct bar foo = {1,0};
printf ("$d %d\n", foo.one, foo.two) ;
return 1;

}

When compiled with VSI C, this example produces the following output:
10

When compiled with VAX C, this example produces the following output:

00

4.7.3. Variant Structures and Unions

Variant structures and unions are VSI C extensions available in VAX C compatibility mode only, and
they are not portable.

Variant structure and union declarations allow you to refer to members of nested aggregates without
having to refer to intermediate structure or union identifiers. When a variant structure or union
declaration is nested within another structure or union declaration, the enclosed variant aggregate ceases
to exist as a separate aggregate, and VSI C propagates its members to the enclosing aggregate.

Variant structures and unions are declared using the var i ant _struct and vari ant _uni on
keywords. The format of these declarations is the same as that for regular structures or unions, with the
following exceptions:

* Variant aggregates must be nested within other valid structure or union declarations.
* A tag cannot be used in a variant aggregate declaration.

* At least one declarator must be declared in the variant aggregate declaration, and it must not be
declared as a pointer or an array.

Initialization of a variant structure or union is the same as that for a normal structure or union.

As with regular structures and unions, in VAX C compatibility mode, variant structures and unions in an
assignment operation need only have the same size in bits, rather than requiring the same members and
member types.

169

Chapter 4. Data Storage and Representation

To show the use of variant aggregates, consider the following code example that does not use variant
aggregates:

/* The numbers to the right of the code represent the byte offset

* from the enclosing structure or union declaration. */
struct TAG_1

{

int a; /* 0-byte enclosing_struct offset */
char *b; /* 4-byte enclosing_struct offset */
union TAG_2 /* 8-byte enclosing_struct offset */
{

int c¢; /* 0-byte nested_union offset */

struct TAG_3 /* 0-byte nested_union offset */
{
int d; /* 0-byte nested_struct offset */
int e; /* 4-byte nested_struct offset */
} nested_struct;
} nested_union;
} enclosing_struct;

If you want to access nested member d, then you need to specify all the intermediate aggregate
identifiers:

enclosing_struct.nested_union.nested_struct.d

If you try to access member d without specifying the intermediate identifiers, then you would access the
incorrect offset from the incorrect structure. Consider the following example:

enclosing_struct.d

The compiler uses the address of the original structure (encl 0si ng_st r uct), and adds to it the
assigned offset value for member d (0 bytes), even though the offset value for d was calculated according
to the nested structure (nest ed_st r uct). Consequently, the compiler accesses member a (0-byte
offset from encl 0si ng_struct) instead of member d.

The following code example shows the same code using variant aggregates:

/* The numbers to the right of the code present the byte offset
* from enclosing_struct. */
struct TAG_1
{
int a; /* 0-byte enclosing_struct offset */
char *b; /* 4-byte enclosing_struct offset */
variant_union
{
int c¢; /* 8-byte enclosing_struct offset */
variant_struct
{
int d; /* 8-byte enclosing_struct offset */
int e; /* 12-byte enclosing_struct offset */
} nested_struct;
} nested_union;
} enclosing_struct;

The members of the nest ed_uni on and nest ed_st r uct variant aggregates are propagated to
the immediately enclosing aggregate (encl osi ng_struct). The variant aggregates cease to exist as
individual aggregates.

170

Chapter 4. Data Storage and Representation

Since the nest ed_uni on and nest ed_st r uct variant aggregates do not exist as individual
aggregates, you cannot use tags in their declarations, and you cannot use their identifiers

(nest ed_uni on, nest ed_st r uct) in any reference to their members. However, you are free to
use the identifiers in other declarations and definitions within your program.

To access member d, use the following notation:

enclosing_struct.d

Using the following notation causes unpredictable results:

enclosing_struct.nested_union.nested_struct.d

If you use normal structure or union declarations within a variant aggregate declaration, the compiler
propagates the structure or union to the enclosing aggregate, but the members remain a part of the nested
aggregate. For example, if the nested structure in the last example was of type St r uct , the following
offsets would be in effect:

struct TAG_1

{
int a; /* 0-byte enclosing_struct offset */
char *b; /* 4-byte enclosing_struct offset */
variant_union

{
int c¢; /* 8-byte enclosing_struct offset */
struct TAG_2 /* 8-byte enclosing-struct offset */

{
int d; /* 0-byte nested_struct offset */
int e; /* 4-byte nested_struct offset */
} nested_struct;
} nested_union;
} enclosing_struct;

In this case, to access member d, use the following notation:

enclosing_struct.nested_union.nested_struct.d

4.8. Program Sections

The following sections describe program-section attributes and program sections created by VSI C for
OpenVMS systems.

4.8.1. Attributes of Program Sections

As the VSI C compiler creates an object module, it groups data into contiguous program sections, or
psects. The grouping depends on the attributes of the data and on whether the psects contain executable
code or read/write variables.

The compiler also writes into each object module information about the program sections contained in
it. The linker uses this information when it binds object modules into an executable image. As the linker

allocates virtual memory for the image, it groups together program sections that have similar attributes.

Table 4.3 lists the attributes that can be applied to program sections.

171

Chapter 4. Data Storage and Representation

Table 4.3. Program-Section Attributes

Attribute Meaning

PIC or NOPIC The program section or the data these attributes refers to does not
depend on any specific virtual memory location (PIC), or else the
program section depends on one or more virtual memory locations
(NOPIC).!

CON or OVR The program section is concatenated with other program sections
with the same name (CON) or overlaid on the same memory
locations (OVR).

REL or ABS The data in the program section can be relocated within virtual
memory (REL) or is not considered in the allocation of virtual
memory (ABS).

GBL or LCL The program section is part of one cluster, is referenced by the
same program section name in different clusters (GBL), or is local
to each cluster in which its name appears (LCL).

EXE or NOEXE The program section contains executable code (EXE) or does not
contain executable code (NOEXE).

WRT or NOWRT The program section contains data that can be modified (WRT) or
data that cannot be modified (NOWRT).

RD or NORD These attributes are reserved for future use.

SHR or NOSHR The program section can be shared in memory (SHR) or cannot be
shared in memory (NOSHR).

USR or LIB These attributes are reserved for future use.

VEC or NOVEC The program section contains privileged change mode vectors
(VEC) or does not contain those vectors (NOVEC).

COM or NOCOM The program section is a conditionally defined psect associated

with a conditionally defined symbol. This is the type of psect
created when you declare an uninitialized definition with
extern_nodel rel axed refdef.

lvsic programs can be bound into PIC or NOPIC shareable images. NOPIC occurs if declarations such as the following are used: char *x =
&y;. This statement relies on the address of variable y to determine the value of the pointer x.

4.8.2. Program Sections Created by VSI C

If necessary, VSI C creates the following program sections:

* $CODE (VAX only)—Contains all executable code and constant data (including variables defined
with the r eadonl y modifier or const type qualifier).

* $CODES$ (Alpha, 164)—Contains all executable code.

* S$READONLYS (Alpha, 164)—Contains all constant data defined with the r eadonl y modifier or

const type qualifier.

* $DATA (VAX only) or $SDATAS$ (Alpha, 164)—Contains all static variables, as well as global
variables defined without the r eadonl y modifier or const type qualifier. $DATA also contains
character-string constants when /ASSUME=WRITABLE_STRING_LITERALS is specified.

* SLITERALS (Alpha, 164)—Contains character-string constants when /
ASSUME=NOWRITABLE_STRING_LITERALS is specified.

172

Chapter 4. Data Storage and Representation

» VSI C also creates additional program sections for variables declared with the gl obal def
keyword if the optional psect name in braces is specified, or for variables declared with the ext er n

storage class, depending on the external model.

All program sections created by VSI C have the PIC, REL, RD, USR, and NOVEC attributes. On
VAX systems, the $CODE psect is aligned on a byte boundary; all other psects generated by VSI C
are aligned on longword boundaries. On OpenVMS Alpha and 164 systems, all psects generated by

VSI C are aligned on octaword boundaries. Note that use of the _al i gn storage-class modifier can

cause a psect to be aligned on greater than a longword boundary on OpenVMS VAX systems. The
$CHAR_STRING_CONSTANTS psect has the same attributes as the $SDATA (VAX only) and $DATA$
(Alpha, 164) psects.

Tables 4.4, 4.5, 4.6, and 4.7 summarize the differences in psects created by different declarations:

» Table 4.4, Table 4.5 (Alpha, 164), and Table 4.6 (VAX only) show different cases of variable
definitions and assign to them a storage-class code number:

» Table 4.4 shows the effect of each #pr agma ext er n_nodel preprocessor directive on the

storage-class code number for external variable definitions that have an ext er n storage class.

* Table 4.5 shows the storage-class code number for variable definitions that do not have the
ext er n storage class on OpenVMS Alpha and 164 systems.

» Table 4.6 shows the storage-class code number for variable definitions that do not have the
ext er n storage class on VAX systems.

» Table 4.7 shows the psect name and attributes associated with each storage-class code number from

Tables 4.4, 4.

5, and 4.6.

Table 4.4. External Models and Definitions

Storage-Class
Code

External Object Definition

Interpretation

External Model: #pr agma ext ern_nodel comon_bl ock noshr

1 i nt nane; /* uninitialized definition */

1 int name = 1; /* initialized definition */

1 extern int nane; /* treated as an uninitialized definition */
2 const i nt nane; /* uninitialized definition */

2 const int nane = 1; /* initialized definition */

2 extern const int nane; /* treated as an uninitialized definition */
External Model: #pr agma ext ern_nodel common_bl ock shr

3 i nt nane; /* uninitialized definition */

3 int nane = 1; /* initialized definition */

3 extern int name; /* treated as an uninitialized definition */
4 const i nt nane; /* uninitialized definition */

4 const int nanme = 1; /* initialized definition */

4 extern const int nane; /* treated as an uninitialized definition */
External Model: #pr agma ext ern_nodel rel axed_refdef noshr

173

Chapter 4. Data

Storage and Representation

Storage-Class
Code

External Object Definition

Interpretation

5 i nt nane; /* uninitialized definition */
1 int name = 1; /* initialized definition */

6 const int nane; /* uninitialized definition */
2 const int name = 1; /* initialized definition */
External Model: #pr agma ext ern_nodel rel axed_refdef shr

7 i nt nane; /* uninitialized definition */
3 int name = 1; /* initialized definition */

8 const int namne; /* uninitialized definition */
4 const int name = 1, /* initialized definition */
External Model: #pr agma ext er n_nodel strict _ref def

9 (Alpha, 164) |i nt synbol ; /* uninitialized definition */
10 (VAX only) |i nt synbol ; /* uninitialized definition */
10 int synmbol = 1; /* initialized definition */
11 const int synbol; /* uninitialized definition */
11 const int synbol = 1; /* initialized definition */

External Model:

#pragma ext er n_nodel

strict_refdef "name" noshr

12 int synbol; /* uninitialized definition */
12 int synmbol = 1; /* initialized definition */
13 const int synbol; /* uninitialized definition */
13 const int synbol = 1; /* initialized definition */
External Model: #pr agma ext ern_nodel strict_refdef "name" shr
14 int synbol; /* uninitialized definition */
14 int synbol = 1; /* initialized definition */
15 const int synbol; /* uninitialized definition */
15 const int synbol = 1; /* initialized definition */

Table 4.5. Combinations of Storage-Class Specifiers and Modifiers (Alpha, 164)

Storage-Class Keyword /SHARE or / Initialized or Not
Storage-Class | Combination NOSHARE
Code
9 static Either No
10 static Either Yes
11 static const! Either Either
9 gl obal def Either No
10 gl obal def Either Yes
11 gl obal def const! Either Either
14 gl obal def {"name" /SHARE Either
12 gl obal def {"name" /NOSHARE Either

174

Chapter 4. Data Storage and Representation

Storage-Class Keyword /SHARE or / Initialized or Not
Storage-Class | Combination NOSHARE
Code
15 gl obal def {"name" /SHARE Either
const
13 gl obal def {"name" /NOSHARE Either
const !

]Using in place of produces the same results.

Table 4.6. Combinations of Storage-Class Specifiers and Modifiers (VAX only)

Storage-Class | Storage-Class Keyword /SHARE or /NOSHARE

Code Combination

10 static Either

11 static const! Either

10 gl obal def Either

11 gl obal def const! Either

14 gl obal def {"name" /SHARE

12 gl obal def {"name" /NOSHARE

15 gl obal def {"name" /SHARE
const !

13 gl obal def {"name" /NOSHARE

const !

lUsing in place of produces the same results.

Table 4.7 shows the psect name and psect attributes for the storage-class code numbers from Table 4.4,
Table 4.5, and Table 4.6. Where nane is used for the psect name in Table 4.7, the name of the psect is
the same as namne in the declarations or pragmas in Table 4.4, or the quoted brace-enclosed names in

Tables 4.5 and 4.6.

Table 4.7. Combination Attributes

Program Section Name Program Attributes
Storage-Class
Code
1 name OVR, GBL, NOSHR, NOEXE, WRT, NOCOM
2 name OVR, GBL, NOSHR, NOEXE, NOWRT, NOCOM
3 nanme OVR, GBL, SHR, NOEXE, WRT, NOCOM
4 nanme OVR, GBL, SHR, NOEXE, NOWRT, NOCOM
5 name OVR, GBL, NOSHR, NOEXE, WRT, COM
6 name OVR, GBL, NOSHR, NOEXE, NOWRT, COM
7 nanme OVR, GBL, SHR, NOEXE, WRT, COM
8 nanme OVR, GBL, SHR, NOEXE, NOWRT, COM
9 BSS CON, LCL, NOSHR, NOEXE, WRT, NOCOM
10 $DATA (VAX only) CON, LCL, NOSHR, NOEXE, WRT, NOCOM
10 $DATAS (Alpha, 164) CON, LCL, NOSHR, NOEXE, WRT, NOCOM

175

Chapter 4. Data Storage and Representation

Program Section Name Program Attributes
Storage-Class
Code
11 $CODE (VAX only) CON, LCL, SHR, EXE, NOWRT, NOCOM
11 $READONLYS (Alpha, I164) |CON, LCL, SHR, NOEXE, NOWRT, NOCOM
12 "name" CON, GBL, NOSHR, NOEXE, WRT, NOCOM
13 "name" CON, GBL, NOSHR, NOEXE, NOWRT, NOCOM
14 "name" CON, GBL, SHR, NOEXE, WRT, NOCOM
15 "name" CON, GBL, SHR, NOEXE, NOWRT, NOCOM

The combined use of the r eadonl y and noshar e modifiers is ignored by the compiler in the
following declarations:

readonly noshare static int x;
readonly noshare globaldef int x;

When it encounters a situation as shown in the previous example, the compiler ignores the noshar e
modifier and accepts r eadonl y. The order of the storage-class specifier, the storage-class modifier,
and the data-type keyword within a declaration is not significant.

The VSI C compiler does static (global) initialization of pointers by using the .ADDRESS directive. By
using this mechanism, the compiler efficiently generates position-independent code. The linker makes
image sections that contain such initialization nonshareable.

176

Chapter 5. Preprocessor Directives

The VSI C preprocessor provides the ability to perform macro substitution, conditional compilation,
and inclusion of named files. Preprocessor directives, lines beginning with # and possibly preceded

by white space, are used to communicate with the preprocessor. The VSI C Reference Manual
[https://docs.vmssoftware.com/vsi-c-language-reference-manual/] describes the standard-conforming
preprocessor directives available with the VSI C compiler. This chapter describes the preprocessor
directives that are either specific to VSI C on OpenVMS systems, or that are used in an implementation-
specific way:

» The #di cti onary directive, used for CDD/Repository extraction (Section 5.4.3, Section 5.1)
» The #i ncl ude directive, used for file inclusion (Section 5.2)

* The #nodul e directive, for specifying an alternative name and identification for the object module
(Section 5.3, Section 5.4.15)

* The #pr agnma directive and pragmas specific to OpenVMS systems (Section 5.4)

If you plan to port programs to and from other C implementations, take care in choosing which
preprocessor directives to use within your programs. See the VSI C Reference Manual [https://
docs.vmssoftware.com/vsi-c-language-reference-manual/] for more information about using preprocessor
directives for conditional compilation. For a complete discussion of portability concerns, see the VSI C
Run-Time Library Reference Manual for OpenVMS Systems [https://docs.vmssoftware.com/vsi-c-run-

time-library-reference-manual-for-openvms-systems/].

Preprocessor directives are independent of the usual scope rules; they remain in effect from their
occurrence until the end of the compilation unit. For more information about the compilation unit, see
Chapter 1.

5.1. CDD/Repository Extraction (#dictionary)

The #di ct i onary directive is retained for compatibility with VAX C, and is supported only when
running VSI C in VAX C mode (/STANDARD=VAXC). See Section 5.4.3 for information on using the
standard C equivalent #pr agma di cti onary directive.

5.2. File Inclusion (#include)

The #i ncl ude directive inserts external text into the source stream delivered to the compiler. This
directive is often used to include global definitions for use with VSI C functions and macros in the
program text.

The #i ncl ude directive is supported on all VSI C implementations, but the syntax and semantics
vary. For example, the directory search algorithm for locating included files on OpenVMS systems
differs from that on UNIX systems, primarily because of differences in the native file systems and
conventions on the two platforms. Nevertheless, by choosing the lowest common denominator of plain
text files in directories to contain header files, you can define command-line options for both platforms
to cause searching to be done in the same way. VSI C for OpenVMS systems also provides a form of
the #i ncl ude directive specifically for including text modules from OpenVMS text library files. The
following sections describe the #i ncl ude directive as implemented on OpenVMS systems.

177

https://docs.vmssoftware.com/vsi-c-language-reference-manual/
https://docs.vmssoftware.com/vsi-c-language-reference-manual/
https://docs.vmssoftware.com/vsi-c-language-reference-manual/
https://docs.vmssoftware.com/vsi-c-language-reference-manual/
https://docs.vmssoftware.com/vsi-c-language-reference-manual/
https://docs.vmssoftware.com/vsi-c-run-time-library-reference-manual-for-openvms-systems/
https://docs.vmssoftware.com/vsi-c-run-time-library-reference-manual-for-openvms-systems/
https://docs.vmssoftware.com/vsi-c-run-time-library-reference-manual-for-openvms-systems/
https://docs.vmssoftware.com/vsi-c-run-time-library-reference-manual-for-openvms-systems/

Chapter 5. Preprocessor Directives

The #i ncl ude directives may be nested to a depth determined by the FILLM process quota and by
virtual memory restrictions. The VSI C compiler imposes no inherent limitation on the nesting level of
inclusion.

OpenVMS and most UNIX style file specifications can be included in VSI C source programs.

The following sections describe the different forms of the #i ncl ude directive.

5.2.1. Inclusion Using Angle Brackets

The first form of the #i ncl ude preprocessor directive uses angle brackets (<>) to delimit the file
specification:

#include <file-spec>

The file-spec is a valid file specification or a logical name. A file specification may be up to 255
characters long.

If the file-spec contains "/" or "!" characters, it is assumed to be a UNIX style name, and the compiler
attempts to combine it with other UNIX style names from the /INCLUDE_DIRECTORY command-
line qualifier and translate the result to an OpenVMS file specification using RTL functions. Otherwise,
the file-spec is treated as an OpenVMS file specification with defaults supplied from command-line
qualifiers and logical names in a prescribed search order.

When specifying the names of files to be included in your source program, avoid directory specifications
of the following form:

DBAQ: [.dir—name...]

Depending on device logical names is not good practice. Instead, try to use only simple file names
complete with the .h file type, and use the /INCLUDE_DIRECTORY qualifier to specify the directories
to search.

For the angle-bracket form of inclusion, the compiler searches directories in the following order for the
file to be included:

1. Any directories specified with the /INCLUDE_DIRECTORY qualifier.

2. The directory or search list of directories specified in the logical name DECC$SYSTEM_INCLUDE,
if DECC$SYSTEM_INCLUDE is defined.

3. If DECC$SYSTEM_INCLUDE is not defined, then the directory or search list of directories
specified by DECC$LIBRARY_INCLUDE.

4. If neither DECC$SYSTEM_INCLUDE nor DECCSLIBRARY_INCLUDE are defined as logical
names, the compiler searches the following directories for plain text-file copies of compiler header
files:

SYS$COMMON:[DECCS$LIB.INCLUDE.DECC$RTLDEF]
SYS$COMMON:[DECCS$LIB.INCLUDE.SYS$STARLET_C]

Normally, the compiler installation does not put any files in these directories, but the compiler will
search them if they exist.

5. If the file is still not found, all directories and the file extension are stripped off and the steps for
including a module from a text library are followed.

178

Chapter 5. Preprocessor Directives

6. If the file is still not found, SYS$SLIBRARY is searched.

You can define DECC$SYSTEM_INCLUDE to be a valid directory specification or a search
list of valid directory specifications. Before each compilation of your program, you can redefine
DECCS$SYSTEM_INCLUDE to be any valid directory or list of directories you choose.

Avoid defining DECC$SYSTEM_INCLUDE to be a rooted directory or subdirectory of the following
form:

DBAQO: [dir—-name.]
When defining DECC$SYSTEM_INCLUDE, use complete directory specifications.

If DECC$SYSTEM_INCLUDE translates to a directory or a search list of directories,

and if the compiler cannot locate the specified file, the compiler generates an error

message. [f DECC$SYSTEM_INCLUDE is undefined, the compiler then searches the
DECCSLIBRARY_INCLUDE or SYSSLIBRARY directory for the specified file; if the file cannot be
found, the compiler generates an error message. For more information about search lists, see the DCL
command DEFINE in the VSI OpenVMS DCL Dictionary.

Note

The purpose of DECCSLIBRARY _INCLUDE is to identify an alternative location for all header files
normally provided by the compiler installation. Therefore, if this logical is defined, the compiler does
not search the SYS$COMMON directories, the SYSSLIBRARY text libraries, or header files it would
normally search.

The purpose of DECC$SYSTEM_INCLUDE is to define the order for searching directories of plain-
text files for the angle-bracketed form of #i ncl ude. Defining this logical does not suppress the search
of the SYSSLIBRARY text libraries where the compiler-supplied header files normally reside.

When porting programs to the OpenVMS environment, your programs may contain #i ncl ude
directives of the following form:

#include <sys/file.h>

The VSI C compiler translates this line, common in programs that run on UNIX systems, to the
following UNIX style file specification:

/sys/file.h

The compiler then translates the UNIX style file specification to the OpenVMS file specification as
follows:

SYS:FILE.H

If you port programs containing such directives, define the SYS logical to be the proper name of the
OpenVMS directory containing the files to be included.

Another way to use UNIX style directories is to specify them on the /INCLUDE_DIRECTORY
command-line qualifier. They must contain a "/" character and must, therefore, be in quotation marks.

5.2.2. Inclusion Using Quotation Marks

179

Chapter 5. Preprocessor Directives

The second form of the #i ncl ude preprocessor directive uses quotation marks to delimit the file
specification:

#include "file-spec"
The file-spec is a valid OpenVMS or UNIX style file specification.

For this form of file inclusion, the compiler searches directories in the following order for the file to be
included:

1. One of the following directories:

* If /NESTED_INCLUDE_DIRECTORY=INCLUDE_FILE (the default) is specified, the
directory where the immediately containing include file is located (that is, the directory
containing the file in which the #i ncl ude directive occurred).

* If /NESTED_INCLUDE_DIRECTORY=PRIMARY_FILE is specified, the directory containing
the top-level source file (that is, the directory containing the .C file being compiled, which is
not necessarily the current default directory). This is most similar to the behavior of the VAX C
compiler.

* If /NESTED_INCLUDE_DIRECTORY=NONE is specified, then skip this step and begin at step
2.

2. Any directories specified with the /INCLUDE_DIRECTORY qualifier.

3. The directory or search list of directories specified in the logical name DECC$USER_INCLUDE, if
DECCS$USER_INCLUDE is defined.

4. If the file is still not found, the steps for angle-bracketed files are followed.

Note that when /NESTED_INCLUDE_DIRECTORY=PRIMARY_FILE is specified, the directory
containing the top-level source file is not necessarily the current RMS default device and directory.

For example, given the current directory, DBAO:[CURRENT], and the following CC command line, the
compiler searches DBAO:[OTHERDIR] for any included files delimited by quotation marks, even though
the current RMS default is the directory, DBAO:[CURRENT]:

$ CC DBAO: [OTHERDIR]EXAMPLE.C

If the compiler cannot locate the specified file, it searches any directories specified by the /
INCLUDE_DIRECTORY qualifier.

If the compiler still cannot locate the specified file, it translates the logical name
DECC$USER_INCLUDE. If DECC$USER _INCLUDE translates to a valid directory specification or a
search list of directories, the compiler searches that directory or directories for the specified file. Before
each compilation of your program, you can redefine DECC$USER_INCLUDE to be any valid directory
or list of directories you choose.

As with DECC$SYSTEM_INCLUDE, do not define DECC$USER_INCLUDE to be a rooted directory
or subdirectory. Use complete directory specifications when defining DECC$USER _INCLUDE.

If you defined DECCSUSER_INCLUDE, and the compiler cannot locate the specified file in that
directory or search list of directories, the file-spec is treated as if it were enclosed in angle brackets
instead of quotation marks.

180

Chapter 5. Preprocessor Directives

5.2.3. Inclusion of Text Modules

The third form of the #i ncl ude preprocessor directive is used for including module names:
#include module-name
The module-name is the name of a module in a text library.

This method of inclusion is not portable unless module-name is a macro that expands to either the angle-
bracket or quoted form. This module-name syntax is provided for compatibility with VAX C and other
OpenVMS compilers only, and should generally be avoided.

VSI C text libraries on OpenVMS systems are specified and searched in the following manner:

1. A text library can be created with the LIBRARY command and specified with the /LIBRARY
qualifier on the CC command line.

2. If you compile more than one compilation unit using a single CC command, you must specify the
library within each of the compilation units, if needed. For example:

$ CC sourcea+mylib/LIBRARY, sourceb+mylib/LIBRARY

3. If you specify more than one library to the VSI C compiler, and if the #i ncl ude directives are not
nested (see the note in Section 5.2.2), then the libraries are searched in the specified order each time
an #i ncl ude directive is encountered. Consider the following example:

$ CC sourcea+mylib/LIBRARY+yourlib/LIBRARY

In this example, the compiler searches for modules referenced in #i ncl ude directives first in
MYLIB.TLB and then in YOURLIB.TLB.

4. If no library is specified on the CC command line, or if the specified module cannot be found in any
of the specified libraries, the following actions are taken:

» If you defined an equivalence name for DECC$TEXT_LIBRARY that names a text library, that
library is searched.

* The compiler searches for any remaining unresolved module names in the following location,
which contains the VSI C RTL header files:

SYSSLIBRARY:DECC$RTLDEF.TLB

For OpenVMS Version 7.1 and higher, the compiler then searches the following location, which
contains the STARLET header files:

SYSSLIBRARY:SYS$STARLET_C.TLB

5.2.4. Macro Substitution in #include Directives

VSI C allows macro substitution within the #i ncl ude preprocessor directive.

For example, if you want to include a file name, you can use the following two directives:

#define macrol "file.ext"

181

Chapter 5. Preprocessor Directives

#include macrol

If you use defined macros in #i ncl ude directives, the macros must evaluate to one of the three
following acceptable #i ncl ude file specifications or the use generates an error message:

<file-spec>

"file-spec"
module—name

5.3. Changing the Default Object Module
Name and Identification (#module)

The #nodul e directive is retained for compatibility with VAX C and is supported only when running
VSI C in VAX C mode (/STANDARD=VAXC). See Section 5.4.15 for information on using the
standard C equivalent #pr agma nodul e directive.

5.4. Implementation-Specific Preprocessor
Directive (#pragma)

The #pr agma directive is a standard method for implementing features that vary from one compiler
to the next. This section describes the implementation-specific pragmas that are available on the VSI C
compiler for OpenVMS systems. Pragmas supported by all implementations of VSI C are described in
the VSI C Reference Manual [https://docs.vmssoftware.com/vsi-c-language-reference-manual/].

Some #pr agma directives are subject to macro expansion in the preprocessor before being translated. A
macro reference can occur anywhere after the keyword pr agna. The following example demonstrates
this feature using the #pr agma i nl i ne directive:

#define opt inline
#define f func
#pragma opt (f)

The #pr agma directive becomes #pr agma i nl i ne (func) after both macros are expanded.

The following pragmas are subject to macro expansion:

builtins inline linkage standard
dictionary noinline module nostandard
extern_model member_alignment message use_linkage
extern_prefix nomember_alignment

Note

An _nmsuffix can be appended to any of the above-listed macros to prevent macro expansion. For
example, to prevent macro expansion on #pr agma i nl i ne, specify it as #pragma i nl i ne_nm

Also, to provide macro-expansion support to those pragmas not listed above, all pragmas (including
those that are already specified as undergoing macro expansion) have an alternative pragma-name_m
version, which makes the pragma subject to macro expansion. For example, #pr agma assert is not

182

https://docs.vmssoftware.com/vsi-c-language-reference-manual/
https://docs.vmssoftware.com/vsi-c-language-reference-manual/

Chapter 5. Preprocessor Directives

subject to macro expansion, but #pr agna assert _mis. Another example: #pr agma nodul e and
#pragnma nodul e_mare equivalent and both subject to macro expansion.

The following sections describe the #pr agnma directives.

5.4.1. #pragma assert Directive

The #pr agma assert directive lets you specify assertions that the compiler can make about a
program to generate more efficient code. The pragma can also be used to verify that certain compile-
time conditions are met; this is useful in detecting conditions that could cause run-time faults.

The #pr agnma assert directive is never needed to make a program execute correctly, however if a
#pragnma assert is specified, the assertions must be valid or the program might behave incorrectly.

The #pragnma assert directive has the following formats:

#pragma assert func_attrs(identifier-1list) function-assertions
#pragma assert global_status_variable (variable-1ist)
#fpragma assert non_zero (constant-expression) string-literal

5.4.1.1. #pragma assert func_attrs

Use this form of the pragma to make assertions about a function's attributes.

The identifier-list is a list of function identifiers about which the compiler can make assumptions. If more
than one identifier is specified, separate them by commas.

The function-assertions specify the assertions to the compiler about the functions. Specify one or more of
the following, separating multiple assertions with white space:

noreturn

nocal | s_back

nost at e

noef fects

file_scope_vars(option)

format (style, format-index, first-to-check-index)

nor et ur n asserts to the compiler that any call to the routine will never return.

nocal | s_back asserts to the compiler that no routine in the source module will be called before
control is returned from this function.

nost at e asserts to the compiler that the value returned by the function and any side-effects the
function might have are determined only by the function's arguments. If a function is marked as having
both noeffects and nostate, the compiler can eliminate redundant calls to the function.

noef f ect s asserts to the compiler that any call to this function will have no effect except to set the
return value of the function. If the compiler determines that the return value from a function call is never
used, it can remove the call.

fil e_scope_var s(option) asserts to the compiler how a function will access variables declared at
file scope (with either internal or external linkage).

The option is one of the following:

183

Chapter 5. Preprocessor Directives

none - The function will not read nor write to any file-scope variables except those whose type is

vol ati | e or those listed in a #pr agma assert gl obal _stat us_vari abl e.

nor eads - The function will not read any file-scope variables except those whose type is vol ati |l e
or those listed in a #pr agna assert ¢l obal _status_vari abl e.

nowr i t es - The function will not write to any file-scope variables except those whose type is

vol ati | e or those listed in a #pr agma assert gl obal _stat us_vari abl e.

format (style, format-index,first-to-check-index) asserts to the compiler that
this function takes pr i nt f - or scanf -style arguments to be type-checked against a format string,
Specify the parameters as follows:

style - printf orscanf.

This determines how the format string is interpreted.

format-index - {112131...}

This specifies which argument is the format-string argument (starting from 1).
first-to-check-index - {OI11121...}

This is the number of the first argument to check against the format string. For functions where the
arguments are not available to be checked (such as vpr i nt f), specify the third parameter as 0. In this
case, the compiler only checks the format string for consistency.

The following declaration causes the compiler to check the arguments in calls to your _pri nt f for
consistency with the pri nt f -style format-string argument your _f or mat :

extern int
your_printf (void *your_object, const char *your_format, ...);
#pragma assert func_attrs(your_printf) format (printf, 2, 3)

The format string (your _f or mat) is the second argument of the function your _pri nt f, and the
arguments to check start with the third argument, so the correct parameter values for format-index and
first-to-check-index are 2 and 3, respectively.

The f or mat attribute of #pr agma assert func_attrs allows you to identify your own
functions that take format strings as arguments, so that the compiler can check the calls to these
functions for errors. The compiler checks formats for the library functions pri ntf,f printf,
sprintf,snprintf,scanf,fscanf,and sscanf whenever these functions are enabled as
intrinsics (the default). You can use the f or mat attribute to assert that the compiler should check the
formats of these functions when they are not enabled as intrinsics.

5.4.1.2. #pragma assert global_status_variable

Use this form of the pragma to specify variables that are to be considered global status variables,
which are exempt from any assertions given to functions by #pr agma assert func_attrs
file_scope_vars directives.

The variable-list is a list of variables.

5.4.1.3. Usage Notes

The following notes apply to the #pr agma assert func_attrs and #pragma assert
gl obal _st at us_vari abl e forms of the #pr agma assert directive:

184

Chapter 5. Preprocessor Directives

* The #pragnma assert directive is not subject to macro replacement.

* The variables in the variable-list and the identifiers in the identifier-list must have declarations that
are visible at the point of the #pr agna assert directive.

* The #pragna assert directive must appear at file scope.

» A function can appear on more than one #pr agna assert func_attrs directive as long as
each directive specifies a different assertion about the function. For example, the following is valid:

#pragma assert func_attrs(a) nocalls_back
#pragma assert func_attrs(a) file_scope_vars (noreads)

But the following is not valid:

#pragma assert func_attrs(a) file_scope_vars (noreads)
#pragma assert func_attrs(a) file_scope_vars (nowrites)

5.4.1.4. #pragma assert non_zero
This form of the #pr agnma assert directive is supported on both VAX and Alpha platforms.

When the compiler encounters this directive, it evaluates the constant-expression. If the expression is
zero, the compiler generates a message that contains both the specified string-literal and the compile-
time constant-expression. For example:

fpragma assert non_zero(sizeof(a) == 12) "a is the wrong size"

In this example, if the compiler determines that Si zeof a is not 12, the following diagnostic message
is output:

CC-W-ASSERTFAIL, The assertion "(sizeof(a) == 12)" was not true.
a 1s the wrong size.

Unlike the #pr agnma assert options f unc_attrs and gl obal _status_vari abl e,
#pragma assert non_zer o can appear either inside or outside a function body. When used
inside a function body, the pragma can appear wherever a statement can appear, but the pragma is
not treated as a statement. When used outside a function body, the pragma can appear anywhere a
declaration can appear, but the pragma is not treated as a declaration.

Because macro replacement is not performed on #pr agnma asser t, you might need to use the
#pragma assert _mdirective to obtain the results you want. Consider the following program that
verifies both the size of a St r uct and the offset of one of its elements:

#include <stddef.h>
typedef struct {

int aj
int b;
bos;
#fpragma assert non_zero(sizeof(s) == 8) "sizeof assert failed"
fpragma assert_m non_zero(offsetof(s,b) == 4) "offsetof assert failed"

Because of f set of is a macro, the second pragma must be #pr agna assert _mso that
of f set of will expand correctly.

5.4.2. #pragma builtins Directive

185

Chapter 5. Preprocessor Directives

The #pragma bui | ti ns directive enables the VSI C built-in functions that directly access processor
instructions. This directive is provided for VAX C compatibility.

The #pragma bui | ti ns directive has the following format:
#pragma builtins

VSI C implements #pr agma bui | t i ns by including the <bui | t i ns. h> header file, and is
equivalent to #i ncl ude <bui | tins. h>on OpenVMS systems.

This header file contains prototype declarations for the built-in functions that allow them to be

used properly. By contrast, VAX C implemented this pragma with special-case code within the
compiler, which also supported a #pr agma. nobui | t i ns preprocessor directive to turn off the
special processing. Because declarations cannot be "undeclared”, VSI C does not support #pr agnma
nobui | tins.

Furthermore, the names of all the built-in functions use a naming convention defined by the C standard
to be in a namespace reserved to the C language implementation. (For more details, see the following
Note.)

Note

VAX C implemented both #pr agma bui | ti ns and #pr agnma nobui | ti ns. Under #pr agna
bui | ti ns, the names of the built-in functions were given special treatment. Under #pr agma

nobui | t i ns, the names of the built-in functions were given no special treatment; as such, a user
program was free to declare its own functions or variables with the same names as the builtins and have
them behave as if they had ordinary names.

The VSI C implementation relies on the standard C reserved namespace, which states that any name
matching the pattern described above is reserved for the exclusive use of the C implementation (that
is, the compiler and RTL), and if a user program tries to declare or define such a name for its own
purposes, the behavior is undefined.

So in VSI C, the #pr agma bui | t i ns directive includes a set of declarations that makes the built-
in functions operate as documented. But in the absence of the #pr agna bui | ti ns directive,

you cannot declare your own functions with these names. Code that tries to do anything with these
names other than use them as documented, and in the presence of #pr agma bui | ti ns, will likely
encounter unexpected problems.

5.4.3. #pragma dictionary Directive

The #pragma di cti onary directive allows you to extract CDD/Repository data definitions and
include these definitions in your program.

The standard-conforming #pr agna di cti onary directive is equivalent to the VAX C

compatible #di ct i onary directive (Section 5.1), but is supported in all compiler modes. (The

#di ct i onary directive is retained for compatibility and is supported only when compiling with the /
STANDARD=VAXC qualifier.)

The #pragma di cti onary directive has the following format:

#pragma dictionary CDD_path [null_terminate]

186

Chapter 5. Preprocessor Directives

[name (structure_name)]
[textl_to_array | textl_to_char]

The CDD_path is a character string that gives the path name of a CDD/Repository record, or a macro
that expands to the path name of the record.

The optional nul | _t er m nat e keyword can be used to specify that all string data types should be
null-terminated.

The optional name() can be used to supply an alternate tag name or declarator(struct_name) for the outer
level of a CDD/Repository structure.

The optional t ext 1_t o_char keyword forces the CDD/Repository type "text" to be translated to
char , rather than "array of char " if the size is 1. This is the default when nul | _t er m nat e is not
specified.

The optional t ext 1_t o_ar r ay keyword forces the CDD/Repository type "text" to be translated
to type "array of char " even when the size is 1. This is the default when nul | _t er mi nat e is
specified.

Here's a sample #pr agma di cti onary directive:
#pragma dictionary "CDDSTOP.personnel.service.salary_record"

This path name describes all subdirectories, beginning with the root directory (CDD$TOP), that lead to
the salary_record data definition.

You can use the logical name CDD$DEFAULT to define a default path name for a dictionary directory.
This logical name can specify part of the path name for the dictionary object. For example, you can
define CDD$DEFAULT as follows:

$ DEFINE CDDS$SDEFAULT CDDS$TOP.PERSONNEL
When this definition is in effect, the #pr agnma di cti onary directive can contain the following:
#pragma dictionary "service.salary_record"

Descriptions of data definitions are entered into the dictionary in a special-purpose language called
CDO (Common Dictionary Operator), which replaces the older interface called CDDL (Common Data
Dictionary Language).

CDD definitions written in CDDL are included in a dictionary with the CDDL command. For example,
you can write the following definition for a structure containing someone's first and last name:

define record cddS$top.doc.cname_record.
cname structure.

first datatype is text
size is 20 characters.
last datatype is text

size is 20 characters.
end cname structure.
end cname_record record.

If a source file named CNAME.DDL needs to use this definition, you can include the definition in the
CDD subdirectory named doc by entering the following command:

187

Chapter 5. Preprocessor Directives

$ CDDL cname

After executing this command, a VSI C program can reference this definition with the #pr agna

di cti onary directive. If the #pr agma di cti onary directive is not embedded in a VSI C
structure declaration, then the resulting structure is declared with a tag name corresponding to the name
of the CDD/Repository record. Consider the following example:

#pragma dictionary "cddS$top.doc.cname_record"
This VSI C preprocessor statement results in the following declarations:

struct cname

{
char first [20];
char last [2071;

bi

You can also embed the #pr agma di cti onary directive in another VSI C structure declaration as
follows:

struct

{

int id;
fpragma dictionary "cname_record"
} customer;

These lines of code result in the following declaration, which uses cnane as an identifier for the
embedded structure:

struct

{
int id;
struct
{
char first [20];
char last [20];
} cname;
} customer;

If you specify /LIST and either /SHOW=DICTIONARY or /SHOW=ALL in the compilation command
line, then the translation of the CDD/Repository record description into VSI C is included in the listing
file and marked with the letter D in the margin.

For information on VSI C support for CDD/Repository data types. see Section C.4.3.

5.4.4. #pragma environment Directive

The #pragma envi ronment directive offers a global way to set, save, or restore the states of
context pragmas. This directive protects include files from contexts set by encompassing programs, and
protects encompassing programs from contexts that could be set in header files that they include.

The #pragma envi r onnent directive affects the following context pragmas:

#pragma ext er n_nodel

188

Chapter 5. Preprocessor Directives

#pragma extern_prefix

#pragma nmenber _al i gnment
#pragma nessage

#pragma nanes

#pragnma poi nter_size

#pragma required_poi nter_size

This pragma has the following syntax:

#pragma environment command_line
#pragma environment header_defaults
#pragma environment restore

#pragma environment save

The conmmand_| i ne keyword sets the states of all the context pragmas as specified on

the command line (by default or by explicit use of the /[NO]JMEMBER_ALIGNMENT, /
[NOJWARNINGS, /EXTERN_MODEL, and /POINTER_SIZE qualifiers). You can use #pr agnma
envi ronment conmand_| i ne within header files to protect them from any context pragmas that
take effect before the header file is included.

The header _def aul t s keyword sets the states of all the context pragmas to their default
values. This is almost equivalent to the situation in which a program with no command-line options
and no pragmas is compiled, except that this pragma sets the pragma message state to #pr agna
nost andar d, as is appropriate for header files.

The save keyword saves the current state of every pragma that has an associated context.
The r est or e keyword restores the current state of every pragma that has an associated context.

Without requiring further changes to the source code, you can use #pr agna envi r onment to
protect header files from things like language extensions and enhancements that might introduce
additional contexts.

A header file can selectively inherit the state of a pragma from the including file and then use additional
pragmas as needed to set the compilation to non-default states. For example:

#ifdef _ pragma_environment
#pragma __ environment save O
#pragma __ environment header_defaults @

#pragma member_alignment restore ©
#pragma member_alignment save O
#endif

/* contents of header file */

#ifdef _ pragma_environment

#pragma __ _environment restore
#endif

In this example:

© Saves the state of all context pragmas

® Sets the default compilation environment

® Pops the member alignment context from the #pr agma nmenber _al i gnnent stack that was
pushed by #pr agma __envi ronnment save [restoring the member alignment context to its
pre-existing state]

189

Chapter 5. Preprocessor Directives

O Pushes the member alignment context back onto the stack so that the #pr agnma
__environnent restore can pop the entry off.

Thus, the header file is protected from all pragmas, except for the member alignment context that the
header file was meant to inherit.

5.4.5. #pragma extern_model Directive

The #pragma ext er n_nodel directive controls how the compiler interprets objects that have
external linkage. With this pragma, you can choose one of the following global symbol models to be
used for external objects:

¢ Common block model

All declarations are definitions, and the linker combines all definitions with the same name into one
definition. This is the model traditionally used for ext er n data by VAX C on OpenVMS VAX
systems.

¢ Relaxed ref/def model

Some declarations are references and some are definitions. Multiple uninitialized definitions for the
same object are allowed and resolved into one by the linker. However, a reference requires that at
least one definition exists. This model is used by C compilers on UNIX systems.

e Strict ref/def model

Some declarations are references and some are definitions. There must be exactly one definition in
the program for any symbol referenced. This model is the only one guaranteed to be acceptable to all
standard C implementations. It is also the one used by VAX C for gl obal def and gl obal r ef
data. The relaxed ref/def model is the default model on VSI C.

¢ (Globalvalue model

This is like the strict ref/def model, except that these global objects have no storage; they are,
instead, link-time constant values. This model is used by VAX C gl obal val ue symbols.

After a global symbol model is selected with the ext er n_nodel pragma, all subsequent declarations
of objects having external storage class are treated according to the specified model until another
ext er n_nodel pragma is specified.

For example, consider the following pragma:
#pragma extern_model strict_refdef

After this pragma is specified, the following file-level declarations are treated as declaring global
symbols according to the strict ref/def model:

int x = 0;
extern int y;

Regardless of the external model, the compiler uses standard C rules to determine if a declaration is a
definition or a reference, although that distinction is not used in the common block model. An external
definition is a file-level declaration that has no storage-class keyword, or that contains the ext er n
storage-class keyword, and is also initialized. A reference is a declaration that uses the ext er n storage-
class keyword and is not initialized. In the previous example, the declaration of X is a global definition
and the declaration of Yy is a global reference.

190

Chapter 5. Preprocessor Directives

The ext er n_nodel pragma does not affect the processing of declarations that contain the VAX C
keywords gl obal def, gl obal r ef , or gl obal val ue

VSI C also supports the command-line qualifiers /EXTERN_MODEL and /SHARE_GLOBALS to
set the external model when the program starts to compile. Pragmas in the program being compiled
supersede the command-line qualifier.

A stack of the compiler's external model state is kept so that #pr agnma ext er n_nodel can be used
transparently in header files and in small regions of program text. See Sections 5.4.5.6 and 5.4.5.7 for
more information.

The compiler issues an error message if the same object has two different external models specified in
the same compilation unit, as in the following example:

#pragma extern_model common_block
int 1 = 0;

#pragma extern_model strict_refdef
extern int i;

Note

* The global symbols and psect names generated under the control of this pragma obey the case-
folding rules of the /NAME qualifier. This behavior is consistent with VAX C.

* While #pr agma ext er n_nodel can be used to allocate several variables in the same psect, the
placement of variables relative to each other within that psect cannot be controlled: the compiler does
not necessarily allocate distinct variables to memory locations according to the order of appearance
in the source code.

Furthermore, the order of allocation can change as a result of seemingly unrelated changes to

the source code, command-line options, or from one version of the compiler to the next; it is
essentially unpredictable. The only way to control the placement of variables relative to each other
is to make them members of the same St r uct type or, on OpenVMS Alpha systems, by using the
nor eor der attribute on a named #pr agma ext ern_nodel strict_refdef.

See Section 5.4.5.8 to determine what combinations of external models are compatible for successfully
compiling and linking your programs.

The following sections describe the various forms of the #pr agma ext er n_nodel directive.

5.4.5.1. Syntax

The #pr agma ext er n_nodel directive has the following syntax:

#pragma extern_model model_spec
lattr[,attr]...]

model_spec is one of the following:

comron_bl ock

rel axed_ref def

strict_refdef "name"

strict_refdef (No attr specifications allowed)
gl obal val ue (No attr specifications allowed)

191

Chapter 5. Preprocessor Directives

[attr],attr]...] are optional psect attribute specifications chosen from the following (at most one from
each line):

gbl I cl (Not allowed with r el axed_r ef def)

shr noshr

wt nowt

pi ¢ nopi ¢ (Not meaningful for Alpha)

ovr con

rel abs

exe noexe

vec novec

For OpenVMS Alpha systems: 0 byte 1 word 2 long 3 quad 4 octa 5 6 7 8 9 10
11 12 13 14 15 16 page

For OpenVMS VAX systems: 2 1 ong 3 quad 4 octa 9 page

The last line of attributes are numeric alignment values. When a numeric alignment value is specified on
a section, the section is given an alignment of two raised to that power.

On OpenVMS Alpha and 164 systems, the st ri ct _r ef def "name" extern_model can also take the
following psect attribute specifications:

* noreorder — causes variables in the section to be allocated in the order they are defined.
* nat al gn — has no effect on OpenVMS systems.

It does, however, change the behavior on UNIX systems: when specified, nat al gn causes the
global variables defined within the section to be allocated on their natural boundary. Currently, all
global variables on UNIX systems are allocated on a quadword boundary. When the nat al gn
attribute is specified, the compiler instead allocates the variable on an alignment that is natural for its
type (Char s on byte boundaries, i nt s on longword boundaries, and so on).

Specifying the nat al gn attribute also enables the nor eor der attribute.

Note

Use of the nat al gn attribute can cause a program to violate the UNIX Calling Standard. The
calling standard states that all global variables must be aligned on a quadword boundary. Therefore,
variables declared in a nat al gn section should only be referenced in the module that defines them.

See Table 4.3 for a description of the other attributes. See the OpenVMS Linker Utility Manual for more
complete information on each.

The default attributes are: noshr, r el , noexe, novec, nopi c.

Forstrict _refdef, the default is con. For comon_bl ock and r el axed_r ef def, the
default is ovr .

The default for wr t /nowr t is determined by the first variable placed in the psect. If the variable has the
const type qualifier (or the r eadonl y modifier), the psect is set to nowr t . Otherwise, it is set to
wt.

Restrictions on Setting Psect Attributes

Be aware of the following restriction on setting psect attributes.

192

Chapter 5. Preprocessor Directives

The #pragma ext er n_nodel directive does not set psect attributes for variables declared as
tentative definitions in the r el axed_r ef def nodel . A tentative definition is one that does not
contain an initializer. For example, consider the following code:

#pragma extern_model relaxed_refdef long

int a;

int b = 6;

#pragma extern_model common_block long
int c;

Psect A is given octaword alignment (the default) because a is a tentative definition. Psect B is
correctly given longword alignment because it is initialized and is, therefore, not a tentative definition.
Psect C is also given longword alignment because it is declared in an ext er n_nodel other than
rel axed_r ef def.

Note

The psect attributes are normally used by system programmers who need to perform declarations
normally done in macro. Most of these attributes are not needed in normal C programs. Also, notice
that the setting of attributes is supported only through the #pr agma mechanism, and not through
the /EXTERN_MODEL command-line qualifier.

5.4.5.2. #pragma extern_model common_block

This pragma sets the compiler's model of external data to the common block model, which is the one
used by VAX C.

The #pragma ext er n_nodel conmon_bl ock directive has the following format:

#pragma extern_model common_block [attr[,attr]...]

In this model, every declaration of an object with the ext er n storage class causes a global overlaid
psect to be created. Both standard C definition declarations and reference declarations create the same
object file records.

The psect has the same name as the object itself. There is no global symbol in addition to the psect
name.

The object file records generated are the same as those generated by VAX C for ext er n objects.

See Section 4.8 for a description of how definitions using each external model are interpreted, what
psect they would reside in, and what psect attributes are assigned. Also note the effect of the const
type specifier for these definitions.

5.4.5.3. #pragma extern_model relaxed_refdef

This pragma sets the compiler's model of external data to the relaxed ref/def model, which is the one
used by pcc on UNIX systems.

The #pr agma ext er n_nodel rel axed_ref def directive has the following format:

#pragma extern_model relaxed_refdef [attr[,attr]...]

Be aware that an artr keyword of gbl or | cl is not allowed on the r el axed_r ef def model.

193

Chapter 5. Preprocessor Directives

With this model, three different types of object-file records can be produced, depending on the
declaration of the object:

* If the declaration is a standard C reference, the same type of object records are produced as VAX C
would produce for a gl obal r ef ; that is, a global symbol reference subrecord.

* If the declaration is a standard C definition that is initialized, a psect definition and global symbol
definition subrecord are produced. The name of the psect and symbol is the same as the name of the
data object. This is equivalent to what VAX C would produce for the declaration. For example:

globaldef "FOO" int FOO = 1;

» If the declaration is a standard C definition that is not initialized, then a conditional global symbol
definition subrecord and conditional psect definition subrecord are produced. Except for the
conditional aspect and the omission of an initializer, these object records resemble those produced
with the #pr agna ext ern_nodel comon_bl ock directive.

See Section 4.8 for a description of how definitions using each external model are interpreted, what
psect they would reside in, and what psect attributes are assigned. Also note the effect of the const
type specifier for these definitions.

5.4.5.4. #pragma extern_model strict_refdef

This pragma is the preferred alternative to the nonstandard storage-class keywords gl obal def and
gl obal ref.

This pragma sets the compiler's model of external data to the strict ref/def model. Use this model for a
program that is to be a standard C strictly-conforming program.

The #pragma ext ern_nodel strict_refdef directive has the following formats:
#pragma extern_model strict_refdef

#pragma extern_model strict_refdef "name" [attr[,attr]...]

The name in quotes, if specified, is the name of the psect for any definitions.

Note that attr keywords cannot be specified for the st ri ct _r ef def model unless a name is given for
the psect.

This model provides two different cases:

* If the declaration is a standard C reference, the same type of object records are produced as VAX C
would produce for a gl obal r ef ; that is, a global symbol reference subrecord.

* If the declaration is a standard C definition, the same type of object records are produced as VAX C
would produce for a gl obal def ; that is, a global symbol definition subrecord.

See Section 4.8 for a description of how definitions using each external model are interpreted, what
psect they would reside in, and what psect attributes are assigned. Also note the effect of the const
type specifier for these definitions.

Note

In VAX C, the gl obal def and gl obal r ef keywords interact with enumdefinitions in the
following way:

194

Chapter 5. Preprocessor Directives

e If an enumvariable is declared with the gl obal def keyword, the enumliterals of the type of the
variable automatically become gl obal val ue constant definitions.

e If an enumvariable is declared with the gl obal r ef keyword, the enumliterals of the type of the
variable automatically become gl obal val ue constant references.

This behavior, does not occur with #pr agna ext er n_nodel strict _refdef.

5.4.5.5. #pragma extern_model globalvalue

This pragma sets the compiler's external model to the gl obal val ue model, and is the preferred
alternative to the nonstandard storage-class keyword gl obal val ue.

This pragma has the following format:

fpragma extern_model globalvalue
Notice that this model does not accept attr keywords.
This model provides two different cases:

* If the declaration is a standard C reference, the same object file records are produced as VAX C
would produce for an uninitialized gl obal val ue.

* If the declaration is a standard C definition, the same object records are produced as VAX C would
produce for an initialized gl obal val ue.

Note

Only objects with a type of i nt eger, enum or poi nt er can have this external model. If this
external model is used and the compiler encounters a declaration of an external object whose type is not
one these, an error message is issued.

5.4.5.6. #pragma extern_model save

This pragma pushes the current external model of the compiler onto a stack. The stack records all
information associated with the external model, including the shr /noshr state and any quoted psect
name.

This pragma has the following format:
#pragma extern_model save

The number of entries allowed in the #pr agma ext er n_nodel stack is limited only by the amount
of memory available to the compiler.

5.4.5.7. #pragma extern_model restore

This pragma pops the external model stack of the compiler. The external model is set to the state
popped off the stack. The stack records all information associated with the external model, including the
shr/noshr state and any quoted psect name. This pragma has the following format:

#pragma extern_model restore

195

Chapter 5. Preprocessor Directives

On an attempt to pop an empty stack, a warning message is issued and the compiler's external model is
not changed.

5.4.5.8. Effects on the VSI C Run-Time Library and User Programs

Using different VSI C external models can introduce mutually incompatible object files. An object file
compiled with one extern model may not link against an object file compiled with a different model.

Table 5.1 compares what happens when a reference or definition in an object file compiled with one
external model is linked against a reference or definition in an object file compiled with a different
external model. Note that the table is symmetric about the diagonal. For example, to look up what
happens when you mix ar el axed_r ef def reference witha stri ct_r ef def definition, you can
locate either the r el axed_r ef def reference row and the st ri ct _r ef def definition column or
the r el axed_r ef def reference column and the st ri ct _r ef def definition row.

Table 5.1 contains no entries for mixing gl obal val ue symbols with other external models because
gl obal val ue symbols are used only in special cases; they are not used as a general-purpose
external model. For the other external models, there is a row and column for every different case. The
conmon_bl ock model only has one case because all symbols are definitions in that model; the

rel axed_r ef def model has three cases because it distinguishes between references, uninitialized
definitions, and initialized definitions.

Table 5.1. Comparison of Mixing Different extern_models

common_ |relaxed_ relaxed_ relaxed_ strict_ strict_
block def refdef ref refdef def |refdef refdef ref refdef def
initialized
def
common_block |Works Fails ‘Works ‘Works Fails Fails
def
relaxed_refdef |Fails Works Works Works Works Works
ref
relaxed_refdef |Works Works Works Works Works Works
uninitialized def
relaxed_refdef |Works Works Works Multi Works Multi
initialized def
strict_refdef ref |Fails Works ‘Works ‘Works Works Works
strict_refdef def |Fails Works Works Multi Works Multi
Notes

ref means reference; def means definition.

In the cormon_bl ock model, all external symbols are considered to be defs.
A ref works with a ref if they both refer to the same thing.

A def works with a ref if the def fulfills the ref.

A def works with a def if they are combined into one by the linker.

Multi means that the linker issues a multiply defined symbol error. This indicates a user error,
not a mismatch between external models.

As Table 5.1 shows, the conmon_bl ock model mixes poorly with the st ri ct _r ef def
model, but the r el axed_r ef def model works well with the conmon_bl ock model and the

196

Chapter 5. Preprocessor Directives

strict _refdef model. The r el axed_r ef def model fails only when ar el axed_r ef def
reference is linked against a conmon_bl ock definition.

The fact that the external models are not all compatible with each other can be an issue for providers of
general-purpose object libraries. One goal for such a library should be to work when linked with client
code compiled with any of the external models. Otherwise, the provider of the object library might be
forced to provide one copy of the library compiled with /EXTERN_MODEL=COMMON_BLOCK,
another compiled with /EXTERN_MODEL=STRICT_REFDEEF, and another compiled

with /EXTERN_MODEL=RELAXED_REFDEF to let anyone link with the library.

The best way to accomplish the goal of allowing an object library to be linked with any code regardless
of the external model used, is to provide header files that describe the interface to the object library.
The header files can declare the global variables used by the object library after using #pr agna

ext er n_nodel to set the external model to the one used by the library. Programmers who want to
use the library could then include these header files to get the required declarations. In order to avoid
altering the external model used by the including program, header files should start with a #pr agna
ext ern_nodel save directive and end with a #pr agma. ext er n_nodel rest or e directive.
The VSI C RTL uses this approach.

If header files are not provided, an object library should use the r el axed_r ef def external model
since it will link successfully with either cormon_bl ock compiled code or st ri ct _r ef def
compiled code. The only restriction is that the library must not reference an external symbol that is not
defined in the library but is defined only in the user program. This avoids the cormon_bl ock case
that fails. Note that the r el axed_r ef def model allows both the library and the user code to contain
definitions for any symbol, as long as both do not attempt to initialize the symbol.

5.4.5.9. Example

Example 5.1 shows the use of #pr agma ext er n_nodel in a sample module. Assume that the
module is compiled with the /EXTERN_MODEL=COMMON and /SHARE_GLOBALS qualifiers.

Example 5.1. #pragma extern_model Example

fpragma extern_model save

@globaldef {"BAR1"} int FOO1; /* strict_refdef shr def */
BOecxtern int coml; /* common_block shr def */
O®int com2; /* common_block shr def */
#pragma extern_model common_block noshr

Oglobaldef {"BAR2"} int FO002; /* strict_refdef shr def */
Ocxtern int com3 = 23; /* common_block noshr def */
fpragma extern_model globalvalue

Oint gvil; /* globalvalue def */
@cxtern int gv2; /* globalvalue ref */
Oint gv3 = 5; /* globalvalue def */
Oextern int gvd = 42; /* globalvalue def */
#pragma extern_model strict_refdef {"BAR1"} shr

®int FOO1A; /* strict_refdef shr def */
®extern int FOOLB; /* strict_refdef ref */

®globaldef {"BAR3"} noshare int foo3;
#pragma extern_model relaxed_refdef

®int rrdil; /* relaxed_refdef noshr def */
®extern rrd2; /* relaxed_refdef ref */
fpragma extern_model restore

®int com4; /* common_block shr def */

Key to Example 5.1:

197

Chapter 5. Preprocessor Directives

60009 © 0

e

® 6 6

FOOL has the st ri ct _r ef def model with the share attribute (because of /SHARE). It resides
in psect BARL.

comnl has the conmon_bl ock model with the share attribute. Like all common_block globals,
comnl is a definition.

con?® has the common_bl ock model with the share attribute. Like all common_block globals,
con?® is a definition.

FOO2 has the stri ct _r ef def model with the share attribute. The /SHARE qualifier overrides
the noshr keyword on the preceding #pr agma ext er n_nodel . FOO2 resides in psect
BAR2.

conB has the conmron_bl ock model with the noshare attribute.

gv1 has the gl obal val ue model. It is a definition. Since it lacks an explicit initializer, gv1 is
implicitly initialized to 0. Therefore, it is a gl obal val ue with a link-time value of 0.

gv2 has the gl obal val ue model. It is a reference.

gv3 has the gl obal val ue model. It is a definition with a link-time value of 5.

gv4 has the gl obal val ue model. It is a definition with a link-time value of 42.

FOOLA has the st ri ct _r ef def model with the noshare attribute. It is a definition and resides
in the psect BAR1.

FOOLB has the st ri ct _r ef def model and is a reference. Since it is a reference, it will reside
in whatever psect is specified by the definition.

foo3 hasthe stri ct _refdef model with the noshare attribute. It is a definition and resides in
the psect BAR3.

rrdl has the r el axed_r ef def model with the noshare attribute. It is a definition.

rrd2 has the r el axed_r ef def model and is a reference.

comd has the common_bl ock model with the share attribute, because the preceding line popped
the external model back to its command-line state.

5.4.6. #pragma extern_prefix Directive

The #pragma ext er n_pr ef i x directive controls the compiler's synthesis of external names, which
the linker uses to resolve external name requests.

When you specify #pr agma ext er n_pr ef i X with a string argument, the compiler attaches
the string to the beginning of all external names produced by the declarations that follow the pragma
specification.

This pragma is useful for creating libraries where the facility code can be attached to the external names
in the library.

The #pragma ext er n_pr ef i x directive has the following format:

fpragma extern_prefix "string" [(id[,id]...)]

#fpragma extern_prefix {NOCRTL|RESTORE_CRTL} (id[,id]...)
#pragma extern_prefix save

#pragma extern_prefix restore

The quoted "string" is attached to external names in the declarations that follow the pragma
specification.

You can also specify an extern prefix for specific identifiers using the optional list [(id[,id]...)].

The NOCRTL and RESTORE_CRTL keywords control whether or not the compiler applies its default
RTL prefixing to the names specified in the id-list, which is required for this form of the pragma.
The effect of NOCRTL is like that of the EXCEPT=keyword of the /PREFIX_LIBRARY_ENTRIES

198

Chapter 5. Preprocessor Directives

command-line qualifier. The effect of RESTORE_CRTL is to undo the effect of a #pr agma
extern_prefix NOCRTL or a /PREFIX=EXCEPT= on the command line.

The save and r est or e keywords can be used to save the current pragma prefix string and to restore
the previously saved pragma prefix string, respectively.

The default external prefix, when none has been specified by a pragma, is the null string.
The recommended use is as follows:

#pragna extern_prefix save

#pragna extern_prefix " prefix-to-prepend-to-external-names"
... some declarations and definitions ...

#pragna extern_prefix restore

When an ext er n_pr ef i X is in effect and you are using #i ncl ude to include header files, but do
not want the ext er n_pr ef i X to apply to ext er n declarations in the header files, use the following
code sequence:

#pragma extern_prefix save
#pragma extern_prefix ""

#i ncl ude ...

#pragma extern_prefix restore

Otherwise, external prefix is attached to the beginning of external identifiers for definitions in the
included files.

All external names prefixed with a nonnull string using #pr agma ext er n_pr ef i x are converted to
uppercase letters, regardless of the setting of the /INAMES qualifier.

Note

The following notes apply when specifying optional identifiers on #pr agma ext er n_pr efi x:

* When an id-list follows a quoted "string”, then for each id there must not be a declaration of that id
visible at the point of the pragma, otherwise a warning is issued, and there is no affect on that id.

* Each id affected by a pragma with a non-empty prefix is expected to be subsequently declared with
external linkage in the same compilation unit. The compiler issues a default informational if there is
no such declaration made by the end of the compilation.

» Itis perfectly acceptable for the id-list form of the pragma or declarations of the id's listed, to occur
within a region of source code controlled by the other form of the pragma. The two forms do not
interact; the form with an id list always supersedes the other form.

* There is no interaction between the save/restore stack and the id lists.
» If the same id appears in more than one pragma, then a default informational message is issued,

unless the prefix on the second pragma is either empty ("") or matches the prefix from the previous
pragma. In any case, the behavior is that the last-encountered prefix supersedes all others.

5.4.7. #pragma function Directive

199

Chapter 5. Preprocessor Directives

Specifies that calls to the specified functions are not intrinsic but are, in fact, function calls. This pragma
has the opposite effect of #pr agna i ntri nsi c.

The #pragma f unct i on directive has the following format:

#pragma function (functionl[, function2, ...])

5.4.8. #pragma [nolinclude_directory Directive

The effect of each #pr agma i ncl ude_di rect ory is as if its string argument (including
the quotes) were appended to the list of places to search that is given its initial value by
the /INCLUDE_DIRECTORY qualifier, except that an empty string is not permitted in the pragma form.

The #pragma i ncl ude_di r ect ory directive has the following format:

fpragma include_directory <string-literal>

This pragma is intended to ease DCL command-line length limitations when porting applications from
POSIX-like environments built with makefiles containing long lists of -1 options specifying directories

to search for headers. Just as long lists of macro definitions specified by the /DEFINE qualifier can

be converted to #def i ne directives in a source file, long lists of places to search specified by the /
INCLUDE_DIRECTORY qualifier can be converted to #pr agma i ncl ude_di r ect or y directives
in a source file.

Note that the places to search, as described in the help text for the /INCLUDE_DIRECTORY qualifier,
include the use of POSIX-style pathnames, for example "/ usr/ base" . This form can be very useful
when compiling code that contains POSIX-style relative pathnames in #i ncl ude directives. For
example, #i ncl ude <subdi r/f 00. h> can be combined with a place to search such as "/ usr/
base" to form "/ usr/ base/ subdi r/f 00. h", which will be translated to the filespec "USR:
[BASE.SUBDIR]JFOO.H"

This pragma can appear only in the main source file or in the first file specified on
the /FIRST_INCLUDE qualifier. Also, it must appear before any #i ncl ude directives.

5.4.9. #pragma [no]inline Directive

Function inlining is the inline expansion of function calls; it replaces the function call with the function
code itself. Inline expansion of functions reduces execution time by eliminating function-call overhead
and allowing the compiler's general optimization methods to apply across the expanded code. Compared
with the use of function-like macros, function inlining has the following advantages:

* Arguments are evaluated only once.
* The overuse of parentheses is not necessary to avoid problems with precedence.
* The actual expansion can be controlled from the command line.

Also, the semantics are exactly the same as if inline expansion had not occurred. You cannot get this
behavior using macros.

Use the following preprocessor directives to control function inlining:

#pragma inline (id,..)

200

Chapter 5. Preprocessor Directives

#pragma noinline (id,..)
The id is a function identifier.

If a function is named in an i nl i ne directive, calls to that function will be expanded as inline code, if
possible.

If a function is named in a noi nl i ne directive, calls to that function will not be expanded as inline
code.

If a function is named in both an i nl i ne and a noi nl i ne directive, an error message is issued.

For calls to functions named in neither an i nl i ne nor a noi nl i ne directive, VSI C expands the
function as inline code whenever appropriate as determined by a platform-specific algorithm.

Use of the #pr agma i nl i ne directive causes inline expansion, regardless of the size or number of
times the specified functions are called.

In the following example of function inlining, the functions push and pop are expanded inline
throughout the module in which the #pr agma i nl i ne appears:

void push (int);
int pop(void);

#pragma inline (push, pop)

int stack[100];
int *stackp = &stack;

void push(int x)
{
if (stackp == &stack)
*stackp = x;
else
*stackpt+ = x;

int pop ()
{

return *stackp-—;

main ()
{

push (1) ;

printf ("The top of stack is now %d \n",pop());
}

By default, VSI C for OpenVMS systems attempts to provide inline expansion for all functions, and uses
the following function characteristics to determine if it can provide inline expansion:

e Size
¢ Number of times the function is called

* Conformance to the following restrictions:

201

Chapter 5. Preprocessor Directives

* The function does not take the address of a parameter.

* The function does not use an index expression that is not a compile-time constant in an array that
is a field of a st r uct argument. An argument that is a pointer to a St r uct is not restricted.

* The function does not use the var ar gs or st dar g package to access the function's arguments
because they require arguments to be in adjacent memory locations, and inline expansion may
violate that requirement.

* The function does not declare an exception handler.

If a function is to be expanded inline, you must place the function definition in the same module as the
function call. The definition can appear either before or after the function call.

5.4.10. #pragma intrinsic Directive

The #pragma i ntri nsi ¢ preprocessor directive specifies that calls to the specified functions are
intrinsic. An intrinsic function is an apparent function call that could be handled as an actual call to the
specified function, or could be handled by the compiler in a different manner. By treating the function as
an intrinsic, the compiler can often generate faster code. (Contrast with a built-in function, which is an
apparent function call that is never handled as an actual function call. There is never a function with the
specified name.)

This pragma has the opposite effect of #pr agnma f uncti on.
The #pragma i ntri nsi ¢ directive has the following format:
#pragma intrinsic (functionl|[, functionZ2, ..])
Functions that can be handled as intrinsics are:

Main Group - Standard C:

abs atan2 ceilf cosl floorl memset sinl
atan atan2f ceill fabs labs sin strcpy
atanf atan2l cos floor memcpy sinf strlen
atanl ceil cosft floorf memmove

Main Group - Nonstandard:
alloca atand atand2 Dbcopy bzero cosd sind

Printf functions:
fprintf printf sprintf
Printf Nonstandard:
snprintf
Standard math functions that set errno,
thereby requiring /ASSUME=NOMATH_ERRNO:

acos asinl expf logl0 powl sqrtf tanh

202

Chapter 5. Preprocessor Directives

acosf cosh expl logl0Of sinh sgrtl tanhf
acosl coshf log logl01l sinhf tan tanhl
asin coshl logf pow sinhl tanf
asinf exp logl powf sqrt tanl

Nonstandard math functions that set errno,
thereby requiring /ASSUME=NOMATH_ERRNO:

log2
tand

Also see Section 1.3.4 for a description of the [NOJINTRINSICS option of the /OPTIMIZE qualifier,
which controls whether or not certain functions are handled as intrinsic functions without explicitly
enabling each of them as an intrinsic through the #pr agnma i nt ri nsi c directive.

Also, the asm f asm and das mfunctions are intrinsics and require use of #pragma i ntri nsic.
See Section 6.2.1.2 for a description of these functions.

5.4.11. #pragma linkage Directive (Alpha only)

This section describes the behavior of the #pr agma | i nkage directive on OpenVMS Alpha systems.

The #pragma | i nkage preprocessor directive allows you to specify special linkage types for
function calls. This pragma is used with the #pr agma use_| i nkage directive, described in
Section 5.4.23, to associate a previously defined special linkage with a function.

For OpenVMS Alpha systems, the #pr agma | i nkage directive has the following formats:

#fpragma linkage linkage-name = (characteristics)
#fpragma linkage_alpha linkage-name = (characteristics)

Both formats behave identically on OpenVMS Alpha systems. On 164 systems, however, register
mapping occurs for the pr agma | i nkage format, as described in Section 5.4.12.

The linkage-name is the name to be given to the linkage type being defined. It has the form of a
C identifier. Linkage types have their own name space, so their names will not conflict with other
identifiers or keywords in the compilation unit.

The characteristics specify information about where parameters will be passed, where the results of
the function are to be received, and what registers are modified by the function call. Specify these
characteristics as a parenthesized list of comma-separated items of the following forms:

parameters
result

(register-1ist)

(simple-register—-1ist
preserved (simple-register-1ist
nopreserve (simple-register—-1ist
notused (simple-register—-1ist
notneeded (ai, 1lp)
standard_linkage

)
)
)
)

If the st andar d_I i nkage keyword is specified, it must be the only option in the parenthesized list
following the linkage name. For example:

#pragma linkage speciall = (standard_linkage)

203

Chapter 5. Preprocessor Directives

The st andar d_I i nkage keyword tells the compiler to use the standard linkage appropriate to

the target platform. This can be useful to confine conditional compilation to the pragmas that define
linkages, without requiring the corresponding #pr agnma use_| i nkage directives to be conditionally
compiled as well.

Code written to use linkage pragmas as intended, treating them as target-specific without implicit
mapping, might have a form like this:

#if defined(__alpha)

#pragma linkage_alpha speciall = (__preserved(__rl,__r2))
#elif defined(__ia64)

#pragma linkage_ia64 speciall = (__preserved(__r9,_ r28))
#else

#fpragma message ("unknown target, assuming standard linkage")
#fpragma linkage speciall = (standard_linkage)

#endif

If the st andar d_| i nkage keyword is not specified, you can supply the par anet ers,resul t,
preserved, nopr eserve, not used, and not needed keywords in any order.

A simple-register-list is a comma-separated list of register names, either Rn or Fn, where n is a valid
register number. A register-list is similar to a simple-register-list except that it can contain parenthesized
sublists.

For OpenVMS Alpha systems, valid registers for the pr eser ved, nopr eser ve, and not used
options are:

* General-purpose registers RO through R30

* Floating-point registers FO through F30

Valid registers for the r esul t and par anet er s options are:
* General-purpose registers RO through R25

* Floating-point registers FO through F30

For example, the following characteristics specify a simple-register-list containing two elements, registers
F3 and F4; and a register-list containing two elements, the register RS and a sublist containing the
registers F5 and F6:

nopreserve (£3, f£4)
parameters (r5, (f5, £6))

The following example shows a linkage using such characteristics:

#pragma linkage my_link=(nopreserve (f3,f4), parameters(r5, (f5,f6)),
notneeded (ai))

The parenthesized notation in a register-list is used to describe arguments and function return values

of type st r uct , where each member of the St r uct is passed in a single register. In the following
example, sanpl e_| i nkage specifies two parameters: the first is passed in registers RS, R6, and R7;
the second is passed in F6:

struct sample_struct_t {
int A, B;

204

Chapter 5. Preprocessor Directives

short C;
} sample_struct;

#pragma linkage sample_linkage = (parameters ((r5, r6, r7), £f6))
void sub (struct sample_struct_t pl, double p2) { }

main ()

{
double d;

sub (sample_struct, d);

You can pass arguments to the parameters of a routine in specific registers. To specify this information,
use the following form, where each item in the register-list describes one parameter that is passed to the
routine:

parameters (register-1ist)

You can pass structure arguments by value, with the restriction that each member of the structure is
passed in a separate parameter location. Doing so, however, may produce code that is slower because of
the large number of registers used. The compiler does not diagnose this condition.

VSI C does not support unions as parameters or function return types for a function with a special
linkage.

When a function associated with a linkage type is declared or defined, the compiler checks that the size
of any declared parameters is compatible with the number of registers specified for the corresponding
parameter in the linkage definition.

The compiler needs to know the registers that will be used to return the value for the function. To
specify this information use the following form, where the register-list must contain only a single register,
or a parenthesized group of registers if the routine returns a St r uct :

result (register-1ist)

If a function does not return a value (that is, the function has a return type of voi d), then do not specify
resul t as part of the linkage.

The compiler needs to know which registers are used by the function and which are not, and of those
used, whether or not they are preserved across the function call. To specify this information, use the
following forms:

preserved (register-1list)
nopreserve (register-1ist)
notused (register-1ist)

A pr eser ved register contains the same value after a call to the function as it did before the call.

A nopr eser ve register does not necessarily contain the same value after a call to the function as it did
before the call.

A not used register is not used in any way by the called function.

The not needed characteristic indicates that certain items are not needed by the routines using this
linkage. You can specify one or both of the following keywords:

205

Chapter 5. Preprocessor Directives

* ai - Specifies that the Argument Information register (R25) does not need to be set up when calling
the specified functions.

* | p — Specifies that the Linkage Pointer register (R27 for Alpha systems) does not need to be set
up when calling the specified functions. The linkage pointer is required when the called function
accesses global or St at i ¢ data. For 164 systems, there is no linkage pointer, so this setting is
accepted but does not change the behavior of the pragma.

You must determine whether or not it is valid to specify that the ai or | p registers are not needed.

The #pr agma | i nkage directive has the restriction that structures containing nested substructures
are not supported as parameters or function return types with special linkages. Also, functions that use
the _ RETURN_ADDRESS built-in function or va_count C RTL function cannot be called with a
special linkage.

5.4.12. #pragma linkage Directive (164 only)

The #pr agma | i nkage directive behaves much the same on 164 systems as it does on OpenVMS
Alpha systems, with some important differences.

On 164 systems, the #pr agma | i nkage directive has the following formats:

#pragma linkage linkage-name = (characteristics)
#pragma linkage_ia64 linkage—-name = (characteristics)

5.4.12.1. #pragma linkage Format

On 164 systems, the #pr agnma | i nkage format of this directive accepts Alpha register names and
conventions and automatically maps them, where possible, to specific 164 registers. So whenever VSI C
for 164 encounters a #pr agma | i nkage directive, it attempts to map the Alpha registers specified in
the linkage to corresponding 164 registers, and emits a SHOWMAPLINKAGE informational message
showing the 164 specific form of the directive, #pr agnma | i nkage_i a64, with the 164 register
names that replaced the Alpha register names. The SHOWMAPLINKAGE message is suppressed under
the #pr agma nost andar d directive, normally used within system header files.

Code compiled on 164 systems that deliberately relies on the register mapping performed by #pr agnma
I i nkage should either ignore the SHOWMAPLINKAGE informational, or disable it.

5.4.12.1.1. Register Mapping
Table 5.2 shows the mapping that VSI C applies to the Alpha integer register names used in #pr agha
| i nkage directives when they are encountered on an 164 system. Note that the six standard parameter

registers on Alpha (R16-R21) are mapped to the first six (of eight) standard parameter registers on 164
systems, which happen to be stacked registers (see Section 5.4.12.2).

Table 5.2. Integer Register Mapping

Alpha —» 164 Alpha —» 164

RO RS R16 R32!
R1 R9 R17 R33!
R2 R28 R18 R34!
R3 R3 R19 R35!

206

Chapter 5. Preprocessor Directives

Alpha —» 164 Alpha —» 164

R4 R4 R20 R36'

RS RS R21 R37'

R6 R6 R22 R22

R7 R7 R23 R23

R8 R26 R24 R24

R9 R27 R25 R25

R10 R10 R26 no mapping
R11 R11 R27 no mapping
R12 R30 R28 no mapping
R13 R31 R29 R29

R14 R20 R30 R12

R15 R21 R31 RO

'In parameters or result; else ignored

Table 5.3 shows the mapping that VSI C applies to the Alpha floating-point register names used in
#pragma | i nkage directives when they are encountered on an 164 system:

Table 5.3. Floating-Point Register Mapping

Alpha —» 164 Alpha —» 164
FO F8 F16 F8
F1 F9 F17 F9
F2 F2 F18 F10
F3 F3 F19 F11
F4 F4 F20 F12
F5 F5 F21 F13
F6 F16 F22 F22
F7 F17 F23 F23
F8 F18 F24 F24
F9 F19 F25 F25
F10 F6 F26 26
F11 F7 F27 27
F12 F20 F28 28
F13 F21 F29 F29
F14 F14 F30 F30
F15 F15

5.4.12.1.2. Mapping Diagnostics

In some cases, the VSI C compiler on Alpha systems silently ignores linkage registers if, for example,
a standard parameter register like R16 is specified in a pr eser ved option. When you compile
on an 164 system, this situation emits an MAPREGIGNORED informational message, and the

207

Chapter 5. Preprocessor Directives

SHOWMAPLINKAGE output might not be correct. If there is no valid mapping to 164 registers,
the NOMAPPOSSIBLE error message is output. There are two special situations that can arise when
floating-point registers are specified in a linkage:

* Only IEEE-format values are passed in floating-point registers under the OpenVMS Calling Standard

for 164: VAX format values are passed in integer registers. Therefore, a compilation that specifies /

FLOAT=D_FLOAT or /FLOAT=G_FLOAT produces an error for any linkage that specifies floating-

point registers. Note that this includes use in options that do not involve passing values, such as the
pr eser ved and not used options.

* The mapping of floating-point registers is many-to-one in two cases:
* Alpha registers FO and F16 both map to 164 register F8
* Alpha F1 and F17 both map to 164 register F9.

A valid Alpha linkage may well specify uses for both FO and F16, and/or both F1 and F17. Such a
linkage cannot be mapped on an 164 system. But because of the way this situation is detected, the
MULTILINKREG warning message that is produced can only identify the second occurrence of
an Alpha register that got mapped to the same 164 register as some previous Alpha register. The
actual pair of Alpha registers in the source is not identified, and so the message can be confusing.
For example, an option like pr eser ved(F1, F17) gets a MULTILINKREG diagnostic saying
that F17 was specified more than once.

5.4.12.2. #pragma linkage_ia64 Format

The #pragma | i nkage_i a64 format requires register names to be specified in terms of an 164
system. The register names will never be mapped to a different architecture. This form of the pragma
always produces an error if encountered on a different architecture.

For this format of the pragma, valid registers for the pr eser ved, nopr eser ve, not used,
par anet er s, and r esul t options are:

* Integer registers R3 through R12 and R19 through R31

* Floating-point registers F2 through F31

Valid registers for the par anmet er s and r esul t are:

* Integer registers R3 through R12, and R19 through R31

* Integer registers R32 through R39 (according to the convention described below)
* Floating-point registers F2 through F31

The par anet er s and r esul t options permit integer registers R32 through R39 to be specified
according to the following convention: On IA64, the first eight integer input/output slots are allocated
to stacked registers, and thus the calling routine refers to them using different names than the called
routine. The convention for naming these registers in either the par amet er s or r esul t option of
a#pragma | i nkage_i a64 directive is always to use the hardware names as they would be used
within the called routine: R32 through R39. The compiler automatically compensates for the fact that
within the calling routine these same registers are designated using different hardware names.

5.4.13. #pragma [no]Jmember_alignment Directive

208

Chapter 5. Preprocessor Directives

By default, VSI C for OpenVMS VAX systems does not align structure members on natural boundaries;
they are stored on byte boundaries (with the exception of bit-field members).

By default, VSI C for OpenVMS Alpha systems does align structure members on natural boundaries.

The #pragma nmenber _al i gnnment preprocessor directive can be used to force natural-boundary
alignment of structure members. The #pr agma nonmenber _al i gnnment preprocessor directive
restores byte-alignment of structure members.

This pragma has the following formats:

#pragma member_alignment

#pragma member_alignment save

#pragma member_alignment restore

#pragma nomember_alignment [base_alignment]

When #pr agma nmenber _al i gnnment is used, the compiler aligns structure members on the next
boundary appropriate to the type of the member, rather than on the next byte. For example, a | ong
variable is aligned on the next longword boundary; a Shor t variable is aligned on the next word
boundary.

Consider the following example:
fpragma nomember_alignment
struct x {

char c;

int b;

i

fpragma member_alignment

struct y {

char cj; /*3 bytes of filler follow c */
int b;
bi
main ()
{
printf("The sizeof y is: %d\n", sizeof (struct y));
printf("The sizeof x is: %d\n", sizeof (struct x));

}

When this example is executed, it shows the difference between #pr agnma nmenber _al i gnnent
and #pr agma nonenber _al i gnnent .

Once used, the menber _al i gnnent pragma remains in effect until the nomenber _al i gnent
pragma is encountered; the reverse is also true.

The optional base_alignment parameter can be used to specify the base-alignment of the structure. Use
one of the following keywords for the base_alignment:

* byt e (1 byte)
e word (2 bytes)

* | ongwor d (4 bytes)

209

Chapter 5. Preprocessor Directives

* quadwor d (8 bytes)
e oct awor d (16 bytes)

The #pragma nenber _al i gnment save and #pr agnma nmenber _al i gnnent restore
directives can be used to save the current state of the menber _al i gnnment and to restore the previous
state, respectively. This feature is necessary for writing header files that require menber _al i gnment
or nonmenber _al i gnment , or that require inclusion in a menber _al i gnment that is already set.

5.4.14. #pragma message Directive

The #pr agma nessage directive controls the issuance of individual diagnostic messages or groups
of messages. Use of this pragma overrides any command-line options that may affect the issuance of
messages.

The #pr agma message directive has the following formats:

#pragma message optionl (message-1list)
#pragma message option2
#fpragma message (quoted-string)

5.4.14.1. #pragma message optiont

The parameter optionl must be one of the following keywords:

* enabl e — Enables issuance of the messages specified in the message-list

* di sabl e — Disables issuance of the messages specified in the message-list
* enit_once — Emits the specified messages only once per compilation.

Certain messages are emitted only the first time the compiler encounters the causal condition. When
the compiler encounters the same condition later in the program, no message is emitted. Messages
about the use of language extensions are an example of this kind of message. To emit one of these
messages every time the causal condition is encountered, use the EMIT_ALWAYS option.

Errors and Fatals are always emitted. You cannot set them to emi t _once.
* enit_al ways — Emits the specified messages at every occurrence of the condition.
e error — Sets the severity of the specified messages to Error.

Supplied Error messages and Fatal messages cannot be made less severe. (Exception: A message
can be upgraded from Error to Fatal, then later downgraded to Error again, but it can never be
downgraded from Error.)

Warnings and Informationals can be made any severity.)
o fatal — Sets the severity of the specified messages to Fatal.

* informational — Sets the severity of the specified messages to Informational. Note that Fatal
and Error messages cannot be made less severe.

» war ni ng — Sets the severity of each message in the message-list to Warning. Note that Fatal and
Error messages cannot be made less severe.

210

Chapter 5. Preprocessor Directives

The message-list can be any one of the following:
* A single message identifier (within parentheses, or not). The message identifier is the name

following the severity at the start of a line when a message is issued. For example, in the following
message, the message identifier is GLOBALEXT:

%$CC-W-GLOBALEXT, a storage class of globaldef, globalref, or globalvalue
is a language extension.

* The name of a single message group (within parentheses, or not). Message-group names are:
* ALL - All the messages in the compiler
* ALIGNMENT - Messages about unusual or inefficient data alignment.

* C_TO_CXX — Messages reporting the use of C features that would be invalid or have a different
meaning if compiled by a C++ compiler.

* (DD - Messages about CDD (Common Data Dictionary) support.

* CHECK - Messages reporting code or practices that, although correct and perhaps portable,
are sometimes considered ill-advised because they can be confusing or fragile to maintain. For
example, assignment as the test expression in an "if" statement.

The check group gets defined by enabling LEVELS messages.

* DEFUNCT - Messages reporting the use of obsolete features: ones that were commonly
accepted by early C compilers but were subsequently removed from the language.

* NEWC99 — Messages reporting the use of the new C99 Standard features.

* NOANSI - This is a deprecated message group. It is an obsolete synonym for NOC89. Also see
message groups NEWC99, NOC89, NOC99.

* NOC89 — Messages reporting the use of non-C89 Standard features.

* NOC99 — Messages reporting the use of non-C99 Standard features.

* OBSOLESCENT - Messages reporting the use of features that are valid in Standard C, but
which were identified in the standard as being obsolescent and likely to be removed from the

language in a future version of the standard.

* OVERFLOW - Messages that report assignments and/or casts that can cause overflow or other
loss of data significance.

* PERFORMANCE - Messages reporting code that might result in poor run-time performance.

* PORTABLE — Messages reporting the use of language extensions or other constructs that might
not be portable to other compilers or platforms.

* PREPROCESSOR - Messages reporting questionable or non-portable use of preprocessing
constructs.

. QUESTCODE Messages reportlng questlonable codlng practlces Similar to the CHECK group,

robust style 211

Chapter 5. Preprocessor Directives

Note

Enabling the QUESTCODE group provides lint-like checking.

* RETURNCHECKS - Messages related to function return values.
* UNINIT — Messages related to using uninitialized variables.

* UNUSED - Messages reporting expressions, declarations, header files, CDD records, static
functions, and code paths that are not used.

Note, however, that unlike any other messages, these messages must be enabled on the command
line (/WARNINGS=ENABLE=UNUSED) to be effective.

A single message-level name (within parentheses, or not).
Message-level names are:

* LEVELI - Important messages. These are less important than the level 0 core messages, because
messages in this group are not displayed if #pr agnma nost andar d is active.

* LEVEL2 - Moderately important messages.
* LEVELS3 - Less important messages.

LEVELD3 is the default message level for VSI C for OpenVMS systems.
* LEVEL4 - Useful check/portable messages.
* LEVELS - Not so useful check/portable messages.
* LEVELG6 - Additional "noisy" messages.
Be aware that there is a core of very important compiler messages that are enabled by default,
regardless of what you specify with /WARNINGS or #pr agma nmessage. Referred to as
message level 0, it includes all messages issued in header files, and comprises what is known as the
nostandard group. All other message levels add additional messages to this core of enabled messages.
You cannot modify level 0 (You cannot disable it, enable it, change its severity, or change its
EMIT_ONCE characteristic). However, you can modify individual messages in level 0, provided
such modification is allowed by the action. For example, you can disable a Warning or Informational
in level 0, or you can change an error in level O to a Fatal, and so on. (See restrictions on modifying

individual messages.)

Enabling a level also enables all the messages in the levels lower than it. So enabling LEVEL3
messages also enables messages in LEVEL2 and LEVELI1.

Disabling a level also disables all the messages in the levels higher than it. So disabling LEVEL4
messages also disables messages in LEVELS and LEVELS6.

A comma-separated list of message identifiers, group names, and messages levels, freely mixed,
enclosed in parentheses.

212

Chapter 5. Preprocessor Directives

5.4.14.2. #pragma message option2

The parameter option2 must be one of the following keywords:

* save — Saves the current state of which messages are enabled and disabled.

* restor e — Restores the previous state of which messages are enabled and disabled.

The save and r est or e options are useful primarily within header files.

5.4.14.3. #pragma message (quoted-string)

This form of #pr agnma message is provided for compatibility with Microsoft's #pr agma
message directive.

The #pr agma nmessage (quoted-string) form of this directive emits the specified string as a compiler
message. For example, when the compiler encounters the following line in the source file:

#fpragma message ("hello")
It emits:

#pragma message ("hello")

$CC-I-SIMPLEMESSAGE, hello
at line number 1 in file DISK1$:[SMITH]TEST.C;1

This form of the pragma is subject to macro replacement. For example, the following is allowed:

#pragma message ("Compiling file " _ FILE_)

5.4.15. #pragma module Directive

When you compile source files to create an object file, the compiler assigns the first of the file names
specified in the compilation unit to the name of the object file. The compiler adds the .OBJ file extension
to the object file. Internally, the OpenVMS system (the debugger and the librarian) recognizes the object
module by the file name; the compiler also gives the module a version number of 1. For example, given
the object file EXAMPLE.OBJ, the debugger recognizes the EXAMPLE object module.

To change the system-recognized module name and version number, use the #pr agma nodul e
directive. The #pr agma nodul e directive is specific to VSI C for OpenVMS systems and is not
portable.

You can find the module name and the module version number listed in the compiler listing file and the
linker load map.

The #pr agma nodul e directive is equivalent to the VAX C compatible #nodul e directive. The
#pragma nodul e directive may be used when compiling in any mode. Use #nmpdul e only when
compiling with the /STANDARD=VAXC qualifier.

The #pr agma nodul e directive has the following formats:

#pragma module identifier identifier
#pragma module identifier string

The first parameter must be a valid VSI C identifier. It specifies the module name to be used by the
linker. The second parameter specifies the optional identification that appears on listings and in the

213

Chapter 5. Preprocessor Directives

object file. It must be either a valid VSI C identifier of 31 characters or less, or a character-string
constant of 31 characters or less.

Only one #pr agma nodul e directive can be processed per compilation unit, and that directive must
appear before any C language text. The #pr agma nodul e directive can follow other directives, such
as #def i ne, but it must precede any function definitions or external data definitions.

The parameters in a #pr agma nodul e directive are subject to text replacement and can, therefore,
contain references to identifiers defined in previous #def i ne directives. The replacement occurs before
the parameters are processed.

5.4.16. #pragma names Directive

The #pr agnma names preprocessor directive provides the same kinds of control over the mapping of
external identifiers' object-module symbols as does the /NAMES command-line qualifier, and it uses the
same keywords. But as a pragma, the controls can be applied selectively to regions of declarations.

This pragma should only be used in header files and is intended for use by developers who supply
libraries and/or header files to their customers.

The pragma has a save/r est or e stack that is also managed by #pr agha envi r onnment ,
and so it is well-suited for use in header files. The effect of #pr agma envi r onment
header _def aul t s is to set NAMES to upper case, t r uncat ed, which is the compiler default.

The #pr agma names directive has the following format:
#pragma names stack-option

#pragma names case-option[, length-option]
#pragma names length-option[, case-option]
Where stack-option is one of the following keywords:

* save - save the current names state

* restore - restore a saved names state

case-option is one of the following keywords:

* upper case - uppercase external names

* as_i s - do not change case

length-optionis one of the following keywords:

* truncat ed - truncate at 31 characters

* shortened - shorten to 31 using CRC

An important use for this feature is to make it easier to use the command-line option /NAMES=AS_IS.
Both the C99 standard and the C++ standard require that external names be treated as case-sensitive,
and 3rd party libraries and Java native methods are starting to rely on case-sensitivity (C99 requires a
minimum of 31 characters significant, while C++ requires all characters significant). Therefore, the use
of INAMES=AS_IS is expected to become more widespread.

The C run-time library is implemented with all symbols duplicated, spelled both in uppercase and
lowercase, to allow C programs compiled with any of the /NAMES= settings to work. But traditional

214

Chapter 5. Preprocessor Directives

practice on OpenVMS systems, combined with compiler defaults of /NAMES=UPPER, has resulted in
nearly all existing object libraries and shared images to contain all uppercase names (both in references
and in definitions), even though C source code using these libraries typically declares the names in
lowercase or mixed case. Usually, the header files to access these libraries contain macro definitions to
replace lowercase names by uppercase names to allow client programs to be compiled /NAMES=AS_IS.
But macro definitions are problematic because every external name has to have a macro.

The new pragma allows header files to specify just once that the external names they declare are to be
uppercased in the object module, regardless of the NAMES setting used in the rest of the compilation.
The NAMES setting in effect at the first declaration of an external name is the one that takes effect;
therefore, the setting specified in a header file is not overridden by a subsequent redeclaration in the
user's program (which might specify a different NAMES setting). Note that the automatic Prologue/
Epilogue header-file inclusion feature described in Section 1.7.4 (in connection with pointer_size
pragmas) can also be used to specify the NAMES setting for all headers in a given directory or text
library, without having to edit each header directly.

5.4.17. #pragma optimize Directive

The #pragma opt i m ze preprocessor directive sets the optimization characteristics of function
definitions that follow the directive. It allows optimization-control options that are normally set on the
command line for the entire compilation to be specified in the source file for individual functions.

The #pragma opti m ze directive has the following format:

#pragma optimize settings

#pragma optimize save

#pragma optimize restore

#pragma optimize command_line

Where settings is any combination of the following:

* level settings

These set the optimization level. Specify the level as follows:

level=n
Where # is an integer from O to 5.
* unroll settings

These control loop unrolling. Specify as follows:

unroll=n
Where 7 is a nonnegative integer.
* ansi-alias settings

These control ansi-alias assumptions. Specify one of the following:

ansi_alias=on
ansi_alias=off

* intrinsic settings

These control recognition of intrinsics: Specify one of the following:

215

Chapter 5. Preprocessor Directives

intrinsics=on
intrinsics=off

n_nm

White space is optional between the setting clauses and before and after the "=" in each clause. The
pragma is not subject to macro replacement.

For more information on the optimization settings, see Table 1.16 in the description of the /OPTIMIZE
qualifier in Section 1.3.4.

Example:

#pragma optimize level=5 unroll=6

Note

* If the level=0 clause is present, it must be the only clause present.
» The #pragnma opti m ze directive must appear at file scope, outside any function body.

o [If#pragma opti m ze does not specify a setting for one of the optimization states, that state
remains unchanged.

* When a function definition is encountered, it is compiled using the optimization settings that are
current at that point in the source.

* When a function is compiled under level=0, the compiler will not inline that function. In general,
when functions are inlined, the inlined code is optimized using the optimization controls in effect at
the call site instead of using the optimization controls specified for the function being inlined.

* When the OpenVMS command line specifies /NOOPT (or /OPTIMIZE=LEVEL=0), the #pr agma
opt i m ze directive has no effect (except that its arguments are still validated).

» The #pragma opti m ze directive controls most, but not all, optimizations performed by the
compiler. Therefore, there can be some differences between setting the optimization using the
pragma compared with using the /OPTIMIZE command-line qualifier.

The save and r est or e options save and restore the current optimization state (level, unroll count,
ansi-alias setting, and intrinsic setting).

The contrand_| i ne option sets the optimization settings to what was specified on the command line.

5.4.18. #pragma pack Directive

The #pr agma pack preprocessor directive specifies the byte boundary for packing members of C
structures.

The #pragma pack directive has the following format:

#pragma pack n
#pragma pack ()

The n specifies the new alignment restriction in bytes:

1 align to byte

216

Chapter 5. Preprocessor Directives

align to word

align to longword

align to quadword

16 align to octaword

A structure member is aligned to either the alignment specified by #pr agma pack or the alignment
determined by the size of the structure member, whichever is smaller. For example, a short variable in a
structure gets byte-aligned if #pr agma pack 1 is specified, but word-aligned if #pr agma pack
2,4, or 8 is specified.

When #pr agma pack is specified without a value or with a value of 0, packing reverts to the /
[NOJMEMBER_ALIGNMENT qualifier setting (either explicitly specified or by default) on the
command line. Note that when specifying #pr agma pack without a value, you must use parentheses:
#pragma pack ().

VSI C also supports the Microsoft Visual C++ enhanced syntax of this pragma:
#pragma pack ({ [{pushl|pop} [,identifier 1] [,n] 1 | [n 1 })

With this enhanced syntax, you can save and restore packing alignment values across program
components. This allows you to combine components into a single translation unit even if they specify
different packing alignments:

» Every occurrence of pr agma pack with a push argument stores the current packing alignment
value on an internal compiler stack. If you provide a value for n, that value becomes the new packing
value. If you specify an identifier, a name of your choosing, it is associated with the new packing
value.

* Every occurrence of a pr agnma pack with a pop argument retrieves the value at the top of the
stack and makes that value the new packing alignment. If an empty stack is popped, the alignment
value defaults to the /[NOJMEMBER_ALIGNMENT command-line setting, and a warning is issued.
If you specify a value for n, that value becomes the new packing value.

If you specify an identifier, all values stored on the stack are removed from the stack until a matching
identifier is found. The packing value associated with the identifier is also removed from the stack,
and the packing value that was in effect just before the identifier was pushed becomes the new
packing value. If no matching identifier is found, the packing value reverts to the command-line
setting, and a warning is issued.

The enhanced syntax of pr agma pack lets you write header files that ensure that packing values are
the same before and after the header file is encountered. Consider the following example:

// File name: myinclude.h

//

#fpragma pack(push, enter_myinclude)
// Your include-file code ...

#fpragma pack(pop, enter_myinclude)
// End of myinclude.h

In this example, the current packing value is associated with the identifier ent er _myi ncl ude and
pushed on entry to the header file. Your include code is processed. The #pr agma pack at the end of
the header file then removes all intervening packing values that might have occurred in the header file, as
well as the packing value associated with ent er _nyi ncl ude, thereby preserving the same packing
value after the header file as before it.

217

Chapter 5. Preprocessor Directives

The enhanced pr agma pack syntax also lets you include header files that might set packing
alignments different from the ones set in your code. Consider the following example:

#pragma pack(push, before_myinclude)
#include <myinclude.h>
#pragma pack(pop, before_myinclude)

In this example, your code is protected from any changes to the packing value that might occur in
<nyi ncl ude. h> by saving the current packing alignment value, processing the include file (which
may leave the packing alignment with an unknown setting), and restoring the original packing value.

5.4.19. #pragma pointer_size Directive

The #pragma poi nt er _si ze preprocessor directive can be used throughout a program to control
whether pointers are 32-bit pointers or 64-bit pointers.

This directive has the same effect as the #pr agma r equi r ed_poi nt er _si ze directive, except
that #pr agma. poi nt er _si ze is enabled only when the /POINTER_SIZE command-line qualifier
is specified. If /POINTER_SIZE is omitted from the command line, #pr agma poi nt er _si ze is
ignored. (The #pr agma r equi r ed_poi nt er _si ze directive always takes effect, whether or not /
POINTER_SIZE is specified.)

The #pragma poi nt er _si ze directive has the following format:
#pragma pointer_size keyword

The keyword is one of the following:

{short 32} 32-bit pointer

{l ongl64} 64-bit pointer

syst em def aul {32-bit pointers on OpenVMS systems; 64-bit pointers on UNIX systems
save Saves the current pointer size

restore Restores the current pointer size to its last saved state

Notes

» The#pragma poi nter_sizeand #pragma requi red_poi nt er _si ze directives only
affect the meaning of the pointer-declarator (*) in declarations, casts, and the Si zeof operator.

* The size of a pointer is the property of the type, and so it is bound in a t ypedef declaration, but
not in a preprocessor macro definition.

» The size of a pointer produced by the & operator, or by an array name or function name in a context
where it is converted to an explicit pointer, is 32 bits unless the & operator is applied to an object
designated by a dereference of a pointer having a 64-bit pointer type.

5.4.20. #pragma required_pointer_size Directive

The #pragma requi red_poi nt er _si ze preprocessor directive is intended for use by
developers of header files to control the size of pointers within a header file in those cases where the

218

Chapter 5. Preprocessor Directives

pointers are architecturally required to be a particular size, and must not be altered by the user's use of
pointer-size controls.

This directive has the same effect as the #pr agma poi nt er _si ze directive, except that a
#pragma required_poi nt er _si ze always takes effect, even if /POINTER_SIZE is omitted
from the command line. (The #pr agma poi nt er _si ze directive is ignored if /POINTER_SIZE is
omitted.)

The #pragma requi red_poi nt er _si ze directive has the following format:
#fpragma required_pointer_size keyword

The keyword is one of the following:

{short 32} 32-bit pointer

{l ongl64} 64-bit pointer

syst em def aul {32-bit pointers on OpenVMS systems; 64-bit pointers on UNIX systems
save Saves the current pointer size

restore Restores the current pointer size to its last saved state

Notes

» The #pragma poi nter_si ze and #pr agma requi r ed_poi nt er _si ze directives only
affect the meaning of the pointer-declarator (*) in declarations, casts, and the Si zeof operator.

* The size of a pointer is the property of the type, and so it is bound in a t ypedef declaration, but
not in a preprocessor macro definition.

* The size of a pointer produced by the & operator, or by an array name or function name in a context
where it is converted to an explicit pointer, is 32 bits unless the & operator is applied to an object
designated by a dereference of a pointer having a 64-bit pointer type.

5.4.21. #pragma [no]standard Directive

Use the nost andar d and st andar d pragmas together to define regions of source code where
portability diagnostics are not to be issued.

This pragma has the following format:
#pragma [no]standard

Use #pr agnma nost andar d to suppress diagnostics about nonstandard extensions, regardless of the /
STANDARD qualifier specified.

Use #pr agma st andar d to direct the compiler to reinstate the setting of the /STANDARD qualifier
that was in effect before the last #pr agma nost andar d was encountered. Every #pr agha
st andar d directive must be preceded by a corresponding #pr agnma nost andar d directive.

The following example demonstrates the use of these pragmas:

#include <stdio.h>
#pragma nostandard

219

Chapter 5. Preprocessor Directives

extern noshare FILE *stdin, *stdout, *stderr;
#pragma standard

In this example, nost andar d prevents the NOSHAREEXT diagnostic from being issued against the
noshar e storage-class modifier, which is specific to VSI C for OpenVMS systems.

Note

This pragma does not change the current mode of the compiler or enable any extensions not already
supported in that mode.

5.4.22. #pragma unroll Directive

Use the #pr agma unr ol | preprocessor directive to unroll the f or loop that follows it by the
number of times specified in unroll_factor. The #pr agma unr ol | directive must be followed by a
f or statement.

This pragma has the following format:
fpragma unroll (unroll_factor)

The unroll_factor is an integer constant in the range of 0 to 255. If a value of 0 is specified, the compiler
ignores the directive and determines the number of times to unroll the loop in its normal way. A value of
1 prevents the loop from being unrolled. The directive applies only to the f or loop that follows it, not to
any subsequent for loops.

5.4.23. #pragma use_linkage Directive

After defining a special linkage using the #pr agrma | i nkage directive, described in Section 5.4.11,
use the #pr agma use_| i nkage directive to associate the linkage with a function.

This pragma has the following format:
#pragma use_linkage linkage-name (idl, id2, ...)
The linkage-name is the name of a linkage previously defined by the #pr agma | i nkage directive.

idl, id2, ... are the names of functions, or t ypedef names of function type, that you want associated
with the specified linkage.

If you specify a t ypedef name of function type, then functions or pointers to functions declared using
that type will have the specified linkage.

The #pragma use_| i nkage directive must appear in the source file before any use or definition of
the specified routines. Otherwise, the results are unpredictable.

1. #pragma linkage example_linkage = (parameters(rl6, rl7, rl9),
result (rl6))
#pragma use_linkage example_linkage (sub)
int sub (int pl, int p2, short p3);

main ()

{

int result;

220

Chapter 5. Preprocessor Directives

result = sub (1, 2, 3);
}

This example defines a special linkage and associates it with a routine that takes three integer
parameters and returns a single integer result in the same location where the first parameter was
passed.

Theresult (r16) option indicates that the function result will be returned in R16 rather than
the usual location (R0O). The par anmet er s option indicates that the three parameters passed to
sub should be passed in R16, R17, and R19.

#fpragma linkage foo = (parameters(rl), result(r4))
#pragma use_linkage foo(fl,t)

