
VSI OpenVMS

VSI FMS Form Driver Reference
Manual

Document Number: DO-FMSDRM-01A

Publication Date: April 2024

Operating System and Version: VSI OpenVMS IA-64 Version 8.4-1H1 or higher
VSI OpenVMS Alpha Version 8.4-2L1 or higher
VSI OpenVMS x86-64 Version 9.2-1 or higher

Software Version: VSI FMS Version 2.6 or higher

VMS Software, Inc. (VSI)
Boston, Massachusetts, USA

VSI FMS Form Driver Reference Manual

Copyright © 2024 VMS Software, Inc. (VSI), Boston, Massachusetts, USA

Legal Notice

Confidential computer software. Valid license from VSI required for possession, use or copying. Consistent with FAR 12.211 and 12.212,
Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

The information contained herein is subject to change without notice. The only warranties for VSI products and services are set forth in the
express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional
warranty. VSI shall not be liable for technical or editorial errors or omissions contained herein.

HPE, HPE Integrity, HPE Alpha, and HPE Proliant are trademarks or registered trademarks of Hewlett Packard Enterprise.

DEC, DEC/CMS, DEC/MMS, DECnet, DECsystem-10, DECSYSTEM-20, DECUS, DECwriter, MASSBUS, MICRO/PDP-11, Micro/ RSX,
MicroVMS, PDP, PDT, RSTS, RSX, TOPS-20, UNIBUS, VAX, VMS, VT, and mm are trademarks or registered trademarks of Hewlett Packard
Enterprise.

ii

VSI FMS Form Driver Reference Manual

Preface ... vii
1. About VSI .. vii
2. About This Manual ... vii
3. Intended Audience ... vii
4. Document Structure ... vii
5. VSI Encourages Your Comments ... viii
6. OpenVMS Documentation .. viii
7. Conventions ... viii

Chapter 1. Introduction ... 1
1.1. Terminals, Workspaces, Forms, and Fields .. 1

1.1.1. Terminals .. 1
1.1.2. Workspaces .. 2
1.1.3. Forms ... 2
1.1.4. Fields .. 2

1.2. Terminal Control Areas and Form Workspaces .. 2
1.3. Form Management Calls ... 3

1.3.1. Control Calls ... 3
1.3.2. Form-Level Calls ... 4
1.3.3. Field-Level Calls .. 4
1.3.4. Utility Calls ... 5

1.4. Memory-Resident Forms and Form Libraries .. 5
1.5. Multiterminal and Multiform Operations ... 6
1.6. Debug Mode .. 6
1.7. Scrolling Operations .. 6
1.8. User Action Routines .. 6
1.9. Named Data ... 6
1.10. Terminal Key Functions .. 7
1.11. Current States ... 7
1.12. Operator Aids ... 9

1.12.1. Help .. 9
1.12.2. Screen Refresh ... 9

Chapter 2. Form Driver Interaction ... 11
2.1. Interaction with the Form Description .. 11

2.1.1. Storing and Accessing Form Descriptions ... 11
2.1.2. Displaying a Form .. 12
2.1.3. Terminal Control .. 14
2.1.4. Using Workspaces to Store Forms ... 14
2.1.5. The Help Function ... 16
2.1.6. Field Processing Order .. 17
2.1.7. Text, Field-Marker Characters, and Video Attributes ... 17
2.1.8. Processing Fields .. 18

2.1.8.1. Field Pictures .. 18
2.1.8.2. Right Justified and Left Justified Field Attributes 18
2.1.8.3. Clear Character and Fill Character Attributes ... 18
2.1.8.4. Default Field Value .. 18
2.1.8.5. Autotab Attribute ... 19
2.1.8.6. Response Required and Must Fill Attributes ... 19
2.1.8.7. Fixed Decimal Attribute ... 19
2.1.8.8. Display Only Attribute ... 20
2.1.8.9. No Echo Attribute ... 20
2.1.8.10. Supervisor Only Attribute ... 20

iii

VSI FMS Form Driver Reference Manual

2.1.8.11. Scrolling ... 20
2.1.8.12. Date and Time Attributes ... 21

2.2. User Action Routines .. 21
2.2.1. Field Completion UARs .. 21
2.2.2. Help UARs .. 23

2.2.2.1. Pre-Help UAR ... 23
2.2.2.2. Post-Help UAR ... 23

2.2.3. Help Request Processing ... 24
2.2.4. Function Key UARs ... 26
2.2.5. Legal Actions in a UAR ... 27

2.3. Interaction with the Terminal Operator ... 27
2.3.1. Signaling and Recovering from Errors .. 28

2.3.1.1. Help Key and Help Messages ... 28
2.3.1.2. Checking Operator Responses from Your Program 29
2.3.1.3. Refreshing the Screen: Typing CTRL/R ... 29

2.3.2. Field Editing Functions ... 29
2.3.2.1. VT100 Alternate Keypad Mode .. 30
2.3.2.2. The Cursor’s initial Position in a Field ... 30
2.3.2.3. Inserting a Field Value: The Default Function .. 30
2.3.2.4. The Signed Numeric Picture ... 31
2.3.2.5. Deleting a Character .. 31
2.3.2.6. Deleting a Field ... 31
2.3.2.7. Moving the Cursor to the Right .. 32
2.3.2.8. Moving the Cursor to the Left .. 32

2.3.3. Switching the Insertion Modes .. 32
2.3.4. Field Terminators ... 32
2.3.5. Field Terminators and Form Driver Calls ... 36
2.3.6. Field Terminating Functions .. 37

2.3.6.1. Signaling that the Form Is Complete ... 38
2.3.6.2. Moving the Cursor to the Next Field ... 38
2.3.6.3. Moving the Cursor to the Previous Field .. 39
2.3.6.4. Scrolling Backward .. 39
2.3.6.5. Scrolling Forward .. 40
2.3.6.6. Exiting Scrolled Area Backward ... 40
2.3.6.7. Exiting Scrolled Area Forward .. 41
2.3.6.8. Illegal Terminator Interaction .. 41

2.3.7. Alternate Keypad Mode Terminators .. 42
2.4. Key Functions and Key Codes ... 42

2.4.1. Form Driver Key Functions .. 42
2.4.2. Form Driver Key Codes ... 43

2.4.2.1. Control Keys ... 44
2.4.2.2. Escape Sequences .. 45
2.4.2.3. Gold Sequences ... 46

2.4.3. Defining Keys .. 52
2.5. Checking Call Status ... 53

2.5.1. Debug Mode Support for Application Program Development 56
2.5.2. Signaling the Terminal Operator About Program Errors 57

2.6. AST Considerations ... 57
Chapter 3. Programming Techniques and Examples .. 59

3.1. Scrolling ... 59
3.1.1. Controlling Scrolled Areas .. 59
3.1.2. Scrolling Forward ... 60

iv

VSI FMS Form Driver Reference Manual

3.1.3. Scrolling Backward ... 61
3.2. Validating a One-Character Field- Using a UAR .. 61
3.3. Producing Hard Copy - Using Named Data ... 63
3.4. Storing Message Text - Using Named Data ... 65
3.5. Converting Function Keys to Field Entry .. 66
3.6. Filter for Function Keys .. 67
3.7. Range Checks for Fields .. 69
3.8. Simulating the GETAL Call ... 72
3.9. Reducing Display - Times for Forms .. 74
3.10. Checking Status - Three Methods ... 75
3.11. Paging .. 77
3.12. FMS Advanced Programming .. 78

3.12.1. FMS Performance .. 78
3.12.1.1. FMS Library Performance .. 78
3.12.1.2. Form Driver Performance ... 79

3.12.2. Designing Overlaying Forms ... 80
3.12.2.1. FDV Screen Management Rules .. 80
3.12.2.2. Overlaying Form Design ... 80

Chapter 4. Linking the Application and Setting up the Terminals 83
4.1. Linking .. 83

4.1.1. Linking with the Form Driver Library .. 83
4.1.2. Linking with Memory-Resident Forms ... 83
4.1.3. Linking with a UAR Vector .. 84

4.2. Terminal Use in FMS Programs ... 84
4.2.1. Terminal Characteristics .. 84
4.2.2. Direct Terminal Output ... 85
4.2.3. Terminal State at Program End ... 85
4.2.4. Firmware Bug Workaround ... 85

Chapter 5. Form Driver Calls ... 87
5.1. Alter Data Line Video Attributes ... 87
5.2. Alter Field Context ... 88
5.3. Alter Field Video Attributes ... 89
5.4. Attach Terminal .. 91
5.5. Attach Form Workspace .. 93
5.6. Ring Terminal Bell ... 93
5.7. Cancel Call ... 94
5.8. Clear Screen and Display Form .. 94
5.9. Clear Screen ... 95
5.10. Clear Video Attributes ... 96
5.11. Remove Form from Memory-Resident Form List ... 97
5.12. Define Keyboard ... 97
5.13. Display Form .. 99
5.14. Display Loaded Form .. 101
5.15. Define Comma as Decimal Point .. 102
5.16. Detach Terminal .. 103
5.17. Detach Form Workspace .. 103
5.18. Repair Overwritten Lines of Terminal Screen .. 104
5.19. Get Value for Specified Field ... 104
5.20. Get Value for Any Field .. 105
5.21. Get All Field Values .. 107
5.22. Get Data Line from Terminal ... 108

v

VSI FMS Form Driver Reference Manual

5.23. Get Current Line of Scrolled Area .. 109
5.24. Return Illegal Terminators .. 110
5.25. Set Channel for Form Library File .. 111
5.26. Close Form Library ... 112
5.27. Turn Terminal LED Off ... 112
5.28. Turn Terminal LED On ... 113
5.29. Load Form without Display .. 113
5.30. Open Form Library ... 114
5.31. Mark Form in Current Workspace as Not Displayed ... 115
5.32. Process Field Terminator ... 116
5.33. Output Value to Specified Field .. 118
5.34. Output Values to All Fields .. 119
5.35. Output Default to Specified Field ... 120
5.36. Output Default Values to All Fields .. 120
5.37. Output Line to Screen ... 121
5.38. Output Data to Current Line of Scrolled Area ... 122
5.39. Read Form into Memory ... 123
5.40. Return Value for Specified Field ... 123
5.41. Return Values for All Fields ... 124
5.42. Return Current Context .. 125
5.43. Return Named Data by Index ... 126
5.44. Return Named Data by Name .. 127
5.45. Return Form Line ... 127
5.46. Return Current Field Name .. 129
5.47. Return Field Names in Order ... 129
5.48. Return Length of Specified Field .. 130
5.49. Refresh Screen .. 130
5.50. Set Screen Width .. 131
5.51. Signal Operator ... 131
5.52. Set Keypad to Application Mode .. 132
5.53. Turn Supervisor-Only Mode Off .. 132
5.54. Turn Supervisor-Only Mode On ... 133
5.55. Set Signal to Quiet Mode ... 133
5.56. Specify Status Reporting Variables .. 134
5.57. Return Status from Last Call .. 134
5.58. Set Current Terminal ... 135
5.59. Set Field Entry Timeout .. 135
5.60. Set Current Workspace .. 136
5.61. Set Terminal Channel .. 136
5.62. Set up User Refresh Routine .. 137
5.63. Wait for Operator .. 138

Appendix A. VAX FMS Form Driver Calls ... 139
A.1. VAX Language-Independent Notation .. 139
A.2. Procedure Parameter Notation For Form Driver Calls .. 139

vi

Preface
1. About VSI
VMS Software, Inc. (VSI) is an independent software company licensed by Hewlett Packard Enterprise
to develop and support the OpenVMS operating system.

2. About This Manual
This manual describes the VSI OpenVMS FMS Form Driver, the run-time component of the Forms
Management System for use with the OpenVMS operating system.

3. Intended Audience
The manual is intended for programmers who wish to use FMS with any of their application programs
being written in BASIC, BLISS-32, C, COBOL, FORTRAN, PASCAL, or PL/I (those languages
documented in the VSI FMS Language Interface Manual. Readers are expected to be familiar not only
with a programming language but with the OpenVMS system.

Readers are also expected to be familiar with the information of the VSI FMS Utilities Reference Manual.
This material discusses form characteristics that are specified by means of the Form Editor or Form
Language when a form is being designed.

Readers having little or no experience with FMS are urged to read the Introduction to VSI FMS before
reading this manual.

4. Document Structure
This manual consists of 5 chapter and 1 appendix.

Chapter 1 presents an overview of the Form Driver, briefly discussing 12 basic topics.

Chapter 2 discusses Form Driver interaction with form descriptions, user action routines, terminal
operators, key functions and key codes, call status, and asynchronous system traps (ASTs).

Chapter 3 offers programming techniques and examples from the Sample Application Program in
various languages. The FMS Sample Application program (SAMP.BAS), a part of the FMS distribution
kit, is designed to be a demonstration program and learning tool. (Examples from SAMP appear
throughout the FMS document set.)

Chapter 4 shows how to link object modules with the Form Driver and, optionally, with memory-
resident forms or user action routines. This chapter also discusses terminal use in FMS programs.

Chapter 5 describes all Form Driver calls in alphabetical order, each giving first the generic format of
the call with its arguments, followed by definitions of all arguments in the order they must be specified
(along with information on how they are passed and whether they are read or written), then a description
of what the call does, and finally a list of status codes (in alphabetical order) that can be returned to the
program as a result of the execution of the call.

Throughout this manual, names of calls are usually referred to informally as, for example, CDISP. When
calls are actually issued in programs, though, all names of FMS calls begin with the prefix FDV$ (for
example, FDV$CDISP).

vii

Preface

To find the language-specific way of issuing a call, you must consult the appropriate chapter in the VSI
FMS Language Interface Manual

In this manual the phrase “GET-type calls” refers to any of the following calls: GET, GETAF, GETAL,
and GETSC (but not GETDL). The phrase “PUT-type calls” refers to the calls PUT, PUTAL, PUTD,
PUTDA, and PUTSC (but not PUTL).

Appendix A gives a comprehensive summary of information on all FMS calls.

5. VSI Encourages Your Comments
You may send comments or suggestions regarding this manual or any VSI document by sending
electronic mail to the following Internet address: <docinfo@vmssoftware.com>. Users who have
VSI OpenVMS support contracts through VSI can contact <support@vmssoftware.com> for
help with this product.

6. OpenVMS Documentation
The full VSI OpenVMS documentation set can be found on the VMS Software Documentation webpage
at https://docs.vmssoftware.com.

7. Conventions
The following conventions may be used in this manual:

Convention Meaning

Ctrl/ x A sequence such as Ctrl/ x indicates that you must hold down the key labeled Ctrl
while you press another key or a pointing device button.

PF1 x A sequence such as PF1 x indicates that you must first press and release the key
labeled PF1 and then press and release another key or a pointing device button.

Return In examples, a key name enclosed in a box indicates that you press a key on the
keyboard. (In text, a key name is not enclosed in a box.)

... A horizontal ellipsis in examples indicates one of the following possibilities:

• Additional optional arguments in a statement have been omitted.

• The preceding item or items can be repeated one or more times.

• Additional parameters, values, or other information can be entered.
.
.
.

A vertical ellipsis indicates the omission of items from a code example or
command format; the items are omitted because they are not important to the
topic being discussed.

() In command format descriptions, parentheses indicate that you must enclose the
options in parentheses if you choose more than one.

[] In command format descriptions, brackets indicate optional choices. You can
choose one or more items or no items. Do not type the brackets on the command
line. However, you must include the brackets in the syntax for OpenVMS directory
specifications and for a substring specification in an assignment statement.

viii

https://docs.vmssoftware.com

Preface

Convention Meaning

[|] In command format descriptions, vertical bars separate choices within brackets or
braces. Within brackets, the choices are options; within braces, at least one choice
is required. Do not type the vertical bars on the command line.

{ } In command format descriptions, braces indicate required choices; you must
choose at least one of the items listed. Do not type the braces on the command
line.

bold text This typeface represents the introduction of a new term. It also represents the
name of an argument, an attribute, or a reason.

italic text Italic text indicates important information, complete titles of manuals, or variables.
Variables include information that varies in system output (Internal error number),
in command lines (/PRODUCER= name), and in command parameters in text
(where dd represents the predefined code for the device type).

UPPERCASE
TEXT

Uppercase text indicates a command, the name of a routine, the name of a file, or
the abbreviation for a system privilege.

Monospace
type

Monospace type indicates code examples and interactive screen displays.

In the C programming language, monospace type in text identifies the following
elements: keywords, the names of independently compiled external functions and
files, syntax summaries, and references to variables or identifiers introduced in an
example.

- A hyphen at the end of a command format description, command line, or code line
indicates that the command or statement continues on the following line.

numbers All numbers in text are assumed to be decimal unless otherwise noted. Nondecimal
radixes—binary, octal, or hexadecimal—are explicitly indicated.

ix

Preface

x

Chapter 1. Introduction
The Form Driver, the run-time component of FMS, is a subroutine package that is linked with your
program. The Form Driver accepts calls from your program, maintains FMS data structures, and issues
terminal I/O calls to communicate with the terminal operator.

As shown in Figure 1.1, the Form Driver is one of three parts of an FMS application.

Figure 1.1. Form Driver Communication

Knowledge of the following 12 topics is basic to an understanding of the Form Driver. This chapter
offers brief introductions to these topics:

• Terminals, Workspaces, Forms, and Fields

• Terminal Control Areas and Form Workspaces

• Form Management Calls

• Memory-Resident Forms and Form Libraries

• Multiterminal and Multiform Operations

• Debug Mode

• Scrolling Operations

• User Action Routines

• Named Data

• Terminal Key Functions

• Current States

• Operator Aids

1.1. Terminals, Workspaces, Forms, and
Fields
The primary work of the Form Driver is the manipulation of terminal images, form workspaces, forms,
and form fields.

1.1.1. Terminals
The Form Driver controls one or more terminals, performing such tasks as displaying forms, soliciting
data from the terminal operator, and displaying messages. The terminal is controlled by the character
sequences and escape sequences sent to it by the Form Driver.

1

Chapter 1. Introduction

An application program using FMS can process forms on any of the VT100/VT200 compatible
terminals or on the VT52 terminal. The Form Driver supports calls that manage terminals’ initialization,
their use, and their release by FMS.

In an FMS application, a separate area of memory is associated with each terminal. This area is called
a terminal control area or TCA. Once a TCA is associated with a terminal, the application program
controls that terminal’s activity by issuing calls that specify the terminal’s TCA.

1.1.2. Workspaces
Workspaces are areas of memory in which the Form Driver stores form descriptions for the forms being
processed. More than one form workspace can be associated with a terminal, but each workspace can be
associated with only one terminal at a time. The Form Driver supports calls that initialize workspaces,
associate them with TCAs, load them with form descriptions, and release them from TCAs.

1.1.3. Forms
A form consists of (1) background text and fields, which are displayed on the screen, and (2) Named
Data, which is not displayed. Internally, a form is composed of the data structures used by the Form
Driver to create and manipulate the image on the screen. These data structures (called form descriptions)
are created by FMS utilities (Form Editor, Form Language Translator, and Form Upgrade Utility). For
more information, see the VSI FMS Utilities Reference Manual.

The Form Driver supports calls that load these form descriptions into work- spaces and perform the
many functions defined for forms and their fields.

When a form is loaded into a workspace, the workspace becomes associated with the form.
Consequently, reference to a workspace is a reference to the form stored in it.

Because a workspace can be associated with only one terminal at a time, displaying any given form on
more than one terminal requires loading the form into workspaces associated with other terminals as
well.

1.1.4. Fields
A field is a portion of the form that has variable data associated with it. The Form Driver supports many
calls controlling the manipulation of field data. Some calls allow the terminal operator to enter or change
field data. Others, for example, allow the application program to display data in fields, to get data that the
operator entered in fields, or to change field video attributes.

Field attributes, assigned when a form is created, affect the way the Form Driver processes field input
and output. For example, a field having the Response Required attribute requires that the terminal
operator enter at least one character in the field.

When the Form Driver processes groups of fields (in a single form) with a single call, it processes them
in the order specified in the form description. The Form Driver controls movement from field to field,
the order in which field values are returned to your program or written to a terminal, and the definition
of “first” and “last” fields in forms.

1.2. Terminal Control Areas and Form
Workspaces
Terminal control areas (TCAs) and form workspaces are maintained in a hierarchy as shown in
Figure 1.2. The application program shown uses several terminals. Attached to the application program

2

Chapter 1. Introduction

is a list of TCAs that tells the Form Driver which terminals it can use. Attached to the first TCA is
a list of workspaces that can contain forms for processing on that TCAs terminal. Similarly, a list of
workspaces is attached to the second TCA.

Figure 1.2. Terminal Control Areas and Workspaces

Although you refer to forms and fields by name, you usually do not need to refer to a TCA name to
specify a particular terminal or to refer to a workspace name to specify where you want to load a form.
The Form Driver establishes a “current terminal” and “current workspace”. Each call that affects a
terminal or workspace acts upon the current terminal or current workspace, unless the call explicitly
specifies another TCA or workspace.

The Form Driver provides calls to make another terminal or another workspace the current one. By
including such calls in your program, you can avoid having to specify the terminal and workspace for
each call your program issues.

1.3. Form Management Calls
The Form Driver supports four classes of form management calls:

1. Control

2. Form-level

3. Field-level

4. Utility

These calls are introduced in the following sections and documented fully in Chapter 5.

1.3.1. Control Calls
Your program issues the following calls to make connections and disconnections between FMS units
such as terminals, form workspaces, files, and form libraries:

ATERM Attach terminal
AWKSP Attach form workspace

3

Chapter 1. Introduction

DTERM Detach terminal
DWKSP Detach form workspace
LCHAN Set channel for form library file
LCLOS Close form library
LOPEN Open form library
STERM Set current terminal
SWKSP Set current workspace
TCHAN Set terminal channel

1.3.2. Form-Level Calls
Your program issues the following calls to perform general form-level operations:

CDISP Clear screen and display form
DEL Delete form from memory
DISP Display form
DISPW Display loaded form
GETAL Get all field values
LOAD Load form without display
NDISP Mark form in current workspace as not displayed
PUTAL Output values to all fields in a form
PUTDA Output default values to all fields in a form
READ Read form into memory
RETAL Return values for all fields in a form

1.3.3. Field-Level Calls
Your program issues the following calls to perform field-level operations on a form:

AFCX Alter field context
AFVA Alter field video attributes
GET Get value for specified field
GETAF Get value for any field
GETSC Get current line of scrolled area
PFT Process field terminator
PUT Output value to specified field
PUTD Output default to specified field
PUTSC Output data to current line of scrolled area
RET Return value for specified field
RETFN Return current field name
RETFO Return field names in order
RETLE Return length of specified field

4

Chapter 1. Introduction

1.3.4. Utility Calls
Your program issues the following calls to perform operations not falling into the preceding
classifications:

ADLVA Alter data line video attributes
BELL Ring terminal bell
CANCL Cancel call
CLEAR Clear screen
CLEAR_VA Clear screen video attributes
DFKBD Define keyboard
DPCOM Define comma as decimal point
FIX_SCREEN Repair overwritten lines of terminal screen
GETDL Get data line from terminal
ILTRM Return illegal terminators
LEDOF Turn terminal LED off
LEDON Turn terminal LED on
PUTL Output line to screen
RETCX Return current context
RETDI Return Named Data by index
RETDN Return Named Data by name
RETFL Return form line
RFRSH Refresh screen
SCR_WIDTH Set screen width
SIGOP Signal operator
SPADA Set keypad to application mode
SPOFF Turn supervisor-only mode off
SPON Turn supervisor-only mode on
SSIGQ Set signal to quiet mode
SSRV Specify status recording variables
STAT Return status from last call
STIME Set field entry timeout
USER_REFRESH Set up user-supplied refresh routine
WAIT Wait for operator

1.4. Memory-Resident Forms and Form
Libraries
The Form Driver gets the forms required by various calls either from a memory-resident set of form
descriptions or from a form library you specify in a Form Driver call. You can make forms memory
resident either by building them into your application program or by loading them into the set of

5

Chapter 1. Introduction

memory-resident forms at run time. Memory-resident form modules are created by one of the Form
Application Aids; form libraries are built and maintained by the Form Librarian.

1.5. Multiterminal and Multiform Operations
An application program using the Form Driver can control one or more terminals and manipulate one
or more forms on each terminal by using control calls (STERM or SWKSP) to define a new current
terminal or current workspace. Note that for this version of FMS you can use these calls to control only
one terminal at a time.

1.6. Debug Mode
The Form Driver has a Debug mode of operation that is useful for the debugging of an application
program that uses FMS. When the application program is in FMS Debug mode, it runs normally until
the Form Driver returns a status code indicating an error. At this time, a message is displayed on the
bottom line of the screen, and the Form Driver waits for the operator to press the Enter Form key before
proceeding. (Any other input is ignored.)

The Form Driver Debug mode is not associated with any other debugging aid.

1.7. Scrolling Operations
You can use the GET, GETAF, GETSC, PFT, PUT, and PUTSC calls in your program to take advantage
of the scrolling capabilities of the VT100. With these calls you can control scrolled areas in forms.

The hardware scrolling capabilities of the VT100/VT200 are simulated for VT52 terminals by software.
The performance of scrolling operations is therefore much slower for VT52s.

1.8. User Action Routines
When a form is designed, the form designer can specify that subroutines supplied by you be called from
the Form Driver as part of the processing of the form. These subroutines are called user action routines
(UARs).

A user action routine can be called under any of the following conditions:

1. When processing for a field is finished

2. When the terminal operator requests help

3. When the terminal operator presses a function key

4. When a screen refresh operation is requested

When linking your program, you must include an object module containing the names of all the user
action routines to be called. You generate such an object module by using the FMS/VECTOR command.
(See Chapter 4 and the VSI FMS Utilities Reference Manual.)

1.9. Named Data
Named Data is data first associated with a form when the form is being designed. It is not a visible
part of the form that appears on the operator’s screen. Rather, it is form-oriented information your

6

Chapter 1. Introduction

program can use that you might otherwise have to keep in your program. Two calls are available to you
for accessing this information. (See Chapter 3 for examples of the use of Named Data.)

1.10. Terminal Key Functions
Many Form Driver actions are taken in response to the pressing of certain terminal keys by an operator.
FMS has assigned functions to keys, but you can change the correspondence between keys and functions
to whatever you want. Therefore, this manual refers not to a physical key but to the function that the key
performs (regardless of which key implements the function). Accordingly, the name of a key function
has its initial letter capitalized rather than its entire name capitalized, which is the way names of actual
keys are indicated. (See Section 2.3 for default definitions of all keys used by the Form Driver.)

1.11. Current States
The Form Driver establishes certain “current states” that are important to know about when you are
writing your program:

1. Current Terminal — The terminal (with all its characteristics) currently in use

Although you can control more than one terminal in your FMS application, the Form Driver calls
affect only one terminal at a time the current terminal. The Form Driver provides calls to change the
current terminal.

The current terminal is undefined if no terminal is in use.

2. Current Workspace — The form workspace currently in use

Although you can work on more than one workspace in your FMS application, the Form Driver calls
affect only one workspace at a time the current workspace. Your program issues calls to change the
current workspace. The current workspace is associated with the current terminal. Whenever your
program switches to another terminal, therefore, it inherits the new terminal’s current workspace.

The current workspace is undefined if the current terminal is undefined, or if no workspace is
presently associated with the current terminal.

You can manipulate a form only by first loading it into a workspace by means of a LOAD, DISP, or
CDISP call.

3. Current Field — The most recent field specified in a call for operator input (or the first modifiable
field in a form, if no input call has been executed yet) and any index associated with the field

The current field normally is available by default when you do not supply a name for the field name
argument in a subsequent call.

The current field and its index are associated with the current workspace. If your program switches
to another workspace, it inherits a new current field and index.

If a field does not have the Indexed attribute, its index is defined as zero.

The current field and its index are undefined if there are no fields in the form or if no workspace is
defined.

4. Current Scrolled Line — The line in any scrolled area that the Form Driver is currently working on

7

Chapter 1. Introduction

This line is initially the first (top) line in a scrolled area, but you can move up or down in the area to
a new current scrolled line by issuing a PFT call in your program.

The current scrolled line is associated with any scrolled area being worked on in the current
workspace. The current scrolled line is undefined if the form in the workspace has no scrolled areas.

5. Last Terminator — Code The most recent field terminator code returned by a call in your program

This code is associated with the current workspace. If your program switches to another workspace,
it inherits the new workspace’s last terminator code.

The last terminator code is undefined if no field terminator has been entered for the form.

6. Last Status Code — The most recent status code returned by a Form Driver call in your program

This code is associated with the current workspace if one is defined. If no current workspace is
defined, the code is associated with the current terminal provided one is defined. If no current
terminal is defined, the code is associated with the Form Driver itself.

This method of associating the last status code with more than one possible object is available so that
when your program switches from one terminal to another, or from one workspace to another, it gets
the most recent status code appropriate to its context.

7. Last I/O Status Code — The most recent I/O status code returned by a Form Driver call in your
program

The Form Driver handles this code the same way it handles the last status code.

8. Current Library Channel — The I/O channel to be used any time your program needs access to the
associated form library

For example, you might want to open or close a form library or to retrieve a form for processing.
The Form Driver uses the current library channel. The current library channel is associated with the
current terminal.

9. Supervisor-Only Flag — The flag used to control the processing of fields having the Supervisor Only
attribute

This flag is associated with the current terminal and is undefined if the current terminal is undefined.
The supervisor-only flag is on by default.

10. Timeout Value — The time (in seconds) that an operator has to respond (with each typed character)
to a call for input from a terminal

If the operator fails to respond within the specified time, the call is aborted. This value is associated
with the current terminal and is initially zero, meaning no timeout limits are in effect. The timeout
value is undefined if the current terminal is undefined.

11. Current Signal Mode — The mode in which the Form Driver gets an operator’s attention

Two modes are available to you ringing the terminal bell and reversing the screen video. The
reverse-video signal continues until the operator types a valid character. The current signal mode is
associated with the current terminal. The default mode is to ring the bell (the only mode for VT52
terminals).

8

Chapter 1. Introduction

1.12. Operator Aids
1.12.1. Help
When the Form Driver is waiting for input, the operator can request help by pressing the Help key. Either
a help form or a single line of help is available. In either case, the help supplied is specified when the
form is designed. Single-line help messages remain on the bottom line of the screen until the operator
presses another key.

If a help form is displayed, the Form Driver waits for the operator to press the ENTER key before
reconstructing the original screen. If the operator presses the Help key again, instead of ENTER,
additional help is displayed if it is available. Any other input is ignored. (The terminal bell rings or the
screen video reverses if input has been rejected.)

1.12.2. Screen Refresh
By pressing the Refresh key, the operator can update the screen image. That is, the screen is cleared, and
all forms attached to the terminal and displayed are redisplayed. Forms no longer attached to the terminal
or marked as not displayed, that were on the screen from a previous display call, are not redisplayed.
(You can also issue a RFRSH call from your program.)

A screen refresh also restores the keypad mode, provided your program has previously issued a SPADA
call (the Form Driver does not otherwise know the keypad state). The refresh operation also restores the
terminal LEDs to the state they were in before the refresh occurred.

9

Chapter 1. Introduction

10

Chapter 2. Form Driver Interaction
The Form Driver interacts with your program and with terminals associated with the Form Driver.
Discussion of such interactions is concerned with the degree of control your program has in:

• Manipulating forms internally

• Displaying forms on the terminals

• Soliciting terminal operators’ responses to requests for field-by-field form data

Some limitation is imposed on both your program and the operator prior to run time, by the way the
forms are designed. Thus, for example, field attributes are already assigned for forms, as is the order in
which fields are processed in some calls.

Other considerations are concerned with:

• Who has control over the modification of fields in a form, and when

• How control is passed to a terminal operator

• When different levels of help for fields and forms are displayed for an operator

• What keys and keypad layouts can be made available to an operator on VT100-/VT200 and VT52-
compatible terminals.

2.1. Interaction with the Form Description
2.1.1. Storing and Accessing Form Descriptions
Your program can store and access form descriptions in either of two ways:

• As disk-resident forms, by reading them directly from a form library file that has been stored on a
disk

• As memory-resident forms, for which binary form descriptions (stored as object modules) are linked
with the program

Both ways make use of form descriptions that have been created with the Form Editor, Form Language
Translator, Form Upgrade Utility, or Form Converter, and that have been processed with the Form
Librarian or Form Application Aids. (See the VSI FMS Utilities Reference Manual.)

For example, after using the Form Editor to create a form description, you must use the FMS/
LIBRARY/CREATE command to store the description in a form library file or the FMS/MEMORY—
RESIDENT command a Form Application Aid — to produce an object module that permits access as
a memory-resident form. You must then link the object program with the Form Driver and any other
object modules you want to reside in memory, in order to form the executable FMS application program.
(See Figure 2.1.)

Note

It is not necessary to build a single large object module containing all memory resident forms for an
application. Multiple memory resident form objects produced by FMS can be linked into an executable
image.

11

Chapter 2. Form Driver Interaction

Figure 2.1. Building an Application Program

2.1.2. Displaying a Form
There are three ways you can access a form. The method you use depends on where the form
description resides:

• Resides only in the form library

• Resides in the form library, but is made memory resident at run time

• Is linked with the application program and is memory resident at all times during program execution

A typical procedure for displaying a form at the beginning of an FMS application is:

1. Make a terminal known to the Form Driver. (Use the ATERM call.)

2. Allocate an internal storage area form workspace in which the Form Driver is to store the form
description, including field values and other form requirements. (Use the AWKSP call.)

3. If the form is disk resident:

• Identify the I/O channel the Form Driver is to use for reading form descriptions from the form
library file. (Use the LCHAN call.)

• Open the form library file. (Use the LOPEN call.) 1

4. If you want that disk-resident form to become memory resident, read the form description into
memory. (Use the READ call.)

1You can eliminate this step if you include the I/O channel as an input argument in the following LOPEN call.

12

Chapter 2. Form Driver Interaction

5. Display the form. (Use the CDISP or DISP call if the form description is disk resident.)

The Form Driver provides two calls that both load workspaces and display forms CDISP and DISP.
The CDISP call clears the entire terminal screen before displaying a form. The DISP call clears only the
screen lines that are required by the form, in its description, that you want to display.

If you use short forms, you can use the DISP call to create for the operator a screen display that is
composed of more than one form or part of a form. In such an instance, only one form would normally
be active for the operator, although you could use special techniques like those described in Chapter 3 to
switch back and forth among forms.

For each call to display a form, the Form Driver checks the set of memory resident forms first. When
memory-resident and disk-resident form descriptions have the same form name, the Form Driver uses
only the memory-resident version.

You can load a form from any source into a workspace, but not display the form on the terminal screen,
by issuing the LOAD call. You can then put values in fields of the form and display the form later by
means of the DISPW call. Use of these calls may reduce the amount of output to the screen, since
the fields of the form do not have to be written twice once with the default values and once with the
application-defined values.

The name that you assign to a form with the Form Editor or Form Language Translator is the only
information that the Form Driver needs to read the form from its form library file or to find its
memory-resident description. Similarly, the name that you assign to a field is all the Form Driver
requires, regardless of where you locate the field within the form. As long as changes to form and field
characteristics have no effect on the logic of your program, you can change the characteristics without
having to modify your program.

The following is a description of the screen management role of the Form Driver when overlaid forms
are present and when your program issues PUTL and GETDL calls to reference lines that are parts of
forms. Whenever the Form—Driver is directed to output a value to the screen by a PUT-type field input
fro—m the operator by a GET-type field call — GET, GETAF, GETAL, or the screen. If the form has
been disturbed, part or all of it is redisplayed.

A form is disturbed in one of two ways:

1. Part of it has been overlaid by another form in a subsequent DISPW call, RFRSH call or operation,
or help request.

2. Part of it has been overlaid by a PUTL or GETDL call.

No matter what part of the form has been overlaid, the form can be redisplayed in its entirety.

The Form Driver functions as a screen manager. It keeps track of every line on the screen belonging
to every displayed workspace. Whenever a line is altered through the calls CLEAR, PUTL, GETDL,
DISPW, CDISP, or DISP, the Form Driver knows that the line has been affected. If the line is affected by
PUTL, GETDL, or CLEAR, the Form Driver knows that the fine has been completely cleared.

If a line is overlaid by the display of another form that clears some lines, then those cleared lines are
noted. (A form that overlays another form, without clearing lines, is assumed not to interfere with
the underlying form. A form interferes with another form only if it has area-to-clear lines, and then it
interferes only with those lines.)

The Form Driver checks the lines of the form when information is sent to a screen field (by a PUT-type
call), when information is requested of the screen (by a GET-type call), when help and UAR processing

13

Chapter 2. Form Driver Interaction

terminates, or when a new form is displayed. If any line has been cleared, as described above, the Form
Driver rewrites all the affected lines of the screen by calling FDV$FIX SCREEN internally. Thus, your
program need do nothing if the screen has been affected by calls on the Form Driver, since the Form
Driver knows and will fix the screen before the next I/O operation affecting fields.

The Area to Clear attribute of a form is included in the description of the form. Therefore, at design
time, the form designer should consider how much of the screen should be included in this attribute.
Even if the form does not specify text or fields for a line, the Area to Clear attribute may specify that the
line be blank when the form is displayed.

The Form Driver honors the form description whenever the form is referenced. If a form is being
redisplayed unexpectedly, it is most likely that part of the form has been overwritten.

2.1.3. Terminal Control
Your application program can use either VT100-/VT200 or VT52-compatible terminals to display forms
and to solicit responses from a terminal operator.

Before you can use any terminal to display a form, you must first attach it to the application program by
issuing an ATERM call.

More than one terminal can be attached to an application program, but only one terminal at a time can
be performing I/O operations. That terminal is called the current terminal. Other attached terminals
continue to display any images already on their screens.

At run time, the Form Driver keeps a list of all terminals attached to the application program. Form
Driver calls can reference only terminals on this list; a few exceptions use the program’s default terminal.

In an FMS application, a terminal control area (TCA) is reserved for each attached terminal. Once
a TCA is initialized, the application program controls terminal activity by issuing calls that specify,
implicitly or explicitly, the associated terminal control area.

Form Driver calls that manage the initialization of terminals and their release are:

ATERM Attach a terminal for use by an application program
DTERM Detach a terminal from the list of attached terminals
STERM Make the specified terminal the current terminal

You should detach terminals before leaving FMS; otherwise, the terminals may continue to output
assigned video attributes when they are no longer associated with FMS. If you do not explicitly detach a
terminal from within your program, video attributes assigned to the terminal remain in effect until you
reattach the terminal and modify its attributes.

2.1.4. Using Workspaces to Store Forms
To process forms, your program must supply one or more workspaces in memory. Each workspace can
contain only one form description. Workspaces are internal to FMS and are inaccessible to the terminal
operator.

Each attached terminal can have one or more workspaces associated with it, but the Form Driver can
access the form in only one workspace at a time the current workspace. All other attached workspaces
are considered passive at that time and can be used only for storing their form descriptions.

14

Chapter 2. Form Driver Interaction

Each workspace can be associated with only one terminal at a time. That is, no workspace can be
simultaneously associated with more than one terminal. For example, if you want to display a form on
two terminals at the same time, you must provide different workspaces for them and load the form into
both workspaces.

An advantage of using multiple workspaces is to allow the simultaneous control of multiple forms
on the screen. For example, you can display a form stored in one workspace, switch to another form
workspace by issuing a SWKSP call and display the form stored there either at the location specified at
form definition time or at a screen location appropriately positioned by means of an “offset” argument
in the display call. The Form Driver maintains the context of each workspace including, for example, the
current field name.

A screen refresh under application control — issuing a RFRSH call — or under operator control —
pressing CTRL/R or CTRL/W — clears the screen of all text and redisplays all forms currently marked
as displayed for the current terminal.

The Form Driver supports calls that associate workspaces with terminals, load workspaces with form
descriptions, display forms from workspaces, and release workspaces. These calls are:

AWKSP Attach a workspace to a terminal control area.
CDISP Clear the screen and load a workspace with a form from a library or

a memory-resident form list; then display the contents of the work
space. (The form is marked as being displayed for a later refresh
operation.)

DISP Load a workspace with a form from a library or a memory-resident
form list; then display the contents of the workspace. (The form is
marked as being displayed for a later refresh operation.)

DISPW Display the contents of a workspace. (The form is marked as being
displayed for a later refresh operation.)

DWKSP Detach a workspace from the list of attached form workspaces.
LOAD Read a form description from the library or memory-resident list

into the form workspace.
NDISP Mark a form as being not displayed, but do not delete it from

the workspace. (“Not displayed” means not displayed in a refresh
operation.)

SWKSP Make the specified workspace the current workspace.

You can detach workspaces either individually by issuing a DWKSP call or collectively by issuing a
DTERM call.

Figure 2.2 shows two VT100-compatible terminals attached to an FMS application. Each terminal must
be attached by an ATERM call to the Form Driver in the application program before being used by
a terminal operator. Each terminal has attached to it any number of workspaces. Each workspace can
store one form description and must be attached to a specific terminal by an AWKSP call before a form
description can be stored in it.

15

Chapter 2. Form Driver Interaction

Figure 2.2. Attached Terminals and Related Form Workspaces

You maintain control over which form is being updated by specifying the current terminal and the
current workspace. The STERM call specifies which terminal is the current terminal. The SWKSP call
specifies which of that terminal’s workspaces contains the form description to be updated.

To work on a different form in a workspace attached to a terminal that is not the current terminal, you
need issue only a SWKSP call, since the Form Driver automatically switches to the associated TCA. For
example, if the current workspace is workspace IB and you want to address the form in workspace 2C,
you issue the following:

CALL FDV45WK5P (WKBP2C)

You can determine the current terminal and workspace at any time by issuing a RETCX call to ensure
that the proper form is being updated.

2.1.5. The Help Function
Whenever your program issues a call for an operator response, the Form Driver can display two levels
of help if the operator requests it help for the field in which the cursor is located and help for the entire
form. When the operator presses the Help key once, the Form Driver displays the help text that was
specified as a field attribute, if any was specified. Then, when the operator presses the help key again,
the Form Driver displays the Help form that was specified as a form-wide attribute, if any was specified.

The operator can erase any help form and have the Form Driver restore the original form at any time.
The cursor’s position in the original form and all field values are unchanged. If the help form does not
overlay the current form, the current form remains on the screen. Otherwise, the help form replaces the
portion of the current form that it overlaps.

For each form in your application, both the help text for fields and the help forms have to be specified
when the form is created or changed with the Form Editor or the Form Language. Help forms for any
disk-resident forms must be stored in the same form library file as the latter.

16

Chapter 2. Form Driver Interaction

2.1.6. Field Processing Order
The Form Driver processes multiple fields of a form in the order specified in the form description. This
order determines where “next” and “previous” functions take the cursor when the operator presses the
corresponding keys to move from field to field. It is also the order in which field values are returned in
GETAL, PUTAL, RETAL, GETSC, and PUTSC calls and the derivation of “first” and “last” fields in
forms and scrolled lines.

Your program can, nonetheless, control the order in which the operator works with fields. Your program
can completely control the access order by issuing a GET call to get the value of a specified field. By
repeating this call and specifying different fields, your program requires the operator to complete the
fields in the order specified.

Your program can allow the operator partial control by issuing the GETAF call, which allows the
operator to choose any field in the form. The operator can respond in only one field, but it can be any
modifiable field in the form. Since this call also identifies the name of the completed field, your program
can then direct the operator to any other field.

Your program can allow the operator complete control over the order of modifying fields by issuing
GETAL, the call for all field values. But the Form Driver returns the field values to your program in a
single character string with fields appearing in the order specified in the form description. The Form
Driver returns to your application when the operator signals that the entire form is complete.

In the returned field values, the length of each field value is the full length of the field. If the operator
enters a value that is shorter than the field, that value is padded out to the field length with the fill
character assigned to the field. For a right-justified field, the fill characters precede the value; for a left-
justified field, they follow the value.

Two calls, PUTAL and PUTSC, output more than one field value. The PUTAL call specifies new
workspace values for all fields in the form and displays the values if the form is displayed. The PUTSC
call loads the workspace and displays the field values for one line of a scrolled area.

In both PUTAL and PUTSC, a single character string of field values is written in the order specified in
the form description.

2.1.7. Text, Field-Marker Characters, and Video
Attributes
After displaying a form, the Form Driver normally is concerned with only the information that relates
to the fields, such as the field picture, the fill and clear characters, the default value, and the line of
help information. Unless the operator presses the Refresh key, the Form Driver makes no further use of
information that is not related to the fields, such as the text in the form, the field-marker characters, or
the video attributes of the characters displayed.

In particular, the field values that the Form Driver returns do not contain any of the field-marker
characters that the operator sees, such as the hyphen, decimal point, slash, and minus sign. In addition,
the field values that your program passes to the Form Driver to display must not include field-marker
characters. These field-marker characters are used for display only. They identify certain positions within
a field.

17

Chapter 2. Form Driver Interaction

2.1.8. Processing Fields
2.1.8.1. Field Pictures

The Form Driver checks the field pictures only when the operator is typing field values. The values that
your program passes to the Form Driver for display are not checked for correspondence with the field
pictures.

When the operator is responding, a field picture is used to:

• Check that each character satisfies the requirements of the picture character at the corresponding
position. For example, in a field that has the mixed picture 999AAA, the Form Driver accepts only
digits in the first three positions and only letters in the last three positions.

• Limit the operator’s use of the Insert and Overstrike modes of entering field values. For example, the
operator cannot change the combination of modes used for a fixed-decimal field or use Insert mode
when completing a field that has a mixed picture.

2.1.8.2. Right Justified and Left Justified Field Attributes

The Form Driver uses the Right Justified and Left Justified attributes to:

• Determine the position of the cursor when it is first displayed in a field.

• Align the field value both on the screen and in the form workspace when the value is shorter than its
field. The value in a right-justified field always ends at the rightmost character position in a field; the
value in a left-justified field always starts at the leftmost character position in a field.

• Determine when the operator has filled a field if the field has the Autotab attribute.

• Set the default mode of entering values in afield. Insert mode is the default for a right-justified field,
and Overstrike mode is the default for a left-justified field.

2.1.8.3. Clear Character and Fill Character Attributes

1. The Clear Character and Fill Character attributes affect the way fields whose values do not fill the
field are padded on the screen and in the form workspace. The clear character is displayed, and the
fill character is inserted as padding in the form workspace. A field with no value is displayed with
only the assigned clear character and is stored in the form workspace with only the assigned fill
character.

Where padding an input field value is necessary, the Zero Fill attribute directs the Form Driver to
pad with zeros in the form workspace. If Zero Fill is not specified, space characters are used to pad
in the workspace.

The clear character can be any printing character.

2.1.8.4. Default Field Value

When you display a form, the Form Driver displays the default field values and stores them as the current
field values in the form workspace. But the Form Editor, the Form Language Translator, and the Form
Driver do not check the default values.

18

Chapter 2. Form Driver Interaction

Although the Form Editor and the Form Language Translator allow you to assign the numeric default
value 13467 for a field with the picture AAAAA, for example, and the Form Driver displays such a
value, the Form Driver does not allow the operator to enter the value. Therefore, when developing your
application, you must check that the default value is proper for the field.

2.1.8.5. Autotab Attribute
3. When the operator types the character that fills a field having the Autotab attribute, the Form Driver

terminates the field as if the operator had pressed the Next Field key. (However, different terminators
are returned for fields completed by the Autotab attribute and by the Next Field key.)

If afield has the Autotab attribute, the Form Driver determines that the field has been filled as
follows:

• For a Must Fill attribute assigned to the field, the operator must have entered enough characters
to fill the field.

• For a left-justified field, the operator must have typed a character in the rightmost character
position of the field.

• For a right-justified field, the leftmost character position must contain a character other than the
fill character.

2.1.8.6. Response Required and Must Fill Attributes
The Form Driver checks the validity of an operator’s response in a field having the Response Required or
Must Fill attribute.

In a field that has the Response Required attribute, the field must contain at least one character other
than the assigned fill character before the program will continue to the next field.

In a field that has the Must Fill attribute, the field must contain nothing or must be filled completely. The
Form Driver does not accept a field value that is shorter than the field length or a value that contains a
fill character.

The occurrence of such checking depends on which call your program issues for an operator response.
For the call to get all the form’s field values from the operator (GETAL), for example, the Form Driver
checks the values for each of these fields when the operator terminates input to the field by pressing the
Next Field key or the Enter Form key. In addition, when the operator presses the Enter Form key, the
Form Driver checks all modifiable fields in the form.

For other calls, the Form Driver checks the values only when the operator terminates the field with the
Next Field key or the Enter Form key.

2.1.8.7. Fixed Decimal Attribute
The Form Driver makes use of the Fixed Decimal attribute to:

• Align the parts of the field value that are to the left and to the right of the decimal point. The Form
Driver retrieves input from the part to the left of the decimal point as a right-justified field and the
part to the right as a left- justified field.

• Determine the fill and clear characters for the left and right parts of the field. The Form Driver
displays the part to the right of the decimal point as if it were in a zero fill, clear character zero, and
left-justified field, regardless of whether the Zero Fill or Clear Character attribute is assigned.

19

Chapter 2. Form Driver Interaction

The Form Driver applies the assigned Zero Fill or Clear Character attribute only to the part of the
value that is to the left of the decimal point. Note that if the fill character for the field is not zero, the
Must Fill attribute requires entry and does not allow the usual option of leaving the field empty.

• Determine the position of the cursor when it is first displayed in a field. The cursor is placed at the
decimal point, the hanging cursor position for the left part of the field. Output to fixed-decimal fields
is treated as if the field were right justified. Such output should not include the decimal point, which
is a field marker in fixed-decimal fields.

2.1.8.8. Display Only Attribute
Fields having the Display Only attribute allow you to display their values without letting an operator
enter new values. The Form Driver does not allow the operator to position the cursor in a display-only
field. When the operator presses the Next Field or the Previous Field key to move the cursor from field
to field, the cursor jumps past display only fields as if they were part of the form’s background text. Note,
however, that data values of these fields are returned from calls such as GETAL and EETAL.

2.1.8.9. No Echo Attribute
The Form Driver uses the No Echo attribute to prohibit field values from being displayed in fields. Not
even the clear character or assigned video attributes are displayed in that field. When the operator enters
a value in an No Echo field or when your program issues a call to display a field value in an No Echo
field, the Form Driver returns the field value to your program and stores it in the form workspace but
does not display it.

2.1.8.10. Supervisor Only Attribute
When your program uses the SPON call to turn on the supervisor-only mode, the Form Driver prevents
the operator from entering values for fields that have the Supervisor Only attribute. After your program
issues the SPON call, the Form Driver treats all fields that have the Supervisor Only attribute as display-
only fields. This state, which remains in effect until you issue the SPOFF call, applies to all forms that
are displayed on a given terminal. When the program issues the SPOFF call, the Form Driver ignores the
Supervisor Only attribute until the program issues the SPON call again.

The initial state for a terminal is SPON. That is, when a terminal is attached, its supervisor-only flag is
turned on, thereby disallowing input to fields having the Supervisor Only attribute.

2.1.8.11. Scrolling
Although the Form Editor, the Form Language Translator, and the Form Driver do not allow you to use
a form that is longer than 23 screen lines, these components allow you to define sections within a form
for displaying portions of large data tables.

A data table is called scrolled because you can “roll” it upward or downward to display the lines that you
want the operator to see or to work on. A scrolled area is a window into a form, showing a relatively
large amount of data a few lines at a time.

A scrolled area can be as small as one line. Within one form you can define as many separate scrolled
areas as will fit within 23 lines. Each line can have as many separate fields as will fit on one screen
line. Within each scrolled area, however, all lines must be identical with respect to the number, size, and
attributes of fields and all other details.

Because the Form Driver can store field values only for the fields that are on the terminal screen, your
program must maintain all scrolled area field values that are not displayed — that is, all the values that

20

Chapter 2. Form Driver Interaction

are “above” and “below” each scrolled area. When your program scrolls the lines of a scrolled area
upward or downward, the program must collect the lines of values scrolled out of the area and display
any line of values scrolled into the area.

Chapter 3 includes some programming examples of scrolled area use.

2.1.8.12. Date and Time Attributes
If a field has one of these attributes, the Form Driver automatically displays the system date or time in
the field either when the form is loaded or at any other time when the field default is loaded. The date
or time is updated whenever the field default is explicitly loaded; a PUTD or a PUTDA call causes the
update, whereas a KFRSH call does not.

Note that only the field default processing is affected; you cannot supply a field default for such a field.
You can supply any other field attributes and process the field the way you want, but whenever the field
default is displayed by the Form Driver, the date or time is displayed.

2.2. User Action Routines
A user action routine (UAR) is a subroutine that provides special processing during the execution of an
FMS application program. A UAR is not in-line code; rather, it is often coded and compiled separately
from your program and is called from the Form Driver. A UAR’s object code is later linked with your
program’s .OBJ file to form the executable run-time module.

Each UAR is associated with a form or with fields within a form. When a form is designed, the form
designer can request that the UAR be called whenever an application program processes that form or
field. Then, during execution of the application program, the UAR is automatically called when the
terminal operator presses:

• A field terminator key to signal termination of a field or a form (called a field completion UAR)

• The Help key (called a help UAR)

• A function key that is not reserved for FMS (called a function key UAR)

When the UAR ends, it returns a completion code to the Form Driver, indicating whether the routine
executed successfully or failed. A UAR can include a return context call (RETCX) to the Form Driver to
get any current context information it might require or any other Form Driver call — for example RET
— to get values of fields.

The following actions are required before a user action routine can be used:

1. The form designer must use the Form Editor or the Form Language

Translator to assign a name and associated parameters to the UAR.

2. The form designer must use the appropriate Form Application Aid to create a UAR vector module.

3. The application programmer must code the procedure that the UAR is to perform.

4. The application programmer must link the object module containing the names of all UARs to be
called with the application program.

2.2.1. Field Completion UARs
A field completion user action routine is a function routine that is executed at when an Autotab field has
been filled or a field terminator key has been pressed.

21

Chapter 2. Form Driver Interaction

A field completion UAR is not called under these conditions:

• The field terminator is Previous Field

• The terminator is a function key not reserved for FMS

• The field was terminated with an illegal terminator (see description of ILTRM)

(A function key transformed into a Next Field or an Enter Form terminator by a function key UAR does,
however, cause a field completion UAR to be called.)

During the Assign phase of the Form Editor or in using the Form Language Translator, the form designer
can identify the name of the UAR and a parameter associated with it. The parameter is a string of up to
80 characters.

Each modifiable field in the form can have up to 15 field completion UARs associated with it. During
program execution these UARs are executed each time the operator finishes entering data in a field.

A field completion UAR is also called when your program issues a PFT call with a terminator code of
FDV$K FT NTR. This facility lets your program check the validity of each nonscrolled field, just as the
Form Driver checks operator data entry for Response Required or Must Fill fields. Note that in a GETAL
call, the Enter Form function causes the Form Driver to call all field completion UARs for nonscrolled
fields.

All field completion UARs are functions that return status codes. These codes indicate whether or
not a UAR performed successfully. The status codes returned by the UAR and the corresponding
actions that the Form Driver performs are listed below. The Form Driver interprets any other code as a
program_ming error, terminates the GET-type call, and returns a status code of FDV$UAR.

Status codes returned by UARs do not comply with VMS coding standards (for cross-system
compatibility reasons).

If a timeout occurs or a CANCL call is issued while the operator is performing afield input operation, the
input operation ends immediately, no field completion UARs are called, and any field value returned is
undefined.

FDV$K_UVAL_FAIL Field validation failure. The Form Driver assumes that the field data
is in error and requires that the field be reentered. This is the same
condition that occurs when the operator types a character that does
not agree with the field picture; the Form Driver rejects the input,
and the operator is required to reenter the data. No further UARs
associated with this field are called if this code is returned.

FDV$K_UVAL_SUC Field validation success; continue processing. The Form Driver calls
any additional action routines associated with this field. If no more
exist, the Form Driver completes the field entry normally.

If there is nofield entry UAR, the Form Driver acts as if one were
called and returns this completion code.

FDV$K_UVAL_END Field validation success; end further processing of the field. No more
UARs associated with this field are called, and the field processing
terminates normally.

See Chapter 3 for examples of field completion UARs.

22

Chapter 2. Form Driver Interaction

2.2.2. Help UARs
The operator requests help by pressing the key designated as the Help key. There are two times
during the processing of help that a UAR can be called. Before the normal Form Driver-supplied help
processing begins, the “prehelp” UAR is called. After the normal Form Driver-supplied help processing
is exhausted, the “post-help” UAR is called.

2.2.2.1. Pre-Help UAR
A pre-help UAR is called to allow your help text to intercept any help processing provided by FMS.
Based on the completion code returned by the UAR, the Form Driver acts as follows:

FDV$K_UHELP_NO The Form Driver assumes that no help processing was performed
and proceeds with the normal help processing. That Help was
pressed once already is recorded, and any subsequent pressing of the
Help key does not result in the Form Driver’s calling the pre-help
UAR again.

If no pre-help UAR was specified for the form, the Form Driver acts
as if one were called and returns a code of FDV$K_UHELP_NO.

FDV$K__UHELPED The Form Driver assumes that help was given by the UAR and
provides no further help processing for the request. The Form Driver
notes that the operator has pressed the Help key at least once for
the current field. Any subsequent pressing of the Help key does
not, therefore, result in the Form Driver’s calling the pre-help UAR
again.

FDV$K_UHELP_ALL The Form Driver assumes that help was given by the UAR and
provides no further help processing for the request. The Form Driver
does not record that the operator pressed the Help key once already,
and therefore any subsequent pressing of the Help key results in the
Form Driver’s calling the pre-help UAR again. This completion code
allows a UAR to take over all help processing by ensuring that every
time the Help key is pressed, the pre-help UAR is called.

The Form Driver interprets any other code as a programming error. The GET-type call or the WAIT call
is terminated, and a status code of FDV$_UAR is returned.

2.2.2.2. Post-Help UAR
This UAR is called to allow your program to supply some form of additional help after the Form Driver-
supplied help messages are exhausted. Based on the UAR completion code returned, the Form Driver
does the following:

FDV$K_UHELP_NO The Form Driver issues its HELP EXHAUSTED message. If the
operator presses the Help key again, the help sequence starts over
again.

If no post-help UAR was specified, the Form Driver acts as if it
called one and returns a completion code of FDV$K_UHELP_NO.

FDV$K_UHELPED The Form Driver assumes that the post-help UAR has provided
additional help information to the operator. If the operator presses
the Help key again, the help sequence starts over again.

23

Chapter 2. Form Driver Interaction

FDV$K_UHELP_ALL The Form Driver assumes that the post-help UAR has provided
additional help information to the operator. If the operator presses
the Help key again, the UAR is called again.

The Form Driver interprets any other code as a programming error. The call is terminated, and a status
code of FDV$_UAR is returned.

The Form Driver allows a depth of 15 in UAR nesting. Help is handled internally as a UAR, so it
contributes 1 to the nesting depth each time the HELP key is pressed. A pre or post-help UAR adds
another level to the depth.

2.2.3. Help Request Processing
When the Form Driver is processing an input call by your program, the opera tor can request help from
the system by pressing the Help key. The current request then stops, and the Form Driver acts as follows:

1. If the operator has not previously pressed the Help key during the processing of the current field, the
following actions occur:

a. The Form Driver calls the pre-help UAR. If the UAR returns the status code FDV
$K_UHELP_NO, the Form Driver attempts to display a single help line for the current field.
(See the discussion of UARs above for information on UAR status codes.) If no help line exists
for the field, the Form Driver goes on to step 2; otherwise, the Form Driver displays the help
line, and processing of the Help key is complete. The next time the operator presses the Help key,
processing starts with step 2.

b. If the UAR returns FDV$K_UHELPED as a status code, the Form Driver assumes that the
normal single-line help is to be suppressed and that the UAR has provided separate help. As in
step la, the next time the operator presses the Help key, the Form Driver begins processing it
according to step 2.

c. If the UAR returns FDV$K_UHELP_ALL, the Form Driver again assumes that no further help
is needed, but in addition ends its progression through the help support chain. When the operator
presses the Help key again, the Form Driver processes the key according to step 1 again.

2. If step 1 has already been performed, either because a single-line help has already been given or
because none could be given and the Form Driver proceeded automatically to this step, the following
happens:

a. If a help form is associated with the current form, it is displayed on the screen. Any subsequent
pressing of the Help key begins processing according to step 3.

b. If no help form is associated with the form displayed, the post-help UAR is called.

c. If the UAR returns a status code of FDV$K_UHELPED, the Form Driver assumes that the UAR
provided help in addition to the forms already displayed. Processing of subsequent pressing of the
Help key resumes according to step 1.

d. If the UAR returns a status code of FDV$K_UHELP_ALL, the Form Driver assumes that the
UAR provided help in addition to the forms already displayed. Processing of subsequent pressing
of the Help key resumes according to step 2 again.

e. If the UAR returns a status code of FDV$K_UHELP_NO, the Form Driver assumes that the
help available to the operator is exhausted and proceeds according to step 4.

24

Chapter 2. Form Driver Interaction

3. If the operator presses the Help key again, the following occurs:

a. If a help form is associated with the Help form already on the screen, the new help form is
displayed. Any subsequent pressing of the Help key begins processing according to step 3 again.
(The help form on the screen may have been placed there either during step 2a or by a previous
execution of this step.)

b. If no help form is associated with the help form displayed, the post-help UAR is called.

c. If the UAR returns a status code of FDV$K_UHELP_ALL, the Form Driver assumes that the
UAR provided help in addition to the forms already displayed. Subsequent pressing of the Help
key resumes according to step 3 again.

d. If the UAR returns a status code of FDV$K UHELPED, the Form Driver assumes that the UAR
provided help in addition to the forms already displayed. Processing of subsequent pressing of the
Help key resumes according to step 1.

e. If the UAR returns a status code of FDV$K_UHELP_NO, the Form Driver assumes that the
help available to the operator is exhausted and proceeds according to step 4.

4. All help is presumed to be exhausted. The Form Driver prints a message indicating that no help is
available. Any future Help key processing resumes according to step 1 again, allowing the operator to
see the full help sequence again.

Note that when a single help line is displayed, it is displayed on the bottom line of the screen and is
removed from the screen the next time a key is pressed. When a help form is displayed, all or part of the
screen depending on the help form description is first cleared. The help form is then displayed, and the
Form Driver waits for the operator by executing a WAIT call until the operator presses either the Help
key or one of the two default Enter Form keys, ENTER or RETURN.

Note

This is one of two occasions in—the Form Driver —the other is the RETURN key as choices for the
operator, rather than the more general Enter Form key, which could indicate a redefined alternate key.
This arrangement guarantees that you can get out of help mode regardless of how you have redefined
keys.

If RETURN or ENTER is returned, the form in the current workspace is returned to its state prior to the
displaying of help, and input processing is resumed. If FDV$K_FT_HELP is returned, the operator has
pressed the Help key, and the Form Driver behaves according to the description above.

A help UAR can change the screen by putting up new forms in workspaces other than the one current at
the time of the UAR call. The Form Driver automatically restores the current workspace and redisplays
the current workspace’s form if it is overlaid by UAR action.

If a timeout or a cancel condition occurs during help processing, the call is terminated without restoration
of any part of the screen. Your program can remove any single-line help from the bottom of the screen
by issuing a PUTL call and can restore the rest of the screen by issuing a RFRSH call.

Any call to a PUT or a GET function restores the current workspace’s form automatically. Thus, even
with a timeout or a cancel condition, your program need not issue a RFRSH call if the same form and
workspace are going to be used.

25

Chapter 2. Form Driver Interaction

2.2.4. Function Key UARs
A function key UAR can be called whenever the operator presses a key not interpreted by FMS.
Function keys include all non data keys that are not FMS functions: control keys, special keys that
produce escape sequences — for example, the Uparrow key chapter.

FMS uses some of these keys for editing or for field terminators. You can redefine keys associated with
these functions or delete the functions, thus freeing more keys for your program. See Section 2.4.2 for
lists of all function keys.

When the operator presses one of these keys during input to a GET-type call or a WAIT call and if the
current workspace has a form in it that is marked as being displayed and that has a function key UAR,
the Form Driver calls the function key UAR. Further processing depends on the value returned by the
UAR, as listed below.

If your program has requested that illegal terminators be returned to it instead of being signaled to the
operator (see description of the ILTRM call in Chapter 5), the Form Driver also calls a function key
UAR with the illegal terminator. (See Section 2.3.6.8.)

The function key UAR can issue a RETCX call to determine which function key the operator pressed.

Depending on the completion code returned by the UAR, the Form Driver acts as follows:

FDV$K_UKEY_ERR The Form Driver assumes that no function is defined for the key,
the pressing of the key is treated as an illegal keystroke, an error
is signaled, and the key is ignored. No field completion UARs are
called.

FDV$K_UKEY_TRM The Form Driver resumes processing of the GET-type call or
WAIT call, treating the function key as a key to be returned to your
program as a terminator. That is, the code immediately terminates
any input operation and is returned as the field terminator code. No
field completion UARs are called.

FDV$K_UKEY_NXT The Form Driver completes field or WAIT processing, treating the
function key as if the operator had pressed the Next Field key. If the
call is a GET-type call, Must Fill and Response Required attributes
are checked, and field completion UARs are called next if any are
defined for the field. If this function key results in completion of the
entire call, Next Field is recorded as the field terminator character.

FDV$K_UKEY_NTR The Form Driver completes field or WAIT processing, treating
the function key as if the operator had pressed the Enter Form
key. If the Form Driver is processing a GET-type call, Must Fill
and Response Required field attributes are checked, and field
completion UARs are called next if any are defined for the field.
This completion code causes Enter Form to be recorded as the field
terminator if the operator entered data that was recognized as valid
by the Form Driver.

FDV$K_UKEY_SUC The Form Driver resumes processing of the WAIT or the current
field, but otherwise ignores the key, assuming that the UAR
successfully performed any processing associated with the key. No
field completion UARs are called.

26

Chapter 2. Form Driver Interaction

2.2.5. Legal Actions in a UAR
Your program can issue any Form Driver call from a UAR if you observe the following restrictions:

1. You cannot detach the TCA or workspace that is current at the time the UAR is executing.

2. You cannot alter the current workspace by loading a new form into it.

Your program can issue PUT or GET calls, switch to a new workspace, load a new form into a
workspace, clear the screen, or take any action you might take if no UAR were to be called. The Form
Driver automatically restores the pre-UAR context after the UAR completes its execution. If a UAR
changes the screen, the Form Driver ensures that the form in the current workspace is restored to the
screen.

The context restored by the Form Driver is:

• Current terminal

• Current workspace

• Current field

• Last terminator entered

Note that the Form Driver does not restore the current field’s cursor position or mode of character
insertion (Insert or Overstrike). This condition allows a UAR to perform field editing and to reposition
the cursor within a field before returning to the Form Driver.

You should be very careful about performing input from a UAR, since this is recursive use of the
Form Driver. It is easy to get into an infinite recursion by issuing a GET from a field that calls a field
completion UAR that issues a GET, and so on. It is also important to be careful about issuing GET calls
from a function key UAR, for the same reason.

The Form Driver allows UARs to be nested to a maximum level of 15. Nesting to a deeper level causes
an FDV$_UDP error to be returned to the call that generated the UAR.

2.3. Interaction with the Terminal Operator
The operator has no control until your program allows it by issuing one of the five Form Driver calls for
an operator response:

GET To get the value of a specified field
GETAF To get the value of a single field that the operator chooses
GETAL To get all field values for the current form
GETSC To get all field values for a line in a scrolled area
WAIT To wait for the operator to enter a terminator

These five calls put the operator in control until the requirements of the call are satisfied. For example,
after your program issues the GET call for the value of a specific field, the operator can type and make
corrections. The operator also can request help by pressing the Help key. It is only when the operator
terminates the field by pressing a field terminator key, such as the Next Field key, that the Form Driver
returns control to your program.

27

Chapter 2. Form Driver Interaction

Each of the four GET-type calls also returns a status code indicating that a been entered or deleted
during the processing of the call. Note, however, that if the operator enters a character and replaces it
with the original value, the field is still considered modified.

This section introduces the three kinds of operator activity:

• Correcting errors and requesting help

• Editing fields

• Terminating and choosing fields

2.3.1. Signaling and Recovering from Errors
The Form Driver responds to typing errors and invalid uses of the editing and field termination functions
by signaling the operator and displaying messages on the bottom line of the screen.

For all errors, the Form Driver either rings the terminal bell or reverses the video according to the signal
mode that is in effect (see description of the SSIGQ call) and ignores the invalid character or function.
The Form Driver also displays a one-line explanation at the bottom of the screen. For example, when an
operator tries to enter a letter in a field that has been designed to accept only numbers, the Form Driver
signals the operator and displays the following message:

NUMERIC REQUIRED

The VSI FMS Utilities Reference Manual lists and explains all messages that can appear.

The Form Driver also provides a Debug mode of operation, which produces a set of error messages that
help you in developing and refining your FMS application programs. If you are running your program
in Debug mode and an error occurs as the result of a call on the Form Driver, the Form Driver stops
your program, signals you, displays the Debug mode message on the bottom of the screen, and waits for
you to press the ENTER or the RETURN key, regardless of how you have redefined any keys, before
continuing execution of your program.

2.3.1.1. Help Key and Help Messages
The Help function can display two levels of information.

When the operator presses the Help key for the first time, the Form Driver determines whether a help
message exists for the current field. If such a one line help message exists, the Form Driver displays it on
the last line of the screen. The cursor remains in place within the field.

If the one-line help message is not sufficiently helpful, the operator can press the Help key a second
time. The Form Driver then determines whether a help form exists for the current form.

If a help form exists, the Form Driver displays it while saving the context of the current form. Each help
form can have yet another help form associated with it that is also displayed.

The operator presses the Enter Form key to return to the original form. In response, the Form Driver
restores the form and cursor to what they were before the Help key was pressed.

If no one-line help message for a field exists, the Form Driver displays the help form directly. When no
more help is available, the Form Driver displays a message to that effect on the last line of the screen.
When the operator next types a field terminator, the Form Driver clears the last line.

Note that although this is the normal sequence for help processing, help UARs can alter it. See
Section 2.2.2.

28

Chapter 2. Form Driver Interaction

2.3.1.2. Checking Operator Responses from Your Program
Your program must be responsible for checking operator responses at certain times. The Form Driver
cannot distinguish valid operator responses from invalid ones in two instances.

First, although the Form Driver accepts only the operator responses that meet the requirements of
a field attribute that was assigned with the Form Editor or the Form Language Translator, the Form
Driver cannot detect a field value that is invalid in your application. Second, when an operator uses
certain function keys to terminate work with a field, the Form Driver does no field checking (Response
Required, Must Fill, or Field Completion UARs), leaving that task to your program.

In both of these instances, you can design your program to detect errors and other conditions and to
display messages for the operator. Chapter 3 describes some processes and techniques.

2.3.1.3. Refreshing the Screen: Typing CTRL/R
Hold down the CTRL key and press the R key on the keyboard. When the operator types this character,
the Form Driver refreshes the screen. That is, the screen is cleared, and all forms currently marked as
displayed are redisplayed.

2.3.2. Field Editing Functions
Table 2.1 summarizes the field editing functions that the Form Driver provides and lists the default keys
that control the functions. These functions are executed entirely by the Form Driver. You can implement
additional functions for the operator by interpreting any function keys not used by FMS. Such functions
are implemented by your program after the Form Driver returns control to it.

Table 2.1. Field Editing Keys, Functions, and Usage for the Form Driver

Default Key Function Usage

Leftarrow Cursor Left Moves the cursor to the preceding data character
position within the field, skipping any field-marker
character.

Rightarrow Cursor Right Moves the cursor to the next data character
position within the field, skipping any field marker
character.

DELETE Delete Character In Insert mode, deletes the character at the cursor's
left and closes the space.

In Overstrike mode, moves the cursor to the
preceding character position within the field,
but deletes it only when the character is the last
nonblank one in a left justified field.

LINEFEED or F13 Delete Field Deletes the entire field and resets the mode of
character insertion to the default mode for the field
(Overstrike or Insert).

PF1 or Blue Gold Key Starts a Gold, or 2-character, sequence. Pressing
the Gold key several times is equivalent to pressing
it once.

PF1 DELETE or Blue
DELETE

Reset Cancels a Gold sequence. If the operator cannot
remember if a Gold sequence was started, this
sequence safely allows the retyping of the function.

29

Chapter 2. Form Driver Interaction

Default Key Function Usage

PF1 PF3 or Blue Gray Insert Mode Sets Insert mode.
PF3 or Gray Overstrike Mode Sets Overstrike mode.
PF, Red or Help Help First, displays the help text for the cursor’s field

and then displays successive help forms for the
current form.

CTRL/R Refresh Screen Refreshes the screen, with all forms marked as
displayed.

Most keyboard keys Insertion The keys for the printing characters on the
keyboard insert their characters. In the normal,
or numeric, keypad mode, the numeric and
punctuation keys on the keypad also insert their
characters.

2.3.2.1. VT100 Alternate Keypad Mode
You can set the VT100 terminal to an alternate keypad mode or back to a normal (numeric) keypad
mode by issuing the SPADA call. Regardless of the terminal’s keypad mode, the editing and terminator
functions remain the same.

2.3.2.2. The Cursor’s initial Position in a Field
The initial position of the cursor in a field depends on whether the field has the Right Justified, Left
Justified, or Fixed Decimal field attribute.

For right-justified fields, the initial position is just to the right of the last character position in the field.
This position is called the hanging cursor position because the cursor hangs off the end of the field.

For left-justified fields, the initial position is the leftmost character position in the field.

The cursor’s initial position for a fixed-decimal field is the decimal point that the Form Driver displays.
The decimal point is a field-marker character. It is not stored in the form workspace or returned to your
program as part of the field value.

The decimal point in a fixed-decimal field is the rightmost period or comma in the field, whichever one
is in effect. Any other periods or commas are treated as normal field-marker characters. A comma is
usually used as a decimal point in Europe, and a period is normally used elsewhere.

The Form Driver treats the left part as a right-justified field and the right part as a left-justified field.
With the cursor at the initial position, the Form Driver displays the first digits that the operator types in
the part to the left of the decimal point until the operator types a decimal point. Then the Form Driver
displays the digits that the operator types in the part of the field that is to the right of the decimal point.

As the operator edits a fixed-decimal value, the Delete Field function deletes the entire value and returns
the cursor to the initial position. The Delete Character function also deletes the digits in the field value.
If the cursor is just to the right of the decimal point, however, the Delete Character function moves the
cursor back to the decimal point but does not delete it.

2.3.2.3. Inserting a Field Value: The Default Function
For VT100 keys the Form Driver accepts the standard letters, numbers, and special characters on the
keyboard that meet the requirements of the field.

30

Chapter 2. Form Driver Interaction

For the keyboard keys, insertion of values infields is the default function. For the numeric and
punctuation keys on the keypad, insertion is also the default when the keypad is in the normal, or
numeric, mode. In both instances, the operator types values as if using a typewriter.

Insertion is invalid only when it does not meet the field’s requirements. For example, letters are invalid
where numbers are required. For a field that does not have the Autotab attribute, all characters are
invalid when the field is full.

2.3.2.4. The Signed Numeric Picture
A signed numeric picture is treated in two special ways by the Form Driver. One way allows for
acceptance of an alternate character for the conventional decimal point. The default is for the Form
Driver to allow the period in an N picture and to return it to your pro- gram as part of the value of the
field.

For European-style decimal points, your program issues the DPCOM call with an argument of 1. The
Form Driver then accepts the comma as the decimal point for the current terminal. After this call,
only the comma is recognized as a decimal point in a signed numeric picture. Calling DPCOM with an
argument of 0 reestablishes the initial decimal point character, the period. In either case, the decimal
point in signed numeric pictures is returned to your program as part of the field value, unlike the decimal
point in fixed-decimal fields.

The other special treatment is that the entry of a sign (4 or —) or a decimal point in a field position
having an N picture causes the entire field to be checked for valid data. If the field already has a sign
or a decimal point, the character is rejected. Thus, any field having an entire signed numeric picture is
allowed only one sign and only one decimal point. (A mixed picture field could have more than one sign
or decimal point if the additional signs or decimal points were entered into positions that were not signed
numeric.)

Note that the Form Driver does not check the position of a sign in a field containing a signed numeric
picture; therefore, the sign can occur in the middle rather than at the beginning or the end of the field.
You can write afield completion UAR to enforce a particular position for the sign if your application
requires it.

2.3.2.5. Deleting a Character
• Default VT100 Key: DELETE

The Delete Character function normally deletes the character that is to the left of the cursor. The
function has different effects, however, in Insert and Overstrike modes.

In Insert mode, the Delete Character function deletes the character to the left of the cursor and closes
up the space. In a left-justified field, the value remains left justified; in a right-justified field, the value
remains right-justified.

In Overstrike mode, the Delete Character function moves the cursor one character to the left. The
function does not delete a character in Overstrike mode except when the character is the rightmost
character entered in a left justified field.

The Delete Character function is invalid when the cursor is on the leftmost character in a field.

2.3.2.6. Deleting a Field
• Default VT100 Key: LINEFEED

• Default LK201 Key: F13

31

Chapter 2. Form Driver Interaction

Regardless of the cursor’s position in a field, the Delete Field function deletes all characters in the field
except field-marker characters. The Form Driver then displays the assigned clear character for the field
and in the form work-space fills the field with the assigned fill character. When the function is comfort
a left-justified field, to the right of the rightmost character for a right-justified field, and on the decimal
point for a fixed-decimal field. In addition, the mode of character insertion is reset to the default mode
for the field (Overstrike or Insert).

The Delete Field function is always valid input in a field.

2.3.2.7. Moving the Cursor to the Right
• Default VT100 Key: -*• (Rightarrow)

The Cursor Right function normally moves the cursor one character to the right within a field. However,
the cursor always skips the field-marker characters, such as the hyphen (-) and the slash (/).

The Cursor Right function is invalid when the cursor is to the right of the rightmost character in a field-
that is, in the hanging cursor position.

2.3.2.8. Moving the Cursor to the Left
• Default VT100 Key: •*-(Leftarrow)

The Cursor Left function normally moves the cursor one character to the left within a field. However,
the cursor always skips the field-marker characters in a field.

The Cursor Left function is invalid when the cursor is on the leftmost character of a field.

2.3.3. Switching the Insertion Modes
• Default VT100 Keys: PF3 on the keypad for Overstrike PF1 and PF3, in sequence, on the keypad for

Insert

While theoperator istyping afield value, the Insert and Overstrike insertion modes control how the Form
Driver displays the characters. For most of the different types of fields that can be designed, the operator
can control the insertion mode by using the Insert and Overstrike functions.

When either the operator or your programfirst moves the cursor to afield, the Form Driver sets the
insertion mode according to the attributes of the field. Insert mode is the default for right-justified fields,
and Overstrike mode is the default for left-justified fields.

While the operator types in the Insert mode in a left-justified field, the Form Driver inserts each
character at the cursor’s position. The cursor, the cursor’s character, and all characters within the field
that are to the right of the cursor are shifted to the right. In a right-justified field, all characters to the left
of the cursor are shifted to the left, and the character is inserted to the left of the cursor.

In Overstrike mode, the Form Driver replaces the cursor’s character with the character typed and moves
the cursor to the right.

In fields that have mixed pictures, Insert mode is invalid. In fixed-decimal fields, the Insert and
Overstrike functions are ignored, because of the special data entry conventions that fixed-decimal fields
require. In all other instances, the Insert and Overstrike functions are valid.

2.3.4. Field Terminators
Each of the keys listed in Table 2.2 controls a field terminator. The Autotab field attribute also controls
a unique terminator. When an operator presses a key that terminates a field or completes afield that

32

Chapter 2. Form Driver Interaction

has the Autotab attribute, the Form Driver either processes the terminator itself and displays the effect
for the operator or returns a unique field terminator code to your program and leaves the processing
to the program. Table 2.2 also gives the processing and code that the Form Driver uses for each field
terminator key.

When you set the VT100 keypad to alternate keypad mode, the Form Driver also treats the keypad's
numeric keys, comma key (,), hyphen key (-), and decimal point key (.) as field terminators. The codes
for these alternate keypad mode terminators are returned to your program. In addition, keys not assigned
to the Form Driver that are in the following groups are terminators: control keys, all 2-key sequences
beginning with the Gold key — PF1 key by default — and all keys producing escape sequences, such as
the Uparrow key.

Table 2.2. Default Field Terminator Keys, Values, Symbols, and Effects

Default Key Value
(Decimal)

Symbol Description

ENTER or
RETURN
(Enter Form)

0 FDV$K_FT_NTR Terminates all entries in the form.
If the call being processed is a
GETAL and if required entries
are not complete, the Form Driver
refuses to accept the terminator,
and the operator remains in control
If required entries are complete,
the terminator is returned to the
program. There fore, the final
effect depends on the next call
that the program initiates for an
operator response.

If any other call is being
processed, only the requirements
for the current field must be
satisfied. In such an instance,
control is returned to the program.

1 FDV$K_FT_NXT Valid only when the current field
is not the last modifiable field in
the form. Moves the cursor to the
initial position of the next field.

Processed by the Form Driver for
the GETAL and GETSC calls and,
until an entry is typed or modified,
for the GETAF call. Returned to
the program for the GET call and,
after an entry is typed or modified,
the GETAF call.

TAB 1 (Next
Field)

6 FDV$K_FT_SNX Scroll forward to the next field.
The Next Field key or the Autotab
attribute in a full field terminated
input in the last field of a scrolled
line. Always returned to the
program.

33

Chapter 2. Form Driver Interaction

Default Key Value
(Decimal)

Symbol Description

BACKSPACE
or F12 (Previous
Field)

2 FDV$K_FTJPRV Valid only when the current field
is not the first modifiable field
in the form. Moves the cursor to
the initial position of the previous
field.

Processed by the Form Driver for
the GETAL and GETSC calls and,
until an entry is typed or modified,
for the GETAF call. Returned to
the program for the GET call and,
after an entry is typed or modified,
the GETAF call.

 7 FDV$K_FTJ3PR Scroll backward to the previous
field. The BACKSPACE key
terminated input in the first field in
a scrolled line. Always returned to
the program.

None (Autotab) 3 FDV$K_FT_ATB Valid only when the current field
is not the last modifiable field in
the form. Moves the cursor to the
initial position of the next field.

Processed by the Form Driver for
the GETAL and GETSC calls and,
until an entry is typed or modified,
for the GETAF call. Returned to
the program for the GET call and,
after an entry is typed or modified,
the GETAF call.

PF1 Uparrow
(Exit Scrolled
Area Backward)

4 FDV$K_FT_XBK Valid input only when the current
field is in a scrolled area. Moves
the cursor out of the scrolled
area to the initial position of the
previous field that the operator is
allowed to complete. Invalid if the
scrolled area has the first readable
field in the form.

PF1 Downarrow
5 (Exit Scrolled
Area Fordward)

5 FDV$K__FT_XFW Valid input only when the current
field is in a scrolled area. Moves
the cursor out of the scrolled area
to the initial position of the next
field that the operator is allowed
to complete. Invalid if the scrolled
area has the last readable field in
the form.

Downarrow
(Scroll Forward)

8 FDV$KJVTLSFW Valid input only when the current
field is in a scrolled area. The

34

Chapter 2. Form Driver Interaction

Default Key Value
(Decimal)

Symbol Description

scrolled area is scrolled up, and
the current line remains the same
physical line, with new data, or
the cursor moves down one line,
and that line becomes the new
current line. The cursor moves
to the initial position of the first
field that the operator is allowed
to complete in the current line.
When processed during a GETAF
call, acts like Exit Scrolled Area
Forward because GETAF operates
only on current scrolled line.

Uparrow (Scroll
Backward)

9 FDV$K_FT__SBK Valid input only when the current
field is in a scrolled area. The
scrolled area is scrolled down, and
the current line remains the same
physical line, with new data, or the
cursor moves up one line, and that
line becomes the new current line.
The cursor moves to the initial
position of the first field that the
operator is allowed to complete in
the current line. When processed
during a GETAF call, acts like Exit
Scrolled Area Backward because
GETAF operates only on current
scrolled line.

This section describes how your program can use the field terminators and Form Driver calls to guide an
operator from field to field in a form in any order.

1. Using the GETAL call

• The program initiates the GETAL call.

• The operator uses, at any time, the field terminator keys that move the cursor from field to field
nonscrolled fields only. The Form Driver processes these field terminators without returning
them to the program.

• When the operator presses the Enter Form key, the Form Driver checks for valid values for every
nonscrolled modifiable field in the form. If a field value is found to be invalid, the Form Driver
moves the cursor to the field, and the operator must enter an acceptable value.

When all values are acceptable, the Form Driver returns the field terminator code and the string
of field values to the program. If the operator presses any non-FMS function key, no checking
occurs, and the function key code and string of values are returned to the program.

• The program is then in control of what the operator does next.

2. Using a series of GET calls

35

Chapter 2. Form Driver Interaction

• The program initiates the GET call. The operator can type and change only the entry in the
specified field. The Form Driver checks for valid field data for any field but one terminated by a
function key or the Previous Field key.

• When the operator presses a field terminator key, the Form Driver returns the field terminator
code and the single field value to the program. The program then is in control of what the
operator does next. For example, on the basis of the field value or the field terminator, the
program can specify the same field or another field in the next GET call.

2.3.5. Field Terminators and Form Driver Calls
When your program is sues a call to get an operator response, the Form Driver allows the operator to
type an entry in a field or a terminator in response to a WAIT call. When the operator presses a field
terminator key that completes the call, the Form Driver passes the field response and the field terminator
code to the program and prohibits the operator from further typing. For a WAIT call, the Form Driver
accepts any terminator or function key and returns it to your program.

Only the following four Form Driver calls allow the operator to respond in a field:

GET To get the value and the field terminator for a specified field
GETAF To get the value for any one field that the operator chooses, as well

as the field name and the field terminator
GETAL To get all field values for the current form and the last field

terminator used
GETSC To get all the field values from the current line of a specified

scrolled area and the last field terminator used

For each of these four calls, the Form Driver checks all field terminators. For example, with the cursor in
the first field in a form, the Form Driver accepts the field terminator for the Next Field key but does not
accept the field terminator for the Previous Field key.

Table 2.3 lists the four calls and shows the field terminator keys that complete each call.

The GET call leaves control of responding to any field terminator to your program.

The GETAF call solicits input for one field but returns control to the program as soon as the operator
modifies a field and presses any field terminator key, or presses the Enter Form key or any non-FMS
terminator key CTRL key combination, function key, or Gold key sequence. (A non-FMS terminator can
always complete a call.)

The GETAL call leaves the Form Driver in control of responding to any field terminator except when the
operator presses the Enter Form key.

The GETSC call leaves the Form Driver in control within a line of a scrolled area until the operator
presses the Enter Form key or any function key that results in an exit from the scrolled line.

Table 2.3. GET-type Calls and Their Field Terminators

Call Field Terminator Keys that Complete the Call

GET Any valid field terminator key, the Autotab code, or any non-FMS
key

36

Chapter 2. Form Driver Interaction

Call Field Terminator Keys that Complete the Call

GETAF Enter Form key or any typed field entry followed by any valid field
terminator key, the Autotab code, or any non-FMS key

GETAL Enter Form key or any non-FMS key
GETSC Enter Form, Scroll Backward, Scroll Forward, Exit Scrolled Area

Backward, Exit Scrolled Area Forward, Next Field (or Autotab) out
of last field, Previous Field out of first field, or any non-FMS key

The following principles summarize Table 2.1 and Table 2.3:

1. The effects of the field terminator keys cannot be changed from what VSI has designed in the
following calls:

• GETAL

• GETSC

• GETAF before the operator makes a field entry

2. When the operator presses the default Enter Form key or, in response to the GET call, any field
terminator key, the program alone controls the effect that the operator sees.

For example, if you use the GETAL call in a program, the Next Field key advances the cursor from field
to field according to the order that is built into the form description. But if you use a series of GET calls
instead of the GETAL call, the program is passed the field terminator code for the Next Field key and
can react to it in any way you specify.

Your program can, for example, issue the PFT call. After the operator uses any field terminator that
returns control to the application program, the program can initiate the PFT call, making the Form
Driver follow the effects of any field terminator key. In the example of a GET call terminated by the
operator’s pressing of the Next Field key, the program can react by specifying the Previous Field key in
the PFT call. Then, the effect of the next GET call is to move the cursor back to the previous field in the
form.

Alternatively, your program can issue another GET call. In the example of a GET call terminated by a
Next Field function key, the program can react with another GET call that specifies by name the next
field that the operator is to complete, regardless of where the field appears on the operator’s screen.

2.3.6. Field Terminating Functions
The operator presses terminator keys to move to new fields or a new form. How the Form Driver
processes these functions depends on the current Form Driver call that is being executed. In many
instances, the Form Driver gives your program an opportunity to intercept and change the terminator
function that the operator has used. The Form Driver identifies each terminator function by means of a
unique terminator code.

Because the Form Driver can be executed from either a VT52-, a VT100-, or a VT200-compatible
terminal, a set of terms common to both devices is required to describe logical field terminating
functions. In addition, since your program can modify the association between keys and functions, the
field terminators are referred to by their functions rather than by the names of particular keys.

Table 2.1 describes the relationship between the logical function keys referred to in this manual and
their corresponding default physical keys on VT52-, VT100-, and VT200-compatible terminals, with an
LK201 keyboard.

37

Chapter 2. Form Driver Interaction

2.3.6.1. Signaling that the Form Is Complete
• Default VT100/VT200 Keys:

ENTER on the keypad

RETURN on the keyboard

• Terminator Code

Value: 0

Symbol: FDV$K_FT_NTR

The Enter Form key signals that the operator has completed the current form.

When a GETAL call is issued, the Form Driver does not accept the Enter Form key until all field values
satisfy their field requirements. A Response Required field must have a response of at least one character,
a Must Fill field must be either empty or filled, and all field completion UARs must return success
values.

For any other Form Driver call, control is returned to the program if the requirements for the current
field value are satisfied.

2.3.6.2. Moving the Cursor to the Next Field
• Default VT100/VT200 Key: TAB

• Terminator Code

Value: 1 (when terminating a field outside of a scrolled area)

Symbol: FDV$K_FT_NXT

Value: 6 (when terminating a field at the end of a scrolled line)

Symbol: FDV$K_FT_SNX

The Next Field function is valid only when the requirements for the current field value Response
Required, Must Fill, or field completion UARs are satisfied.

The effects of the Next Field function depend on the Form Driver call that is being executed.

For the GETAL and GETSC calls and for the GETAF call before the operator enters or changes a field
value, the Form Driver processes the function directly and moves the cursor to the initial position of the
next modifiable field.

For GETSC at the end of a scrolled line, control is returned to the program. For the GET call and for
the GETAF call after the operator enters or changes a field value, the Form Driver transfers control to
the program. The next call in your program determines what the operator sees. For example, after the
operator terminates a field with the Next Field key, your program might display a new form, calculate
and display a value in a display-only field, or issue another call for another operator response in a specific
field.

The function is invalid when the cursor is in the last nonscrolled modifiable field of the form.

38

Chapter 2. Form Driver Interaction

2.3.6.3. Moving the Cursor to the Previous Field

• Default VT100 Key: BACKSPACE

• Default LK201 Key: F12

• Terminator Code

Value: 3 (when terminating a field outside of a scrolled area)

Symbol: FDV$K_FT_PRV

Value: 7 (when terminating a field at the beginning of a scrolled line)

Symbol: FDV$K_FT_SPR

The effects of the Previous Field key depend on the Form Driver call that is being executed.

For the GETAL and GETSC calls and for the GETAF call before the operator enters or changes a field
value, the Form Driver processes the function directly and moves the cursor to the initial position of the
previous modifiable field.

For GETSC at the beginning of a scrolled line, control is returned to the program. For the GET call and
for the GETAF call after the operator enters or changes a field value, the Form Driver transfers control to
the program. The next call in your program determines what the operator sees.

The function is invalid when the cursor is in the first nonscrolled modifiable field of the form.

2.3.6.4. Scrolling Backward

• Default VT100/VT200 Key: f (Uparrow)

• Terminator Code

Value: 9

Symbol: FDV$K_FT_SBK

The Scroll Backward key is valid only when the cursor is in a field that is within a scrolled area. For
GETAF before the operator enters or changes a field value, the Form Driver processes the key directly
and moves the cursor to the initial position of the first modifiable field before the scrolled area, as if the
key were the Exit Scrolled Area Backward key.

The function transfers control to your program for GET and GETSC and for GETAF after the operator
enters or changes a field value. Therefore, you can choose to use the function in any way you want, and
the effects that the operator sees depend on the next calls that your program issues.

The Form Driver processes the Scroll Backward terminator when you specify its code in the PFT call.
The Form Driver either moves the cursor to the preceding data line within the scrolled area and places
the cursor at the initial position of the first modifiable field in that data line or scrolls the area backward
and places the cursor at the initial position of the first modifiable field in the current line.

When the cursor is on the top screen line of the scrolled area, or if the program specifies data to update
the top line, the Scroll Backward function scrolls the bottom scrolled line of information off the screen,

39

Chapter 2. Form Driver Interaction

scrolls a new line of information into the top line of the scrolled area, and moves the intermediate
scrolled lines downward. If the cursor is on the top line and if your program specifies values for the new
line of information, they are displayed; otherwise, the default field values are displayed.

The function is invalid when the cursor is in a field that is not within a scrolled area.

2.3.6.5. Scrolling Forward

• Default VT100/VT200 Key: | (Downarrow)

• Terminator Code

Value: 8

Symbol: FDV$K_FT_SFW

The Scroll Forward function is valid only when the cursor is in a field that is within a scrolled area. For
GETAF before the operator enters or changes a field value, the Form Driver processes the key directly
and moves the cursor to the initial position of the first modifiable field after the scrolled area, as if the
key were the Exit Scrolled Area Forward key.

The function transfers control to your program for GET and GETSC and for GETAF after the operator
enters or changes a field value. Therefore, you can choose to use the function in any way you want, and
the effects that the operator sees depend on the next calls that your program issues.

The Form Driver processes the Scroll Forward key when you specify its code in the PFT call. The Form
Driver either moves the cursor to the next data line within the scrolled area and places the cursor at the
initial position of the first modifiable field in that data line or scrolls the area forward and places the
cursor at the initial position of the first modifiable field in the current line.

When the cursor is on the bottom screen line of the scrolled area, or if the program specifies data to
update the bottom line, the Scroll Forward function scrolls the top scrolled line of information off
the screen, scrolls a new line of information into the bottom line of the scrolled area, and moves the
intermediate scrolled lines upward. If the cursor is on the bottom line and if your pro- gram specifies
values for the new line of information, they are displayed; otherwise, the default field values are
displayed.

The function is invalid when the cursor is in a field that is not within a scrolled area.

2.3.6.6. Exiting Scrolled Area Backward

• Default VT100/VT200 Key Sequence: PF1 followed by the Uparrow

• Terminator Code

Value: 4

Symbol: FDV$K_FT_XBK

The Exit Scrolled Area Backward key is valid only when the cursor is in a field that is within a scrolled
area. The function transfers control to your program unless your program is executing a GETAF call and
the operator has not yet entered or changed a field value. Therefore, you can usually use the function
in any way you want, and the effects that the operator sees depend on the next calls that your program
issues.

40

Chapter 2. Form Driver Interaction

The Form Driver processes the Exit Scrolled Area Backward key when you specify its code in the PFT
call, except when your program is executing a GETAF call. The Form Driver moves the cursor to the
initial position of the first modifiable field preceding the scrolled area.

The function is invalid when:

1. The cursor is in a field that is not within a scrolled area.

2. No modifiable field precedes the scrolled area.

2.3.6.7. Exiting Scrolled Area Forward
• Default VT100/VT200 Key Sequence: PF1 followed by the Downarrow

• Terminator Code

Value: 5

Symbol: FDV$K_FT_XFW

The Exit Scrolled Area Forward key is valid only when the cursor is in a field that is within a scrolled
area. The function transfers control to your program unless your program is executing a GETAF call and
the operator has not yet entered or changed a field value. Therefore, you can usually use the function
in any way you want, and the effects that the operator sees depend on the next calls that your program
issues.

The Form Driver processes the Exit Scrolled Area Forward key when you specify its code in the PFT
call, except when your program is executing a GETAF call. The Form Driver moves the cursor to the
initial position of the first modifiable field following the scrolled area.

The function is invalid when:

1. The cursor is in a field that is not within a scrolled area.

2. No modifiable field follows the scrolled area.

2.3.6.8. Illegal Terminator Interaction
If your program is sues the ILTRM call with an argument of 1, any terminator that is illegal in its current
context — for example, a Previous Field terminator in the first field of a form — is converted to a
special terminator code, treated as if it came from the pressing of a function key, and sent to a function
key UAR, if any. (See the description of the ILTRM case in Chapter 5.)

The terminators that are affected are: NXT, ATB, PRV, XBK, XFW, SFW, and SBK.

The first five of these are illegal if there is no next or previous field. The last four are illegal if the
current field is not in a scrolled area.

The illegal terminator symbols and values are:

FDV$K_FT_ILG_NXT= 11

FDV$K__FT_JLG_PRV = 12

FDV$K FT_JLG_ATB = 13

41

Chapter 2. Form Driver Interaction

FDV$K_FT_ILG_XBK = 14

FDV$K_FT_ILG_XFW = 15

FDV$K__FT_ILG_SFW = 16

FDV$K FT_ILG_SBK = 17

2.3.7. Alternate Keypad Mode Terminators
Normally, the numeric and punctuation keys on the VT100 and LK201 keypads produce the same
numbers and characters that the corresponding keyboard keys produce. Therefore, for many common
applications, the operator can enter numeric data by using the keypad rather than the keyboard.

For special applications, you can set the VT100/VT200 to alternate keypad mode by issuing the SPADA
call from your program or by entering the DCL command

$ SET TERMINAL/APPLICATION.KEYPAD

prior to running your application. You can then design the applications to use the numeric and
punctuation keys on the keypad as field terminator keys.

The Form Driver then passes the alternate keypad mode terminators to the program immediately,
regardless of whether the Response Required, Must Fill, and UAR requirements are satisfied for the
form.

Table 2.6 and Table 2.7 include lists of the keypad keys that are affected by the alternate keypad setting
and the code that is returned to your program for each key. Each character returned is the last character
in the escape sequence generated by the key in alternate keypad mode.

2.4. Key Functions and Key Codes
This section provides a fuller explanation of the roles of function keys, key functions, and key codes and
gives their values.

2.4.1. Form Driver Key Functions
Form Driver key functions are actions the Form Driver takes in response to special keystroke sequences.
Key functions, values for the DFKBD call, and default key sequences are given in Table 2.4.

Table 2.4. Key Functions

Function Name Description Default VT100 Key
sequence

DFKBD Value

FDV$K_KF_DLCHR Delete character DELETE 1
FDV$K_KF_CRSRT Move cursor right Rightarrow 2
FDV$K_JCF_CRSLF Move cursor left Leftarrow 3
FDV$K_KF_X>LFLD Delete Field LINEFEED 4
FDV$K_JCFJNS Set Insert mode PF1 PF3 5
FDV$K_JCF_OVR Set Overstrike mode PF3 6
FDV$K_KF_GOLD Start Gold sequence PF1 7

42

Chapter 2. Form Driver Interaction

Function Name Description Default VT100 Key
sequence

DFKBD Value

FDV$K_KF_RESET Reset Gold sequence PF1 DELETE 8
FDV$K_KF_RFRSH Refresh screen CTRL/R 9
FDV$K_KF_JHELP Help PF2 10
FDV$K_KF_NXT Next field TAB 11
FDV$K_KFJPRV Previous field BACKSPACE 12
FDV$iejCFJsrm Form or field

complete
RETURN

ENTER

13

FDV$K_KF_SBK Scroll backward Uparrow 14
FDV$K_KFJ3FW Scroll forward Downarrow 15
FDV$K_KF_XBK Exit scroll area

backward
PF1 Uparrow 16

FDV$K_KF_XFW Exit scroll area
forward

PF1 Downarrow 17

The first nine key functions are called the editing key functions; they are handled internally by the
Form Driver and are not returned to your program. Interpretation of the other key functions is context
dependent they may be illegal, interpreted by the Form Driver, or returned to the calling program as
terminators.

Terminators are values returned to the calling program to indicate how input requests were completed.
That is, terminators are key codes with a context.

Key functions in the proper context can give rise to a terminator code not the same as the key function
code. In addition, these key function terminators can be processed by the PFT call. Key codes that are
not key functions are returned as terminators to the calling program.

For the DFKBD call, FDV$K_KF_NONE is 0, and FDV$K_KFJDFLT is -1.

2.4.2. Form Driver Key Codes
Form Driver key codes are 16-bit encodings of certain key sequences. These sequences, listed in
Table 2.5, are control characters, legal ANSI escape sequences, and 2-stroke sequences beginning with
the Gold key.

The definitions include the keystroke combinations interpreted by the Form Driver. Each combination
has a coded value — an integer word associated with it. The key codes are used in two ways. The most
common is as the terminator to a field; the Form Driver returns terminators, and these are the codes for
those terminators. The other way is to use these values as the key codes passed to the DFKBD call.

All ASCII graphic characters are treated as data by the Form Driver and are not available for use as
terminators, except as the second key in a Gold sequence. The remaining keystroke combinations are
divided into three groups as follows:

1. Control keys, including the DELETE key

2. Escape sequences, including keypad application mode keys, cursor position keys, and program
function keys

43

Chapter 2. Form Driver Interaction

3. Gold sequences

2.4.2.1. Control Keys
Control characters — ASCII codes 0 to 31(decimal) — and the DELETE key — ASCII code
127(decimal) are not allowed as data in fields. A control character not defined as a key function is
returned to the calling program as a terminator.

Control characters can be assigned to key functions, and several are assigned as defaults. The Form
Driver key codes for control keys are listed in Table 2.5.

Note that the operating system may preempt the use of some control keys for example, CTRL/Y. Using
control keys other than those assigned as the defaults may lead to unexpected results.

In Table 2.5, the first column contains the ASCII name for the control key, and the second column
contains the ASCII value in decimal. Some of these codes for example, CR are produced by editing keys
on the keyboard. Others are available only by holding down the CTRL key and pressing another key.

The third column contains the name of the key the operator presses while holding down the CTRL key.
The fourth column contains the Form Driver key code the value to be used for the “defkbd” argument of
the DFKBD call, or the value of the key as a terminator.

Note that the low-order byte of the key code is the 7-bit ASCII code for this key. For those keys used as
part of the default Form Driver keyboard, the last column has the name of the associated key function.
Some control keys have special meanings in terminals and cannot be used as terminators. This restriction
is noted in the last column, although the absence of a note should not be taken as a guarantee that the
key is available.

Table 2.5. Key Codes for Control Characters

ASCn Name Value
(Decimal)

CTRL/Key Key Value (as terminator) Default Assignment

NUL 00 @ 1024 + 00
SOH 01 A 1024 + 01
STX 02 B 1024 + 02
ETX 03 C 1024 + 03
EOT 04 D 1024 + 04
ENQ 05 E 1024 + 05
ACK 06 F 1024 + 06
BEL 07 G 1024 + 07
BS 08 H 1024 + 08 FDV$KJKF_PRV
HT 09 I 1024 + 09 FDV$K_KF_NXT
LF 10 J 1024 + 10 FDV$K_KF_DLFLD
VT 11 K 1024 + 11
FF 12 L 1024 + 12
CR 13 M 1024 + 13 FDV$K_KF_NTR
SO 14 N 1024 + 14
SI 15 O 1024 + 15
DLE 16 P 1024 + 16

44

Chapter 2. Form Driver Interaction

ASCn Name Value
(Decimal)

CTRL/Key Key Value (as terminator) Default Assignment

DC1 17 Q 1024 + 17
DC2 18 R 1024 + 18 FDV$K_KF_RFRSH
DC3 19 S 1024 + 19
DC4 20 T 1024 + 20
NAK 21 U 1024 + 21
SYN 22 V 1024 + 22
ETB 23 W 1024 + 23 FDV$K_KF_RFRSH
CAN 24 X 1024 + 24
EM 25 Y 1024 + 25
SUB 26 Z 1024 + 26
ESC 27 [Not available
FS 28 \ 1024 + 28
GS 29] 1024 + 29
RS 30 A 1024 + 30
US 31 _ 1024 + 31
DEL 127 1024 + 127 FDV$K_KF_DLCHR

2.4.2.2. Escape Sequences
The second group of keys consists of the cursor control keys, the program function keys, and the
application keypad keys (Table 2.6). Note that the cursor control keys and program function keys 1 to 3
are all assigned default Form Driver key functions. The key codes for the default editing functions are
not returned to the program; instead, their functions are performed. For the terminator key functions, the
context selected terminator code corresponding to the key function is returned.

Table 2.6. Key Codes for Escape Sequences

Key Code Value Name of Key Default Key Function

FDV$K_JVR_UP 99 Uparrow FDV$K_JCF_SBK
FDV$K_AKJDOWN 100 Downarrow FDV$K_KF_SFW
FDV$K_jtfL_RIGHT 101 Rightarrow FDV$K_JCF_CRSRT
FDV$K_AR_LEFT 102 Leftarrow FDV$K_JCF_CRSLF
FDV$K_PF_1 103 VT100 PF1, VT52 Blue FDV$K_KF_GOLD
FDV$K_PF_2 104 VT100 PF2,VT52 Red FDV$K_JCF_HELP
FDV$K_PF_3 105 VT100 PF3, VT52 Gray FDV$K_KF_OVR
FDV$K_PF_4 106 VT100 PF4
FDV$K_KP_NTR 107 Alternate keypad

ENTER
FDV$K_KF_NTR

FDV$K_KP_COM 108 Alternate keypad ,
FDV$K_KP_HYP 109 Alternate keypad -
FDV$K_KP_REP 110 Alternate keypad .

45

Chapter 2. Form Driver Interaction

Key Code Value Name of Key Default Key Function

FDV$K_KP_0 112 Alternate keypad 0
FDV$K_KP_1 113 Alternate keypad 1
FDV$K_KP_2 114 Alternate keypad 2
FDV$K_KP_3 115 Alternate keypad 3
FDV$K_KP_4 116 Alternate keypad 4
FDV$K_KP_5 117 Alternate keypad 5
FDV$K_KP_6 118 Alternate keypad 6
FDV$K_KP_7 119 Alternate keypad 7
FDV$K_KP_8 120 Alternate keypad 8
FDV$K_KP_9 121 Alternate keypad 9
FDV$K_FK_E1 33 LK201 E1
FDV$K_FK_E2 34 LK201 E2
FDV$K_FK_E3 35 LK201 E3
FDV$K_FK_E4 36 LK201 E4
FDV$K_FK_E5 37 LK201 E5
FDV$K_FK_E6 38 LK201 E6
FDV$K_FK_F6 49 LK201 F6
FDV$K_FK_F7 50 LK201 F7
FDV$K_FK_F8 51 LK201 F8
FDV$K_FK_F9 52 LK201 F9
FDV$K_FK_F10 53 LK201 F10
FDV$K_FK_F11 55 LK201 F11
FDV$K_FK_F12 56 LK201 F12 FDV$K_KF_PRV
FDV$KJFLF13 57 LK201 F13 FDV$K_KF_DLFLD
FDV$K_FK_F14 58 LK201 F14
FDV$K_FK_HELP 60 LK201 HELP FDV$K_KF_HELP
FDV$K_FK_DO 61 LK201 DO
FDV$K_FKJF17 63 LK201 F17
FDV$K_FK_F18 64 LK201 F18
FDV$K_FKJ19 65 LK201 F19
FDV$K_FK_F20 66 LK201 F20

2.4.2.3. Gold Sequences
The last group consists of sequences starting with the Gold key. Any key not preempted by the terminal
can follow the Gold key. Pressing a Gold key more than once is equivalent to pressing it once. The
operator can cancel a Gold key sequence by entering the FDV$K_KF_RESET is equivalent to the null
sequence.

The key or escape sequence following the Gold key determines the key code as listed in Table 2.7. The
sequences expected to be used most often are given names.

46

Chapter 2. Form Driver Interaction

Table 2.7. Key Codes for Gold Escape Sequences

Key Code Value Key Sequence Default Key Function

FDV$K_GAR_UP 227 Gold Uparrow FDV$K_KF_XBK
FDV$K_GAR_DOWN 228 Gold Downarrow FDV$K_KF_XFW
FDV$K_GAR_RIGHT 229 Gold Rightarrow
FDV$K_GAR_LEFT 230 Gold Leftarrow
FDV$K_GPF_1 231 Gold PF1 (VT100)

Gold Blue (VT52)

FDV$K_KF_GOLD

FDV$K_GPF_2 232 Gold PF2 (VT100)

Gold Red (VT52)

FDV$KJKF_HELP

FDV$K_GPF_3 233 Gold PF3 (VT100)

Gold Gray (VT52)

FDV$K_KF_JNS

FDV$K_GPF_4 234 Gold PF4
FDV$K_GKP_NTR 235 Gold Alt keypad ENTER
FDV$K_GKP_COM 236 Gold Alt keypad ,
FDV$K_GKP_HYP 237 Gold Alt keypad -
FDV$KGKP_PER 238 Gold Alt keypad .
FDV$K_GKP_0 240 Gold Alt keypad 0
FDV$K_GKP_1 241 Gold Alt keypad 1
FDV$K_GKP_2 424 Gold Alt keypad 2
FDV$K_GKP_3 243 Gold Alt keypad 3
FDV$K_GKP_4 244 Gold Alt keypad 4
FDV$K_GKP_5 245 Gold Alt keypad 5
FDV$K_GKP_6 246 Gold Alt keypad 6
FDV$K_GKP_7 247 Gold Alt keypad 7
FDV$K_GKP_8 248 Gold Alt keypad 8
FDV$K_GKP_9 249 Gold Alt keypad 9
FDV$K_GFK_E1 161 LK 201 GOLD E1
FDV$K_GFK_E2 162 LK 201 GOLD E2
FDV$K_GFK_E3 163 LK 201 GOLD E3
FDV$K_GFK_E4 164 LK 201 GOLD E4
FDV$K_GFK_E5 165 LK 201 GOLD E5
FDV$K_GFK_£6 166 LK 201 GOLD E6
FDV$K_GFK_F6 177 LK 201 GOLD F6
FDV$K_GFK_F7 178 LK 201 GOLD F7
FDV$K_GFK_J'8 179 LK 201 GOLD F8
FDV$K_GFK_F9 180 LK 201 GOLD F9
FDV$K_GFK_F10 181 LK 201 GOLD F10

47

Chapter 2. Form Driver Interaction

Key Code Value Key Sequence Default Key Function

FDV$K_GFK_F11 183 LK 201 GOLD F11
FDV$K_GFK_F12 184 LK 201 GOLD F12
FDV$K_GFK_F13 185 LK 201 GOLD F13
FDV$K_GFK_F14 186 LK 201 GOLD F14
FDV$K_GFK_HELP 188 LK 201 HELP FDV$K_KF_HELP
FDV$K_GFK_DO 189 LK201 DO
FDV$K_FK_F17 191 LK201 GOLD F17
FDV$K_GFK_F18 192 LK201 GOLD F18
FDV$K_GFK_F19 193 LK201 GOLD F19
FDV$K_GFK_F20 194 LK201 GOLD F20

Note that the value for a Gold escape sequence is 128 plus the value for the escape sequence.

No symbols are defined for normal graphic or control keys preceded by the FDV$K_KF_GOLD key
function because there are so many of them. Table 2.8 gives the key codes for these key sequences.

Table 2.8. Key Codes for Gold Sequence

Key ASCII Value (Decimal) Gold Key Default Assignment

NUL 00 256 + 00
SOH 01 256 + 01
STX 02 256 + 02
ETX 03 256 + 03
EOT 04 256 + 04
ENQ 05 256 + 05
ACK 06 256 + 06
BEL 07 256 + 07
BS 08 256 + 08
HT 09 256 + 09
LF 10 256 + 10
VT 11 256 + 11
FF 12 256 + 12
CR 13 256 + 13
SO 14 256 + 14
SI 15 256 + 15
DLE 16 256 + 16
DC1 17 256 + 17
DC2 18 256 + 18
DC3 19 256 + 19
DC4 20 256 + 20
NAK 21 256 + 21

48

Chapter 2. Form Driver Interaction

Key ASCII Value (Decimal) Gold Key Default Assignment

SYN 22 256 + 22
ETB 23 256 + 23
CAN 24 256 + 24
EM 25 256 + 25
SUB 26 256 + 26
ESC 27 Not available
FS 28 256 + 28
GS 29 256 + 29
RS 30 256 + 30
US 31 256 + 31
SP 32 256 + 32
. 33 256 + 33
" 34 256 + 34
35 256 + 35
$ 36 256 + 36
% 37 256 + 37
& 38 256 + 38
' 39 256 + 39
(40 256 + 40
) 41 256 + 41
* 42 256 + 42
+ 43 256 + 43
, 44 256 + 44
- 45 256 + 45
. 46 256 + 46
/ 47 256 + 47
0 48 256 + 48
1 49 256 + 49
2 50 256 + 50
3 51 256 + 51
4 52 256 + 52
5 53 256 + 53
6 54 256 + 54
7 55 256 + 55
8 56 256 + 56
9 57 256 + 57
: 58 256 + 58
; 59 256 + 59

49

Chapter 2. Form Driver Interaction

Key ASCII Value (Decimal) Gold Key Default Assignment

< 60 256 + 60
= 61 256 + 61
> 63 256 + 62
? 63 256 + 63
@ 64 256 + 64
A 65 256 + 65
B 66 256 + 66
C 67 256 + 67
D 68 256 + 68
E 69 256 + 69
F 70 256 + 70
G 71 256 + 71
H 72 256 + 72
I 73 256 + 73
J 74 256 + 74
K 75 256 + 75
L 76 256 + 76
M 77 256 + 77
N 78 256 + 78
O 79 256 + 79
P 80 256 + 80
Q 81 256 + 81
R 82 256 + 82
S 83 256 + 83
T 84 256 + 84
U 85 256 + 85
V 86 256 + 86
W 87 256 + 87
X 88 256 + 88
Y 89 256 + 89
Z 90 256 + 90
[91 256 + 91
\ 92 256 + 92
] 93 256 + 93
A 94 256 + 94
_ 95 256 + 95
' 96 256 + 96
a 97 256 + 97

50

Chapter 2. Form Driver Interaction

Key ASCII Value (Decimal) Gold Key Default Assignment

b 98 256 + 98
c 99 256 + 99
d 100 256 + 100
e 101 256 + 101
f 102 256 + 102
g 103 256 + 103
h 104 256 + 104
i 105 256 + 105
j 106 256 + 106
k 107 256 + 107
l 108 256 + 108
m 109 256 + 109
n 110 256 + 110
o 111 256 + 111
p 112 256 + 112
q 113 256 + 113
r 114 256 + 114
s 115 256 + 115
t 116 256 + 116
u 117 256 + 117
v 118 256 + 118
w 119 256 + 119
x 120 256 + 120
y 121 256 + 121
z 122 256 + 122
{ 123 256 + 123
| 124 256 + 124
} 125 256 + 125
~ 126 256 + 126
DEL 127 256 + 127 FDV$K_KF_EESET

Note

The key sequences listed below are reserved for future use by FMS. FMS may use them as default
assignments in future versions. If you use any of them now, you may have to alter your programs later.

• Gold PF2

• Gold TAB

• Gold BACKSPACE

51

Chapter 2. Form Driver Interaction

• Gold CTRL/R

• Gold CTRL/W

• Gold LINEFEED

• Gold RETURN

• Gold Rightarrow

• Gold Leftarrow

In addition, on the LK201 terminal keyboard, the following key sequences are reserved for future use by
FMS:

• E1

• E2

• E3

• E4

• E5

• E6

• Gold E1

• Gold E2

• Gold E3

• Gold E4

• Gold E5

• Gold E6

• Gold TAB

• Gold F12

• Gold F13

• * Gold HELP

2.4.3. Defining Keys
The following example shows how to use the DFKBD call to switch the functions of the RETURN and
the TAB keys. After this call is executed, RETURN or numeric keypad ENTER will mean Next Field
(FDV$K_FT_NXT), and TAB will mean Enter Form (FDV$K_FT_NTR). The example is given in
FORTRAN.

INTEGER TCA (3)
INTEGER*2 KEYTABLE (4) / FDV$K_KF_NTR . 1033.
1 FD0*K_KF_NXT. 1037 /
CALL FDV$ATERM(ZDESCR(TCA).12.1)

52

Chapter 2. Form Driver Interaction

CALL FDO$DFKBD(ZDESCR(KEYTABLE).2)

2.5. Checking Call Status
To improve the effectiveness of VSI OpenVMS FMS applications and to reduce the time required for
you to produce fully debugged applications, the Form Driver maintains the completion status of each call
and provides five ways for you to obtain the status:

• Issuing the STAT call, which returns the Form Driver status code for the most recent call that was
processed. The STAT call also returns the RMS system error code if a call fails because of an error
in opening or reading a form library file or if other system problems are associated with terminal I/O.
The status is returned as an integer longword as specified in an argument of the call.

• Issuing the SSRV call to establish either one or two global variables in your program to receive the
FMS status after every FMS call.

• Issuing any call as a function returning a value. The returned status argument conforms to the VMS
calling standard. The status is returned as an integer longword. Each language has a different way of
obtaining the VMS return status immediately from a call. For example, in FORTRAN, the subroutine
call is:

CALL FDV*STAT(JSTAT JSTAT 2)

The function value return call is:

JSTAT=FDU*GET(FID,FUAL>TERM)

• Using the Form Driver Debug mode for displaying explicit messages about the status of erroneous
calls for added support while an FMS application is being developed.

• Using the OpenVMS message facility with FMS. You can signal FMS errors from your program by
using the standard VMS message facility. (See Table 2.9 for a list of the VSI OpenVMS FMS status
returns.) You do this by using the LIB$SIGNAL call.

When a VMS status is returned, it can be signaled as shown below:

STATUS=FDY*LOPEN ('BADFILE')
CALL LIB$SIGNAL (XYAL (STATUS))

Table 2.9 lists and describes the FMS status codes and the corresponding VMS status codes, which are
global symbols. For FMS applications, the STAT call returns one of the listed numeric codes in the first
of its two status arguments.

Two of the status conditions listed in Table 2.9 indicate an error in trying to open or read a form library
file —code values FDV$_IOL and FDV$_IOR. In these two instances, the STAT call also returns, in the
second status argument RMS system error codes that help to define the exact cause of the problem. For
RMS errors, see the OpenVMS System Messages and Recovery Procedures Reference Manual.

In addition, error code FDV$_SYS indicates that the Form Driver has encountered an unexpected error
in dealing with the operating system —terminal services, usually. The RMS code can be accessed to find
the error status returned to the Form Driver, which may identify the problem —for example, network
link lost.

Note that the status value FDV$_DLN —data specified too long for output — is reported only in Debug
mode and is not returned to your program. Regardless of Form Driver support for Debug mode, the
specified data is truncated when displayed, and the Form Driver completes the call in the normal way.

53

Chapter 2. Form Driver Interaction

Table 2.9. FMS and VMS Status Codes

VMS Status Code FMS Status Code Meaning

FDV$J3UC 1 Successful completion of the call.
FDV$_INC 2 Form is incomplete after a PFT call.
FDV$JVIOD 3 Input successful. Field value in “fldval”

has been modified by the operator.
FDV$_JMP -2 Length specified in “wksp” descriptor is

not large enough.
FDV$_FSP -3 File specification in a LOPEN call was

invalid.
FDV$_IOL -4 Form Driver encountered an error while

reading the form library. (It reads the
form library to verify that the file is a
form library file.)

FDV$_FLB -5 Specified file was not a form library.
FDV$_ICH -6 Channel specified was either in use or

invalid.
FDV$_FCH -7 Form was not resident, and when the

Form Driver attempted to search for
it in a form library, the current library
channel was not open.

FDV$_FRM -8 Form description is invalid.
FDV$_FNM -9 Binary form description could not be

found either in the form library, or in the
list of memory-resident forms.

FDV$_LIN -10 Line or portion of form lies outside the
visible screen range.

FDV$_FLD -11 Field does not exist, or index value is
invalid for field.

FDV$_NOF -12 Form contains no fields.
FDV$_DSP -13 Form contains only Display Only fields,

or the specified field is Display Only.
FDV$_NSC -14 Field named is not a field in a scrolled

area.
FDV$_DNM -15 No Named Data is associated with the

specified name or index.
FDV$_DLN -16 Value argument supplied more data

than was required, and some data was
discarded.

FDV$_UTR -17 Field terminator code is invalid.
FDV$JOR -18 I/O error occurred while Form Driver

was reading in a form from the form
library. The I/O error code is recorded
in the current state. You can obtain it by
issuing the STAT call.

54

Chapter 2. Form Driver Interaction

VMS Status Code FMS Status Code Meaning

FDV$JFN -19 Field terminator code specified in the
PFT call cannot be processed in the
context indicated.

FDV$^ARG -20 Incorrect number of arguments for call.
FDV$_ENI -21 No workspace is defined.
FDV$_STR -22 Value being returned is too large for the

variable allocated for it.
FDV$JVM -23 Not enough virtual memory could be

allocated (either for the TCA or for the
workspace).

FDV$JVM -24 An error occurred in freeing virtual
memory allocated to the application.

FDV$JTT -25 Invalid terminal type.
FDV$JTCA -26 Terminal Control Area is invalid or

undefined.
FDV$_STA -27 Size of specified TCA is too small.
FDV$_WID -28 Form being displayed does not fit on the

screen (132-column form on a VT52).
FDV$_NFL -29 No form loaded into workspace.
FDV$_JBF -30 Area not large enough to hold the form.
FDV$_NDS -31 Form is marked as being not displayed,

so no input is possible.
FDV$_UDP -33 UAR depth was exceeded.
FDV$_UAR -34 UAE returned an illegal code.
FDV$_UNF -35 UAR was specified, but not found.
FDV$_CAN -39 Call was terminated by a CANCL call.
FDV$_KIF -40 Illegal key function was specified in

DFKBD.
FDV$_JCEX -41 Too many key codes were defined for

some key function in DFKBD.
FDV$_KT -42 Key code was given two key functions in

DFKBD.
FDV$_KIL -43 Illegal key code was given in DFKBD;

that is, the key was not on the list in this
chapter.

FDV$_TMO -44 Operator took longer to respond than
was allowed by the timeout value
associated with the current terminal, for
a GET-type call or WAIT call.

FDV$_LLI -45 The Form Driver’s internal buffer was
not large enough to store the line image
requested (in a RETFL call).The line
image returned is truncated.

55

Chapter 2. Form Driver Interaction

VMS Status Code FMS Status Code Meaning

FDV$_VAL -47 The value of an argument is outside the
allowed range.

FDV$JFU -48 Illegal function while in currently active
UAR.

FDV$_SYS -49 Form Driver encountered system error
response.

FDV$_INA -50 Request information not available.

2.5.1. Debug Mode Support for Application Program
Development
To use the Debug mode of the Form Driver, you need to make the following logical assignment at DCL
level:

$ ASSIGN YES FDV $DEBUG

You can then run your application program without having to do any relinking. In Debug mode, the
Form Driver reports explicit messages for status conditions of erroneous Form Driver calls. The Form
Driver in Debug mode is useful during VSI OpenVMS FMS program development.

You can assign and deassign the FDV$DEBUG logical name during execution of your program, since
the Form Driver checks the name upon each occurrence of an error.

Once you have debugged the program, you should deassign the Form Driver Debug mode. When your
program is running, the operators do not see the Debug mode messages provided explicitly for program
debug. See Section 2.5.2 for signaling the operator.

In Debug mode, the Form Driver signals you by ringing the terminal bell or reversing the screen video
characteristics and displays a message on the bottom line of the screen for any of the error status
conditions listed in Table 2.9. The VSI FMS Utilities Reference Manual lists the messages.

After displaying a Debug mode message, the Form Driver places the cursor in the lower right corner of
the screen until you press the ENTER or the RETURN key, regardless of how you may have redefined
any keys. This process prevents your program from clearing or overwriting a Debug mode mes sage
before you have seen it. When you press the ENTER or the RETURN key, the bottom line is cleared,
and your program resumes. It can then issue the PUTL call to display program-related messages on the
bottom screen line.

The error code is returned to the calling program.

Because the Form Driver explicitly signals all call errors when Debug mode is in effect, you can use the
Form Driver to debug your FMS program. Therefore, after debugging a program, you may choose not
to test for certain errors that should not occur in a fully debugged application such errors as an incorrect
field name or form name or an incorrect number of arguments in a call. The safest procedure is, of
course, to check status after every Form Driver call.

Even in a finished FMS program, you should check, at a minimum, I/O errors after calls that:

• Open and close a form library file

• Display a form and must therefore read a form library file

56

Chapter 2. Form Driver Interaction

• Solicit operator responses

Note

FMS does not interact with the VSI OpenVMS Debugger.

2.5.2. Signaling the Terminal Operator About Program
Errors
Your program can signal an operator about a problem by issuing the PUTL call. Here is an example of
an I/O error being reported. The following illustration shows one way you can use the PUTL call with
the other status and error-checking features:

1. The program encounters an I/O error while trying to display a form.

2. The program detects the error by checking for a status of <0, using the STAT call. The call returns
the error code —18 (FDV$_IOR) for an error in reading a form library file.

3. The program uses the status code as an index into a list of program-specific messages.

4. The program issues the PUTL call to display the message on the bottom screen line and a SIGOP
call to get the operator’s attention. The program then immediately issues the WAIT call to ensure
that the message remains visible until the operator sees it and responds to it.

The calls are described in full in Chapter 5.

In BASIC:

100 CALL FDU$CDISP (FQRMNAME)
110 CALL FDV$STAT (FMSSTATUS)
200 IF FMSSTATUS < 0
THEN
CALL FDV$PUTL ('FORM ' + FORMNAME + ' NOT FOUND ')
CALL FDU$SIGOP
CALL FDU$WAIT

2.6. AST Considerations
The FMS Form Driver is optionally AST reentrant, but you must follow certain rules or risk severe
problems, which the Form Driver cannot detect.

1. You must not attach the terminal (ATERM) with No AST support (default is AST support).

2. You can send output to the current form from an AST with no restrictions, although such output is
more expensive in both time and characters sent to the screen. The reason for the added expense
is that the Form Driver must always save and restore the video attributes and cursor position of the
interrupted program.

3. You must not request input from an AST program.

4. You must not detach or switch a terminal or workspace or change a work-space involved in any
current operation.

There may be additional restrictions on the use of FMS from ASTs, depending on the version of the
operating system in use.

57

Chapter 2. Form Driver Interaction

58

Chapter 3. Programming Techniques
and Examples
Programming techniques are ways a programmer can exploit the capabilities of software inventively. In a
new or greatly changed product, such ways are not likely to be immediately apparent to a new user.

Typically, techniques evolve naturally through normal use the user combines facilities in a certain way
out of a need to accomplish a specific task, for example; or realizes that a facility meant to do one task is
just the thing to solve some other kind of problem.

Descriptions of such techniques make up this chapter, along with programming examples. The following
routines, written in various languages, are taken from the FMS Version 2 Sample Application Program
(SAMP). The routines illustrate the value of using such capabilities as Named Data and the various kinds
of user action routines (UARs). Their value is in preserving as much as possible, the independence of
the application program that is, Named Data is associated with the form, and UARs are called from the
Form Driver.

3.1. Scrolling
Because the Form Driver can store field values only for the fields that are on the terminal screen, your
program must maintain all scrolled area field values that are not displayed; that is, all the values that are
“above” and “below” each scrolled area. When your program scrolls the lines of a scrolled area upward
or downward, the program must collect the lines of values scrolled out of the area, and display any line
of values scrolled into the area. (See Chapter 2 for some discussion of this topic.)

3.1.1. Controlling Scrolled Areas
13000 DEF FN.VUEREG
13001 !+
13005 ! Subroutine OUEREG
13010 ! View the check register and scroll through it *
13015 ! Also display totals for current session.
13030 !
13035 ! Put UP resister form *
13040 CALL FDU$CDISP ('REGIST') \ C=FN.SROCHK
13072 !+
13075 ! Get number of lines in scroll area from form Named Data (item
 1).
13080 !-
13085 NSCROL* = ' ' i Pre-extend strins variable before call (BASIC
 only)*
13090 CALL FDU*RETDI (1Z* NSCROL*) \ C=FN*SRVCHK
13095 NSCROLZ = VAL (NSCROL*)
13100 !+
13105 ! Put lines from check register array into scrolled area*
13110 ! The window is initially from item 1 UP to item
13115 ! min(NSCROL* #LASTREGNUMZ), that is * UP to the size of the
 scrolled
13120 ! area or the size of the resister * whichever is less * Assume
 there
13125 ! is at least one line (the initial deposit)*
13130 ! -

59

Chapter 3. Programming Techniques and Examples

13135 MINW 1ND0WZ = 1
13140 CALL FDU*PUTSC < 'NUMBER'* REGARRAY*(1)) ! First line
13145 CURLINEZ = 1 \ Res item cursor is on
13150 WHILE (CURLINEZ < LASTREGNUMZ AND CURLINEZ < NSCROLZ)
13155 CURLINEZ = CURLINEZ + 1
13160 CALL FDU*PFT < FDY*K^FT_SFW * 'NUMBER')
13165 CALL FDV*PUTSC('NUMBER'* REGARRAY*(CURLINEZ))
13170 NEXT
13171 MAXWINDOWZ = CURLINEZ
13175 !+
13180 ! Get input from fake field of scrolled line and do what it says:
13185 ! Kpd . or RETURN/ENTER => return to menu
13190 ! UPARROW or TAB => scroll forward
13192 ! DOWNARROW or BACKSPACE => scroll backward
13195 ! all others => isnore
13200 ! Note that there is no form function Key UAR so this routine
13205 ! handles all terminators itself (by i*norin$ illegal ones).
13210 !-
13215 CALL FDV*GET < FAKE** TERMINATORZ * 'FAKE')
13220 WHILE NOT (TERMINATORZ FDV*K_FT_NTR OR TERMINATORZ =
 FDU*K_KP_PER)
13225 IF TERMINATORZ = FDV*K_FT_SFW OR TERMINATORZ = FDU*K_FT_SNX
 THEN C=FN*SCRFWD
13235 IF TERMINATORZ = FDV*K_FT_SBK OR TERMINATORZ = FDU*K_FT_SPR
 THEN C=FN*SCRBAK
13245 CALL FDV*GET(FAKE* * TERMINATORZ * 'FAKE')
13250 NEXT
13255 FNEND

3.1.2. Scrolling Forward
See also VUEREG routine at line 13000.

13500 DEF FN.SCRFWD
13501 !+
13505 ! Subroutine SCRFWO –- Scroll forward *
13510 ! CURLINEZ is the line in the register that the cursor is on.
13512 ! MINWINDOWZ and MAXWINDOWZ delimit the part of the register
13513 ! currently displayed in the scrolled area
13515 !-
13520
13525 !+
13530 ! If cursor is at the end of the register * report * and return
13535 !-
13540 IF CURLINEZ = LASTREGNUMZ THEN
 CALL FDU$PUTL('Last line of register')
 FNEXIT
13545 !+
13550 ! If cursor not at the last line of a window * Just moue down
13555 ! If cursor is at the last line of a window *
13560 ! move window forward one line *
13565 ! write the new last line to the last line of the scrolled
 area
13567 ! Move current line pointer forward
13570 !-
13580 IF CURLINEZ. <> MAXWINDOWZ THEN
 CALL FDU*PFT < FDV$K_FT_SFW» 'NUMBER')
 ELSE

60

Chapter 3. Programming Techniques and Examples

 MINWINDOWZ = MINWINDOWZ + 1
 MAXWINDOWZ = MAXWINDOWZ + 1
 CALL FDO*PFT < FDV$K_FT_SFW * 'NUMBER'* REGARRAY$<
 MAXWINDOWZ))
13585 CURLINEZ = CURLINEZ + 1
13590 FNEND
13698

3.1.3. Scrolling Backward
See also VUEREG routine at line 13000.

13700 DEF FN.SCRBAK
13701 !+
13705 ! Subroutine SCRBAK –- Scroll bacKward
13710 ! CURLINEZ is the line in the register that the cursor is on
 *
13712 ! MINWINDOWZ and MAXWINDOWZ delimit the part of the register
13713 ! currently displayed in the scrolled area
13715 !-
13720
13725 !+
13730 ! If the cursor is at the beginning of the register * report *
 and return
13735 !-
13740 IF CURLINEZ = 1 THEN
 CALL FDV$PUTL('First line of register')
 FNEXIT
13745 !+
13750 ! If cursor not at first line of the window * Just move UP
13755 ! If cursor is at first line of the window *
13760 ! move window back one line *
13765 ! write the new first line to the first line of the scrolled
 area
13767 ! Moue current line pointer back
13770 !-
13780 IF CURLINEZ < > MINWINDOWZ THEN
 CALL FDU$PFT(FDY$K_FT_SBK * 'NUMBER')
 ELSE
 MINWINDOWZ = MINWINDOWZ - 1
 MAXWINDOWZ = MAXWINDOWZ - 1
 CALL FDU$PFT(FDO$K_FT_SBK, 'NUMBER'* REGARRAY
$(MINWINDOWZ))
13785 CURLINEZ = CURLINEZ - 1
13790 FNEND

3.2. Validating a One-Character Field- Using a
UAR
Purpose
To check single-character fields for valid data input.

61

Chapter 3. Programming Techniques and Examples

Description
Frequently when using forms as menus to select one of several options, a single-character field is used
to enter a letter or number indicating the desired option. Although it is possible to have the application
program test each of these fields separately to ensure that a valid choice has been entered, it is much
more convenient to use a single UAR for this purpose.

Whenever a character is typed in a single-character field, the character is immediately checked against a
list of permissible characters, and the operator is not allowed to proceed unless the character entered is
found in the list.

Programming Technique
For you to use this technique for validating a single-character field, the associated data string of afield
completion UAR must be set to contain a string of all the valid character responses. If space is a valid
response, it must be embedded in the string, since trailing spaces are ignored.

When the data validation UAR is activated, it uses the RETCX call (Return Current Context) to
recover the associated data string, and the RETFN and RET calls to get the field name and field value,
respectively.

It then searches the associated data character string for the field value. If the value is found, the UAR
returns successfully, allowing a GETAL in progress to proceed normally to the next field. If the value is
not found, the UAR returns validation failure, which causes the Form Driver to signal the operator and
stay in the current field.

This technique is also used throughout the Form Editor for validating the selections for form and field
attributes.

Example
16010 !+
16015 ! VAL1D1
16017 ! UAR for field validation of any one character field * The
16020 ! UAR associated data has in it the lesal characters allowed
 *
16025 ! except that blanK is not all owed unless it appears before
16030 ! the first trailing blanK * For example an assoc * value
 strinS
16035 ! 'air' implies that only the letters a * HI and r are
 allowed *
16040 ! A strins 'aqr' means that blank is acceptable in addition
16045 ! to a * and r * Note that this routine is case sensitive
16050 ! (that is * it checks for correct case) * You can set around
16055 ! case sensitivity by usins the force-uppercase field
 attribute *
16060 ! and puttins only capitals into the UAR associated value
16065 ! strins *
16070 !
16075 ! This routine can be used with any form and field since
16060 ! it determines the context for itself *
16095 !-
16088 !+
16083 DECLARE INTEGER CONSTANT &

62

Chapter 3. Programming Techniques and Examples

 FDV)K_UVAI__SUC = 1000 » (Field completion success &
 FDV)K_UVAI__FAIL =1001 (Field completion failure
16090 ! Pre-extend the strinss into which FMS will return values
16095 !-
16096 FRMNAM) = SPACE) (31)
16097 UARVAL) = SPACE) (80)
16098 FLDNAME) = SPACE) (31)
16099 FVALUE) = SPACE) (1)
16105
16110 !+
16120 ! Retrieve context: we will ignore TCA address * WKSP address *
 FRMNAM) *
16125 ! CURPOS * FLDTRM * INSDVR * and HELPNUM using only UARVAL) »
 and
16127 ! only the initial * non-blank characters of it.
16130 ! Retrieve field name and index *
16135 ! Retrieve field value *
16140 CALL FDVSRETCXt TCAX » WKSP* » FRMNAM) * UARVAL) * CURPOSX .
 FLDTRMZ » INSOVRX , HELPNUMZ)
16142 UARVAL) = TRM) (UARVAL))
16145 CALL FDVSRETFNC FLDNAME) * FINDEXX)
16150 CALL FDV)RET (FVALUE) * FLDNAME) * FINDEXX)
16160
16165 !+
16170 ! To be valid * FVALUE) must occur in the strinS UARVAL)
16175 !-
16165 IF POS (UARVAL) * FVALUE) * 1) > 0 THEN
 VALID1 = FDV)K_UVAI__SUC \ Suecess
 ELSE
 CALL FDV)PUTL < 'Illegal value' >
 VAL1D1 = FDV)K_UVAI__FAIL
16210 FUNCTIONEND

3.3. Producing Hard Copy - Using Named Data
Purpose
To produce a printable image of a form or portion of a form.

Description
A common application requirement is to produce a printable copy of a form on the screen.
Complications arise if only part of the form is to be printed or if only one form out of a set of multiple
forms on the screen is to be printed. The program could select particular lines to be printed, but doing so
would destroy some of the program/form independence that is one of the chief virtues of FMS. Changes
to the layout of a form might then require the program to be changed when the changes would be only
cosmetic and should not be affecting the program.

Programming Technique
The RETFL call returns the printable image of an individual line on the screen. These line images are
suitable for writing directly to a line printer or to a file for later printing. If the entire screen is to be
printed, a program loop requesting lines one through twenty-three will produce the twenty-three line
images.

63

Chapter 3. Programming Techniques and Examples

When only part of the screen is required, the difficulty is in knowing which lines to ask for in the
RETFL call. A common technique is to store the range of the lines to be printed with the form itself.
At form creation time the form designer knows what lines are to be printed and puts the numbers of the
first and last lines to be printed in the form’s Named Data. The program accesses the Named Data to
find the first and last lines to print and uses them as limits on the program loop calling RETFL. Then,
if the form layout is ever changed so that a different range of lines should be printed, the form designer
changes the Named Data and the unchanged program still produces the desired result.

Example
The following extract from the FMS Sample Application program shows this technique in action. The
form has two Named Data items with names FIRST and LAST indicating the first and last lines to print.
Each item has two characters representing the number. The program reads those Named Data items,
which are character strings, converts them to numbers for internal use, and uses them as limits on a loop
that includes a call on RETFL and a statement that writes the line images to a data file.

The following segment is shown in FORTRAN. See the VSI FMS Language Interface Manual for the
equivalent code segment for any other languages supported by FMS. That manual also has descriptions
of the CHECK form.

 SUBROUTINE PRINT_THE_CHECK
C Print the check into the file SAMPCH * DAT
 CHARACTER*BO LINE
 CHARACTERS FIRSTL *
 1 LASTL
 INTEGER FIRST_LINE_NUMBER *
 1 LAST_LINE_NUMBER ,
 2 I »
 3 LINELENGTH
C Open check writing file * Note there's a new version
C for every check *
C
 OPEN(UNIT=2, FILE='SAMPCH.DAT'» STATUS='NEW',
 1 CARRIAGECONTROL='LIST', RECORDSI2E=80)

C Get the top and bottom lines of the check from the named data
C (first two characters)*

 CALL FDV$RETDN('FIRST', FIRSTL)
 CALL CHECK-FMSSTATUS()
 CALL FDV$RETDN < 'LAST', LASTL)
 CALL CHECK-FMSSTATUS()

C Get lines from form.
C Write to file *

 READ (FIRSTL, '(12)') FIRST-LINE-NUMBER
 READ (LASTL, '(12)') LAST_LINE-NUMBER

 DO I = FIRST_LINE_NUMBER, LAST_LINE_NUMBER
 CALL FDV*RETFL (I, LINE, LINELENGTH)
 WRITE <2»'(A)') LINE(1:LINELENGTH)
 ENDDO
 CALL FDV$PUTL('Check written to file')
 CLOSE (2)

64

Chapter 3. Programming Techniques and Examples

 END
D

3.4. Storing Message Text - Using Named Data
Purpose
Keep operator message texts independent of your program.

Description
Messages to the terminal operator are often changed during development of an application. To keep the
messages independent of the peculiarities of a particular programming language, you can use files and
modules that contain only message text.

When a form changes, it is often necessary to change the message file also. Even after program
development, convenient change of operator messages is desirable. A program product may need to
change both forms and message files to be tailored for a new customer. A program that is used by
operators who speak different languages must maintain different form and message files for each
language.

Programming Technique
One way of simplifying control of operator interaction is to keep all text that is presented to an operator
in an FMS form. In the case of a multilingual environment, the application designer can develop forms
that all request the same information, but that have background text appropriate to the language (for
example, German and French).

All forms for a single language are collected in a form library. There may be several such libraries,
each containing forms having identical names, with the only difference being the background text. The
first form that the application displays is a menu form requesting the operator to select a language. The
application opens the appropriate form library according to the language selected.

Thereafter, when a form is called from the library (for example, with a CDISP call), the named form
is read from the library and displayed on the screen, presenting text in the operator’s language. The
application doesn’t need to be concerned with the language at that point, since the previously made
choice controls the form displayed now.

Since the application must occasionally display additional messages (perhaps by means of the PUTL call
to the bottom line of the screen), it is consistent to store the text of those messages in the Named Data of
the form. Either the name or index of the Named Data item can be used as an identifier to retrieve the
text from the form before sending it to the operator.

In the multilingual environment, these messages can be in the selected language. Even for single language
environments, storing the message with the form makes sense, since the messages often relate to the
form. The form designer can change the form and the related messages in the same place, saving time
and the usual confusion when separate files must be used together.

Example
The Sample Application shows one example of how to use Named Data to store message text in the
DEPOSIT form. After the operator has entered checking account deposit information, SAMP wishes to
display a message to the effect that the operation is done and the operator should press the RETURN key

65

Chapter 3. Programming Techniques and Examples

to continue. The form used for deposit entry has such a message stored in the Named Data item with the
name DONE.

The following extract from the FORTRAN SAMP shows how this can be done. Consult the VSI FMS
Language Interface Manual to see the form definition for DEPOSIT and the SAMP in any of several
languages.

CHARACTER*80 DONE
CALL FDY$RETDN < 'DONE ' , DONE)
CALL FDO$PUTL (DONE)
CALL FDY*WAIT

3.5. Converting Function Keys to Field Entry
Purpose
Provide an easy way of accepting either function keys or text in a field to select an option from a menu.

Description
In menu entry forms it is often desirable to allow the operator to enter the choice in one of two ways:
enter the option followed by a terminator, or enter a function key. It is often inconvenient to implement
such a design, since it involves two sets of validations instead of just one (making sure the text is correct,
or if that is blank, making sure the function key is correct). Nonetheless, the convenience of a single
keystroke menu response makes it worth considering.

Programming Technique
A function key UAR can convert a function key to the text string it is equivalent to. The UAR then
outputs that text string to the menu’s choice field as if the operator had entered the text. The return code
for the UAR tells the Form Driver to process the field as if the operator had pressed the RETURN key
instead of a function key. The Form Driver then calls any field completion UARs or returns control
directly to the calling program, which only has to look at the text, regardless of whether it has been
entered from the keyboard or by means of a function key.

Example
The Sample Application’s MENU form has a function key UAR that converts six function keys into the
text strings “1”, “2”, “3”, “4”, or “5”. The function keys accepted are all on the application keypad. The
key 1 and the key period (.) are both converted to the string “1”; the key 2 is converted to the string “2”;
keys 3, 4, and 5 are converted to strings “3”, “4”, and “5”. All other function keys are rejected. While
this is a specific UAR, more general UARs to do this conversion can be written.

The following extract from the COBOL SAMP shows how this can be done. Consult the VSI FMS
Language Interface Manual to see the form definition for DEPOSIT and the SAMP in any of several
languages.

IDENTIFICATION DIVISION.
PROGRAM-ID. TAKE15 INITIAL *
**
* Function Key User Action Routine for the MENU form of SAMP *
* Convert Keypad 1-5 into field values 1-5 » *
* Convert Keypad period into field value 1 » *

66

Chapter 3. Programming Techniques and Examples

* Reject all other function Keys with error message. *
**
DATA DIVISION *
WORKING-STORAGE SECTION *
 COPY " FDVDEF " *
 COPY " SAMPCOB" *
 COPY " SMPCOBUAR" *
*
* Declarations specific to this UAR *
*
01 FIELD_VALUE PIC X (1) VALUE SPACE *
01 ILLEGAL__FUNC_KEY_MSG PIC X (20)
 VALUE "Illegal function Key" .
PROCEDURE DIVISION GIVING RETURN_STATUS*
*-
* Retrieve contexts ignore all but TERMINATOR
*-
 CALL " FDV*RETCX " USING BY REFERENCE ADDRESS_TCA »
 BY REFERENCE ADDRESS_WKSP #
 BY DESCRIPTOR FORM_NAME t
 BY DESCRIPTOR UAR_DATA »
 BY REFERENCE CURSOR_POSITION #
 BY REFERENCE TERMINATOR #
 BY REFERENCE INSOVR_STATUS #
 BY REFERENCE HELP_STRIKES .
#+
* Do the conversion # displaying the value converted if found*
* Reject if not one of the expected terminators*
#-
 EVALUATE TERMINATOR
 WHEN FDV$K_KP_1 MOVE "l" TO FIELD_VALUE
 WHEN FDV$K_KP_2 MOVE "2" TO FIELD_VALUE
 WHEN FDV*K_KP_3 MOVE "3" TO FIELD_VALUE
 WHEN FDV$K_KP_4 MOVE "4" TO FIELD_VALUE
 WHEN FDV$K_KP_5 MOVE "5" TO FIELD_VALUE
 WHEN FDV$K_KP_PER MOVE mlm TO FIELD_VALUE
 END-EVALUATE.
 IF FIELD_VALUE = SPACE THEN
 CALL "FDV$PUTL" USING
 BY DESCRIPTOR ILLEGAL_FUNC_KEY_MSG
 CALL "FDV$SIGOP"
 Just ignore it now *
 MOVE FDV$K_UKEY_SUC TO RETURN_STATUS
 ELSE
 CALL "FDV$PUT" USING BY DESCRIPTOR FIELD_VALUE
 BY DESCRIPTOR N_MENU_OPTION
 Treat as if it is RETURN *
 MOVE FDV$K_UKEY_NTR TO RETURN_STATUS
 END-1F *
 EXIT PROGRAM *
END PROGRAM TAKE15 *

3.6. Filter for Function Keys
Purpose
Allow only certain function keys to be returned to the program.

67

Chapter 3. Programming Techniques and Examples

Description
FMS defines a great many function keys (control keys, Gold sequences, terminal function keys, alternate
keypad keys), but most applications only need a few keys active during the processing of a particular
form. Other keys can be rejected or ignored. On return from a GET-type call the application can
determine whether the terminator is legal, but this is such a common requirement that a general purpose
routine can save a lot of trouble.

Programming Technique
Define a general purpose function key UAR for the form, that allows only certain function keys to be
returned to the program. One way of doing this is to have the UAR associated data be a string that has
the keycodes of the legal function keys.

The form designer then specifies the UAR in the Form Phase of the Form Editor or in the FORM
statement of the Form Language, with an associated data value representing just those function keys that
are legal. (About twenty keys could be specified in this fashion, more than an operator can usually deal
with.) The function key UAR reads the associated data string and compares the values found there to the
keycode received, rejecting the key if no match is found.

Alternatively, if you want to change the legal function keys more often than you switch the form, or if
you wish to have more keys than can be listed in the eighty bytes of the UAR data, define a COMMON
area with an array containing the legal keycodes, and a variable specifying how many different keycodes
are currently in the array.

The application program updates the array and the counter variable whenever it determines that a
different set of functions is legal. A function key UAR can access the array in COMMON, comparing the
key code received against the legal values, and returning success to the Form Driver only if a match is
found.

Example
The Sample Application has a function key UAR called PASSKY that is used on each of the data
entry forms in SAMP. PASSKY implements the first of the suggestions above — the UAR associated
data string has the legal keycode values. PASSKY is given below in its PASCAL version. Consult the
VSI FMS Language Interface Manual to find PASSKY in any of several languages. You can also find
references to the SAMP forms that use PASSKY.

(It is possible to write a more efficient implementation of PASSKY than is shown here. Instead of
converting each of the character strings in the UAR data string to binary and then comparing the binary
number to the terminator, you can convert the terminator to a four character ASCII string (with leading
zeros) and then use a string function to see if it appears in the UAR data string. Each string in the UAR
data would have to be four characters long, with leading zeros, for this to work.)

FUNCTION PASSKYi
C General function Key uar to pass only those from the (small)
 list in the uar associated value strips and reject all
 others * The list is of the form:
 n <oneblank> n <oneblanK> *** n <manvblanKs>
 For example the string '110 112' would accept Keypad period
 and keypad zero but no other function Keys* >

68

Chapter 3. Programming Techniques and Examples

LABEL 1000;
VAR Nexttrm: INTEGER$
 NonBlank: INTEGER5
 NextBlank: INTEGER*

BEGIN

< Retrieve context; we will isnore TCA address * WKSP address*
 FRMNAM * INSOVR * and CURPOS * usin* only FLDTRM and
 UARVAL* >
FDV$RETCX (TCA : = Tea * WKSP : = Workspace * FRMNAM := Frmnam *
 UARVAL := Uarval * CURPOS ; = Curpos * FLDTRM := Fldtrm #
 INSOVR := Irsovr * HLPNUM : = Hlpnum) *
i Break UP the list into numbers * Check each asainst the
 terminator * If terminator found in list * return success* >

Nonb1anK := 15 < Besfinnintf of strinSl
WHILE (UarvalCNonblankl <> ' ') AND (Nonblank <= 80) DO
 BEGIN
 Nextblank := INDEX (SUBSTR (Uarual * Nonblank *
 LENGTH (Uarval) - Nonblank + 1) » ' ')
 IF Next blank = 0
 THEN Nextblank := 80
 ELSE Nextblank := Nextblank + Nonblank - 15
 READY (SUBSTR (Uarval » Nonblank * Nextb1ank - Nonb1ank) »
 Nexttrm) 5
 IF Fldtrm = Nexttrm
 THEN
 BEGIN
 PASSKY := FDV$K_UKEY_TRM5 (Pass Key to application!)
 GOTO 1000 *
 END ;
 Nonblank := Next blank + 1 *
 END *
PASSKY := FDY$K_UKEY_ERR5 C Let FDD do the beepins}
1000s END *

3.7. Range Checks for Fields
Purpose
Ensure that a field contains values only in a particular range.

Description
Many fields can contain numeric values only in certain ranges, which are known ahead of time and
which do not need to change dynamically. For example, there may be a minimum order on certain items,
or only certain temperature ranges may be possible in a laboratory environment. While it is possible to
check these values in the application, it is more convenient to define a general purpose field completion
UAR.

UARs are particularly useful because the main logic of the application program does not then have to
concern itself with validity checks of this sort. The validity checks still have to be made, but they are
made in a modular fashion in a subroutine that does not clutter up the main line, and that is usually more
concerned with relationships between the entered data and a database or real time process.

69

Chapter 3. Programming Techniques and Examples

Programming Technique
A range checking UAR can be specified for each field that requires range checking. The lower and upper
bounds for the field values are specified in the UAR associated data, separated by a comma. If no lower
or upper bound is given, then no check for the bound is made, allowing ranges with open bounds on one
end. The UAR data can also contain an error message to be issued in case of failure to satisfy the validity
check.

Just putting a UAR on a field doesn’t always mean that the UAR is called.

There are two conditions (other than error conditions, cancellation of the call, and field timeout) under
which the Form Driver does not call a UAR for afield the field was terminated by the Previous Field key,
or the field was terminated by a user function key.

In either of these situations the program must realize that the field may have invalid data. The program
can take steps to guarantee that the UARs for the field get called so that its validity is assured. The
program may refuse to accept such a terminator, and reestablish the read on the field or the form as a
whole.

The program may call the PFT routine with the Enter Form terminator (FDV$K FT NTR). The Form
Driver then checks all nonscrolled fields for validity, calling their UARs and returning a special status
code to the program if any field fails to pass all checks. The program can reissue the read for the failed
field and continue until the PFT routine returns success.

Example
The Sample Application program has a function, RANGE, that is called as a field completion UAR.
The BASIC version of RANGE is given below. Consult the VSI FMS Language Interface Manual for
examples of RANGE in other languages. Refer to the CHECK form in that manual for the field that uses
this UAR.

Note that RANGE is not completely robust with respect to the UAR associated data string. A string
that contains illegal numeric values on either side of the comma will cause problems. If your program is
debugged, RANGE causes no problems, but a more general function would have to have some method
of either checking for valid numbers, or a method of recovering from errors. The RANGE function in
SAMP is used for integer values. Some of the language implementations actually allow decimal numbers
because of the particular conversion functions used (for example, BASIC).

You can make RANGE more efficient if you require that the numbers in the UAR string be fixed format
instead of free format. For example, the lower bound might occupy string positions 1-10; the upper
bound, positions 11-20; and the error message, positions 21-80. The advantage for RANGE is in not
having to scan for the numbers. The disadvantage, of course, would be for the form designer — fixed
format input is inconvenient and subject to error.

FUNCTION INTEGER RANGE
!***
! General purpose UAR to check the range of any numeric item *
! associated UAR data must haue one of the four forms:
! L»U<space>{«essage>
! #U<spaceXmessage>
! L#<spaceXmessage>
! »<spaceXmessage>
! where L is lower bound * U is upper bound * and {message} is an
! optional error message in case the field ualue is out of bounds*
! If one of the bounds isn't siven» it isn't checked for *
! bound is given * nothing * is checked * everything succeeds *

70

Chapter 3. Programming Techniques and Examples

! UAR ualue doesn't haue a comma * a FDU$_UAR error message is returned
! to the calling program by the FDU so the form designer has to go
! back and do it right. If no {message} is given # a simple
! " out of range U:L " message is giuen to the hapless operator*
!
! This UAR can work with any form and numeric field since it gets
! context itself * Care must be taken with field using field marker
! periods since those periods are not returned to the program *
! ***
DECLARE INTEGER CONSTANT
 FDO$K_UOAL_SUC = 1000 » !Field completion success &
 FDU$K^UUAL_FAIL = 1001 !Field completion failure
!+
! Pre-extend the strings into which FMS will return values.
! Get context which yields as sociated data ualue (ignore other stuff)*
! Get current field name and index*
! Get field ualue*
!-
FRMNAM* = SPACE*(31)
UARUAL* = S PACE*(80)
NAME$ = SPACE*(31)
NUMBER* = 5PACE*(132)
CALL FDU*RETCX (TCA7 » MKSPZ* FRMNAM* » UARUAL* * CURPOSZ* FLDTRM7* &
 INSOORI * HELPNUM7.)
CALL FD0*RETFN (NAME* * INDEX!)
CALL FDU*RET (NUMBER* * NAME* # INDEX!)
NUMBER = UAL (NUMBER*)
!+
! Find comma and blank delimiters *
! ChecK for lower bound *
! _
COMMA* = P0S(UARUAL$ * 't' > 1)
BLANK* = POS(UARUAL$t SPACE*(1) > COMMA* + 1)
IF COMMA* = 0 THEN
 RANGE = 0 ! Illegal UARUAL string * FDU returns error
 FUNCTIONEXIT
IF COMMA* < > 1 THEN
 IF NUMBER < VAL (SEG* (UARMAL$ * It COMMA* - 1)) THEN 20300
!+
! ChecK for upper bound
!-
IF BLANK* <> COMMA* + 1 THEN
 IF NUMBER > UAL(SEG*<UARMAL$ * COMMA* + It BLANK* - 1 >> THEN 20300
!+
! Passed both tests successfully t return success for UAR value
!
RANGE = FDO*K_UVAL_SUC
FUNCTIONEXIT
!+
! Error in one of the bounds *
! Give error message: either from the UARVAL or make one UP*
!-
IF SEG*(UARUAL* > BLANK* + 1 » BLANK* + 1) 0 SPACE$(1) THEN
 CALL FDU$PUTLt SEG$< UAROAL$t BLANK* + 1 » BO))
ELSE
 CALL FDU$PUTL('Field value out of bounds * Must be in ranSe » i + &:
 SEG$(UARUAL$t 1 » BLANK* - 1) +

/ H. ')
CALL FDU$SIGOP ! Beept too *

71

Chapter 3. Programming Techniques and Examples

RANGE = FDV$K_UUAI__FAIL
FUNCTIONEND

3.8. Simulating the GETAL Call
Purpose
General purpose structure for getting input from all fields in a form.

Description
One of the advantages of the GETAL call is that it allows the operator to progress through the form with
the Next Field and Previous Field keys, filling in fields in any order (subject to Response Required and
Must Fill attributes, and UAR validations). Only when the operator presses a function key or the Enter
Form key does the Form Driver return control to the application; and if the Enter Form key is pressed,
the Form Driver does not return control if any field fails validation.

Even though a program requires input from each input field on a form, there are many situations in
which the GETAL call is inappropriate. GETAL does not access scrolled fields, and in some cases the
mainline program needs to regain control after each field is entered.

The restriction on no scrolled fields is put on GETAL because the program must know at all times what
the current scrolled line is in a scrolled area. If GETAL were to accept input from scrolled lines, and
were to allow the user to scroll down, the program’s knowledge of the current scrolled line would not
match the Form Driver’s knowledge. The reason for this mismatch is that there is no way in FMS for
the Form Driver to tell the application the number of the current scrolled line, and no way to inform the
application if the whole area is to be scrolled.

The only way the current scrolled line is changed is by the application’s requesting a change (by means
of the PFT call with the SFW, SBK, SNX, and SPR terminators; or by means of PUTDA’s restoring the
current scrolled lines of all areas to one).Since the application controls scrolling it can always know the
current line.

A mainline program might wish to regain control after every field to achieve special effects. These
effects might not be appropriate for UAR processing for a variety of reasons. The restrictions on UAR
processing may be too severe for the effect. For example, the effect might be to skip over some field if
some other field has a particular value, but a UAR cannot change the current field; or, the language being
used does not support external routines.

Although these are good reasons not to call GETAL, it is not advisable to give up the operator’s apparent
freedom of order entry afforded by GETAL.

Programming Technique
It is possible to give the operator the same apparent freedom of control and still have control return to
the application for every field. The general idea is:

1. Perform a GET for the first (or any other field).

2. Do the special processing for the named field after control returns to the program.

3. If the terminator specifies scrolling and you are in a scrolled area, update your data pointers for that
scrolled area. (The Form Driver does not normally return scrolling terminators if the field is not in a
scrolled area.)

72

Chapter 3. Programming Techniques and Examples

4. Call PFT, specifying the field name used in the GET, and the terminator that was returned by GET.
Ask that the new current field name be returned by PFT. This step requests that the action expected
by the operator be carried out, at least in the internal memory of the computer (changing the current
field). Note that neither the cursor nor the screen changes because of the PFT call.

5. Inspect the return from the PFT call. It can be one of four values:

• FDV$_SUC: Success; the field name returned by PFT is the new current field name. If the
terminator was not FDV$K_FT_NTR, your program can continue asking for input using the
field name returned. If the terminator was FDV$K_FT_NTR, then the input is finished.

• FDV$_INC: The field terminator was FDV$_FT_NTR and some field did not pass all the
validation criteria. The current field is set to the first such field and is returned to your program.
Your program can continue asking for input using the field name returned.

• FDV$_UTR: The field terminator was a function key and not a terminator known to FMS. The
current field is not changed and its name is returned to your program. You then choose what
your program does depending on the function key. You may choose to continue input from the
current field, which was returned to you.

• FDV$_IFN: The terminator requests an illegal function in the current context (for example,
Next Field at the end of the form). The only way this can be returned is if you have changed
Supervisor Only mode since the GET statement. The GET call does not return a terminator that
is illegal in the current context, so it must be that the context has changed.

For example, at the time of the GET call, Supervisor Only mode was off and there was a
Supervisor Only field following the current field, making the Next Field terminator legal. If you
turn on Supervisor Only mode and there are only Supervisor Only fields following the current
field, the Next Field terminator is now illegal. If you change the context you must decide what to
do next. (Note that turning on Supervisor Only mode may also change the validity of the current
field, since it may no longer be a modifiable field.)

6. Note that for the first three (normal) cases, your program may elect to continue input with the field
that was returned to you by the PFT call. Your program can loop back to use that field name in the
next GET call. Using the new current field name in the GET call makes it appear to the operator as
if the cursor has moved in response to the terminator entered, which it indeed has, but only after the
program has requested such movement.

When the FDV$_FT_NTR terminator is entered and PFT returns success for it, your program knows
that all the nonscrolled fields have been entered correctly. You can be assured that all scrolled fields that
were entered with any terminator other than FDV$_FT_PRV, FDV$_FT_SPR, or a function key are
correct. That is, the scrolled line fields were validated up to the farthest point on the line reached.

Note that this technique works for any form since it does not need to know the field names. Of course, if
you wish to do special processing for particular fields, you need the field names.

Example
The following code is extracted (in slightly modified form) from the Sample Application. The technique
is used in SAMP only for illustrative purposes (there is no special processing done for a field). The
difference between the SAMP code and that given here is that the SAMP code does a GETAF for most
of the fields so that it regains control only after a field changes (except the first). The code listed below
regains control after every field. Depending on the needs of your program, you may choose to do one
or the other. The code below also differs from the SAMP in the way the call status is obtained after the
PFT call.

73

Chapter 3. Programming Techniques and Examples

The code segment below is for PL/I. Consult the VSI FMS Language Interface Manual for the SAMP
program using GETAF in your favorite language.

SIMULATE: PROCEDURE
DCL FIELDNAME CHAR (31)* / Name of field*/
 FIELDINDEX FIXED BIN (31) » /*Index of field*/
 FIELDVALUE CHAR (80)? /*Value of field*/

FIELDNAME = '*'; /* Identifies first field inform */
DO WHILE ('1'B) ?
 CALL FDV$GET < FIELDVALUE # TERMINATOR # FIELDNAME #
 FIELDINDEX)

 /*
 /* Do any special processing for field FIELDNAME here#
 /* * « *
 /* Go to next or previous field or leave form
 /* */
 CALL FDV$PFT (TERMINATOR # # t FIELDNAME # FIELDINDEX) ?
 /*
 /* If status is error # then PFT failed because terminator
 /* was a Keypad Key # which means return to caller #
 /* */
 CALL FDV$STAT (FMSSTATUS) ?
 IF FMS STATUS < 0 THEN RETURN 5
 IF TERMINATOR = FDV$K_FT_NTR
 THEN IF FMS STATUS * = 2
 THEN RETURN?
 ELSE DO?
 CALL FDV$PUTL(' INPUT REQUIRED ') ?
 CALL FDV$BELL ?
 END ?
 /* LOOP # usin* new field name */
END ?
END SIMULATE 5

3.9. Reducing Display - Times for Forms
Purpose
Reduce the time to display a form and application supplied data.

Description
It is often the case that you will display a form (for example, with DISP) and then immediately output
data to all the form’s fields. This results in the fields on the forms being written twice once as the result
of the DISP call outputting the default values, and once as the result of PUT calls or the PUTAL call. On
a form with many fields this is a noticeable delay, especially on low-speed lines, and is distracting.

Programming Technique
Instead of using a DISP call to load the form into a workspace and display the form, and then using PUT
calls, perform the following sequence:

1. Load the form into the workspace with LOAD (which does not display the form).

74

Chapter 3. Programming Techniques and Examples

2. Perform the initial PUTs or PUTAL. This changes the workspace but does not output anything to the
screen.

3. Call DISPW to display the form.

Note that this requires only one more Form Driver call (the DISPW call). It produces a significant
reduction in terminal output for some forms.

3.10. Checking Status - Three Methods
Purpose
Determine result of Form Driver calls.

Description
Three methods of checking status of Form Driver calls are discussed in this section calling the Form
Driver as a function, calling STAT, and setting up status recording variables with SSRV. The first method
is compatible with the VMS calling standard. You would use the other two methods if you wish to be
able to report a secondary status when an error is detected. (See Section 2.5.)

Programming Technique
In some situations, an error status does not indicate malfunctioning of your program but rather a special
situation. For example, your program might be using Named Data as the list of valid table entries for
a field. Asking the Form Driver for the data associated with a Named Data name is the only way of
determining whether that Named Data item exists. If the Form Driver returns an error, your program
may use the existence of the error as information itself —that the table entry is not valid.

In these situations, an error response from the Form Driver is not unexpected and does not represent a
threat to the continuing execution of the program. Any of the three error determination methods is useful
in this situation, since only the general status is needed. Using STAT is slightly more expensive since it
requires an extra Form Driver call to obtain the call status.

In checking for unexpected error situations, no matter which technique you use, it is convenient to set
up a subroutine to interpret the status of a call and take appropriate action. The subroutine checks the
status and returns if it indicates success. If there is an unexpected error, the subroutine reports the error
and stops the process in some fashion you determine. If the error is one of the types that has a secondary
error status associated with it (FDV$_IOL, FDV$_IOR, or FDV$_SYS) you may want to report the
secondary status also.

Example
A program that checks the Form Driver’s function value return for an error can use the status in a call to
the VMS RTL signaling routines, so that the message associated with the error is printed. It is still useful
to do this in a subroutine since the subroutine then obtains the secondary status and also signals that.
The program call on the subroutine would be used in the following manner (in PL/I):

CALLFMS = FD0*AWKSP < CHECKWKSR » 2000)i
CALL CHKSTA(CALLFMS)i

The subroutine could be written as follows:

CHKSTA: PROCEDURE < FMS_OMS_STATUS)
/****-***

75

Chapter 3. Programming Techniques and Examples

/* Subroutine CHKSTA
/* Check FMS status by looking at the parameter which is
/* a MMS status variable * If there is an error # detach
/* the terminal to clean UP screen and then
/* output the error by sitfnallintf *
/***/
DCL FMS_YMS_STATUS FIXED BIN(31) 5

DCL SY5$PUTMSG ENTRY(ANY)?
DCL MSG_YEC(5) FIXED BIN(31)

IF MOD(FMS-UM5-STATUS #2)=1 THEN RETURN ?
/* Save the FMS error code in message vector for PUTMSG */
/* Save the RMS status code in the message vector before
/* toakin further calls */
/* Detach the terminal to clean UP screen before printing
/* error message */
MSG_UEC(2) = FMS_UMS_STATUS ?
MSG_UEC(3) = 0 /* Required for non-system facility*/

MSG-UEC(5) = 0 /* In case RMS error «sfl needs it*/
CALLFMS = FDU$5TAT(FMSSTATUS » MSG_UEC <4>)
CALLFMS = FDU$DTERM(TCA)?
/* Set message vector count */
/* Output message(s) */
IF MSG_UEC <4> = 0
THEN MSG^UEC(1) = 1 /* No secondary status*/
ELSE MSG_UEC(l) = a
CALL SYS$PUTMSG(MSG_VEC)!
STOP
END CHKSTA

The subroutine could be simplified if the secondary call status were not needed. Instead of setting up
a message vector, the RTL subroutine LIB$SIGNAL or LIB$STOP could be used. For example, the
following could replace the entire body of the routine above:

DECLARE LIB$SIGNAL(FIXED BINARY(31) VALUE > i
CALL LIB$SIGNAL(FMS_VMS_STATUS)i

The Sample Application uses two subroutines to check for unexpected errors. The first few calls use a
subroutine that calls STAT to obtain the status of the last Form Driver call. If the status obtained (which
is the FMS, system independent status) is greater than zero, then the last call was successful and the
subroutine returns. If the last call was not successful, the subroutine detaches the terminal (to clean up
the screen) and prints the error codes reported.

After the first few calls, SAMP sets up two status recording variables, FMSSTATUS and RMSSTATUS.
The Form Driver sets the FMS status in these variables for every Form Driver call thereafter.

The SAMPs use FMSSTATUS in two ways. They call another subroutine that checks for unexpected
errors. This subroutine does not have to call STAT, but merely checks the FMSSTATUS variable. If there
is an error, it performs the same error reporting as the first subroutine. The second way SAMP uses the
FMSSTATUS is immediately after a call to PFT in the routine that simulates a GETAL call. Since the
Form Driver set FMSSTATUS before returning to SAMP, SAMP can immediately refer to the value of
FMSSTATUS.

The following is an adaptation (in BASIC) of the two SAMP routines described above. Consult the VSI
FMS Language Interface Manual to see the routines used in several languages.

76

Chapter 3. Programming Techniques and Examples

DEF FN.GETSTA
!**
! Subroutine GETSTA
! Check FMS status by calling STAT*
! If not success (>0)t print and stop
!_***

CALL FDU$STAT < FMSSTATUS* » RMSSTATUS*)
IF FMSSTATUS* > 0 THEN FNEXIT
CALL FDU$DTERM(TCA*<))
PRINT "FDV ERROR 11
PRINT " " *"FMS STATUS:" tFMSSTATUS*
PRINT " " *"RMS STATUS:" tRMSSTATUS*
STOP
FNEND
DEF FN •SRYCHK
! +***
! Subroutine SRUCHK
! Check FMS status bv looking at the status
! recording variables *
! -***
IF FMSSTATUS2 > 0 THEN FNEXIT
CALL FDU$DTERM (TCA % <))
PRINT " FDU ERROR * "
PRINT t "FMS STATUS:" tFMSSTATUSZ

PRINT t "RMS STATUS :
M > RMSSTATUSX

STOP
FNEND

3.11. Paging
Purpose
To facilitate collecting multiple pages of data on a single form.

Description
Consider the form in the Form Editor used to collect User Action Routine names and their associated
data. A typical 23-line form might have space for five such pairs of data entries. To enter more than
five UAR specifications, some extension technique must be employed. While scrolling is an excellent
technique for accessing more data than will fit on a single screen, it is best used for accessing data
records that can be compressed to a single line, since scrolled areas must be scrolled one line at a time.

The idea behind paging is to have the user enter an entire page of data without changing the screen, and
then clear the fields to enter a new page of data. As the user tabs out of the last data field on the form,
the form automatically advances to the next page. Similarly, if the user backspaces out of the first data
field on the form, the form automatically moves back to the previous page (if there is one).

Since TAB and BACKSPACE are the default FMS keys used to move to the next or previous field in a
form, no special action is required on the part of the operator to move among fields on different pages.
Ideally, the operator should be able to move freely between pages to correct any previous entry just as
he would modify a previous entry in a form. To make it clear what data is actually being edited, a page
number could be displayed at the top of the form, or each data record could be preceded by a number
that is updated to reflect the current page.

77

Chapter 3. Programming Techniques and Examples

Programming Technique
Several FMS features are used to produce the paging behavior described above. The Form Driver PFT
call (Process Field Terminator) is used to simulate GETAL processing. In addition, two special No Echo
fields are added to the form one before the first data field, and the other after the last data field.

By having the application program know the names of these two fields, it is possible for the program
to detect when the user moves out of the last data field of a form by requesting the name of the current
field. Whenever the cur- rent field name matches the special first field, the program pages backward,
similarly when the current field name matches the special last field, the program pages forward.

Alternatively, you can avoid the two special fields and the GETAL simulation by using the ILTRM
(1) call with a GETAL call to have the Form Driver return illegal terminators. Your program can then
identify the illegal terminator FDV$K_FT_ILG_NXT as a request to go to the next page, since the
operator is attempting to go to the next field where there is none. A similar action can take place for
FDV$K_FT_JLG_PRV. The program would have to filter out other illegal terminators.

Example
This technique is used in the Form Editor to enter Named Data and collect field completion UAR data.
A subroutine in the Form Editor is used to simulate GETAL processing except that it returns a special
terminator code whenever it encounters fields named FIRST and LAST.

3.12. FMS Advanced Programming
The following chapter discusses advanced programming techniques in two areas of FMS usage. The
first section discusses how to enhance FMS performance; the second looks at the most effective way to
design FMS overlaying forms. A working familiarity with these techniques will help FMS users to get
the most out of FMS.

3.12.1. FMS Performance
This section provides information on how to maximize system performance while using VAX FMS.
Subsections include FMS Library Performance and Form Driver Ordering of Calls.

3.12.1.1. FMS Library Performance
The maimer in which forms are stored and arranged in FMS libraries can either help or hurt
performance. By observing the following, you are assured that your FMS form libraries will not hinder
overall system efficiency:

Compression always compress form libraries when transferring an application
from the development cycle to the production cycle. Use the
command:

* FMS /LIBRARY /CREATE library library .FLB

Form Order always insert commonly accessed forms in the library first.
Access Method use the access method best suited to the application’s forms,

choosing from the following:

1. Memory Resident:

78

Chapter 3. Programming Techniques and Examples

• for forms that are displayed repeatedly such as main menus,

• for times when the number of forms used by the application
is small, or when the application is self contained.

2. Dynamic Memory Resident:

• the dynamic memory resident list is searched first when
looking for a form,

• used for forms which are displayed for a selected function,
such as sub-menus and “pages.”

• also used when a memory resident form needs to be replaced
at run-time with a form of the same name from a form
library.

3. Media Resident:

• for forms that are seldom accessed, i.e. Help forms,

• used during application development when forms are
modified frequently and relinking is not desired.

3.12.1.2. Form Driver Performance
Form Driver performance can be enhanced by using the most current calls available and by correctly
ordering the Form Driver calls. FMS V2 calls are more efficient in both CPU time and I/O. Using FDV
$INIT causes extra I/O on every Form Driver I/O call. Following these suggestions, and observing the
correct ordering of FDV calls, as shown below, will maximize Form Driver performance.

Ordering of Form Driver Calls

Inefficient Efficient

Displaying A Form

FDV$LOAD FDV$LOAD
FDV$DISP FDV$DISPW
Initializing Fields

FDV$DISP FDV$LOAD
FDV$PUT FDV$PUTAL
FDV$PUT FDV$DISPW
FDV$PUT
Using Dynamic Memory Resident Forms

FDV$LOAD FDV$READ
FDV$READ FDV$LOAD
FDV$DISPW FDV$DISPW
Checking Status

FDV$xxxxx FDV$SSRV

79

Chapter 3. Programming Techniques and Examples

FDV$STAT FDV$xxxxx
FDV$xxxxx FDV$xxxxx
FDV$STAT FDV$xxxxx
FDV$xxxxx
FDV$STAT

3.12.2. Designing Overlaying Forms
This section exists to help the programmer effectively use overlaying forms. To design overlaying forms,
the programmer should have a clear understanding of FDV screen management. Therefore, the following
sections include a list of FDV screen management rules, and an example of overlaying form design.

3.12.2.1. FDV Screen Management Rules
This section lists screen management rules. It consists of lists detailing when the FDV repairs screens,
when the screen or workspace is broken, and the workspace repair sequence.

3.12.2.1.1. Screen repair occurs when:

• Operator requests a screen refresh

• Program calls FDV$RFRSH

• Returning from HELP

• Displaying a form

• Returning from a User Action Routine (UAR)

• Program calls FDV$PUTxx or FDV$GETxx to fields where the workspace that contained the fields
was “broken.”

3.12.2.1.2. The screen or workspace is ’’broken'' when:

• The program calls FDV$GETDL on a line other than the last

• The program calls FDV$PUTL on a line other than the last

• The area to clear of an overlaying form clears lines of the form

• The program calls FDV$CLEAR

3.12.2.1.3. Workspace Repair Sequence — The workspace is repaired in this
order:

1. All workspaces, marked as displayed, are redisplayed in the order that they were attached, except for
the current workspace.

2. The current workspace is redisplayed.

3.12.2.2. Overlaying Form Design
The following example includes three forms, each with its own values for Area To Clear (ATC). The
ATC is the area to be cleared when a form is displayed. A call to FDV$CDISP clears the entire screen,

80

Chapter 3. Programming Techniques and Examples

marks all workspaces as “not displayed” and displays the new form. However, to overlay forms as shown
below, the programmer uses FDV$DISP, which displays the new form, clearing only those lines specified
by the ATC.

Figure 3.1. Overlaying Forms

The following table compares different form displaying calls and area to clear combinations pertaining to
overlaying forms, and their results.

Figure 3.2. Comparison of Overlaying Calls

81

Chapter 3. Programming Techniques and Examples

82

Chapter 4. Linking the Application and
Setting up the Terminals
In the development of an FMS application, there are initially three processes:

• Creating forms and form libraries

• Writing the application program

• Writing user action routines (UARs)

These must, of course, be made into linkable object files. You then can link your object program with
the Form Driver and, optionally, with any memory resident forms or UARs you wish to include. (See
Figure 4.1.)

The Form Driver supports several terminal types and performs screen management correctly if you and
your program follow certain procedures regarding setting the terminal characteristics and sending output
to the terminal.

Figure 4.1. Linking the FMS Application

4.1. Linking
4.1.1. Linking with the Form Driver Library
Linking with the Form Driver Library is automatic, since the Form Driver routines are linked as a shared
image:

* LINK MYPROG

4.1.2. Linking with Memory-Resident Forms
Using the Form Application Aid FMS/OBJECT gives you a linkable file of memory-resident forms:

83

Chapter 4. Linking the Application and Setting up the Terminals

* FMS /OBJECT form1ist … / OUTPUT=MRF .OBJ

Then:

$ LINK MYPROG i MRF

The advantages of keeping forms in memory are:

1. Faster access

2. Reduced disk overhead

The disadvantages are:

1. Larger executable disk images

2. Necessity to relink whenever a form changes

4.1.3. Linking with a UAR Vector
You use the Form Application Aid FMS/VECTOR to get a vector module. The module contains a table
of UARs. You must link the modules with your program so the Form Driver knows where the UARs are
when they are needed:

$ FMS/VECTOR FRMFIL 1.FRM » MYLIB.FLB/FORM_NAME = <FORM1 iFORM3)/OUTPUT =
 UARS1.OBJ
$ LINK MYRROG IUARSI application:

4.2. Terminal Use in FMS Programs
4.2.1. Terminal Characteristics
To support a variety of terminals, to allow type ahead, and to conform with VSI’s long-term terminal
software strategy, the Form Driver queries the operating system and not the terminal to find the terminal
options and cur rent characteristics. This means that you should set VMS’s knowledge of your terminal
carefully before starting an FMS application program. One method of doing this is by issuing the
following VMS command before running your application:

$ SET TERMINAL/INQUIRE

VMS will then query the terminal and record the terminal’s characteristics correctly.

Between the issuing of this DCL command and its completion, you should not type ahead. Putting the
SET TERMINAL/INQUIRE command in your login command file is a good idea.

If your terminal differs from VMS’s knowledge of your terminal, your FMS application may not perform
correctly. You can see what VMS thinks your terminal type is by issuing the following VMS command:

* SHOW TERMINAL

You will see displayed values for terminal attributes: type, width, advanced video, ANSI CRT, and DEC-
CRT, among others. _Your terminal should be either a VT52, or it should have at least the ANSL CRT
attribute. It should also have the DEC-CRT attribute as appropriate. See the VAX documentation for
an explanation of these attributes. Make sure that the terminal width and the advanced video option
attributes are set correctly for your terminal.

84

Chapter 4. Linking the Application and Setting up the Terminals

4.2.2. Direct Terminal Output
To optimize output to the terminal, the FMS V2 Form Driver assumes that it has sole control of the
terminal once the terminal has been attached. Your program should not normally send output directly to
an attached terminal; all output to an FMS terminal should go directly through FMS. Direct output to the
terminal will likely be displayed at unexpected positions with unwanted video attributes, line attributes,
or character set.

If your program changes the cursor position, video attributes, line attributes, or character set, subsequent
calls on the Form Driver may yield incorrect results on the screen. The only circumstances under which
you can send output directly to the terminal and not confuse the Form Driver is if you restore any
changes you have made before calling the Form Driver again. The CLEAR_VA, FIX_SCREEN, and
SCR_WIDTH calls may be used for this purpose.

4.2.3. Terminal State at Program End
Because the Form Driver minimizes output, it will leave the terminal in an awkward state if you fail
to detach the terminal. Detaching the terminal clears video attributes, clears the last line, and positions
the cursor at the bottom left comer of the screen with the terminal width set to that of the last form
displayed.

Note that the design of some terminals makes it impossible to determine some of the attributes from
the terminal so that neither the Form Driver nor your program can restore them once they have been
changed:

• LEDs

• Character set

• Screen background

All these attributes remain in the state last set by the application program’s form use and terminal control
calls.

4.2.4. Firmware Bug Workaround
Many VT100s have a firmware bug that the Form Driver must work around.

(This workaround itself may appear to be a bug, but it is not.) The firmware bug appears when a scrolled
area is immediately below a line having the double-high or double-wide attribute, and the terminal is in
jump scroll mode. The bug is that the scrolled lines lose characters, or the terminal may enter self-test
mode.

The workaround used by the Form Driver is to set the line above the scrolled area to be normal size
during the scrolling and then reset it to double high or double wide afterward. This may be visually
disturbing but does not affect your program. The visual effect can be avoided by not setting the line
above a scrolled area to double high or double wide in the form definition.

85

Chapter 4. Linking the Application and Setting up the Terminals

86

Chapter 5. Form Driver Calls
The following sections contain descriptions of all Form Driver calls.

The call format shows the generic form of each call, with the FDV$ prefix you must specify with each
call name (for example, FDV$ATERM - not just ATERM), and any arguments you must (or can)
supply. Each argument is defined, and it is noted whether the Form Driver reads the argument from your
program, writes (returns) it to your program, or both reads and writes (modifies) it. In your program you
terminate a call by pressing the RETURN key unless the manual specifies otherwise.

You always specify an address for an argument rather than the actual data to be processed by the call or
returned to your program. Each argument definition indicates the method of passing the argument:

• By reference – The address contains the value itself (used for passing integers).

• By descriptor – The address contains the address of a descriptor containing necessary information
(used for passing character strings or integer arrays).

See the VSI FMS Language Interface Manual for details of the calling requirements unique to each
language (for example, CALL FDV$ATERM). See also the appendix to this manual for a complete list
of Form Driver calls showing the procedure parameter notation.

Description
Describes what the call does, any relationships to other calls, and restrictions on the use of the call.

Status Codes
Report for each call successful execution of the call or any failures that occur during processing of the
call.

5.1. Alter Data Line Video Attributes
FDV$ADLVA (video)

video The video attributes code. Set to 1, any or all
of bits 0, 1, 2, and 3 specify any or all of the
Bold, Blink, Reverse, and Underline attributes,
respectively (decimal value in the range 0 to
15). If the value of this argument is negative, the
video attributes are restored to their initial states.
(Modified. Passed by reference.)

Attributes Value

None 0
Bold 1
Blink 2
Blink and Bold 3
Reverse 4

87

Chapter 5. Form Driver Calls

Attributes Value

Reverse and Bold 5
Reverse and Blink 6
Reverse, Blink, and Bold 7
Underline 8
Underline and Bold 9
Underline and Blink 10
Underline, Blink, and Bold 11
Underline and Reverse 12
Underline, Reverse, and Bold 13
Underline, Reverse, and Blink 14
Underline, Reverse, Blink, and Bold 15
Restore attributes to initial state (-n is any negative integer) -n

Description

Lets you alter the video attributes for the current terminal’s data line. You can also specify that these
video attributes be restored to their original states.

The data line video attributes affect the appearance of (1) Form Driver messages, which are output to
the bottom line of the screen, and (2) other lines of text, which are displayed by the execution of PUTL
or GETDL calls.

This call returns the previous contents of video. The data line video attributes are returned encoded in
the same format you used for the input of the new video attributes.

Status Codes

FDV$_ARG Incorrect number of arguments.
FDV$_CAN Call was terminated by a CANCL call.
FDV$_SUC Successful completion of the call.
FDV$_SYS Form Driver encountered system error response.
FDV$_TCA No terminal control area (TCA) is defined.

5.2. Alter Field Context
FDV$AFCX (insovr,curpos[,fldnam[[,fldidx]])

insovr The code indicating whether Insert or Overstrike mode is in effect
for a field.

(Read. Passed by reference.)

0 = No change

1 = Insert mode

2 = Overstrike mode

88

Chapter 5. Form Driver Calls

curpos The cursor position within a field. The cursor position is 1 for the
leftmost data character in the field, 2 for the next data character to
the right, n for the rightmost character in the field, and n + 1 for
the character position to the immediate right of the rightmost data
character (the hanging cursor position). Field marker characters are
not counted by the cursor. The range of the cursor, 1 to n + 1, is
limited to the number of data characters in the field plus 1. (Read
Pass^ by reference.)

For fixed-decimal fields, the range of the cursor is 1 to + 2, because
the decimal point is counted even though it is not a data character.
This allows the cursor to be positioned on the decimal point, in the
hanging cursor position for the left-hand part of the field.

fldnam The field name. If fldnam is not specified, the current field is
assumed. (Read. Passed by descriptor.)

fldidx The field index. (Read. Passed by reference.)

Description

Alters the default input mode of a field. This call specifies both the Insert/Overstrike mode of the field
and the cursor position in the field for any GET-type call operation affecting the field.

The new context specified by this call remains in effect until the field is processed as part of any GET-
type call. The context is restored to its default state when the operator exits the field. Note that if the
input processing is part of a GETAL or GETAF call, passing through the field in the normal course of
moving the cursor about on the screen restores the default field context.

Status Codes

FDV$_ARG Incorrect number of arguments.
FDV$_CAN Call was terminated by a CANCL call.
FDV$_DSP Form contains only display-only fields.
FDV$_FLD Field does not exist, or index value is invalid for field.
FDV$_INI No workspace is defined.
FDV$_NFL No form loaded in current workspace.
FDV$_NOF Form contains no fields.
FDV$_SUC Successful completion of the call.
FDV$_TCA No terminal control area (TCA) is defined.
FDV$_VAL The value of insovr or curpos is outside the allowed range.

5.3. Alter Field Video Attributes
FDV$AFVA ([video!,fldnam[,fldidx]])

video The video attributes code. Set to 1, any or all of bits 0, 1, 2, and 3 specify any or all
of the Bold, Blink, Reverse, and Underline attributes, respectively (decimal value in
the range 0 to 15).If the value of this argument is negative, the video attributes are
restored to their initial states. (Modified. Passed by reference.)

89

Chapter 5. Form Driver Calls

Attributes Value

None 0
Bold 1
Blink 2
Blink and Bold 3
Reverse 4
Reverse and Bold 5
Reverse and Blink 6
Reverse, Blink, and Bold 7
Underline 8
Underline and Bold 9
Underline and Blink 10
Underline, Blink, and Bold 11
Underline and Reverse 12
Underline, Reverse, and Bold 13
Underline, Reverse, and Blink 14
Underline, Reverse, Blink, and Bold 15
Restore attributes to initial state (-n is any negative
integer)

-n

fldnam The field name. If fldnam is not specified, the current field is
assumed. (Read. Passed by descriptor.)

fldidx The field index. (Read. Passed by reference.)

Description

Lets you alter the video attributes of a field in a form. You can also use this call to restore these video
attributes to their original states. The field video attributes immediately change on the screen and remain
in effect until you either issue another AFVA call to change them, or you redisplay the form by issuing a
DISP or CDISP call.

This call returns the previous contents of video. The video attributes for a field are returned encoded in
the same format you used for the input of the new video attributes.

If you alter the video attributes of a field by issuing an AFVA call, you cancel any input highlighting for
the field. That is, if highlighting is in effect for the form, it will not be used for this field. You restore
highlighting by restoring the default video attributes of the field.

Status Codes

FDV$_ARG Incorrect number of arguments.
FDV$_CAN Call was terminated by a CANCL call.
FDV$_FLD Field does not exist, or index value is invalid for field.
FDV$_INI No workspace is defined.
FDV$_NFL No form loaded in workspace.
FDV$_NOF Form contains no fields.

90

Chapter 5. Form Driver Calls

FDV$_SUC Successful completion of the call.
FDV$_SYS Form Driver encountered system error response.
FDV$_TCA No terminal control area (TCA) is defined.

5.4. Attach Terminal
FDV$ATERM (tea,size,channel[,trmnal[,faketrmtyp[,options)]]]

tea The name of a terminal control area. The TCA size, contained in the
descriptor, must be at least 12 bytes. (Modified. Passed by descriptor.)

size The size of the TCA in bytes. (Read. Passed by reference.) (Ignored in VMS.)
channel The logical I/O channel number for the terminal. (Read. Passed by reference.)
trmnal The name of the terminal to be associated with the TCA. If trmnal is

omitted, the default is SYS$INPUT. (Read. Passed by descriptor.)
faketrmtyp The name of the terminal type the Form Driver assumes for batch use. The

only valid string supported currently is “VT100”. If this argument is given,
there is no real input or output to the terminal.(Read. Passed by descriptor.)
An integer specifying which Form Driver options are to be associated with
this terminal. When specifying the option, the integer is a longword with the
following bits:
BIT Setting Meaning

0 The screen shall not be cleared when attaching the
terminal.

1 The Form Driver clears the terminal’s video
attributes after each call (see CLEARJVA)

2 AST support is not required. Requesting this option
improves performance (see AST considerations).

options

3-31 Reserved by Digital.

Description

Attaches a terminal to the Form Driver. You must issue an ATERM call for any terminal the Form
Driver needs to access for form processing. This call makes the attached terminal the current terminal.

When you specify a channel, you are specifying a logical channel. FMS asks VMS to assign a physical
channel. If you want the Form Driver to use a particular channel, first issue ATERM and then issue
TCHAN. Form Driver logical channel numbers are all interpreted modulus 256.

The channels specified in the Form Driver calls ATERM, LCHAN, and LOPEN are strictly local to
FMS and have no relationship to Logical Unit Numbers used by FORTRAN and BASIC. These channel
numbers provide a means of reference only. The Form Driver keeps an association list of all logical
channels currently in use by the application program. Logical terminal numbers and logical form library
numbers must not conflict; that is, a logical terminal channel number cannot be used as a logical form
library channel number.

ATERM lets you specify a terminal control area for this terminal. This area maintains all necessary
information about current terminal characteristics and associations. Other calls refer to these areas
implicitly or explicitly whenever they need to indicate a particular terminal. The terminal must be
VT200-, VT100 or VT52-compatible.

91

Chapter 5. Form Driver Calls

When the faktrmtyp argument is used in ATERM to attach a fake terminal, the terminal so attached is
defined as a VT100 type terminal with 65 lines and 132 columns (instead of just 24 lines). This gives
applications the opportunity to use such a fake terminal to produce a line printer report. Calls to RETFL,
for such a terminal, can access lines 1 through 65. Since the Form Language and the Form Editor allow
the production of forms only 23 lines long, three forms in three workspaces (with appropriate offsets)
are necessary to produce a full screen of output.

If the faketrmtyp argument is not supplied (or is null), the terminal specified in the trmnal argument
is attached in the normal fashion. When faketrmtyp is specified as the descriptor of a character string
containing “VT100”, no actual terminal attachment is made, and the trmnal argument is ignored.

Any calls for input on the terminal specified by this TCA result in FDV$_ITT errors. All output
normally directed to the screen is suppressed. However, calls that normally produce output, such as
CDISP and PUT, still modify the workspace. The Form Driver can then be used as an output formatting
tool.

The faketrmtyp argument causes subsequent calls to RETFL to produce line images of what would have
been displayed.

The options argument is useful when you want your program to retain part of the current screen while
FMS is using another part of the screen. The options argument is further defined by setting the two low
order bits of the argument.

Bit 0 is described above. Bit 1 set to 1 directs the Form Driver to reset the video attributes and character
set of this terminal to the clear state (no video attributes and character set shifted in) after every Form
Driver call. Bit 1 set to 0 directs the Form Driver to leave the attributes of the terminal set between calls
to achieve minimal output.

The use of the second bit in ATERM makes it easier to perform direct screen management between
Form Driver calls, at the price of additional output on every Form Driver call that touches the screen. A
program that performs direct screen management can choose either to attach the terminal with this bit
set, or to_ call FDV$CLEAR_VA at appropriate times. Using FDV$CLEAR_VA requires more care on
the part of the program, but allows the Form Driver to optimize output slightly.

AST support requires a great deal of overhead in the Form Driver. If your application does not need
AST reentrant support, setting bit 2 greatly reduces the overhead in the Form Driver and will improve
its performance. However, you must not set this bit if your applications use the Form Driver in an AST
fashion. This will cause unexpected results.

In addition, ATERM clems the screen and turns the LEDs off.

If you do not specify a terminal, the default terminal is attached.

Status Codes

FDV$_ARG Incorrect number of arguments.
FDV$_CAN Call was terminated by a CANCL call.
FDV$_ICH Logical channel specified was either in use or invalid.
FDV$_ITT Illegal terminal type.
FDV$_JVM Not enough virtual memory could be allocated for the TCA.
FDV$_STA Size of specified TCA is too small.
FDV$_SUC Successful completion of the call.

92

Chapter 5. Form Driver Calls

FDV$_SYS Form Driver encountered system error response.
FDV$_VAL Either the faketrmtyp argument was given and it was not “VT100”,

or the options argument was given and it was not within the range of
0-7.

5.5. Attach Form Workspace
FDV$AWKSP (wksp,size)

wksp The form workspace location. The length (in bytes) recorded in
the descriptor, must be a value of at least 12. (Modified. Passed by
descriptor.)

size An estimate of the workspace size in bytes. If the size turns out to be
too small, the Form Driver automatically increases it. (Read. Passed
by reference.)

Description

Attaches a form workspace to the current terminal. You must issue an AWKSP call for any form your
application processes on any terminal. This call makes the attached workspace the current workspace.

The Form Driver uses the 12-byte area specified in the wksp descriptor as linkage to an area that it
allocates in virtual memory. This area is used to store the variable part of a form description.

The size argument is an estimate of the storage space needed for a loaded form. If you underestimate the
amount of space you need, the Form Driver automatically allocates more space — but a large enough
estimate can save time.

You can use the FMS/DIRECTORY command to find out the workspace size you need for each form
you expect to use. (See the VSI FMS Utilities Reference Manual.)

Status Codes

FDV$_ARG Incorrect number of arguments.
FDV$_CAN Call was terminated by a CANCL call.
FDV$_IMP Length specified in wksp descriptor is not large enough.
FDV$JTVM Not enough virtual memory could be allocated for the workspace.
FDV$_SUC Successful completion of the call.
FDV$_TCA No terminal control area (TCA) is defined.

5.6. Ring Terminal Bell
FDV$BELL

Description

Rings the terminal bell. If the current terminal is defined, this call rings its bell. If the current terminal is
not defined, the call rings the bell on the application program’s default terminal. This call rings the bell
regardless of the signal mode (see the SSIGQ and SIGOP call descriptions).

93

Chapter 5. Form Driver Calls

Status Codes

FDV$_ARG Incorrect number of arguments.
FDV$_CAN Call was terminated by a CANCL call.
FDV$_SUC Successful completion of the call.
FDV$_SYS Form Driver encountered system error response.

5.7. Cancel Call
FDV$CANCL

Description

Causes any other Form Driver call presently being processed on the current terminal to be terminated
with the error condition FDV$_CAN.

This call has no effect unless it is executed from an AST service routine or a UAR, since no other call
can otherwise be executing.

When executed, this call causes two things to happen:

1. All I/O operations associated with the current terminal are canceled.

2. Until the cancellation processing is complete, any other call involving the same TCA as that of the
call being canceled is itself canceled when issued. This action is taken to ensure that all calls issued
by a UAR are canceled as well.

As a result of these two activities, the call normally terminates almost immediately. If a call has called
a UAR, however, the call-processing code cannot terminate processing until the UAR returns control
to the Form Driver. Upon return from a UAR, the Form Driver checks to see if the TCA is marked as
processing a CANCL operation and if it is, the call is terminated.

If a call is canceled after its UAR has begun executing, any subsequent calls the UAR might issue will
also be terminated with the status of FDV$_CAN.

CANCL returns FDV$_SUC whether or not any call is canceled.

Status Codes

FDV$^ARG Incorrect number of arguments.
FDV$_SUC Successful completion of the call.
FDV$_SYS Form Driver encountered system error response.
FDV$_TCA No terminal control area (TCA) is defined.

5.8. Clear Screen and Display Form
FDV$CDISP (frmnamf [,offset])

frmnam The name of the form.{Read. Passed by descriptor.)

94

Chapter 5. Form Driver Calls

offset The position of the form on the screen. (Read. Passed by reference.)

• If offset contains0, the Form Driver positions the form on the
screen as specified in the form description.

• If offset contains a nonzero value, the Form Driver moves
the form up (if the value is negative) or down (if the value is
positive) by the amount specified.

Description

Executes a CLEAR call and then a DISP call, clearing all forms from the screen (marking them as
undisplayed) and displaying a new form. If any other workspaces are attached to the current terminal,
your program can redisplay their forms by issuing DISPW calls on their workspaces. See the description
of the DISP call for additional details.

Status Codes

FDV$_ARG Incorrect number of arguments.
FDV$_CAN Call was terminated by a CANCL call.
FDV$_FCH Form was not memory resident, and when the Form Driver

attempted to search for it in a form library, the current library
channel was not open.

FDV$_FNM Binary form description could not be found either in the form
library or in the list of memory-resident forms.

FDV$_FRM Form description is invalid.
FDV$_IFU Workspace cannot be loaded at this time because it is the workspace

for a currently active UAR.
FDV$_INI No workspace is defined.
FDV$_IOR I/O error occurred while Form Driver was reading in the form from

the form library. The I/O error code is recorded in the current state.
You can obtain it by issuing the STAT call.*

FDV$_JVM Not enough virtual memory could be allocated for the workspace.
FDV$_LIN Starting offset is invalid. Form does not fit on the screen if offset by

the amount specified.
FDV$_SUC Successful completion of the call.
FDV$_SYS No terminal control area (TCA) is defined.
FDV$_TCA Form Driver encountered system error response.

5.9. Clear Screen
FDV$CLEAR ([lme.rLr[,linecnt.rl.r]])

line The number of the first line of the screen to be cleared. A value of
zero specifies the top of the screen. (Read. Passed by reference.)

linecnt The number of lines to clear. If you specify 0, all lines from the line
you specified in the line argument to the bottom of the screen are
cleared. (Read. Passed by reference.)

95

Chapter 5. Form Driver Calls

Description

Clears all or part of the screen. If line is greater than zero, the screen is cleared from that line down;
otherwise, the screen is cleared from the top down. If linecnt is greater than zero, it specifies the number
of lines to be cleared. If it is zero, the screen is cleared to the bottom of the screen.

A refresh operation (whether by your program or by the operator) following a CLEAR operation restores
the entire screen, including the cleared area.

Following the CLEAR operation, the cursor is positioned at the left most character position on the first
line cleared.

Status Codes

FDV$_ARG Incorrect number of arguments.
FDV$_CAN Call was terminated by a CANCL call.
FDV$_LIN Call specifies that some line not on the screen be cleared.
FDV$_SUC Successful completion of the call.
FDV$_SYS Form Driver encountered system error response.
FDV$_TCA No terminal control area (TCA) is defined.

5.10. Clear Video Attributes
FDV$CLEAR_VA

Description

Clears the screen of video attributes and sets certain other terminal attributes. It is useful when you
want your program to write to, or control the screen, directly, while a terminal is still attached to FMS.
CLEAR forms the following operations:

For VT52-type terminals:

• Shifts in character set.

For VT100-type terminals:

• Shifts in character set.

• Turns off the screen’s video attributes.

• Sets newline mode.

• Resets the scrolling area.

• Sets absolute origin mode.

This call does not affect the character sets currently selected in G0 or G1 for VT100-compatible
terminals, the width of the screen, or the background color of the screen.

CLEAR-VA should be issued in the following situations:

96

Chapter 5. Form Driver Calls

• Just before your program starts its own direct screen management after FMS has been controlling
the screen. This clears the screen of any attributes (most importantly, video attributes) that FMS may
have left, so that your program can start with a known, clean screen.

• Just before your program calls FMS after your program has changed any of the above attributes of
the screen. This clears the screen of any attributes your program may have left, so that FMS can
continue with a known screen.

See also the description of SCR_WIDTH for information on a call that informs the Form Driver that
your program has changed the width of the screen.

Status Codes

FDV$_ARG Incorrect number of arguments.
FDV$_CAN Call was terminated by CANCL call.
FDV$_SUC Success.
FDV$_TCA No current terminal.

5.11. Remove Form from Memory-Resident
Form List
FDV$DEL(frmnam)

frmnam The name of the form. (Read. Passed by descriptor.)

Description

Deletes a memory-resident form from the list of memory-resident forms you loaded with the READ call.
You cannot delete with this call those memory resident forms that are built into the application program.

If the form you specified is not found, or if it is in the set of forms built into the application, this call
returns the status code of FDV$_FNM.

Status Codes

FDV$_ARG Incorrect number of arguments.
FDV$_CAN Call was terminated by a CANCL call.
FDV$_FNM Binary form description could not be found in the set of memory-

resident forms that could be deleted (that is, those loaded by a
READ call).

FDV$_SUC Successful completion of the call.

5.12. Define Keyboard
FDV$DFKBD (defkbd,kbdnum)

defkbd An array of key functions and key codes. (Read. Passed by
descriptor.)

97

Chapter 5. Form Driver Calls

kbdmim The number of entries in the defkbd array. Each entry is a pair of
array slots. Thus, the length of the array must be at least two times
kbdnum. (Read. Passed by reference.)

Description

The Form Driver has 17 functions and provides default keys to perform these functions. However,
the user can override these default Form Driver function key assignments using defkbd. The defkbd
argument is a one-dimensional array of words, with kbdnum pairs of entries. (That is, defkbd is expected
to be two times kbdnum words.) The first word of each pair is a Form Driver key function, as defined
below. The second word is a Form Driver key code as defined in Chapter 2. Two special key codes are
FDV$K_KF_DFLT and FDV$K_KF_NONE.

1. FDV$K_KF_DFLT declares that the key code for the key function is to be the default. (This restores
the default after a previous change.)

2. FDV$K_KF_NONE declares that no key code is to be associated with the key function. (The key
function is deleted.)

The key codes in defkbd replace the current key codes for the current TCA. Note that not all key
functions need be specified in a given call. Only those in defkbd are affected. The defkbd array is
merged with the currently active table to produce the table used by the Form Driver.

As a result of the merging of defkbd and the current definitions, no key code can be assigned more than
one key function. Assigning FDV$K_KF_DFLT to a key function assigns all key code defaults to that
key function.

The following table lists the FDV functions and the default key assignments.

Function Name Description VT100 Key Sequence DFKBD Value

FDV$K_KF_DLCHR Delete character DELETE 1
FDV$K_KF_CRSRT Move cursor right Rightarrow 2
FDV$K_KF_CRSLF Move cursor left Leftarrow 3
FDV$K_KF_DLFLD Delete field LINEFEED 4
FDV$K_KF_INS Set Insert mode PF1 PF3 5
FDV$K_KF_OVR Set Overstrike mode PF3 6
FDV$K_KF_GOLD Gold sequence starter PF1 7
FDV$K_KF_RESET Reset Gold sequence PF1 DELETE 8
FDV$K_KFJRFRSH Refresh screen CTRL/R 9
FDV$K_KF_JHELP Help PF2 10
FDV$K_KF_NXT Next field TAB 11
FDV$K_JCF_JPRV Previous field BACKSPACE 12
FDV$K_KF_NTR Enter Form RETURN or ENTER 13 13
FDV$K_KF_SBK Scroll backward Uparrow 14
FDV$K_KF_SFW Scroll forward Downarrow 15
FDV$K_KF_XBK Exit scrolled area

backward
PF1 Uparrow 16

98

Chapter 5. Form Driver Calls

FDV$K_KF_XFW Exit scrolled area
forward

PF1 Downarrow 17

The following example shows how to use the DFKBD call to switch the functions of the RETURN
and TAB keys. After this call is executed, RETURN (and the ENTER key) will mean Next Field
(FDV$K_FT_NXT), and TAB will mean Enter Form (FDV$K_FT_NTR). The example is given in
FORTRAN.

INTEGER TCA (3)
INTEGER _*2 KEYTABLE (4) / FDY$K_KF_NTR * 1033 *
1 FDO$K_KF-NXT * 1037 /
CALL FDV$ATERM (ZDE5CR (TCA > 1 2 >1)
CALL FD0$DFKBD (ZDESCR (KEYTABLE) * 2)

Status Codes

FDV$_ARG Incorrect number of arguments.
FDV$_CAN Call was terminated by a CANCL call.
FDV$_KEX Too many key codes were defined for some key function.
FDV$_JQF Illegal key function was given.
FDV$_KIL Illegal key code was given; that is, the key was not on the list in

Chapter 2.
FDV$_KTW Key code was given two separate key functions.
FDV$_SUC Successful completion of the call.
FDV$JTCA No terminal control area (TCA) is defined.

5.13. Display Form
FDV$DISP (frmnam[,offset])

frmnam The name of the form. (Read. Passed by descriptor)
offset The position of the form on the screen. (Read. Passed by reference.)

• If offset contains 0, the Form Driver positions the form on the
screen as specified in the form description.

• If offset contains a nonzero value, the Form Driver moves
the form up (if the value is negative) or down (if the value is
positive) by the amount specified.

Description

Displays a form, clearing the portion of the screen specified as the clear area in the form description.
Any portion of the screen not cleared is overwritten by nonblank portions of the form. If offset has a
value of zero, the form is positioned as specified in the form description. If offset contains a nonzero
value, the Form Driver moves the form up (if the value is negative) or down (if the value is positive) by
the amount specified.

If the form does not fit on the screen (that is, if some portion of background text falls outside the area of
line 1 through line 23, or line 1 through line 14 for a non-AVO terminal in 132-column mode), the Form
Driver returns the FDV$_LIN status code.

99

Chapter 5. Form Driver Calls

If the form specifies a screen width different from the current width, the formwide screen width attribute
determines the Form Driver’s action:

• If the form does not have the screen width attribute, the Form Driver does not modify the width. No
error can occur with 80-column forms because they always fit. Forms having 132 columns do not fit
if the screen is currently set for 80 columns wide.

• If the form does have the screen width attribute, the Form Driver always modifies the screen width.
If the form is an 80-column form, but a 132-column form is already displayed on the screen, the
132-column form is removed from the screen and marked as undisplayed. The form specified in the
call is displayed.

For terminals not capable of being switched to 132 columns, 132-column forms cause an error.

If the form being displayed specifies that the screen video be modified when the form is displayed, the
screen video is set as directed, regardless of what screen video specifications are associated with any
other form already displayed from other attached workspaces.

If the background text or fields of the form displayed overlap any background text or fields of another
form already displayed on the screen, the previous text is replaced. If the screen is refreshed, however,
the final screen image may be changed because the workspaces are redisplayed in the order they were
attached. The workspace’s form that is current at the time of the refresh is displayed properly.

The following may clarify the screen management role of the Form Driver when overlaid forms are
present, and when your program issues PUTL and GETDL calls to reference lines that are parts of
forms.

Whenever the Form Driver is directed to output a value to the screen by one of the PUT-type field
calls (PUT, PUTAL, PUTD, PUTDA, or PUTSC), or is directed to request input from the operator by
one of the GET-type field calls (GET, GETAF, GETAL, or GETSC), it first checks to see if the form
containing the field is still intact on the screen. If the form has been disturbed in any way, the Form
Driver redisplays it.

A form is disturbed in one of two ways:

1. Part of it has been overlaid by another form (in a subsequent DISPW call, RFRSH call or operation,
or help request).

2. Part of it has been overlaid by a PUTL or GETDL call.

No matter what part of the form has been overlaid, the Form Driver ensures that the entire form is
displayed.

The Screen Area to Clear attribute of a form is included in the description of the form, so that the form
designer should consider how much of the screen should be included in this attribute at design time.
Even if the form does not specify text or fields for a line, the Screen Area to Clear attribute may specify
that the line be blank when the form is displayed.

The Form Driver honors the form description whenever the form is referenced. If you find a form being
redisplayed when you do not expect it, it is most likely that part of the form has been overwritten.

Status Codes

FDV$_ARG Incorrect number of arguments.

100

Chapter 5. Form Driver Calls

FDV$_CAN Call was terminated by a CANCL call.
FDV$_FCH Form was not memory resident, and when the Form Driver

attempted to search for it in a form library, the current library
channel was not open.

FDV$_FNM Binary form description could not be found either in the form
library or in the list of memory-resident forms.

FDV$_FRM Form description is invalid.
FDV$_IFU Workspace cannot be loaded at this time because it is the workspace

for a currently active UAR.
FDV$_INI No workspace is defined.
FDV$_IOR I/O error occurred while Form Driver was reading in the form from

the form library. The I/O error code is recorded in the current state.
You can obtain it by issuing the STAT call.

FDV$_TVM Not enough virtual memory could be allocated for the workspace.
FDV$_LIN Starting offset is invalid. Form does not fit on the screen if offset by

the amount specified.
FDV$_SUC Successful completion of the call.
FDV$_SYS Form Driver encountered system error response.
FDV$_TCA No terminal control area (TCA) is defined.
FDV$_WID The form to be displayed will not fit on the screen (132-column

form on a VT52).

5.14. Display Loaded Form
FDV$DISPW ([offset])

offset The position of the form on the screen. (Read. Passed by reference.)

• If offset contains 0, the Form Driver positions the form on the
screen as specified in the form description.

• If offset contains a nonzero value, the Form Driver moves
the form up (if the value is negative) or down (if the value is
positive) by the amount specified.

Description

Displays on the current terminal a form already loaded in a workspace. A form can be resident in a
workspace but undisplayed for any of the following reasons:

• It was previously loaded by a LOAD call.

• It was removed from the screen as a side effect of a CDISP call.

• It was a 132-column form that was removed from the screen as a side effect of another display call
that loaded an 80-column form having the screen width attribute (see the description of the DISP
call).

• It was marked as not displayed by the execution of an NDISP call.

101

Chapter 5. Form Driver Calls

DISPW clears any portion of the screen (possibly offset by the offset argument) that was specified as
an area to be cleared in the form description. Any other portion of the screen is modified only if it is
overwritten by the back- ground or field text of the form displayed. See the description of the DISP call
for additional details.

Status Codes

FDV$_ARG Incorrect number of arguments.
FDV$_CAN Call was terminated by a CANCL call.
FDV$_FCH Form was not memory resident, and when the Form Driver

attempted to search for it in a form library, the current library
channel was not open.*

FDV$_FNM Binary form description could not be found either in the form
library or in the list of memory-resident forms.

FDV$_LNI No workspace is defined.
FDV$_LIN Starting offset is invalid. Form does not fit on the screen if offset by

the amount specified.
FDV$_SUC Successful completion of the call.
FDV$_SYS Form Driver encountered system error response.
FDV$_TCA No terminal control area (TCA) is defined.
FDV$_WID Form being displayed does not fit on the screen (132-column form

on a VT52).

5.15. Define Comma as Decimal Point
FDV$DPCOM ([dpmode])

dpmode A value determining what the decimal point character is to be:

1 = Comma is accepted exclusively as the decimal point.

0 = Period is restored to its role as the decimal point.

(Read. Passed by reference.)

Description

Defines the comma, or redefines the period, exclusively, as the decimal point for fields containing the
signed numeric (N) picture. The decimal point is returned to your program as part of the field value
(unlike the decimal point in fixed-decimal fields). The default is the period.

Status Codes

FDV$_ARG Incorrect number of arguments.
FDV$_CAN Call was terminated by a CANCL call.
FDV$_SUC Successful completion of the call.
FDV$_TCA No terminal control area (TCA) is defined.
FDV$_VAL The value of dpmode is outside the allowed range.

102

Chapter 5. Form Driver Calls

5.16. Detach Terminal
FDV$DTERM (tea)

tea The name of a terminal control area. {Modified. Passed by
descriptor.)

Description

Detaches a terminal from the Form Driver. All workspaces associated with the terminal are detached,
and then the terminal itself is detached. No further Form Driver activity occurs with this terminal after
DTERM is executed. Any forms displayed on the detached terminal remain on the screen.

When a terminal is detached, the character video attributes are cleared, the scroll area (VT100s only) is
set to the full screen, the bottom line is cleared, and the cursor is placed at the leftmost position on the
bottom line.

Normally, when the TCA is detached from the FMS application program, its associated terminal is
detached from the program. An exception to this rule occurs if the channel was specified by the TCHAN
call. Because TCHAN, alone, specifies a physical channel rather than a logical one, the terminal is not
detached following a DTERM call.

Status Codes

FDV$_ARG Incorrect number of arguments.
FDV$_CAN Call was terminated by a CANCL call.
FDV$_FVM An error occurred freeing virtual memory allocated to the

application.
FDV$_CFU Terminal cannot be detached at this time because it is the terminal

for a currently active UAR.
FDV$_SUC Successful completion of the call.
FDV$_SYS Form Driver encountered system error response.
FDV$_TCA No terminal control area (TCA) is defined.

5.17. Detach Form Workspace
FDV$DWKSP (wksp)

wksp The form workspace. (Modified. Passed by descriptor.)

Description

Detaches a form workspace from the current terminal. Any form that is currently displayed remains on
the screen.

Status Codes

FDV$_ARG Incorrect number of arguments.

103

Chapter 5. Form Driver Calls

FDV$_CAN Call was terminated by a CANCL call.
FDV$_FVM An error occurred freeing virtual memory allocated to the

application.
FDV$_IFU Workspace cannot be detached at this time because it is the

workspace for a currently active UAR.
FDV$_INI Workspace does not exist or is not associated with the current

terminal.
FDV$_SUC Successful completion of the call.
FDV$_TCA No terminal control area (TCA) is defined.

5.18. Repair Overwritten Lines of Terminal
Screen
FDV$FIX_SCREEN

Description

Programs which perform direct screen management may overlay lines of forms displayed by FMS.
Calling FIX-SCREEN will repair these lines with a minimum of output. FIX-SCREEN is similar to
RFRSH, but with two exceptions: FIX SCREEN does not clear the screen first, and it outputs only those
lines which it knows to have been cleared.

Whenever information is sent to a screen field (by a PUT-type call) or requested of the screen (by a
GET-type call), the Form Driver checks the lines of the form. If any line has been cleared as described
above, the Form Driver then repairs the affected lines of the screen by calling FIX SCREEN internally.
Thus, your program need do nothing if the screen has been affected by calls on the Form Driver, such as
CLEAR, PUTL, GETDL, DISPW, CDISP, or DISP, since the Form Driver knows and will fix the screen
before the next I/O operation affecting fields.

However, if your program performs direct screen management (that is, it affects the screen without
calling the Form Driver) the Form Driver will not know when the screen has been affected and will not
automatically fix it. If you wish the Form Driver to restore the screen to the proper state after your own
direct screen management, you must first clear the lines through the

Form Driver. One way of doing this is through the CLEAR call. After the CLEAR call the Form Driver
will know that the lines need to be restored to their proper form state.

5.19. Get Value for Specified Field
FDV$GET (fldval,fldtrm41dnain[,fldidx])

fldval The field value. The value consists of data characters, but no field-
marker characters. If the operator does not enter a character for
every position in the field, the Form Driver fills the empty positions
with fill characters. (Written. Passed by descriptor.)

fldtrm The field terminator that the operator entered to terminate input to
the field. (Written. Passed by reference.)

fldnam The field name. (Read. Passed by descriptor.)

104

Chapter 5. Form Driver Calls

fldidx The field index. (Read. Passed by reference.)

Description

Waits for the operator to type a value into the field you specified, and records the field terminator in
fldtrm. If fldnam starts with an asterisk (*), the Form Driver prompts the operator for input to the first
modifiable field. If the field is in a scrolled area, the operation is performed in the current scrolled line
for that area.

If the terminator is a function key not reserved for FMS, the form’s function key UAR is called. The
function key UAR may suppress the terminator, ignore it, or change it before subsequent processing
occurs.

If the terminator is not a Previous Field terminator or a function key, the Form Driver checks the field
for Response Required, Must Fill, and field completion UAR requirements. If any requirements are not
fulfilled, the operator must continue input.

The value and its terminator are recorded in the workspace and are returned to your program. If a field
value is changed by the operator when this call is executed, the status code returned is FDV$ MOD
instead of FDV$ SUC.

Status Codes

FDV$_ARG Incorrect number of arguments.
FDV$_CAN Call was terminated by a CANCL call.
FDV$_DSP Form contains only Display Only fields, or the specified field is

Display Only.
FDV$_FLD Field does not exist, or index value is invalid for field.
FDV$_INI No workspace is defined.
FDV$_MOD Field value in fldval has been modified by the operator. Otherwise,

this code is the same as FDV$_SUC.
FDV$_NDS Form is marked as being not displayed, so no input is possible.
FDV$_NFL No form loaded in workspace.
FDV$_NOF Form contains no fields.
FDV$_STR Value being returned is too large for the variable allocated for it.
FDV$_SUC Successful completion of the call.
FDV$_SYS Form Driver encountered system error response.
FDV$_TCA No terminal control area (TCA) is defined.
FDV$_TMO Operator took longer to respond than allowed by the timeout value

associated with the current terminal.
FDV$OJAR UAR returned illegal code.
FDV$_UDP UAR depth exceeded.
FDV$_UNF UAR specified but not found.

5.20. Get Value for Any Field
FDV$GETAF (fldval>fldtrm,fldnam[,fldidx])

105

Chapter 5. Form Driver Calls

fldval The field value. The value consists of data characters but no field-
marker characters. If the operator does not enter a character for
every position in the field, the Form Driver fills the empty positions
with fill characters. (Written. Passed by descriptor.)

fldtrm The field terminator that the operator entered to terminate input to
the field. (Written. Passed by reference.)

fldnam The field name. (Written. Passed by descriptor.)
fldidx The field index. (Written. Passed by reference.)

Description

Allows the operator to move the cursor to any modifiable field in the current form (that is, to any field
that is not Display Only and not Supervisor Only when the Supervisor Only flag is on) and to enter a
value in that field only. The cursor is initially positioned at the current field and index. The current field
name and index are updated in the workspace as the operator moves the cursor.

If the terminator is a function key not reserved for FMS, the form’s function key UAR is called. The
function key UAR may suppress the terminator, ignore it, or change it before subsequent processing
occurs.

If the terminator is not a Previous Field terminator or a function key, the Form Driver checks the field
for Response Required, Must Fill, and field completion UAR requirements. If any requirements are not
fulfilled, the operator must continue input.

The Form Driver records in the workspace the value and terminator that the operator enters, and returns
the input to your program. The operator can move about the form using the Next Field and Previous
Field keys. The call ends when the operator modifies one field, presses the ENTER key, or types any
function key not reserved for FMS. If the operator modifies a field, the Form Driver returns the status
code FDV$_MOD instead of FDV$_SUC.

If the form contains scrolled areas, only the current scrolled line for each area is accessed by the call.

Status Codes

FDV$_ARG Incorrect number of arguments.
FDV$_CAN Call was terminated by a CANCL call.
FDV$_DSP Form contains only display-only fields.
FDV$_INI No workspace is defined.
FDV$_MOD Field value in fldval has been modified by the operator. Otherwise,

this code is the same as FDV$_SUC.
FDV$_NDS Form is marked as being not displayed, so no input is possible.
FDV$_NFL No form loaded in workspace.
FDV$_NOF Form contains no fields.
FDV$_STR Value being returned is too large for the variable allocated for it.
FDV$_SUC Successful completion of the call.
FDV$_SYS Form Driver encountered system error response.
FDV$_TCA No terminal control area (TCA) is defined.
FDV$_TMO Operator took longer to respond than allowed by the timeout value

associated with the current terminal.

106

Chapter 5. Form Driver Calls

FDV$_UAR UAR returned illegal code.
FDV$_UDP UAR depth exceeded.
FDV$_UNF UAR specified but not found.

5.21. Get All Field Values
FDV$GETAL ([fldval,fldtrm[,fldnam[,fldidx]]])

fldval The values of all fields in the current form. The values are returned
in the order specified in the form description. They consist of data
characters but no field marker characters. If the operator does not
enter a character for every position in the field, the Form Driver
fills the empty positions with fill characters. (Written. Passed by
descriptor.)

fldtrm The field terminator that the operator entered to terminate input to
the field. (Written. Passed by reference.)

fldnam The name of the starting field. (Read. Passed by descriptor.)
fididx The index of the starting field. (Read. Passed by reference.)

Description

Allows the operator to move the cursor to any nonscrolled fields in the current form that are modifiable
(that is, to any nonscrolled fields that are not Display Only and not Supervisor Only when the Supervisor
Only flag is on), and to enter values in those fields. This call normally positions the cursor at the first
nonscrolled modifiable field but if you specify a field with the fldnam and fldidx arguments, input
begins with that field instead.

The operator can move about the form using the Next Field and Previous Field keys. The call ends when
the operator presses the Enter Form key or a non-FMS function key. The Form Driver processes each
field terminator according to the description of the PFT call.

If the terminator is a function key not reserved for FMS, the form’s function key UAR is called. The
function key UAR may suppress the terminator, ignore it, or change it before subsequent processing
occurs.

If the terminator is not a Previous Field terminator or a function key, the Form Driver checks the field
for Response Required, Must Fill, and field completion UAR requirements. If any requirements are not
fulfilled, the operator must continue input.

Call processing ends if an error occurs, or if the operator presses a function key that is not suppressed by
a function key UAR.

If the operator presses the Enter Form key, but the form has nonscrolled fields with Response Required
or Must Fill attribute requirements not fulfilled, or field completion UARs not satisfied, the Form Driver
displays a message at the bottom of the screen, signals the operator, positions the cursor at the first field
still requiring operator input, and awaits further input. (The operator is not restricted to entering data in
these fields. The Form Driver moves the cursor only to direct the operator’s attention to the fields.)

Upon completion of the form, the values of all nonscrolled fields (including display-only fields) are
returned in fldval in the default field access order. The final field terminator and the modify flag status
are returned as well.

107

Chapter 5. Form Driver Calls

If the form contains any scrolled areas, they are ignored by this call.

Status Codes

FDV$_ARG Incorrect number of arguments.
FDV$_CAN Call was terminated by a CANCL call.
FDV$_DSP Form contains only display-only nonscrolled fields, or the field

specified was display only.
FDV$_INI No workspace is defined.
FDV$_MOD At least one field has been modified by the operator.
FDV$_NDS Form is marked as being not displayed, so no input is possible.
FDV$_NFL No form loaded in workspace.
FDV$_NOF Form contains no fields.
FDV$_STR Value being returned is too large for the variable allocated for it.
FDV$_SUC Successful completion of the call.
FDV$_SYS Form Driver encountered system error response.
FDV$_TCA No terminal control area (TCA) is defined.
FDV$_TMO Operator took longer to respond than allowed by the timeout value

associated with the current terminal.
FDV$_UAR UAR returned illegal code.
FDV$_UDP UAR depth exceeded.
FDV$_UNF UAR specified but not found.

5.22. Get Data Line from Terminal
FDV$GETDL (value,fldtrm[,line[,prompt]])

value The data line. (Written. Passed by descriptor.)
fldtrm The field terminator that the operator entered to terminate input to

the field. (Written. Passed by reference.)
line The number of the line on which the operator’s input is displayed. If

you specify zero or omit this argument, the display occurs on the last
line of the screen (24 or 14). (Read. Passed by reference.)

prompt The data line text. Used as a prompt for the operator. (Read. Passed
by descriptor.)

Description

Waits for the operator to type a line of text from the terminal.

The following points are important for you to note:

• This call does not require a workspace or TCA.

• The terminator returned is not saved as the current terminator.

• Any terminator is legal.

108

Chapter 5. Form Driver Calls

• The text returned has a length in the range of 0 to 132 characters.

• The text cannot be longer than the current width of the screen used for the input that is, 40, 66, 80,
or 132 characters, depending on the screen width and the attributes of the line set by any form on the
screen.

• If you specify text for the prompt argument, you reduce the size of the allowed input by the length
of the prompt. The operator cannot delete the prompt.

• No function key or field completion UAR is called. Help is not available. The input editing functions
available are the same as for input to a field.

If line has a value that is not zero, the value specifies the line on the screen to be used for the input. If
line has a value of zero, the bottom line of the screen is used. The Form Driver clears the line prior to
input and does not restore it after input is complete.

If the data line overwrites part of a form on the screen, the Form Driver may redisplay part or all of that
form when your program issues the next PUT-type or GET-type call to it.

Status Codes

FDV$_ARG Incorrect number of arguments.
FDV$_CAN Call was terminated by a CANCL call.
FDV$_DLN Argument prompt supplied more data than was required, and some

data was discarded.
FDV$_STR Value being returned is too large for variable allocated for it.
FDV$_SUC Successful completion of the call.
FDV$_SYS Form Driver encountered system error response.
FDV$_TMO Operator took longer to respond than allowed by the timeout value

associated with the current terminal.

5.23. Get Current Line of Scrolled Area
FDV$GETSC (fldnam,fldval[,fldtrm])

fldnam A field name identifying the scrolled area. The field name need not
specify an input field. (Read. Passed by descriptor.)

fldval The field value. The value consists of data characters but no field-
marker characters. If the operator does not enter a character for
every position in the field, the Form Driver fills the empty positions
with fill characters. (Written. Passed by descriptor.)

fldtrm The field terminator that the operator entered to terminate input to
the field. (Written. Passed by reference.)

Description

Positions the cursor at the first modifiable field of the current scrolled line within the scrolled area
containing the named field. But if the previous call was a PFT call that processed a field terminator of
FDV$K_FT_SPR (Scroll to Previous Line), the cursor is positioned at the last modifiable field in the
line.

109

Chapter 5. Form Driver Calls

The Form Driver then allows the operator to enter data in the modifiable fields of the line, moving from
one field to another either by pressing the Next Field and Previous Field keys, or by filling a field having
the Autotab attribute.

If the terminator is a function key not reserved for FMS, the form’s function key UAR is called. The
function key UAR may suppress the terminator, ignore it, or change it before subsequent processing
occurs.

If the terminator is not a Previous Field terminator or a function key, the Form Driver checks the field
for Response Required, Must Fill, and field completion UAR requirements. If any requirements are not
fulfilled, the operator must continue input.

The value of every field in the scrolled line is returned in fldval. When the processing of a terminator
would cause the cursor to exit the line, the call is done. The call is also completed if the operator presses
the Enter Form key or a function key.

The most recent field terminator code is returned.

Status Codes

FDV$_ARG Incorrect number of arguments.
FDV$_CAN Call was terminated by a CANCL call.
FDV$_DSP Form contains only Display Only fields.
FDV$_FLD Field does not exist.
FDV$_INI No workspace is defined.
FDV$_MOD Field value in fldval has been modified by the operator. Otherwise,

this code is the same as FDV$_SUC.
FDV$_NDS Form is marked as being not displayed, so no input is possible.
FDV$_NFL No form loaded in workspace.
FDV$_NOF Form contains no fields.
FDV$_NSC Field named is not a field in a scrolled area.
FDV$_SUC Successful completion of the call.
FDV$_SYS Form Driver encountered system error response.
FDV$_TCA No terminal control area (TCA) is defined.
FDV$_TMO Operator took longer to respond than allowed by the timeout value

associated with the current terminal.
FDV$_UAR UAR returned illegal code.
FDV$_UDP UAR depth exceeded.
FDV$_UNF UAR specified but not found.

5.24. Return Illegal Terminators
FDVSILTRM (trmmod)

trmmod A value determining whether illegal terminators are to be returned to
your program, or treated as errors:

1 = Return illegal terminators.

110

Chapter 5. Form Driver Calls

0 = Do not return illegal terminators.

(Read. Passed by reference.)

Description

Allows your program to receive terminators that are normally illegal in certain contexts—for example, a
Next Field terminator in the last field of a form or a Scroll Forward in a nonscrolled field. You can also
restore the default state in which illegal terminators are not returned.

If your program issues ILTRM (1), any illegal terminator (listed below) from the current terminal
is converted to a special terminator code and is treated as if it came from the pressing of a function
key. The Form Driver sends the code to the form’s function key UAR (if any), where the code can
be rejected, converted to another terminator, or accepted. If there is no function key UAR, the illegal
terminator ends input for the current call and is returned to your program.

Following is a list of illegal terminators, all marked by the characters ILG:

FDV$KJFT_ILG_NXT

K_FT_ILG_PRV

K_FT_ILG_ATB

K_FT_ILG_XBK

K_FT_JLG_XFW

K_FT_ILG_SFW

FDV$K_FT_ILG_SBK

Status Codes

FDV$_ARG Incorrect number of arguments.
FDV$_CAN Call was terminated by a CANCL call.
FDV$_SUC Successful completion of the call.
FDV$_TCA No terminal control area (TCA) is defined.
FDV$_VAL The value of trmmod. is outside the allowed range.

5.25. Set Channel for Form Library File
FDV$LCHAN (channel)

channel The logical I/O channel number for the form library. (Read. Passed
by reference.)

Description

Specifies the current library logical channel. The current library channel is associated with the current
terminal, so the terminal must be defined prior to execution of this call. Following the execution of
LCHAN, the Form Driver uses the specified channel for any LOPEN or LCLOS call processing.

111

Chapter 5. Form Driver Calls

Your program normally issues an LCHAN before executing any other call that references the current
library channel. The program can issue an LOPEN call without issuing an LCHAN first, however, if you
choose to specify a channel in the LOPEN call. You can use LCHAN to switch from one open library to
another open library.

The channels specified in the Form Driver calls ATERM, LCHAN, and LOPEN are strictly local to
FMS and have no relationship to Logical Unit Numbers used by FORTRAN and BASIC. These channel
numbers provide a means of reference only. The Form Driver keeps an association list of all logical
channels currently in use by the application program. Logical terminal numbers and logical form library
numbers must not conflict; that is, a logical terminal channel number cannot also be used as a logical
form library channel number.

Status Codes

FDV$_ARG Incorrect number of arguments.
FDV$_CAN Call was terminated by a CANCL call.
FDV$__ICH Logical channel specified was either in use or invalid.
FDV$_SUC Successful completion of the call.
FDV$_TCA No terminal control area (TCA) is defined.

5.26. Close Form Library
FDV$LCLOS

Description

Closes the form library associated with the current library channel. The current library channel is
associated with the current terminal, so the terminal must be defined prior to the execution of this call.

Note that if a disk-resident form is displayed on the screen and you then issue the LCLOS call, Help
forms cannot be accessed from that library.

Status Codes

FDV$_ARG Incorrect number of arguments.
FDV$_CAN Call was terminated by a CANCL call.
FDV$_FCH Form library is already closed.
FDV$_ICH Channel specified was invalid.
FDV$_SUC Successful completion of the call.
FDV$_TCA No terminal control area (TCA) isdefined.

5.27. Turn Terminal LED Off
FDV$LEDOF (ledno)

ledno The number (in the range 1 to 4) of a LED to be turned off. (Read.
Passed by reference.)

Description

112

Chapter 5. Form Driver Calls

Turns off the specified VT100 light-emitting diode (LED) of the current terminal if the current terminal
is defined. If the current terminal is not defined, the call turns off the specified LED of the application
program’s default terminal instead. If the terminal is not a VT100-compatible terminal, the call is
ignored but a success code is returned.

If LEDOF is called without a TCA, all the LEDs for the default terminal are turned off.

If at any time the operator presses the Refresh key, or if your program issues a RFRSH call, the LEDs
are restored to their previous states.

Status Codes

FDV$_ARG Incorrect number of arguments.
FDV$_CAN Call was terminated by a CANCL call.
FDV$_SUC Successful completion of the call.
FDV$_SYS Form Driver encountered system error response.
FDV$_VAL The value of ledno is outside the allowed range.

5.28. Turn Terminal LED On
FDV$LEDON (ledno)

Description

Turns on the specified VT100 light-emitting diode (LED) of the current terminal if the current terminal
is defined. If the current terminal is not defined, the call turns on the specified LED of the application
program’s default terminal instead. Any other LEDs previously turned on for the default terminal are
turned off. If the terminal is not a VT100 or a VT100-compatible terminal, the call is ignored but a
success code is returned.

If at any time the operator presses the Refresh key, or if your program issues a RFRSH call, the LEDs
are restored to their previous states.

Status Codes

FDV$_ARG Incorrect number of arguments.
FDV$_CAN Call was terminated by a CANCL call.
FDV$_SUC Successful completion of the call.
FDV$_SYS Form Driver encountered system error response.
FDV$_VAL The value of ledno is outside the allowed range.

5.29. Load Form without Display
FDV$LOAD (frcnnam)

frmnam The name of the form. (Read. Passed by descriptor.)

Description

113

Chapter 5. Form Driver Calls

Loads a binary form description into a workspace without displaying the form. Although the workspace
is linked to a TCA, any form loaded by means of this call is marked as undisplayed and does not appear
on the screen when this call is executed. Similarly, the form is not displayed if a RFRSH call is executed.

For a loaded but undisplayed form, all calls requiring operator action are illegal and return a status of
FDV$_NDS. All other calls succeed, but where both the screen and workspace would normally be
altered or updated by the call, only the workspace is altered — the screen is unaffected.

Status Codes

FDV$_ARG Incorrect number of arguments.
FDV$_CAN Call was terminated by a CANCL call.
FDV$_FCH Form was not memory resident, and when the Form Driver

attempted to search for it in a form library, the current library
channel was not open.

FDV$_FNM Binary form description could not be found either in the form
library or in the list of memory-resident forms.

FDV$_FRM Form description is invalid.
FDV$_IFU Workspace cannot be loaded at this time because it is the workspace

for a currently active UAR.
FDV$_INI No workspace is defined.
FDV$_IOR I/O error occurred while Form Driver was reading in the form from

the form library. The I/O error code is recorded in the current state.
You can obtain it by issuing the STAT call.

FDV$_IVM Not enough virtual memory could be allotted for workspace.
FDV$_SUC Successful completion of the call.
FDV$_TCA No terminal control area (TCA) is defined.

5.30. Open Form Library
FDV$LOPEN (filspc[^channel])

filspc The file specification for the form library you want to open. (Read.
Passed by descriptor.)

channel The logical I/O channel number for the form library. If this value is
zero, the value you specified in the most recent LCHAN call for the
current terminal remains in effect. (Read. Passed by reference.)

Description

Opens the form library associated with the channel you specify. If you omit the channel specification, the
call assumes the current channel. (See also the description of the LCHAN call.)

You must issue this call before any other calls that fetch forms from the form library specified by filspc.

The channels specified in the Form Driver calls ATERM, LCHAN, and LOPEN are strictly local to
FMS and have no relationship to Logical Unit Numbers used by FORTRAN and BASIC. These channel
numbers provide a means of reference only. The Form Driver keeps an association list of all logical
channels currently in use by the application program. Logical terminal numbers and logical form library

114

Chapter 5. Form Driver Calls

numbers must not conflict; that is, a logical terminal channel number cannot also be used as a logical
form library channel number.

Status Codes

FDV$_ARG Incorrect number of arguments.
FDV$_CAN Call was terminated by a CANCL call.
FDV$_FLB File specified was not a form library.
FDV$_FSP File specification was invalid.
FDV$_ICH Channel specified was either in use or invalid.
FDV$_JOL Form Driver encountered an error while reading the form library (it

reads the form library to verify that the file is a form library file).
FDV$_IOR The Form Driver encountered an error while opening the form

library.
FDV$_SUC Successful completion of the call.
FDV$_TCA No terminal control area (TCA) is defined.

5.31. Mark Form in Current Workspace as Not
Displayed
FDVSNDISP

Description

Marks the form in the current workspace as being not displayed. The effect of this call is that on
subsequent screen refreshes this form is not redisplayed, and subsequent GETs for the form are illegal. If
the form is already on the screen, it remains there. To redisplay the form, your program must issue the

DISPW call. NDISP is useful if you are using more than one workspace.

NDISP can be particularly useful in some UARs. Normally, if a UAR needs to use another form to
perform its task, it must attach a workspace, issue a DISP call to the workspace, and then detach the
workspace when it is finished. Note that attaching a workspace is an expensive operation involving the
allocation of memory from VMS. If the UAR does not detach the workspace, then the UAR working
form is shown on every refresh operation thereafter.

Marking the form in the workspace as being not displayed is more efficient than the method described in
the preceding paragraph. The workspace can be attached and loaded first, before any GETs. Then, when
the UAR is activated, it can issue a DISPW to display the workspace when it needs it, and then perform
an NDISP when it is finished. A Refresh operation at this time would bring back the original form, but
not the UAR’s working form.

No error occurs if the form is already marked as being not displayed or if there is no form in the
workspace; such a form does not affect the screen.

Status Codes

FDV$_ARG Incorrect number of arguments.
FDV$_CAN Call was terminated by a CANCL call.

115

Chapter 5. Form Driver Calls

FDV$_INI No workspace is defined.
FDV$_SUC Successful completion of the call.
FDV$_TCA No terminal control area (TCA) is defined.

5.32. Process Field Terminator
FDV$PFT ([fldtrm[,fldnam[,fldval[,nfldnam[,nfldidx]]]]])

fldtrm The field terminator to be processed. (Read. Passed by reference.)
fldnam A field name identifying a scrolled area. (Ignored in nonscrolled

area.) (Read. Passed by descriptor.)
fldval The field values to be displayed if the screen is scrolled during

processing of a scrolling field terminator. (Ignored in nonscrolled
area.) (Read. Passed by descriptor.)

nfldnam The current field name after the call has been completed. (Written.
Passed by descriptor.)

nfldidx The current field index after the call has been completed. (Written.
Passed by reference.)

Description

Processes a field terminator code. This call changes the current field or affects the current scrolled line
in accordance with the terminator you supply with the call. If you omit fldtrm from the call, the Form
Driver supplies the most recent terminator that the operator entered from the current terminal.

Note that the PFT call does not itself change the screen or move the cursor. It merely changes the current
field for the workspace. Your program can then get the name of the new current field (from nfldnam)
and issue a GET call specifying the new field name. The Form Driver then moves the cursor to the new
field.

Terminators Action

FDV$K_FT_NTR=0 Tests all nonscrolled modifiable fields to see if they satisfy
the Response Required and Must Fill attributes and calls all
field-validation routines for those fields. If all fields satisfy the
criteria, the Form Driver returns the FDV$_SUC code to your
program. If any fields do not satisfy the criteria, the first such
field (in order of access) becomes the cur- rent field, and the
Form Driver returns the FDV$_INC code.

FDV$K_FT_NXT=1 Makes the next modifiable field (in order of access) the
current field. If the terminated field is the last modifiable
field in a scrolled line, the terminator behaves like an FDV
$K_FT_SNX. If the field is not in a scrolled area and there
is no next modifiable field, the Form Driver returns the FDV
$_JFN code.

FDV$K_FT_PRV=2 Makes the previous modifiable field (in order of access) the
current field. If the field is the first field in a scrolled area, the
terminator behaves like an FDV$K_FT_SPR. If the field is not
in a scrolled area and there is no previous modifiable field, the
Form Driver returns the FDV$_IFN code.

116

Chapter 5. Form Driver Calls

Terminators Action

FDV$K_FT_ATB=3 (Autotab attribute) Behaves like an FDV$K_FT_NXT.
FDV$K_FT_XBK=4 Makes the first modifiable field preceding the scrolled area

containing fldnam the current field. If there is no modifiable
field preceding the scrolled area, the Form Driver returns the
FDV$_JFN code.

FDV$K_FT_XFW=5 Makes the first modifiable field following the scrolled area
containing fldnam the current field. If there is no modifiable
field following the scrolled area, the Form Driver returns the
FDV$_IFN code.

FDV$K_FT_SNX=6 Scrolls forward to next field (from Next Field or Autotab
terminator in last field of scrolled area). Makes the next
modifiable field in the scrolled area containing fldnam the
current field. The area is scrolled up, and the new last line is
filled with the values in fldval, if you supplied them in the call
(as in a PUTSC call). If you omitted fldval, the Form Driver
supplies default values.

FDV$K_FT_SPR=7 Scrolls backward to previous field (from Previous Field
terminator in first field of scrolled area). Makes the previous
modifiable field in the scrolled area containing fldnam the
current field. The area is scrolled down, and the new first line is
filled with the values in fldval, if you supplied them in the call
(as in a PUTSC call). If you omitted fldval, the Form Driver
supplies default values.

FDV$K_FT_SFW=8 Scrolls forward. Makes the first modifiable field in the scrolled
area containing fldnam the current field. If the terminated
scrolled line is the last in the scrolled area, the area is scrolled
up, and the new last line is filled with the values in fldval, if you
supplied them in the call (as in a PUTSC call). If you omitted
fldval, the Form Driver supplies default values.

FDV$K_FT_SBK =9 Scrolls backward. Makes the first modifiable field in the scrolled
area containing fldnam the current field. If the terminated
scrolled line is the first in the scrolled area, the area is scrolled
down, and the new first line is filled with the values in fldval,
if you supplied them in the call (as in a PUTSC call).If you
omitted fldval, the Form Driver supplies default values.

If the field terminator code is not listed above, the Form Driver returns the FDV$_UTK code to your
program.

If the Form Driver returns the FDV$_IFN or FDV$_UTR status codes, the current field does not
change, and nfldnam and nfldidx, if you specified them in the call, reflect this status.

Status Codes

FDV$_ARG Incorrect number of arguments.
FDV$_CAN Call was terminated by a CANCL call.
FDV$_DLN Value argument supplied more data than was required, and some

data was discarded.

117

Chapter 5. Form Driver Calls

FDV$_FLD Field does not exist.
FDV$_IFN Field terminator code cannot be processed in the context indicated.
FDV$_INI No workspace is defined.
FDV$_NFL No form loaded in workspace.
FDV$_NOF Form contains no fields.
FDV$_NSC Field named is not a field in a scrolled area.
FDV$_SUC Successful completion of the call.
FDV$_SYS Form Driver encountered system error response.
FDV$_TCA No terminal control area (TCA) is defined.
FDV$_UTR Field terminator code is invalid.

5.33. Output Value to Specified Field
FDV$PUT (fldval,fldnam[,fididxl)

fldval The field value. The data passed must consist only of the characters
to be displayed in the data positions of the field. Field-marker
characters must not be passed. (Read. Passed by descriptor.)

Note that the Form Driver does not check the validity of the data
against the field picture.

fldnam The field name. (Read. Passed by descriptor.)
fldidx The field index. (Read. Passed by reference.)

Description

Records the value specified by fldval in the workspace, and, if the workspace is marked as displayed,
updates the field on the screen with the new data. If fldval is shorter than the field, then fldval is
justified as the field-justification attribute requires, and the remainder of the field is padded on either the
right or left, according to that field attribute. The clear character pads the field on the screen, and the fill
character pads the field in the workspace.

If fldval is null, the field is filled with its default value. If fldval is too long for the field specified, the
fldval string is truncated on the right, and the field is filled in with the truncated value, from the leftmost
portion of the output string. The status code FDV$_DLN is displayed if the Form Driver is in

Debug mode, but FDV$_SUC is returned to your program.

If a field having the date or time attribute is to be filled with a default value, and no default value is
defined in the form description, the current date or time becomes the default.

If the field you specify is in a scrolled area, the field is displayed on the current scrolled line of that area.

Status Codes

FDV$_ARG Incorrect number of arguments.
FDV$_CAN Call was terminated by a CANCL call.

118

Chapter 5. Form Driver Calls

FDV$_DLN Value argument supplied more data than was required, and some
data was discarded.

FDV$_FLD Field does not exist.
FDV$_INI No workspace is defined.
FDV$_NFL No form loaded in workspace.
FDV$_NOF Form contains no fields.
FDV$_SUC Successful completion of the call.
FDV$_SYS Form Driver encountered system error response.
FDV$_TCA No terminal control area (TCA) is defined.

5.34. Output Values to All Fields
FDV$PUTAL ([frmval])

frmval The values for all fields. (Read. Passed by descriptor.)

Description

Takes data from frmval, records it in the workspace, and, if the workspace is marked as displayed,
updates the screen with the new field values. You can alter all fields or all nonscrolled fields of the form
with this call.

If the form contains any scrolled areas, they are ignored by this call provided frmval is specified. If you
omit the frmval value, however, the scrolled areas are restored to their default values, and the current
scrolled line of each scrolled area is reset to the first line of the area.

If frmval contains more data than is required to define every field, the excess data is discarded, and the
Form Driver displays the status code of FDV$_DLN if Debug mode is in effect, but returns FDV$_SUC
to your program. If frmval contains insufficient data to define every field, the remainder are defined by
the default values for the fields.

If a field having the date or time attribute is to be filled with a default value, and no default value is
defined in the form description, the current date or time becomes the default.

The order of the field values in frmval is specified in the form description.

Status Codes

FDV$_ARG Incorrect number of arguments.
FDV$_CAN Call was terminated by a CANCL call.
FDV$_DLN Value argument supplied more data than was required, and some

data was discarded.
FDV$_INI No workspace is defined.
FDV$_NFL No form loaded in workspace.
FDV$_NOF Form contains no fields.
FDV$_SUC Successful completion of the call.
FDV$_SYS Form Driver encountered system error response.

119

Chapter 5. Form Driver Calls

FDV$_TCA No terminal control area (TCA) is defined.

5.35. Output Default to Specified Field
FDV$PUTD (fldnam[,fldidx])

fldnam The field name. (Read. Passed by descriptor.)
fldidx The field index. (Read. Passed by reference.)

Description

Causes the default value, if any, to be restored to the specified field. If none is defined, the field is filled
with fill characters in the workspace and with clear characters on the screen. The values are displayed
only if the workspace is marked as displayed. PUTD duplicates a portion of the PUT function and is
provided to support those languages that do not allow omission of arguments from a call.

If a field having the date or time attribute is to be filled with a default value, and no default value is
defined in the form description, the current date or time becomes the default.

If the field you specify is in a scrolled area, the field default is restored for the current scrolled line only.

Status Codes

FDV$_ARG Incorrect number of arguments.
FDV$_CAN Call was terminated by a CANCL call.
FDV$_FLD Field does not exist.
FDV$_INI No workspace is defined.
FDV$_NFL No form loaded in workspace.
FDV$_NOF Form contains no fields.
FDV$_SUC Successful completion of the call.
FDV$_SYS Form Driver encountered system error response.
FDV$_TCA No terminal control area (TCA) is defined.

5.36. Output Default Values to All Fields
FDV$PUTDA

Description

Causes the default values, if any, to be restored to all fields in a form. If none is defined for a field, the
field is filled with clear characters on the screen and with fill characters in the workspace. Note that
the default values are displayed only if the workspace is marked as displayed. This function duplicates
a portion of the PUTAL function and is provided to support those languages that do not allow the
omission of all arguments from a call.

If a field having the date or time attribute is to be filled with a default value, and no default value is
defined in the form description, the current date or time becomes the default.

If the form contains any scrolled areas, the defaults are restored to the fields in the scrolled areas, and
the current scrolled line of each area is reset to the first line of each area.

120

Chapter 5. Form Driver Calls

Status Codes

FDV$_ARG Incorrect number of arguments.
FDV$_CAN Call was terminated by a CANCL call.
FDV$_INI No workspace is defined.
FDV$_NFL No form loaded in workspace.
FDV$_NOF Form contains no fields.
FDV$_SUC Successful completion of the call.
FDV$_SYS Form Driver encountered system error response.
FDV$_TCA No terminal control area (TCA) is defined.

5.37. Output Line to Screen
FDV$PUTL (text[,line])

text The line of text for the data line. (Read. Passed by descriptor.)
line The number of the line on which the Form Driver displays the data

line. If you specify zero, the display occurs on the last line of the
screen (24 or 14). (Read. Passed by reference.)

Description

Displays text on the line specified by line; or if the line value is zero, on the last line of the screen. The
line is always deleted before the text is displayed.

Normally, the last line is line 24 of the screen. If the screen is in 132-column mode, however, and the
terminal lacks the Advanced Video Option, the last line is line 14.

If line specifies the last line of the screen, the Form Driver clears the line of text when the operator types
the next character. If line is not zero, your program has to clear the line.

The text can be 40, 66, 80, or 132 characters, depending on the current screen size and the attributes
of the line. If the message does not fit on the current screen, it is truncated and the status code of FDV
$_DLN is reported if the Form Driver is in Debug mode, although FDV$_SUC is returned to your
program. A message longer than 80 characters is truncated on a VT52 terminal.

On a VT100 with the advanced video option, the displayed line has the bold video attribute by default.
If the terminal does not have the advanced video option, the line is displayed in the same video mode as
the cursor (underline or reverse video), which the operator sets by using the VT100’s Set-Up mode.

If you specified video attributes in an ADLVA call, those attributes are used instead.

If the terminal is a VT52, the line is displayed in normal video.

If line overwrites part of a form on the screen, the Form Driver may redisplay part or all of that form
when your program issues the next PUT-type or GET-type call to it. This is true even if the line
overwritten was blank or was specified only in the area to clear portion of the form.

Status Codes

FDV$_ARG Incorrect number of arguments.

121

Chapter 5. Form Driver Calls

FDV$_CAN Call was terminated by a CANCL call.
FDV$_DLN Value argument supplied more data than was required, and some

data was discarded.
FDV$_LIN The line argument is invalid. It is either negative or greater than

the number of lines that can be displayed on the screen (24 lines
normally, or 14 if in 132-column mode and on a VT100 without the
advanced video option).

FDV$_SUC Successful completion of the call.
FDV$_SYS Form Driver encountered system error response.

5.38. Output Data to Current Line of Scrolled
Area
FDVSPUTSC (fldnam[,fldval])

fldnam A field name identifying the scrolled area. (Read. Passed by
descriptor.)

fldval The field values. (Read. Passed by descriptor.)

Description

Outputs data to the scrolled area containing the field named in fldnam. The line in the scrolled area that
is displayed is the current scrolled line for that area.

All fields on the current line are updated with fldval. If not enough data is supplied in fldval, the
remaining fields are set to their default values, or cleared if there is no default. If too much data is
supplied, the Form Driver truncates the data and reports the status code FDV$_DLN if Debug mode is
in effect, although FDV$_SUC is returned to your program.

If a field having the date or time attribute is to be filled with a default value, and no default value is
defined in the form description, the current date or time becomes the default.

The order of the fields in fldval is specified in the form description.

Status Codes

FDV$_ARG Incorrect number of arguments.
FDV$_CAN Call was terminated by a CANCL call.
FDV$_DLN Value argument supplied more data than was required, and some

data was discarded.
FDV$_FLD Field does not exist.
FDV$_INI No workspace is defined.
FDV$_NFL No form loaded in workspace.
FDV$_NOF Form contains no fields.
FDV$_NSC Field named is not a field in a scrolled area.
FDV$_SUC Successful completion of the call.
FDV$_SYS Form Driver encountered system error response.

122

Chapter 5. Form Driver Calls

FDV$_TCA No terminal control area (TCA) is defined.

5.39. Read Form into Memory
FDV$READ (frmnam,mloc,mlocsiz,frmsiz)

frmnam The name of the form. (Read. Passed by descriptor.)
mloc The area in which the form is to be stored. (Modified. Passed by

descriptor.)
mlocsiz The size of the memory buffer that begins with mloc. (Read. Passed

by reference.)
frmsiz The size of the form in bytes. (Written. Passed by reference.)

Description

Reads a form from a form library into the memory area that you specify and adds the form to the head
of the list of memory-resident forms known to your program. Any subsequent references to the form get
the form description from mloc rather than from the form library. The size of the form is returned in
frmsiz. (See also the description of the DEL call.)

You can have forms with duplicate form names on the list of memory-resident forms, but only the form
closest to the head of the list can be accessed.

Status Codes

FDV$_ARG Incorrect number of arguments.
FDV$_CAN Call was terminated by a CANCL call.
FDV$_FCH Form was not resident, and when the Form Driver attempted to

search for it in a form library, the current library channel was not
open.

FDV$_FNM Binary form description could not be found in the form library.
FDV$_FRM Form description is invalid.
FDV$_IBF Area not large enough to hold the form.
FDV$_IOR I/O error occurred while Form Driver was reading in the form from

the form library. The I/O error code is recorded in the current state.
You can obtain it by issuing the STAT call.

FDV$_SUC Successful completion of the call.
FDV$_TCA No terminal control area (TCA) is defined.

5.40. Return Value for Specified Field
FDVSRET (fldval,fldnam[,fldidx])

fidval The field value consisting of data characters but no field-marker
characters. If the operator does not enter a character for every
position in the field, the Form Driver fills the empty positions with
fill characters. (Written. Passed by descriptor.)

fldnam The field name. (Read. Passed by descriptor.)

123

Chapter 5. Form Driver Calls

fldidx The field index. (Read. Passed by reference.)

Description

Returns the value of the field you specify from the current workspace. The data returned by the RET
call is data already accepted from the operator by a previous GET-type call, data displayed by a previous
PUT-type call, or data present by default. Note that unlike the GET call, RET accepts no input from the
operator.

Display-only fields are returned by this call.

Status Codes

FDV$_ARG Incorrect number of arguments.
FDV$_CAN Call was terminated by a CANCL call.
FDV$_FLD Field does not exist.
FDV$_INI No workspace is defined.
FDV$_NFL No form loaded in workspace.
FDV$_NOF Form contains no fields.
FDV$_STR Value being returned is too large for the variable allocated for it.
FDV$_SUC Successful completion of the call.
FDV$_TCA No terminal control area (TCA) is defined.

5.41. Return Values for All Fields
FDV$RETAL (frmval)

frmval The values for all fields. The values returned consist only of the
data character positions in the fields. No field-marker characters are
returned. If data characters do not fill a field, the Form Driver fills
the remainder of the field with the fill character. (Written. Passed by
descriptor.)

Description

Returns the values of all nonscrolled fields from the current workspace. The order in which the fields
are returned is specified in the form description. The data returned by the RETAL call is data already
accepted from the operator by a previous GET-type call, data displayed by a previous PUT-type call, or
data present by default. Note that unlike the GETAL call, RETAL accepts no input from the operator.

Display-only fields are among those returned by this call.

Status Codes

FDV$_ARG Incorrect number of arguments.
FDV$_CAN Call was terminated by a CANCL call.
FDV$_INI No workspace is defined.
FDV$_NFL No form loaded in workspace.
FDV$_NOF Form contains no fields.

124

Chapter 5. Form Driver Calls

FDV$_STR Value being returned is too large for the variable allocated for it.
FDV$_SUC Successful completion of the call.
FDV$_TCA No terminal control area (TCA) is defined.

5.42. Return Current Context
FDV$RETCX (atca,awksp,frmnarn,uarval,curpos,fldtrm,insovrthlpnimi)

atca The address of the current terminal control area. If this location is
zero, no TCA is defined. (Written. Passed by reference.)

Not all high-level languages are capable of handling addresses.
awksp The address of the current workspace. If this location contains a

zero, no workspace is defined. (Written. Passed by reference.)

Not all high-level languages are capable of handling addresses.
frmnam The name of the form being processed. (Written. Passed by

descriptor.)
uarval The value of the associated UAR text, if one is defined. (Written.

Passed by descriptor.)
curpos The cursor position within the current field, if any. The cursor

position is 1 for the leftmost data character in the field, 2 for the next
data character to the right, n for the rightmost character in the field,
and n + 1 for the character position to the immediate right of the
rightmost data character (the hanging cursor position). Field-marker
characters are not counted by the cursor. The range of the cursor,1
to n + 1, is limited to the number of data characters in the field plus
1. (Written. Passed by reference.)

For fixed-decimal fields, the range of the cursor is 1 to n + 2,
because the decimal point is counted even though it is not a data
character. This allows the cursor to be positioned on the decimal
point, in the hanging cursor position for the left hand part of the
field.

The curpos argument is always nonzero when a UAH is called
during field processing (a field completion UAR, function key
UAR, or help UAR).This argument can be zero if the RETCX call
is executed when not in a UAR doing processing for a field. Zero
means that the default position will be used for the next field access.

The curpos argument is not always zero outside UAR processing for
a field. If your program has previously issued an AFCX call on the
current field, setting a nonzero curpos, then that nonzero value will
be reported.

fldtrm The field terminator that the operator last entered either to terminate
input to a field or to respond to the execution of a WAIT call.
(Written. Passed by reference.)

insovr A value indicating whether Insert or Overstrike mode is in effect for
a field. (Written. Passed by reference.)

125

Chapter 5. Form Driver Calls

1 = Default

2 = Insert mode

2 = Overstrike mode

The insovr argument is always nonzero when a UAR is called
during field processing (a field completion UAR,function key UAR,
or help UAR). This argument can be zero if the RETCX call is
executed when a UAR is processing for a field. Zero means that the
default position will be used for the next field access.

The insovr argument is not always zero outside UAR processing for
afield. If your program has previously issued an AFCX call on the
current field, setting a nonzero insovr, then that nonzero value will
be reported.

hipnum A value equal to the number of times the operator has pressed the
Help key for the current field. (Written. Passed by reference.)

Description

Returns the current context of the Form Driver as defined above. Your program can issue this call from
a user action routine to determine the context in which the UAR is called, although use of RETCX is not
limited to UARs.

Status Codes

FDV$_ARG Incorrect number of arguments.
FDV$_CAN Call was terminated by a CANCL call.
FDV$_J3TR Value being returned is too large for the variable allocated for it.
FDV$_SUC Successful completion of the call.

5.43. Return Named Data by Index
FDV$RETDI (nmdidx,nmdval[,nmdnam])

nmdidx The Named Data index. (Read. Passed by reference.)
nmdval The Named Data text. (Written. Passed by descriptor.)
nmdnam The name of the Named Data. (Written. Passed by descriptor.)

Description

Returns the Named Data text you specify by index (rather than by name). This call also returns the
Named Data name.

Status Codes

FDV$_ARG Incorrect number of arguments.
FDV$_CAN Call was terminated by a CANCL call.
FDV$_DNM No Named Data is associated with the specified index.

126

Chapter 5. Form Driver Calls

FDV$_INI No workspace is defined.
FDV$_NFL No form loaded in workspace.
FDV$_STR Value being returned is too large for the variable allocated for it.
FDV$_SUC Successful completion of the call.
FDV$_TCA No terminal control area (TCA) is defined.

5.44. Return Named Data by Name
FDV$RETDN (nmdnam,nmdval[,nmdidx])

nmdnam The Named Data name. (Read. Passed by descriptor.)
nmdval The Named Data text. (Written. Passed by descriptor.)
nmdidx The Named Data index. (Written. Passed by reference.)

Description

Returns the Named Data text you specify by name (rather than by index). This call also returns the
Named Data index.

Status Codes

FDV$_ARG Incorrect number of arguments.
FDV$_CAN Call was terminated by a CANCL call.
FDV$_DNM No Named Data is associated with the specified index.
FDV$_INI No workspace is defined.
FDV$_NFL No form loaded in workspace.
FDV$_SUC Successful completion of the call.
FDV$_TCA No terminal control area (TCA) is defined.

5.45. Return Form Line
FDV$RETFL (fline,value,linlen[,type])

line The number of the form line to be returned. (Read. Passed by
reference.)

value The image of the line you request. (Written. Passed by descriptor.)
linlen The length of the value line in bytes. (Written. Passed by reference.)
type The type of output you want:1 for current terminal image (including,

for example, escape sequences for video) and 0 for line printer
image. If type has a value of 0, the Form Driver makes the following
correspondences. (Read. Passed by reference.)

1. All video attributes are ignored.

2. If the line indicated is double width, it is returned with each text
item or field item centered in the area it would have occupied.

127

Chapter 5. Form Driver Calls

3. If the line indicated is double size, then the first line is returned
as a double-width line, and the second line is returned as a line
of blanks.

4. If the line contains any line-drawing graphics, they are converted
to standard ASCII characters:

• The horizontal bar graphics are converted to ASCII dash
characters (-).

• Vertical bar graphics are converted to ASCII vertical bar
characters (I).

• All intersection graphics and comer graphics are converted
to ASCII plus characters (+). All other characters in alternate
character sets remain untranslated.

Description

Returns the form line you specify with the line argument. Usually, this is one of the lines you would see
if your program issued a RFRSH call, although your program can issue RETFL to display lines from
loaded, but undisplayed, forms as well.

If the current terminal has any attached workspaces with undisplayed forms, they are normally ignored
by this call. But if undisplayed forms are the only forms in the attached workspaces, they are all included
in generating the line image. Thus, your program can use undisplayed forms for report formatting
purposes.

When using multiple workspaces, a call to RETFL returns the image of a line as it would appear on the
screen after a RFRSH. More than one form may contribute to the line if forms overlap, and the last form
displayed does not clear the line.

If type has a value of 1, the line image returned includes escape sequences and control characters to
present an exact image of the screen if it were to be displayed on the same kind of terminal as the
current terminal. The image so returned can be stored in a file and displayed later, or output to an
intelligent printer that understands the same control sequences as the terminal.

Since the length of such an image can easily extend beyond 132 characters when there are many fields
and text blocks on the line (especially if they specify varying video attributes and character sets), the
buffer used has a capacity of 4000 bytes, which should be sufficient for all but multiple overlaid forms
on a single line. If the buffer overflows, the error FDV$_LLI is returned. Saving, and later displaying,
a very long line may cause problems due to RMS or VMS restrictions on file record size or I/O record
sizes.

Status Codes

FDV$_ARG Incorrect number of arguments.
FDV$_CAN Call was terminated by a CANCL call.
FDV$_INI No workspace is defined.
FDV$_LIN Call specifies that some line not on the screen was requested.
FDV$_LLI The Form Driver’s internal buffer was not large enough to store the

line image requested. The line image returned is truncated.
FDV$_STR Value being returned is too large for the variable allocated for it.

128

Chapter 5. Form Driver Calls

FDV$_SUC Successful completion of the call.
FDV$_TCA No terminal control area (TCA) is defined.

5.46. Return Current Field Name
FDV$RETFN (fldnaml.fldidx])

fldnam The field name. (Written. Passed by descriptor.)
fididx The field index. (Written. Passed by reference.)

Description

Returns the current field name and index from the current workspace. If the field is not indexed, RETFN
returns an index value of zero. If there is no current field, the Form Driver returns a null string of
characters for the field name.

Status Codes

FDV$_ARG Incorrect number of arguments.
FDV$_CAN Call was terminated by a CANCL call.
FDV$_INI No workspace is defined.
FDV$_NFL No form loaded in workspace.
FDV$_NOF Form contains no fields.
FDV$_STR Value being returned is too large for the variable allocated for it.
FDV$_SUC Successful completion of the call.
FDV$_TCA No terminal control area (TCA) is defined.

5.47. Return Field Names in Order
FDV$RETFO (fldnum,fldnam,fldidx)

fldnum The nth field in the form, where n includes the number of any
identically named indexed fields present. (Read. Passed by
reference.)

fldnam The name of the field corresponding to fldnum. (Written. Passed by
descriptor.)

fldidx The field index corresponding to fldnum. (Written. Passed by
reference.)

Description

Returns the name and index of the nth field in the form where n includes the number of any identically
named indexed fields present. If you want the fifth field in the form (n = 5), it could have a unique
name, or be, for example, FIELD1 indexed down to the fifth field called FIELD1.

The field names can be in scrolled areas, but a field name in a scrolled area is returned only once, unless
the field also happens to be indexed.

129

Chapter 5. Form Driver Calls

Status Codes

FDV$_ARG Incorrect number of arguments.
FDV$_CAN Call was terminated by a CANCL call.
FDV$_ELD Field does not exist, or index value is invalid for field.
FDV$_INI No workspace is defined.
FDV$_NFL No form loaded in workspace.
FDV$_NOF Form contains no fields.
FDV$_SUC Successful completion of the call.
FDV$_TCA No terminal control area (TCA) is defined.

5.48. Return Length of Specified Field
FDV$RETLE (fldlen,fldnam[,fldidx])

fldlen The length of the field. The length is defined as the number of data
positions in the field. The number of field-marker characters on the
field has no effect in the determination of the length of the field.
(Written. Passed by reference.)

fldnam The field name. (Read. Passed by descriptor.)
fldidx The field index. (Read. Passed by reference.)

Description

Returns the length of the field you specify. The length of a field is the number of data characters in the
field exclusive of any field-marker characters.

Status Codes

FDV$_ARG Incorrect number of arguments.
FDV$_CAN Call was terminated by a CANCL call.
FDV$_DLN Value argument supplied more data than was required, and some

data was discarded.
FDV$_FLD Field does not exist.
FDV$_ENI No workspace is defined.
FDV$_NFL No form loaded in workspace.
FDV$_NOF Form contains no fields.
FDV$_SUC Successful completion of the call.
FDV$_TCA No terminal control area (TCA) is defined.

5.49. Refresh Screen
FDV$RFRSH

Description

130

Chapter 5. Form Driver Calls

Redisplays all forms currently marked as being displayed on the screen. This operation is identical to the
one initiated by the operator’s pressing of the Refresh key. If several forms are on the screen, they are
redisplayed in the order that their workspaces were attached, except that the current work-space’s form is
always displayed last.

A screen refresh also restores the keypad mode. In addition, the refresh operation restores the terminal
LEDs to the state they were in before the refresh occurred.

Status Codes

FDV$_ARG Incorrect number of arguments.
FDV$_CAN Call was terminated by a CANCL call.
FDV$_FCH Form was not resident, and when the Form Driver attempted to

search for it in a form library, the current library channel was not
open.

FDV$_INI No workspace is defined.
FDV$_SUC Successful completion of the call.
FDV$_SYS Form Driver encountered system error response.
FDV$_TCA No terminal control area (TCA) is defined.

5.50. Set Screen Width
FDV$SCR_WIDTH (width)

width An integer specifying the current width of the screen; must be either
80 or 132. (Read. Passed by reference.)

Description

Informs the Form Driver that your program has changed the width of the screen from the value last
known to the Form Driver. Your program must also inform the operating system when it changes the
screen width. The Form Driver does not change the screen or inform the operating system of screen
width changes as a result of this call. However, the Form Driver always informs the operating system
when other calls to the Form Driver change the screen width. Your program can query the operating
system at any time for this information.

Status Codes

FDV$_ARG Incorrect number of arguments.
FDV$_CAN Call was terminated by a CANCL call.
FDV$_SUC Successful completion of the call.
FDV$_TCA No terminal control area (TCA) is defined.
FDV$_VAL Width was not 80 or 132.

5.51. Signal Operator
FDV$SIGOP

Description

131

Chapter 5. Form Driver Calls

Signals the operator from the application program. Depending on the current signal mode for the
terminal, either the terminal bell is rung or the video of the terminal is reversed until the operator next
types a valid character (any character that does not generate another Form Driver signal). See also the
description of the SSIGQ call.

This signaling is automatically performed prior to each error message issued by the Form Driver.

Status Codes

FDV$_ARG Incorrect number of arguments.
FDV$_CAN Call was terminated by a CANCL call.
FDV$_SUC Successful completion of the call.
FDV$_SYS Form Driver encountered system error response.
FDV$_TCA No terminal control area (TCA) is defined.

5.52. Set Keypad to Application Mode
FDV$SPADA (mode)

mode A value determining the keypad mode:

• If mode contains 0, keypad = numeric mode.

• If mode contains 1, keypad = application mode.

Any other values are erroneous. (Read. Passed by reference.)

Description

Sets the terminal keypad mode. In numeric mode, the terminal keypad keys act as normal keys, returning
the characters inscribed on them. When the keypad is in application mode, the keypad keys act as
field terminator keys. The Form Driver resets the keypad of the current terminal to the selected mode
whenever a Refresh operation occurs.

If no current terminal is in effect (TCA not defined), the default terminal is used in this call. Prior to the
application making this call, the status of the keypad is determined by its VMS status. See the SET and
SHOW TERMINAL commands in the VMS Common Run-Time Library Manual

Status Codes

FDV$_ARG Incorrect number of arguments.
FDV$_CAN Call was terminated by a CANCL call.
FDV$_SUC Successful completion of the call.
FDV$_SYS Form Driver encountered system error response.
FDV$_VAL Width was not 80 or 132.

5.53. Turn Supervisor-Only Mode Off
FDVSSPOFF

Description

132

Chapter 5. Form Driver Calls

Sets the supervisor-only mode flag to Off. Following this call, the operator can alter fields marked
as Supervisor Only in the form descriptions. The supervisor-only flag is altered only for the current
terminal. There is a separate Supervisor Only flag for each terminal.

The supervisor-only flag is set to On when the terminal is first attached.

Status Codes

FDV$_ARG Incorrect number of arguments.
FDV$_CAN Call was terminated by a CANCL call.
FDV$_SUC Successful completion of the call.
FDV$_TCA No terminal control area (TCA) is defined.

5.54. Turn Supervisor-Only Mode On
FDV$SPON

Description

Sets the supervisor-only mode flag to be set to On. Following this call, fields marked as Supervisor Only
in the form descriptions are treated as display only fields. The Supervisor Only flag is altered only for
the current terminal. There is a separate Supervisor Only flag for each terminal.

The supervisor-only flag is set to On when the terminal is first attached.

Status Codes

FDV$_ARG Incorrect number of arguments.
FDV$_CAN Call was terminated by a CANCL call.
FDV$_SUC Successful completion of the call.
FDV$_TCA No terminal control area (TCA) is defined.

5.55. Set Signal to Quiet Mode
FDV$SSIGQ (sigmd)

sigmd The signal mode value. (Read. Passed by reference.)

0 = Bell

1 = Reverse video

Description

Specifies the signal mode for the current terminal. If the signal mode is 0, the terminal bell is rung when
you later issue the SIGOP call or the Form Driver issues any error message. If the mode is 1, the screen
video is reversed when the signal occurs and automatically reverts back to the original video mode when
the operator types the next valid character. See also the description of SIGOP.

If the signal mode is 1, and the Form Driver does not know what the screen video attribute of the
terminal is, the Form Driver sets the terminal to normal video (white characters on black background).

133

Chapter 5. Form Driver Calls

The Form Driver knows the screen video attribute from then on regardless of any changes caused by
subsequent form displays.

If the terminal is a VT52, the terminal bell is the signaling mode regardless of the mode setting.
Attempts to specify video reversal as the signal mode for VT52-compatible terminals are ignored.

Status Codes

FDV$_ARG Incorrect number of arguments.
FDV$_CAN Call was terminated by a CANCL call.
FDV$_SUC Successful completion of the call.
FDV$_TCA No terminal control area (TCA) is defined.

5.56. Specify Status Reporting Variables
FDV$SSRV ([status,iostat]])

status The value of the general status. This address becomes the general
status reporting variable. (Written. Passed by reference.)

iostat The value of the I/O status. This address becomes the I/O status
reporting variable. (Written. Passed by reference.)

Description

Records the addresses of two variables in the current terminal’s TCA:

• The address of a variable in which each subsequent call’s I/O status is to be recorded

• The address of a variable in which each subsequent call’s normal status is to be recorded

Following the execution of any call, if either address is not location 0, the appropriate call status is stored
in the status variable. You can use this call to set up automatic status reporting instead of using the STAT
call or VMS status returns.

The status variables must be 32-bit integers on all VAX systems.

It is the application program’s responsibility to ensure that after it issues this call, the addresses specified
remain valid until the call is issued again specifying zeros for addresses. When you specify zeros as
addresses (or when you do not specify any arguments), further status reporting is discontinued.

Status Codes

FDV$_ARG Incorrect number of arguments.
FDV$_CAN Call was terminated by a CANCL call.
FDV$_SUC Successful completion of the call.
FDV$_TCA No terminal control area (TCA) is defined.

5.57. Return Status from Last Call
FDV$STAT (status,iostat])

134

Chapter 5. Form Driver Calls

status The value of the general status. (Written. Passed by reference.)
iostat The value of the I/O status. (Written. Passed by reference.)

Description

Returns the status code for the previous call. Note that a STAT call following a previous STAT call
returns the result of the previous STAT. That result is almost always success.

Status Codes

FDV$_ARG Incorrect number of arguments.
FDV$_CAN Call was terminated by a CANCL call.
FDV$_SUC Successful completion of the call.

5.58. Set Current Terminal
FDV$STERM (tea)

tea The name of a terminal control area. (Modified. Passed by
descriptor.)

Description

Makes a specified attached terminal (as indicated by its terminal control area) the current terminal. Your
program must have previously attached the terminal with an ATERM call with the TCA specified.

Changing the current terminal also causes the current workspace to be changed to the workspace most
recently associated with the new current terminal. If no workspace is attached to that terminal, then after
the execution of this call the current workspace is undefined.

Status Codes

FDV$_ARG Incorrect number of arguments.
FDV$_CAN Call was terminated by a CANCL call.
FDV$_SUC Successful completion of the call.
FDV$_TCA No terminal control area (TCA) is defined.

5.59. Set Field Entry Timeout
FDV$STIME (time)

time The number of seconds the Form Driver waits for the operator to
respond to a GET-type call. This parameter is optional, and defaults
to 0.(Read Passed by reference.)

Description

Specifies the number of seconds the Form Driver waits for the operator to respond to a GET-type call.
Execution of this call cancels the effect of any previous STIME call for the current terminal. A negative

135

Chapter 5. Form Driver Calls

or zero time value causes the Form Driver to wait indefinitely for input (the default). A separate STIME
is associated with each terminal.

After an STIME call, the Form Driver resets the timeout value for each character in a field. Thus, if
afield has ten characters in it and the timeout value is 15 seconds, the operator has 15 seconds to respond
with the first character and 15 seconds to respond with each of the other nine characters in the field.

Status Codes

FDV$_ARG Incorrect number of arguments.
FDV$_CAN Call was terminated by a CANCL call.
FDV$_SUC Successful completion of the call.
FDV$_TCA No terminal control area (TCA) is defined.

5.60. Set Current Workspace
FDVSSWKSP (wksp)

wksp The form workspace location. (Modified. Passed by descriptor.)

Description

Makes the attached workspace you specify the new current workspace. If the workspace you specify is
associated with a different terminal, the current terminal is changed as well. Your program must have
previously attached the specified workspace to a terminal TCA by issuing an AWKSP call.

Status Codes

FDV$_ARG Incorrect number of arguments.
FDV$_CAN Call was terminated by a CANCL call.
FDV$_INI No workspace is defined.
FDV$_SUC Successful completion of the call.
FDV$_SYS Form Driver encountered system error response.

5.61. Set Terminal Channel
FDVSTCHAN (channel)

channel The number of a physical I/O channel (not a logical I/O channel) to
be associated with the current terminal.(Read. Passed by reference.)

Description

Specifies a physical terminal channel to be used for the current terminal. When your program issued
ATERM, the Form Driver allocated a physical channel to correspond to the logical channel specified.
TCHAN specifies a physical channel different from the one allocated by ATERM.

TCHAN requires that the TCA be attached before your program issues this call.

The previous physical channel is released when your program issues this call. The logical channel
number of the previous channel (the channel number specified in the ATERM call) is also released.

136

Chapter 5. Form Driver Calls

Note

If your program issues TCHAN and later detaches the associated TCA, the terminal is not released. Any
channel specified by means of the TCHAN call must be released by your program.

Status Codes

FDV$_ARG Incorrect number of arguments.
FDV$_CAN Call was terminated by a CANCL call.
FDV$_ICH Logical channel specified was either in use or invalid.
FDV$_SUC Successful completion of the call.
FDV$_TCA No terminal control area (TCA) is defined.

5.62. Set up User Refresh Routine
FDV$USER_REFRESH ([rfr_address])

rfr_address Address of a user-supplied routine to refresh part of the terminal
screen. If this argument is specified, all subsequent Form Driver
refresh operations will call the user-supplied routine first. If this
argument is null or not specified, no user refresh routine will be
called on subsequent Form Driver refresh operations.

Description

Helps a program maintain part of the terminal screen independent of the Form Driver, when the Form
Driver normally overwrites part or all of the screen. For example, when the Form Driver must perform
a refresh operation for the current terminal, the terminal’s screen is first cleared and set to the proper
width and background. Then all the workspaces marked as displayed are redisplayed. If your program is
maintaining part of the screen, the refresh operation’s screen clear automatically deletes your program’s
part from the screen.

When the Form Driver refreshes the screen, it calls your refresh routine, if one has been supplied
in a call to USER REFRESH. Your routine should clear and write its own part of the screen, call
CLEAR_VA, if necessary, and then return. The Form Driver then redisplays the displayed workspaces.
This allows the refresh function to affect both your program’s screen area and the Form Driver’s area.

The Form Driver calls your refresh routine in four circumstances:

• Your program calls RFRSH.

• The operator presses the Refresh key during data entry.

• Help processing or UAR processing caused some part of the Form Driver’s screen to be overlaid.
That is, a form marked as displayed was overlaid by a help form or by a form displayed by a Field
Completion UAR, Function Key UAR, or Pre-Help or Post-Help UAR.

Prior to returning to normal data entry after the help or UAR sequence, the Form Driver calls
your refresh routine and then redisplays the required forms. If a help form or UAR form does not
overlay a displayed form, the Form Driver does not call your refresh routine. You should design your
program so that if a help form or a UAR action overlays your program’s screen area, it should also
overlay the Form Driver’s screen area.

137

Chapter 5. Form Driver Calls

• The terminal width is changed when a new form is displayed by using a CDISP, DISP, or DISPW
call, or by using a help form display operation.

The Form Driver calls your refresh routine as if it were a UAR. The refresh routine behaves exactly like
a UAR, except that it must not change the terminal width. The Form Driver restores the current terminal,
workspace, and field.

An application program should make a call to USER-REFRESH specifying a user routine before starting
the separate screen display. A second call should be made to USER-REFRESH without any argument
when your program has completed its separate screen display.

Status Codes

FDV$_ARG Incorrect number of arguments.
FDV$_CAN Call was terminated by a CANCL call.
FDV$_SUC Successful completion of the call.
FDV$_TCA No terminal control area (TCA) is defined.

5.63. Wait for Operator
FDV$WAIT ([fldtrm])

fldtrm The returned field terminator that the operator entered to terminate
the wait condition. (Written. Passed by reference.)

Description

Waits until the operator signals to proceed by pressing any terminator key. This call allows the Form
Driver to synchronize the application program with the pace of the operator.

If the terminator is a function key not reserved for FMS, and if a form is loaded in the current workspace
and has a function key UAR, the Form Driver calls that UAR. The function key UAR may suppress the
terminator, ignore it, or change it before subsequent processing occurs. When a terminator is accepted, it
is recorded in the workspace as the most recent terminator entered.

Status Codes

FDV$_ARG Incorrect number of arguments.
FDV$_CAN Call was terminated by a CANCL call.
FDV$_INI No workspace is defined.
FDV$_SUC Successful completion of the call.
FDV$_SYS Form Driver encountered system error response.
FDV$_TCA No terminal control area (TCA) is defined.
FDV$_TMO Operator took longer to respond than allowed by the timeout value

associated with the current terminal.
FDV$_UAR UAR returned illegal code.
FDV$_UDP UAR depth exceeded.
FDV$_UNF UAR specified but not found.

138

Appendix A. VAX FMS Form Driver
Calls
A.1. VAX Language-Independent Notation
Form Driver routines are invoked according to rules specified in the VAX Procedure Calling and
Condition Handling Standard.

Form Driver routines can be invoked as subroutines or as functions:

As a subroutine CALL FDV$xxx (parameter1, parameter˄,...)

As a function VMS_stat.wlc.v = FDV$xxx (parameter1, parameter2,...)

Access type, data type, passing mechanism, and parameter form are assigned to each parameter in a
prescribed order:

<parameter-name>.<access typexdata type>. <passing mechanism><parameter form>

Example
For the FDV$GET call the fldval, fldtrm, fldnam, and fldidx parameters are described as follows:

FDV$GET (fldval.wt.dxl,fldtrm.wl.r41dnam,rt.dxl[,fldidx.rLr]

The notation for each parameter is explained below. Note that every Form Driver call returns a VMS
status code in the form VMS_stat.wlc.v.

Parameter <access type> <data type> <passing
mechanism>

<parameter
form>

fldval w Write-only
access

t Character-coded
text string

d By descriptor xl Fixed-length
or dynamic string
descriptor

fldtrm w Write-only
access

1 Longword integer
(signed)

r By reference -

fldnam r Read-only access t Character-coded
text string

d By descriptor xl Fixed-length
or dynamic string
descriptor

fldidx r Read-only access 1 Longword integer
(signed)

r By reference -

A.2. Procedure Parameter Notation For Form
Driver Calls
FMS uses a subset of the VAX procedure parameter notation. The following table explains the notation
used for access type, data type, passing mechanism, and parameter form.

Notation <access type> Comments

r Read-only access Parameters for input
w Write-only access Parameters for output

139

Appendix A. VAX FMS Form Driver Calls

Notation <access type> Comments

m Modify access Parameters for both input and
output

Notation <data type>

a Virtual address
1 Longword integer (signed)
lc Longword return status
t Character-coded text string
V Aligned bit string
w Word integer (signed)

Notation <passing mechanism> Comments

d By descriptor FMS passing mechanism for
character strings and integer
arrays

r By reference FMS passing mechanism

Notation <parameter form>

a Array reference or descriptor
xl Fixed-length or dynamic string descriptor

Table A.1. VAX FMS Form Driver Calls

Call Procedure Parameter Notation

FDV$ADLVA (video.ml.r)
video video attributes code of data line

ADLVA

Alters the data line video attributes. You can specify Blink, Bold, Reverse,
and/or Underline.
FDV$AFCX (insovr.rl.r,curpos.rl.r[,fldnam.rt.dx1Lfldidx.rLr]])
insovr Insert/Overstrike mode of field
curpos cursor position within field
fldnam field name
fldidx field index

AFCX

Alters the default field context of the specified field. You can specify Insert
or Overstrike mode and cursor position in the field before any GET operation
involving that field.
FDV$AFVA (video.ml.r[tfidnam«rtdxl[,fldidx.rl.r]])
video video attributes code for field
fldnam field name
fldidx field index

AFVA

Alters the field video attributes.
ATERM FDV$ATERM (tca.mLda,size.rLr,channeLrLr[,trmnal»rt.dxl

[,faketrmtyp.rt.dxl[,optionsj*l.r]]])

140

Appendix A. VAX FMS Form Driver Calls

Call Procedure Parameter Notation
or

FDV$ATERM (tca.mt.dx1,size.rl.r,channel.rl.r[,trmnal.rLdxl
[,faketrmtyp.rt.dxl[,options.rl.r]]])
tea terminal control area
size size
channel logical I/O channel number for terminal
trmnal name of terminal
faketrmtyp name of terminal used for batch processing
options integer specifying Form Driver options
Attaches a terminal to the Form Driver for processing forms over a specific,
logical I/O channel, names a TCA for that terminal, and specifies the size of
the TCA.
FDV$AWKSP (wksp.ml.da,size.rl.r)

or

FDV$AWKSP (wksp.rtdxl,size.rLr)
wksp form workspace
size estimate of workspace size

AWKSP

Attaches a form workspace to a list of workspaces associated with the current
TCA, specifies the size in bytes, and establishes that workspace as the current
workspace.

BELL FDV$BELL

Rings the terminal bell.
CANCL FDV$CANCL

Cancels any other call presently being processed on the current terminal.
FDV$CDISP (frmnam.rt.dxl[,offset.rLr])
frmnam form name
offset number controlling placement of form on screen

CDISP

Clears the screen and displays a form. The display position may be offset
from the original form description.
FDV$CLEAR ([line[,linecnt]])
line line number of first line to clear
linecnt number of lines to clear

CLEAR

Clears the entire screen unless otherwise specified with the arguments.
CLEARJVA FDV$CLEAR_VA

Clears the screen video attributes.
FDV$DEL (frmnam.rt.dx1)DEL
frmnam form name

141

Appendix A. VAX FMS Form Driver Calls

Call Procedure Parameter Notation

Deletes a form from the list of memory-resident forms.
FDV$DFKBD (defkbd.rw.da,kbdnum.rl.r)
defkbd array of key functions and key codes
kbdnum number of pairs of key functions and associated

key codes in defkbd array

DFKBD

Redefines the FMS keypad function keys.
FDV$DISP (frmnam.rLdxll,offset-rl.r])
frmnam form name
offset number controlling placement of form on screen

DISP

Clears the portion of the screen specified as the “clear area” in the form
description and displays a form. The display position can be offset from the
original form description.
FDV$DISPW ([offset.rl.rj)
offset number controlling placement of form on screen

DISPW

Clears the portion of the screen specified as the “clear area” in the form
description and displays the form that is already loaded in the workspace. The
display position can be offset from the original form description.
FDV$DPCOM ([dpmode])
dpmode value defining decimal point in signed-numeric

fields

DPCOM

Defines the comma, or redefines the period, as the decimal point in fields
containing signed-numeric field-validation characters.
FDV$DTERM (tca.ml.da)

or

FDV$DTERM (tca.rtdxl)
tea terminal control area

DTERM

Detaches a terminal from the Form Driver,and detaches any workspaces
associated with the terminal.
FDV$DWKSP (wksp.ml.da)

or

FDV$DWKSP (wksp.rt.dxl)
wksp form workspace

DWKSP

Detaches a form workspace from the list of workspaces associated with the
current terminal.

FIXJ3CREEN FDV$FIX_SCREEN

Repairs overwritten lines on the terminal screen.
FDV$GET (fldval.wt.dxl,fldtrm.wLr,fldnam.rt.dxl[,fldidx.rLr])GET
fidval field value

142

Appendix A. VAX FMS Form Driver Calls

Call Procedure Parameter Notation

fldtrm field terminator
fldnam field name
fldidx field index
Positions the cursor in the initial cursor position of a specific modifiable field
and waits for the operator to enter a value.
FDV$GETAF (fldvaLwkdxl41dtrm.wLr,fldnam,wtdxlf,fldidx.wl.r])
fidval field value
fldtrm field terminator ending
fldnam field name ending
fldidx field index

GETAF

Positions the cursor in the current field in the form and waits for the operator
to enter a value in any field.
FDV$GETAL ([fldval.wt.dxl,fldtrm.wl.r[,fldnam.rt.dxl[,fldidx.rl.rl]])
fidval returned values of all fields in form
fldtrm field terminator starting
fldnam field name starting
fldidx field index

GETAL

Positions the cursor in the first modifiable field in a form unless otherwise
specified in the fldnam argument and allows you to enter data in all
modifiable, nonscrolled fields.
FDV$GETDL (value.wt.dxl41dtrm.wLr[,lme.rLr[,prompt.rt.dxl]])
value contents of data line returned from Form Driver
fldtrm field terminator
line line number on which the operator’s input is

displayed
prompt data line text to serve as a prompt for the operator

GETDL

Gets a data line from a specified line on the screen.
GETSC FDV$GETSC (fldnam.rt.dxl,fidval.wtdxl[,fldtrm.wl.r])
 fldnam field name that identifies a scrolled area
 fidval field values
 fldtrm field terminator
 Positions the cursor within the current line in the scrolled area that contains

the specified field and accepts input in modifiable fields within the line.
FDV$ILTRM (trmmod.rhr)
trmmod value for illegal terminator mode switch

ILTRM

Specifies the action to take when an illegal field terminator is entered. An
illegal field terminator can be rejected by the Form Driver or returned to the
pro gram.
FDV$LCHAN (channeLrLr)LCHAN
channel I/O channel number for form library

143

Appendix A. VAX FMS Form Driver Calls

Call Procedure Parameter Notation

Sets the channel for form library files associated with the current terminal.
The Form Driver uses the specified channel for any LOPEN or LCLOS call
processing.

LCLOS FDV$LCLOS

Closes the form library associated with the current library channel for the
current terminal.
FDV$LEDOF (ledno.rLr)
ledno terminal LED number

LEDOF

Turns off the light-emitting diode (LED) on the VT100 keyboard.
FDV$LEDON (ledno.rLr)
ledno terminal LED number

LEDON

Turns on the light-emitting diode (LED) on the VT100 keyboard.
FDV$LOAD (frmnam.rt.dxl)
frmnam form name

LOAD

Loads a form description into a workspace without displaying the form on
the screen.
FDV$LOPEN (filspc.rt.dx1[,channeLrLr])
filspc form library file specification
channel I/O channel number for form library

LOPEN

Opens a form library and replaces the current library channel specification if
the I/O channel number is supplied.

NDISP FDV$NDISP

Marks current workspace as not displayed.
FDV$PFT ([fldtrm.rl.r[,fldnam.rt.dxI[,fldvaLrt.dxl
[,nfldnam.wLdxl[,nfldidx.wLr]]]]])
fldtrm field terminator to be processed
fldnam field name that identifies a scrolled area
fldval field values to be displayed
nflHnflm current field name after call has been completed
nfldidx current field index after call has been completed

PFT

Processes the field terminator and checks for valid terminator codes.
FDV$PUT (fldval.rt.dxl3dnam.rt.dxlLfldidx.rlj*])
fldval field value to be displayed
fldnam field name
fldidx field index

PUT

Stores the value of the fldval argument and displays that value in the
specified field.
FDV$PUTAL (lfrmval.rt.dxl])PUTAL
frmval list of field values to be displayed

144

Appendix A. VAX FMS Form Driver Calls

Call Procedure Parameter Notation

Outputs values to all fields, stores the frmval argument values in the work-
space for nonscrolled fields, and displays these values on the screen
FDV$PUTD (fldnam.rt.dxl[,fldidx.rLr])
fldnam field name
fididx field index

PUTD

Outputs the default value to a specified field.
PUTDA FDV$PUTDA

Outputs default values to all fields in the form and displays those values on
the screen.
FDV$PUTL (text.rt*dxl[,line,rLr])
text data line text
line line number for displayed data line

PUTL

Outputs data to the specified line on the screen. If the line number is zero,
the data line is displayed on the last line of the screen.
FDV$PUTSC (fldnam.rt.dxl[,fldval.rt.dxll)
fldnam field name that identifies a scrolled area
fldval field value

PUTSC

Outputs data to the current line of a scrolled area that contains the specified
field name.
FDV$READ (frmnam.rt.dxl,mloc.ml,datmlocsiz.rl.r,frmsiz.wl.r)

or

FDV$READ (frmnam.rt.dxl^nloc.rt.dxl,mlocsiz.rLr,frmsiz.wl.r)
frmnam form name
mloc form storage area
mlocsiz size of memory buffer that begins with mloc

frmsiz form size actually used

READ

Extracts a form from the current form library, stores it in a specified memory
area, and adds the name of the form to the list of memory-resident forms.
FDV$RET (fldval.wtdxl,fldnam.rt.dx1|,fldidx.rl.r])
fldval field value
fldnam field name
fididx field index

RET

Returns the value for a specified field stored in the workspace.
FDV$RETAL (frmval.wt.dxl)
frmval concatenated values of all fields except those in

scrolled areas

RETAL

Returns the values for all fields except those in scrolled areas stored in the
workspace.

145

Appendix A. VAX FMS Form Driver Calls

Call Procedure Parameter Notation

FDV$RETCX (atca.wa.r, awksp.wa.r, frmnam.wt.dxl, uarvaLwt.dxl,
curpos.wl.r, fldtrm.wl.r, insovr.wl.r, hlpnum.wl.r)
atea terminal control area address
awksp form workspace address
frmnam form name
uarval value of the associated text for this UAR
curpos cursor position within field
fldtrm returned field terminator
insovr Insert/Overstrike mode of field
hlpnum number of times HELP key pressed for current

field

RETCX

Returns the current context of the Form Driver. You can issue this call in a
UAR to determine the context in which the UAR is called.
FDV$RETDI (nmdidx.rl.r,nmdval.wt.dxl[,nmdnam.wt.dx1])
nmdidx index of Named Data item
nmdval text of Named Data item
nmdnam name of Named Data item

RETDI

Returns the Named Data text that you specify by its index (rather than by its
name).
FDV$RETDN (nmdnam.rt.dxl,mndval.wt.dxl[,nindidx.rl.r])
nmdnam name of Named Data item
nmdval text of Named Data item
nmdidx index of Named Data item

RETDN

Returns the Named Data text that you specify by its name (rather than by its
index).
FDV$RETFL (line.rl.r,value,wt.dxl,linlen.wl.r[,type.rl.r])
line line number of form to be returned
value value of requested line
linlen length of character string returned in value

parameter
type type of output line requested

RETFL

Returns the contents of the line that you specify with the line argument. This
is one of the lines displayed by the RFRSH call. This call can also be used for
loaded but undisplayed forms for report formatting.
FDV$RETFN (fldnam.wt.dxl[,fldidx.wl.r])
fldnam field name
fldidx field index

RETFN

Returns the current field name and index from the current workspace. If the
field is not indexed, the index value returned is zero.

RETFO FDV$RETFO

146

Appendix A. VAX FMS Form Driver Calls

Call Procedure Parameter Notation

fldnum field number
fldnam field name corresponding to fldnum

fldidx field index corresponding to fldnum

Returns the name and index of the nth field in the form.
FDV$RETLE (fldlen.wl.r,fldnam.rt.dxl[,fldidx.rl.r))
fldlen field length excluding field marker characters
fldnam field name
fldidx field index

RETLE

Returns the number of data characters in the specified field.
RFRSH FDV$RFRSH

Refreshes the screen. The RFRSH operation is identical to that initiated by
pressing the CTRL/R keys.
FDV$SCR WIDTH (width.lr.r)
width 80/132 column screen width

SCR WIDTH

Tells the Form Driver the current screen width.
SIGOP FDV$SIGOP

Causes the application program to signal the operator.
FDV$SPADA (mode.rl.r)
mode numeric/application keypad mode

SPADA

Sets the alternate keypad mode. Selecting 0 sets the alternate keypad to
numeric mode; selecting 1 sets the keypad to application mode.

SPOFF FDV$SPOFF

Turns supervisor-only mode off for the current terminal, allowing the
operator to modify fields protected with the Supervisor Only attribute.

SPON FDV$SPON

Turns supervisor-only mode on for the current terminal, treating fields
protected with the Supervisor Only attribute as display-only fields.
FDV$SSIGQ (sigmd.rl.r)
sigmd bell/reverse video signaling mode

SSIGQ

Sets signal mode for the current terminal. Audio mode (0) rings the terminal
bell. Video mode (1) reverses the VT100/VT200 video image.
FDV$SSRV ([status.wl.r[,iostat.wl.r]])
status general status reporting variable
iostat I/O status reporting variable

SSRV

Sets the addresses of the status reporting variables.
FDV$STAT (status,wl.r[4ostat.wl.r])
status general statuscode

STAT

iostat I/O statuscode

147

Appendix A. VAX FMS Form Driver Calls

Call Procedure Parameter Notation

Returns the statuscode for the last Form Driver call.
FDV$STEKM (tca.ml.da)

or

FDV$STERM (tca.rt.dxl)
tea terminal control area

STERM

Sets current terminal and the workspace most recently associated with that
terminal to the current workspace. The TCA must have been previously
attached by the FDV$ATERM call.
FDV$STIME (time.rl.r)
time timeout period in seconds

STIME

Specifies the number of seconds the Form Driver waits for operator response
to a GET type call.
FDV$SWKSP (wksp.ml.da)

or

FDV$SWKSP (wksp.rt.dxl)
wksp form workspace

SWKSP

Specifies the workspace that the Form Driver uses for the current workspace.

The workspace must have been previously attached by the FDV$ATERM
call.
FDV$TCHAN (channel.rLr)
channel physical I/O channel number for terminal

TCHAN

Changes the terminal channel associated with the current TCA to the
specified value.
FDV$USERJREFRESH ([rfr_address.ra-r])
rfr_address user-supplied refresh routine

USER_REFRESH

Sets up a user-supplied refresh screen routine.
FDV$WAIT ([fldtrm.wl.r])
fldtrm field terminator code

WATT

Causes the application program to wait until the operator presses a terminator
key. This call allows the Form Driver to synchronize the application program
to the operator’s pace.

148

	VSI FMS Form Driver Reference Manual
	Table of Contents
	Preface
	1. About VSI
	2. About This Manual
	3. Intended Audience
	4. Document Structure
	5. VSI Encourages Your Comments
	6. OpenVMS Documentation
	7. Conventions

	Chapter 1. Introduction
	1.1. Terminals, Workspaces, Forms, and Fields
	1.1.1. Terminals
	1.1.2. Workspaces
	1.1.3. Forms
	1.1.4. Fields

	1.2. Terminal Control Areas and Form Workspaces
	1.3. Form Management Calls
	1.3.1. Control Calls
	1.3.2. Form-Level Calls
	1.3.3. Field-Level Calls
	1.3.4. Utility Calls

	1.4. Memory-Resident Forms and Form Libraries
	1.5. Multiterminal and Multiform Operations
	1.6. Debug Mode
	1.7. Scrolling Operations
	1.8. User Action Routines
	1.9. Named Data
	1.10. Terminal Key Functions
	1.11. Current States
	1.12. Operator Aids
	1.12.1. Help
	1.12.2. Screen Refresh

	Chapter 2. Form Driver Interaction
	2.1. Interaction with the Form Description
	2.1.1. Storing and Accessing Form Descriptions
	2.1.2. Displaying a Form
	2.1.3. Terminal Control
	2.1.4. Using Workspaces to Store Forms
	2.1.5. The Help Function
	2.1.6. Field Processing Order
	2.1.7. Text, Field-Marker Characters, and Video Attributes
	2.1.8. Processing Fields
	2.1.8.1. Field Pictures
	2.1.8.2. Right Justified and Left Justified Field Attributes
	2.1.8.3. Clear Character and Fill Character Attributes
	2.1.8.4. Default Field Value
	2.1.8.5. Autotab Attribute
	2.1.8.6. Response Required and Must Fill Attributes
	2.1.8.7. Fixed Decimal Attribute
	2.1.8.8. Display Only Attribute
	2.1.8.9. No Echo Attribute
	2.1.8.10. Supervisor Only Attribute
	2.1.8.11. Scrolling
	2.1.8.12. Date and Time Attributes

	2.2. User Action Routines
	2.2.1. Field Completion UARs
	2.2.2. Help UARs
	2.2.2.1. Pre-Help UAR
	2.2.2.2. Post-Help UAR

	2.2.3. Help Request Processing
	2.2.4. Function Key UARs
	2.2.5. Legal Actions in a UAR

	2.3. Interaction with the Terminal Operator
	2.3.1. Signaling and Recovering from Errors
	2.3.1.1. Help Key and Help Messages
	2.3.1.2. Checking Operator Responses from Your Program
	2.3.1.3. Refreshing the Screen: Typing CTRL/R

	2.3.2. Field Editing Functions
	2.3.2.1. VT100 Alternate Keypad Mode
	2.3.2.2. The Cursor’s initial Position in a Field
	2.3.2.3. Inserting a Field Value: The Default Function
	2.3.2.4. The Signed Numeric Picture
	2.3.2.5. Deleting a Character
	2.3.2.6. Deleting a Field
	2.3.2.7. Moving the Cursor to the Right
	2.3.2.8. Moving the Cursor to the Left

	2.3.3. Switching the Insertion Modes
	2.3.4. Field Terminators
	2.3.5. Field Terminators and Form Driver Calls
	2.3.6. Field Terminating Functions
	2.3.6.1. Signaling that the Form Is Complete
	2.3.6.2. Moving the Cursor to the Next Field
	2.3.6.3. Moving the Cursor to the Previous Field
	2.3.6.4. Scrolling Backward
	2.3.6.5. Scrolling Forward
	2.3.6.6. Exiting Scrolled Area Backward
	2.3.6.7. Exiting Scrolled Area Forward
	2.3.6.8. Illegal Terminator Interaction

	2.3.7. Alternate Keypad Mode Terminators

	2.4. Key Functions and Key Codes
	2.4.1. Form Driver Key Functions
	2.4.2. Form Driver Key Codes
	2.4.2.1. Control Keys
	2.4.2.2. Escape Sequences
	2.4.2.3. Gold Sequences

	2.4.3. Defining Keys

	2.5. Checking Call Status
	2.5.1. Debug Mode Support for Application Program Development
	2.5.2. Signaling the Terminal Operator About Program Errors

	2.6. AST Considerations

	Chapter 3. Programming Techniques and Examples
	3.1. Scrolling
	3.1.1. Controlling Scrolled Areas
	3.1.2. Scrolling Forward
	3.1.3. Scrolling Backward

	3.2. Validating a One-Character Field- Using a UAR
	3.3. Producing Hard Copy - Using Named Data
	3.4. Storing Message Text - Using Named Data
	3.5. Converting Function Keys to Field Entry
	3.6. Filter for Function Keys
	3.7. Range Checks for Fields
	3.8. Simulating the GETAL Call
	3.9. Reducing Display - Times for Forms
	3.10. Checking Status - Three Methods
	3.11. Paging
	3.12. FMS Advanced Programming
	3.12.1. FMS Performance
	3.12.1.1. FMS Library Performance
	3.12.1.2. Form Driver Performance

	3.12.2. Designing Overlaying Forms
	3.12.2.1. FDV Screen Management Rules
	3.12.2.1.1. Screen repair occurs when:
	3.12.2.1.2. The screen or workspace is ’’broken'' when:
	3.12.2.1.3. Workspace Repair Sequence — The workspace is repaired in this order:

	3.12.2.2. Overlaying Form Design

	Chapter 4. Linking the Application and Setting up the Terminals
	4.1. Linking
	4.1.1. Linking with the Form Driver Library
	4.1.2. Linking with Memory-Resident Forms
	4.1.3. Linking with a UAR Vector

	4.2. Terminal Use in FMS Programs
	4.2.1. Terminal Characteristics
	4.2.2. Direct Terminal Output
	4.2.3. Terminal State at Program End
	4.2.4. Firmware Bug Workaround

	Chapter 5. Form Driver Calls
	5.1. Alter Data Line Video Attributes
	5.2. Alter Field Context
	5.3. Alter Field Video Attributes
	5.4. Attach Terminal
	5.5. Attach Form Workspace
	5.6. Ring Terminal Bell
	5.7. Cancel Call
	5.8. Clear Screen and Display Form
	5.9. Clear Screen
	5.10. Clear Video Attributes
	5.11. Remove Form from Memory-Resident Form List
	5.12. Define Keyboard
	5.13. Display Form
	5.14. Display Loaded Form
	5.15. Define Comma as Decimal Point
	5.16. Detach Terminal
	5.17. Detach Form Workspace
	5.18. Repair Overwritten Lines of Terminal Screen
	5.19. Get Value for Specified Field
	5.20. Get Value for Any Field
	5.21. Get All Field Values
	5.22. Get Data Line from Terminal
	5.23. Get Current Line of Scrolled Area
	5.24. Return Illegal Terminators
	5.25. Set Channel for Form Library File
	5.26. Close Form Library
	5.27. Turn Terminal LED Off
	5.28. Turn Terminal LED On
	5.29. Load Form without Display
	5.30. Open Form Library
	5.31. Mark Form in Current Workspace as Not Displayed
	5.32. Process Field Terminator
	5.33. Output Value to Specified Field
	5.34. Output Values to All Fields
	5.35. Output Default to Specified Field
	5.36. Output Default Values to All Fields
	5.37. Output Line to Screen
	5.38. Output Data to Current Line of Scrolled Area
	5.39. Read Form into Memory
	5.40. Return Value for Specified Field
	5.41. Return Values for All Fields
	5.42. Return Current Context
	5.43. Return Named Data by Index
	5.44. Return Named Data by Name
	5.45. Return Form Line
	5.46. Return Current Field Name
	5.47. Return Field Names in Order
	5.48. Return Length of Specified Field
	5.49. Refresh Screen
	5.50. Set Screen Width
	5.51. Signal Operator
	5.52. Set Keypad to Application Mode
	5.53. Turn Supervisor-Only Mode Off
	5.54. Turn Supervisor-Only Mode On
	5.55. Set Signal to Quiet Mode
	5.56. Specify Status Reporting Variables
	5.57. Return Status from Last Call
	5.58. Set Current Terminal
	5.59. Set Field Entry Timeout
	5.60. Set Current Workspace
	5.61. Set Terminal Channel
	5.62. Set up User Refresh Routine
	5.63. Wait for Operator

	Appendix A. VAX FMS Form Driver Calls
	A.1. VAX Language-Independent Notation
	A.2. Procedure Parameter Notation For Form Driver Calls

