
VSI OpenVMS

VSI DECnet-Plus DECdns Management
Guide

Document Number: DO-DNSMGT-01A

Publication Date: April 2024

Operating System and Version: VSI OpenVMS IA-64 Version 8.4-1H1 or higher
VSI OpenVMS Alpha Version 8.4-2L1 or higher

VMS Software, Inc. (VSI)
Boston, Massachusetts, USA

VSI DECnet-Plus DECdns Management Guide

Copyright © 2024 VMS Software, Inc. (VSI), Boston, Massachusetts, USA

Legal Notice

Confidential computer software. Valid license from VSI required for possession, use or copying. Consistent with FAR 12.211 and 12.212,
Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

The information contained herein is subject to change without notice. The only warranties for VSI products and services are set forth in the
express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional
warranty. VSI shall not be liable for technical or editorial errors or omissions contained herein.

HPE, HPE Integrity, HPE Alpha, and HPE Proliant are trademarks or registered trademarks of Hewlett Packard Enterprise.

Intel, Itanium and IA-64 are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

ii

VSI DECnet-Plus DECdns Management Guide

Preface .. xi
1. About VSI ... xi
2. Intended Audience .. xi
3. Document Structure .. xi
4. Related Documents .. xii
5. VSI Encourages Your Comments .. xii
6. OpenVMS Documentation ... xii
7. Typographical Conventions ... xii

Chapter 1. Introduction to DECdns ... 1
1.1. How DECdns Works ... 1
1.2. Examples of Client Applications that Use DECdns ... 3
1.3. How People Use DECdns .. 4
1.4. What's in a Namespace? .. 4

1.4.1. Replicas and Their Contents .. 5
1.4.1.1. Object Entries ... 6
1.4.1.2. Soft Links ... 7
1.4.1.3. Child Pointers ... 7

1.4.2. Putting It All Together ... 7
1.5. How DECdns Protects Names .. 8
1.6. Available Management Tools ... 9

1.6.1. DECdns Control Program ... 9
1.7. Management Tasks .. 10

Chapter 2. How DECdns Looks Up Names ... 13
2.1. Structure of a Name .. 13
2.2. Translating from Names to Resources ... 13
2.3. Resolving Names and Addresses with the Naming Cache ... 18
2.4. How DECdns Finds Names ... 19
2.5. Short Forms of DECdns Names ... 21

2.5.1. How Node Synonyms Work .. 21
2.5.2. Name Abbreviation Methods ... 22
2.5.3. Local Root ... 22
2.5.4. How Local Name Substitution Works .. 22

Chapter 3. How DECdns Updates Data ... 25
3.1. Update Propagation ... 25
3.2. Skulk Operation .. 25
3.3. How Timestamps Help Keep Data Consistent .. 26

Chapter 4. Using the DECdns Control Program ... 27
4.1. Elements of a DECdns Command .. 27
4.2. DECdns Entities .. 27
4.3. Attribute Groups ... 29
4.4. Prepositional Phrases ... 29
4.5. NCL Access Control Information ... 30
4.6. Supplementary Commands ... 30
4.7. Wildcards ... 33
4.8. Editing the Commands .. 33

Chapter 5. Managing DECdns Access Control .. 35
5.1. How DECdns Access Control Works .. 35

5.1.1. Specifying a DECdns Version 2 Principal ... 35
5.1.2. Specifying a DNS Version 1 Principal .. 36

iii

VSI DECnet-Plus DECdns Management Guide

5.1.3. Specifying Group Principals .. 36
5.1.4. DECdns Access Rights and Their Meanings ... 36
5.1.5. How DECdns Checks Access .. 38

5.2. Adding, Modifying, and Denying Access ... 39
5.2.1. Adding Access ... 39
5.2.2. Modifying Existing Access .. 39
5.2.3. Making Access Assignment Easier ... 40

5.2.3.1. Using Automatic Rights Propagation ... 40
5.2.3.2. Suppressing Automatic ACE Propagation ... 41
5.2.3.3. Creating Default ACEs ... 41

5.2.4. Using Null ACEs to Deny Access .. 42
5.3. Setting Up Access Control in a New Namespace ... 43

5.3.1. Adding Members to Your Namespace Administrator Group 43
5.3.2. Adding Access for Your Namespace Administrator Group 44
5.3.3. Implementing a General Access Control Policy ... 45

5.3.3.1. Full Access Policy ... 45
5.3.3.2. Read, Write, and Test Policy .. 46
5.3.3.3. Read and Test Policy ... 46
5.3.3.4. Explicit Access Policy .. 46

5.4. Displaying Access Rights ... 47
5.5. Removing Access .. 48
5.6. Managing Groups .. 49

5.6.1. Creating a Group ... 50
5.6.2. Adding Group Members ... 50
5.6.3. Modifying Group Membership .. 51
5.6.4. Removing Group Members ... 52
5.6.5. Removing Group Members from Multiple Groups ... 52
5.6.6. Deleting a Group ... 53

5.7. Modifying Principals and Removing Access for a Subtree ... 54
5.7.1. Modifying Principals .. 54
5.7.2. Removing Access from Multiple Names ... 55

Chapter 6. Managing Clerks, Servers, and Clearinghouses .. 57
6.1. Monitoring Status .. 57
6.2. Monitoring Counters ... 58
6.3. Monitoring Clerk Communication with Specific Clearinghouses 59
6.4. Monitoring the Contents of a Clearinghouse .. 60
6.5. Modifying a Clerk's Timeout Interval ... 60
6.6. Modifying a Clerk To Use the Cluster Alias on Server Requests 61
6.7. Deleting and Restarting Clerks and Servers ... 61

6.7.1. Deleting a Clerk ... 62
6.7.2. Deleting a Server ... 63
6.7.3. Restarting a Deleted Clerk .. 64

6.8. Controlling the LAN Devices Used By DECdns .. 65
6.9. Preserving a Clearinghouse Across a Server System Upgrade .. 65
6.10. Backing Up Namespace Information ... 66

6.10.1. Using Replication to Back Up Namespace Information 66
6.10.2. Using the Dump/Merge Facilities to Back Up Directories and Their Contents 66
6.10.3. Using Operating System Backups ... 67

Chapter 7. Managing Directories .. 69
7.1. Creating a Directory .. 69
7.2. Creating a Replica ... 70

iv

VSI DECnet-Plus DECdns Management Guide

7.3. Deleting a Replica ... 72
7.4. Skulking a Directory ... 73
7.5. Adjusting a Directory's Convergence .. 74

Chapter 8. Viewing the Structure and Contents of a Namespace 77
8.1. Using Prepositional Phrases in show and directory Commands .. 77
8.2. Using the show Command ... 77
8.3. Using the directory Command ... 80

Chapter 9. Restructuring a Namespace .. 83
9.1. Managing Soft Links ... 83

9.1.1. Creating a Soft Link ... 83
9.1.2. Changing a Soft Link's Destination Name .. 85
9.1.3. Changing a Soft Link's Expiration or Extension Time .. 85

9.2. Modifying a Directory's Replica Set ... 85
9.2.1. Changing the Replica Type of a Replica ... 86
9.2.2. Excluding a Replica from a Replica Set .. 87

9.3. Deleting Directories .. 88
9.3.1. Deleting a Bottom-Level Directory .. 89
9.3.2. Deleting a Subtree of Directories ... 90

9.4. Merging Directories .. 91
9.4.1. Overview of the Merge Procedure ... 91
9.4.2. Basic Merge and Append Operations ... 92

9.4.2.1. Performing a Basic Merge Operation ... 92
9.4.2.2. Performing a Basic Append Operation ... 93

9.4.3. Merging Directories with a Single Command .. 94
9.4.4. Handling Clearinghouse Object Entries .. 95
9.4.5. Using the Failures File .. 95

9.4.5.1. Handling Duplicate Names ... 96
9.4.5.2. Handling Unreachable Name Failures .. 96

9.4.6. Adjusting Access After a Merge .. 96
9.4.7. Handling Changed Node Object Entries ... 97
9.4.8. Merging Two Namespaces .. 98

9.5. Relocating a Clearinghouse .. 99
9.5.1. Dissociating a Clearinghouse from Its Host Server System 99
9.5.2. Copying the Clearinghouse Database Files to the Target Server System 100
9.5.3. Re-creating and Enabling the Clearinghouse on the Target Server 100

9.6. Deleting a Clearinghouse ... 101
Chapter 10. Using the DECdns Configuration Program ... 103

10.1. Running the DECdns Configuration Program ... 103
10.2. Changing a Clerk's Default Namespace ... 104
10.3. Establishing Communications with an Off-LAN Server ... 105
10.4. Configuring a DECdns Server in an Existing Namespace .. 106

10.4.1. Before You Configure a Server .. 106
10.4.1.1. Verifying DECdns Server Software and License Requirements 108
10.4.1.2. Granting the Access Required for Clearinghouse Creation 109

10.4.2. Configuring the Server .. 110
10.4.3. Creating an Additional Clearinghouse on an Existing Server 112
10.4.4. Converting an Existing DNS Version 1 Clearinghouse to DECdns Version 2
Format .. 112
10.4.5. Clearinghouse Conversion Warnings and Informational Messages 115
10.4.6. Reconfiguring a DECdns Server ... 116

10.5. Displaying Address Information for Your Local Node .. 116

v

VSI DECnet-Plus DECdns Management Guide

10.6. Creating and Initializing a New Namespace ... 117
Chapter 11. DECdns Control Program Command Dictionary 119

add clearinghouse access .. 122
add directory access ... 123
add group access ... 124
add group member ... 125
add link access .. 126
add object ... 127
add object access ... 128
change subtree access ... 129
change subtree group member ... 130
clear dns server clearinghouse ... 131
create child .. 132
create directory .. 133
create dns clerk ... 133
create dns clerk known namespace .. 134
create dns clerk manual nameserver .. 135
create dns server .. 136
create dns server clearinghouse ... 137
create group .. 138
create link ... 139
create object .. 140
create replica ... 140
delete child .. 141
delete directory .. 142
delete dns clerk .. 143
delete dns clerk known namespace .. 143
delete dns clerk manual nameserver .. 144
delete dns server .. 145
delete dns server clearinghouse ... 145
delete group ... 146
delete link ... 147
delete object .. 147
delete replica ... 148
delete subtree ... 149
directory child ... 150
directory clearinghouse ... 151
directory directory ... 152
directory group .. 153
directory link ... 154
directory object .. 155
disable dns clerk .. 156
disable dns server .. 156
disable dns server clearinghouse .. 157
dump dns clerk cache ... 158
dump subtree ... 158
enable dns clerk ... 159
enable dns server ... 160
enable dns server clearinghouse ... 160
initialize dns server .. 161
merge file .. 162
merge subtree .. 163

vi

VSI DECnet-Plus DECdns Management Guide

recreate directory ... 164
recreate link .. 165
recreate object ... 166
remove clearinghouse access ... 167
remove directory access .. 168
remove group access .. 168
remove group member ... 169
remove link access ... 170
remove object .. 170
remove object access .. 171
remove subtree access .. 172
remove subtree group member .. 173
replace link .. 174
replace object .. 175
replace subtree ... 175
set directory .. 176
set directory to new epoch ... 178
set directory to skulk ... 179
set dns clerk .. 180
set dns clerk known namespace .. 181
set group ... 182
set link .. 182
set object ... 183
show child ... 184
show clearinghouse .. 186
show clearinghouse access .. 190
show directory ... 191
show directory access ... 195
show dns clerk .. 197
show dns clerk known namespace ... 200
show dns clerk manual nameserver ... 203
show dns clerk remote clearinghouse ... 205
show dns server ... 208
show dns server clearinghouse .. 211
show group ... 215
show group access ... 217
show link .. 218
show link access .. 221
show object ... 222
show object access ... 225
show replica .. 226

Chapter 12. DECdns Problem Solving ... 231
12.1. Isolating the Source of a Problem: General Suggestions .. 231

12.1.1. Obtain Basic DECnet Information .. 232
12.1.2. Obtain Basic Clerk and Server Information ... 233

12.1.2.1. Checking the DECdns Clerk ... 233
12.1.2.2. Checking the DECdns Server .. 234
12.1.2.3. Checking the Clerk and Server Software Versions 234

12.1.3. Investigating the DECdns Clerk ... 234
12.1.3.1. DECdns Clerk Cache Information ... 234
12.1.3.2. DECdns Clerk Known Namespaces ... 236

12.1.4. Investigating the DECdns Server .. 236

vii

VSI DECnet-Plus DECdns Management Guide

12.1.4.1. Remote Checks on the Server ... 236
12.1.4.2. Local Checks on the Server .. 238
12.1.4.3. Determining a Node Name from a Clearinghouse NSAP Address 238

12.2. Handling Communication Errors ... 239
12.2.1. Identifying Clearinghouses to Which Communication Failed 239
12.2.2. Determining Whether Communication Errors Are Caused by DECdns or
DECnet ... 242

12.3. Handling Skulk Failures ... 243
12.3.1. General Considerations .. 243
12.3.2. Skulk Problems in Mixed Server Environments ... 244

12.4. Clerk Tuning ... 245
12.4.1. Defining Quotas for the DNS$ADVER Process .. 245
12.4.2. Clerk Cache Size and the GBLPAGFIL System Parameter 246

12.5. Solving Server Startup Problems ... 246
12.5.1. Server Startup Delay in a TCP/IP Environment ... 247

12.6. Server Tuning ... 247
12.6.1. Tuning for Increased Clerk Use ... 247
12.6.2. Tuning for Increased Database Size .. 248
12.6.3. The Server Configuration File - DNS.CONF ... 249

12.7. Solving Common Access Control Problems ... 252
12.7.1. Access Problems Viewing Namespace Information .. 253
12.7.2. Access Problems Creating a Clearinghouse ... 253
12.7.3. Access Problems Creating a Directory .. 254
12.7.4. Access Problems Deleting a Directory .. 255
12.7.5. Access Problems Creating a Replica ... 255
12.7.6. Access Problems Deleting a Replica ... 256
12.7.7. Access Problems Modifying a Directory's Replica Set 256
12.7.8. Restoring Access to a Name .. 257

12.8. Handling Clearinghouse Creation Failures .. 257
12.8.1. Granting Required Access ... 258
12.8.2. Allowing a Directory to Store Clearinghouse Object Entries 259
12.8.3. Verifying Server Node Registration and Address Information 259
12.8.4. Verifying Availability and Connectivity to Clearinghouses 260

12.9. Restoring a Corrupted Clearinghouse .. 261
12.10. Restoring a Deleted Child Pointer ... 264
12.11. Restoring a Missing Clearinghouse Object Entry .. 265
12.12. Handling Node Verification Failures .. 265
12.13. Breaking Soft Link Loops and Group Loops .. 268
12.14. Eliminating Ambiguous Namespace Nicknames ... 268

12.14.1. Locating the Source of an Ambiguous Nickname .. 269
12.14.2. Eliminating an Ambiguous Nickname ... 270

12.15. Fixing Clock Synchronization Errors ... 271
12.16. Handling Clerk and Server Software Errors ... 271
12.17. Using Tracing Facilities .. 271

12.17.1. Tracing the Advertiser ... 272
12.17.2. Tracing the Clerk .. 272
12.17.3. Tracing the Server .. 273
12.17.4. Tracing DECnet .. 273

Appendix A. DECdns Naming Guidelines .. 275
A.1. Valid Characters and Syntax Rules .. 275
A.2. General Naming Guidelines ... 277
A.3. Guidelines for Naming Clearinghouses ... 278

viii

VSI DECnet-Plus DECdns Management Guide

A.4. Guidelines for Naming Namespaces ... 278
Appendix B. Special Clearinghouse Rules .. 279
Appendix C. DECdns Error Messages ... 283
Appendix D. DECdns Events ... 297
Appendix E. Location of DECdns Files .. 303
Appendix F. DECdns Version Interoperability .. 307

F.1. Version 2 Directories Cannot Be Replicated in Version 1 Clearinghouses 307
F.2. Double ACEs on Directories Replicated at Mixed-Version Servers 307
F.3. Command Interfaces Differ .. 308
F.4. Clerks on Nodes with Extended Addresses .. 308
F.5. Version 2 Clerks Connecting to Version 1 Servers Across a WAN 308
F.6. Version 1 Clerks Contacting a Version 2 Server's Namespace .. 309

Appendix G. Sample Command Files ... 311
G.1. Deleting Server Files .. 311

G.1.1. Command File ... 311
G.2. Replicating A Server's Directories Into a New Clearinghouse .. 312

Appendix H. The DECdns Browser Utility .. 319
H.1. Starting the Browser ... 319
H.2. Expanding and Collapsing Directories .. 319
H.3. Namespace Display Formats .. 320
H.4. Using a Virtual Root .. 322
H.5. Filtering the Namespace Display .. 323
H.6. Navigating the Namespace ... 323

H.6.1. Outline Navigation Aids ... 323
H.6.2. Tree Navigation Aids ... 325

ix

VSI DECnet-Plus DECdns Management Guide

x

Preface
The VSI Distributed Name Service (DECdns) is a networkwide service that enables users to assign
names to resources and then use those resources without needing to know their physical location in
the network. This manual introduces DECdns concepts and describes how to manage a namespace and
solve problems after you install and configure the software. For information on planning, installing, and
configuring DECdns, see the documentation for your platform.

1. About VSI
VMS Software, Inc. (VSI) is an independent software company licensed by Hewlett Packard Enterprise
to develop and support the OpenVMS operating system.

2. Intended Audience
This manual is intended for two audiences: namespace administrators, who oversee the design of the
namespace and the creation of names in it, and server managers, who oversee day-to-day operations at
DECdns server nodes. Both audiences should have a sound understanding of basic DECdns concepts
before starting to use the software. Information about management and problem-solving tasks may apply
to either of the two audiences, depending on the size of the namespace and the scope of the task (in
small networks, one person may take the role of both namespace administrator and server manager).
This manual points out the tasks that would normally be the responsibility of each audience.

3. Document Structure
This manual is organized into twelve chapters and eight appendixes.

• Chapter 1, Chapter 2, and Chapter 3 introduce basic DECdns concepts and describes how to manage
DECdns.

• Chapter 4, Chapter 5, Chapter 6, Chapter 7, Chapter 8, Chapter 9, and Chapter 10 are the DECdns
Control Program (DNSCP) command dictionary.

• Chapter 11 and Chapter 12 explain how to isolate and solve DECdns problems.

• Appendix A lists valid characters and syntax for DECdns names and provides naming guidelines.

• Appendix B explains two rules that affect the creation of clearinghouses and directories.

• Appendix C lists and explains error messages that occur while running DECdns.

• Appendix D lists and explains DECdns events.

• Appendix E contains information on the location of the DECdns files on OpenVMS.

• Appendix F describes interoperability considerations for DECdns and the Distributed Name Service
(DNS) Version 1.

• Appendix G includes samples of useful command files.

• Appendix H explains how to use the unsupported DECdns Browser utility to view the namespace.

xi

Preface

4. Related Documents
The VSI Distributed Time Service (DECdts) is used with the DECdns product. Refer to the following
manuals for details on DECdts:

• VSI DECnet-Plus for OpenVMS DECdts Management

• VSI DECnet-Plus DECdts Programming

Additional information about DECdns, including namespace planning guidelines, is in other parts of the
documentation set for your platform.

OpenVMS users should refer to the following manuals for additional information:

• VSI DECnet-Plus Planning Guide

• VSI DECnet-Plus for OpenVMS Introduction and User's Guide

• VSI DECnet-Plus for OpenVMS Installation and Configuration

• DECnet-Plus for OpenVMS Applications Installation and Advanced Configuration Guide

• VSI DECnet-Plus for OpenVMS Network Management Guide

• DECnet-Plus for OpenVMS Installation and Quick Reference

• DECnet-Plus for OpenVMS Network Management and Quick Reference Card

5. VSI Encourages Your Comments
You may send comments or suggestions regarding this manual or any VSI document by sending
electronic mail to the following Internet address: <docinfo@vmssoftware.com>. Users who have
VSI OpenVMS support contracts through VSI can contact <support@vmssoftware.com> for
help with this product.

6. OpenVMS Documentation
The full VSI OpenVMS documentation set can be found on the VMS Software Documentation webpage
at https://docs.vmssoftware.com.

7. Typographical Conventions
The following conventions are used in this manual:

special type Indicates a literal example of system output or user input. In text,
indicates DECdns names, command names, keywords, node names,
file names, path names, directories, utilities, and tools.

Bold Represents the introduction of a new term.
Italics Indicate a variable for which either the user or the system supplies a

value.
UPPERCASE Indicates the name of a rights identifier code, or an abbreviation of a

system privilege.

xii

https://docs.vmssoftware.com

Preface

[@] In format descriptions, brackets enclose optional items. Default
values apply for unspecified options. (Do not type the brackets.)

(@) In format descriptions, if you choose more than one option,
parentheses indicate that you must enclose the choices in
parentheses.

Ctrl/x Indicates that you hold down the Ctrl key while you press another
key (specified here by x).

$ Represents the OpenVMS DCL system prompt.

xiii

Preface

xiv

Chapter 1. Introduction to DECdns
The VSI Distributed Name Service (DECdns) is a networkwide service that makes it possible to use
network resources without knowing their physical location. Users and applications can assign DECdns
names to resources such as nodes, disks, and files. The creator of a name also supplies other relevant
information, such as the resource's network address, for DECdns to store. Users then need to remember
only the name, and DECdns acts as a lookup service, providing the rest of the data when necessary.

The ability to store data with a name is especially useful in a changing and growing distributed
computing environment. Traditional references to resources such as disks, files, and print queues include
the name of the node where they reside. Now, because DECdns stores that information along with—but
not as part of—a name, a resource can be moved from one node to another without making users change
the way they refer to it.

DECnet-Plus software can use DECdns to store node names. The major benefit of using DECdns to
store node names is ease of maintenance. With DECdns, it is not necessary to maintain a node database
on every system in the network. A few DECdns servers store node names, and all other nodes in the
network can depend on those servers for node name-to-address mapping. When data associated with
the node name changes, DECdns propagates the change automatically to all servers that store that node
name.

Another benefit of using DECdns node names with DECnet-Plus software is that they can be longer than
DECnet Phase IV names and hence more descriptive. Whereas Phase IV node names were limited to 6
characters, any DECdns name, including a node name, can be as long as 255 characters. See Appendix A
for complete guidelines for all DECdns names. In addition, with DECdns, you can give printers, disks,
and files names that are independent of their physical location. If the resource's address (or some other
characteristic) changes, network users and applications are unaffected: the same name is used. The
change is recorded with the name's associated characteristics that are stored in the DECdns database.

DECdns also lets you distribute data among several nodes so that no one node has to store all of it
(thereby saving disk space). This feature is particularly valuable in large networks. It also is possible
to replicate names; that is, to store copies of names on more than one node. DECdns automatically
keeps multiple copies consistent. The ability to distribute and replicate information has many benefits,
including the following:

• Availability — Because you can store the same name in more than one place, data is likely to be
available even in the event of a system or network failure.

• Efficiency — DECdns finds names efficiently because you can store them close to where they are
used most often.

• Load sharing — Because names are in more than one place, several nodes can share the load of
looking them up.

• Expandability — New names are easily accommodated as the network grows and more applications
use DECdns.

DECdns is flexible enough to support small or large networks.

1.1. How DECdns Works
Operation of the name service involves several major participants:

1

Chapter 1. Introduction to DECdns

• Client applications

• Servers

• Clerks

• Clearinghouses

DECdns uses a client/server model. An application that depends on DECdns to store and retrieve
information for it is a client of DECdns. Client applications create names for resources on behalf of
their users. Through a client application, a user can supply other information for DECdns to store with a
name. This information is stored in data structures called attributes. Then, when a client application user
refers to the resource by its DECdns name, DECdns retrieves from the attributes the data to be used by
the client application.

A system running DECdns server software is a DECdns server. A DECdns server stores and maintains
DECdns names and handles requests to create, modify, or look up data. You designate a system as a
DECdns server when configuring the DECnet-Plus software.

A component called the clerk is the interface between client applications and DECdns servers. A
clerk must exist on every DECnet-Plus node using DECdns and is created during configuration of the
network software. The clerk receives a request from a client application, sends the request to a server,
and returns the resulting information to the client. This process is called a lookup. The clerk is also the
interface through which client applications create and modify names. One clerk can serve many client
applications.

The clerk caches, or saves, the results of lookups so it does not have to repeatedly go to a server for
the same information. The cache is written to disk periodically so the information can survive a system
reboot or the restart of an application. Caching improves performance and reduces network traffic.

Figure 1.1 shows a sample configuration of DECdns clerks and servers on a nine-node local area
network (LAN). Every node is a clerk, and DECdns servers run on two selected nodes.

Figure 1.1. Sample DECdns LAN Configuration

Every DECdns server has a database called a clearinghouse in which it stores names and other DECdns
data. The clearinghouse is where a DECdns server adds, modifies, deletes, and retrieves data on behalf
of client applications. Although more than one clearinghouse can exist at a server node, VSI does not
recommend it as a normal configuration because it degrades the performance of the server.

2

Chapter 1. Introduction to DECdns

Figure 1.2 shows the interaction between a DECdns client, clerk, server, and clearinghouse during a
simple lookup. First, the clerk receives the lookup request from the client application (step 1) and checks
its cache. Not finding the name there, the clerk contacts the server on Node 2 (step 2). The server finds
the name in its clearinghouse (steps 3 and 4) and returns the requested information over the network to
the clerk (step 5), which passes it to the client application (step 6). The clerk also caches the information
so it does not have to contact a server the next time a client requests a lookup of that same name.

Figure 1.2. Simple Lookup

1.2. Examples of Client Applications that Use
DECdns
One of the most important users of DECdns is DECnet Phase V software such as DECnet-Plus. When
you make the transition from DECnet Phase IV to DECnet Phase V, all node names in your network
become full names. If DECdns is used as the naming service, then all node names become DECdns full
names. (For a discussion of full names, see Section 2.1.) Along with the node names, DECdns stores the
address and protocol information that DECnet needs to make connections between nodes. The DECnet-
Plus software includes a registration tool to help you create DECdns names for nodes.

Another important user of DECdns in DECnet-Plus software is the VSI Distributed Time Service
(DECdts). DECdts and DECdns actually depend on each other. DECdts uses DECdns as a networkwide
registry for global time servers that synchronize system clocks in the network. DECdns uses timestamps

3

Chapter 1. Introduction to DECdns

to determine the order in which changes to its data occur, and it depends on DECdts to synchronize
time on DECdns servers so their timestamps are consistent. Synchronized clocks are important to
any distributed application that needs to keep track of the order in which events occur across multiple
systems.

Two of the other OpenVMS applications that use DECdns (in conjunction with DECnet) are:

• VSI DECdfs for OpenVMS

• Notes for OpenVMS

VSI DECdfs for OpenVMS allows users on one OpenVMS system to access files on another system as if
the files were on the local system. DECdfs uses DECdns to register file resources, called DECdfs access
points.

VSI Notes is a computer conferencing system that lets you conduct online conferences or meetings. It
uses DECdns to store the location (node name or address) of a conference. If a conference moves from
one node to another, its moderator can update the address information stored in DECdns. Users can
continue to refer to the conference by the same DECdns name and never need to know that it has moved
to another node.

If you have VSI software that uses DECdns, read the documentation for that software for a further
understanding of how it interacts with DECdns.

1.3. How People Use DECdns
Other than DECdns managers, the people who use DECdns do so only indirectly—through a client
application's interface. A client application is normally the only direct user of DECdns. It interacts with
DECdns on behalf of people who create a DECdns name for a resource and subsequently refer to it by
that name. Some examples of people using DECdns follow:

• A user who copies a file from one node to another and includes DECdns node names in the
command is using DECdns, indirectly through DECnet-Plus.

• A user who includes a DECdns node name in a mail address is using DECdns through the system's
mail utility.

• A user who opens a VSI Notes conference entry with a DECdns name is using DECdns through the
Notes application.

• A DECdfs manager who defines an access point (such as a disk) and gives it a DECdns name is using
DECdns through the DECdfs control program. Any user who subsequently mounts the access point
by referring to that name is a DECdns user.

1.4. What's in a Namespace?
The previous sections introduced a variety of ways in which applications and people can use DECdns
names. This section describes basic concepts related to organizing and managing those names.

The total collection of names that one or more DECdns servers know about, look up, manage, and
share is called a namespace. A DECdns namespace can be stored as a partitioned, partially replicated
database. As a partitioned database, it is stored in several locations. As a partially replicated database,
part of it is stored simultaneously in multiple locations.

4

Chapter 1. Introduction to DECdns

When you create a namespace, you organize DECdns names into a hierarchical structure of directories.
DECdns directories are conceptually similar to the directories you create in your operating system's file
system. They are a logical way to group names for DECdns-specific management or usage purposes.
Directory replicas are physical instances of a directory, stored in clearinghouses. In this way, a
clearinghouse can be defined as a collection of directory replicas stored on a particular server. (A
clearinghouse does not necessarily contain the entire namespace.)

The highest-level directory in the namespace is denoted by a dot (.) and is called the root directory.
The root is created automatically when you initialize a namespace. You can then create and name other
directories below the root. Any directory that has a directory beneath it is considered the parent of that
directory. Any directory that has a directory above it is considered a child of the directory above it.

Figure 1.3 shows a simple hierarchy of directories. The root directory (.) is the parent of the directories
named West and FarEast. The FarEast directory is a child of the root directory and the parent of the
Tokyo and Osaka directories.

Figure 1.3. Sample Namespace Directory Hierarchy

If you have a small network and do not expect much growth, you need a minimum number of directory
levels in the namespace. For administrators of large networks, multiple directory levels provide greater
flexibility in distributing, controlling access to, and managing many names. Distribution of names helps
to balance the work load on DECdns servers.

1.4.1. Replicas and Their Contents
Directory replicas are the units by which you distribute names in clearinghouses throughout the
namespace. You can think of a clearinghouse as a collection of directory replicas at a particular server.
After you create a directory in one clearinghouse, you can create replicas of it in other clearinghouses.

All of the replicas of a specific directory in the namespace constitute that directory's replica set.
DECdns ensures that all replicas of a directory remain consistent. See Chapter 3 for details on how this is
done.

5

Chapter 1. Introduction to DECdns

Two types of replicas can exist:

• Master

• Read-only

A replica's type affects the processing that can be done on it and the way DECdns updates it. The
type of replica DECdns uses when it looks up or changes data is invisible to users. However, it helps to
understand how the two types differ.

The master replica is the first instance of a specific directory in the namespace. After you make copies
of the directory, you can designate a different replica as the master, if necessary, but only one master
replica of each directory can exist at a time.

The master replica is the only directly modifiable replica of a directory. DECdns can create, change, and
delete information in a master replica. Because it is directly modifiable, the master replica incurs more
overhead than read-only replicas, which DECdns modifies using periodic updates.

A read-only replica is a copy of a directory that is available only for looking up information. DECdns
does not create, modify, or delete names in read-only replicas; it simply updates them with changes made
to the master replica. Read-only replicas save resources because DECdns does not make changes in
them, except for periodic updates, nor does it have to gather changes from them to disseminate to other
replicas.

Directory replicas can contain three kinds of entries:

• Object entries

• Soft links

• Child pointers

1.4.1.1. Object Entries

An object is any real-world network resource—such as a disk, application, or node—that is given a
DECdns name. When an object name is created, client applications and the DECdns software supply
attributes to be stored with the name. The name and its attributes make up the object entry. When a
client application requests a lookup of the name, DECdns returns the value of the relevant attribute or
attributes.

Every object has a defined class, which is stored as an attribute of the object entry. Programmers
who write applications to use DECdns can define their own object classes and supply class-specific
attributes for the name service to store on behalf of the application. Class-specific attributes have
meaning only to the particular class of objects with which they are associated.

Two classes of objects are predefined by DECdns:

• Group

• Clearinghouse object entry

Groups let you associate, or manage as a group, names that have something in common. They do this
by mapping a specific name (the group name) to a set of names, denoting the group members. DECdns
managers can create groups that assign several users a single set of access rights to names.

6

Chapter 1. Introduction to DECdns

Applications that use DECdns can create groups for purposes other than access control. This manual
discusses groups only in the context of DECdns access control.

The clearinghouse object entry serves as a pointer to the location of an actual clearinghouse in the
network. DECdns needs this pointer so it can look up and update data in a clearinghouse.

When you create a clearinghouse, DECdns creates its clearinghouse object entry automatically. The
object entry acquires the same name as the clearinghouse. The clearinghouse object entry is like
any other object entry in that it describes a network resource, but it is different because it is solely
for internal use by DECdns. DECdns itself updates and manages clearinghouse object entries when
necessary.

1.4.1.2. Soft Links

A soft link is a pointer that provides an alternate name for an object entry, directory, or other soft link
in the namespace. You can restructure a namespace on a minor scale by creating soft links that point
from an existing name to a new name. Soft links also can be a way to give something multiple names, so
different kinds of users can refer to a name in a way that makes the most sense to them.

Soft links can be permanent, or they can expire after a period of time that you specify. If the name to
which a soft link points is deleted, DECdns deletes the soft link automatically.

DECdns managers should use soft links carefully. They should not use soft links to completely redesign
the namespace or to provide shortcuts for users who do not want to refer to the full name of an entry.
Overuse of soft links makes DECdns names more difficult to track and manage. Section 9.1 provides
more detail on soft links and how you can use and manage them.

1.4.1.3. Child Pointers

A child pointer connects a directory to another directory immediately beneath it in a namespace. Users
and applications do not create or manage child pointers; DECdns creates a child pointer automatically
when someone creates a new directory. DECdns uses child pointers to locate directory replicas when
it is trying to find a name in the namespace. Child pointers do not require management except in rare
problem-solving situations.

1.4.2. Putting It All Together
To summarize, a namespace consists of a complete set of names shared and managed by one or more
DECdns servers. A name can designate a directory, object entry, or soft link. The logical picture of a
namespace is a hierarchical structure of directories and the names they contain. Every physical instance
of a directory is called a replica. Names are physically stored in replicas, and replicas are stored in
clearinghouses. Any node that contains a clearinghouse and runs DECdns server software is a server.

Figure 1.4 shows the components of a DECdns server. Every server manages at least one clearinghouse
containing directory replicas. A replica can contain object entries, soft links, and child pointers.
Figure 1.4 shows only one replica and one of each type of entry possible in a replica. Normally, a
clearinghouse contains many replicas, and a replica contains many entries.

7

Chapter 1. Introduction to DECdns

Figure 1.4. Components of a DECdns Server Node

1.5. How DECdns Protects Names
DECdns lets you control access to clearinghouses, directories, and their contents. Access to clerks and
servers is determined by operating system rights identifiers.

The DECdns access rights are read, write, delete, test, and control. Each access right has a slightly
different meaning, depending on the kind of name with which it is associated. In general, the meanings
are as follows:

• Read access lets users view data.

• Write access lets users change data.

• Delete access lets users remove data.

• Test access lets users test whether an attribute of a name has a specific value without being able to
see any values (that is, without having read access to the name). This access right's main advantage
is that it gives application programmers a more efficient way to read a value. Rather than reading
a whole set of values, the application can test for a particular value. DECdns itself uses test access
internally to test for group membership during access checking.

• Control access lets users change the access control on a name and grants other powers normally
given only to an owner, such as the right to replicate a directory or relocate a clearinghouse.

You assign access in the form of an access control entry (ACE), which consists of two parts: the
principal portion and the list of access rights that the principal has to the associated name in the

8

Chapter 1. Introduction to DECdns

namespace. The principal part of the ACE can be the name of an individual user, a name with one or
more wildcard characters to denote several users, or a group name.

A name can have multiple ACEs associated with it. The complete set of ACEs for a particular name is
called an access control set (ACS), and is an attribute of that name.

Note

The access control provided by DECdns applies only to DECdns names, not the physical resources they
describe. Traditional methods of access control are still necessary to protect the resources described by
the object entries in a namespace.

It is often useful to set up an access control policy when you plan your namespace, choosing a select
group of users who will have control over the root of the namespace and deciding how to delegate access
in lower levels of the directory structure. Section 5.3 provides guidelines for planning an access control
policy for your namespace.

1.6. Available Management Tools
DECdns provides a control program for entering commands to manage and display the namespace (see
Section 1.6.1). In addition, other support tools include:

• • The DECdns configuration program (see Chapter 10) – Allows you to modify the namespace,
change a clerk’s default namespace, configure a DECdns server in an existing namespace and so
forth.

• • The decnet_register tool (see the VSI DECnet-Plus for OpenVMS Network Management
Guide) — Allows you to manage node information on your node.

1.6.1. DECdns Control Program
The DECdns Control Program (DNSCP) is an interface that accepts commands targeted for specific
entities. It is available on all DECdns clerks and servers. The control program is patterned after the
DECnet Phase V management interface Network Control Language (NCL), which defines an entity as
any individually manageable part of the network or of an application in the network. Some DECdns
entities can be managed from NCL as well as from DNSCP. The commands are the same from both
interfaces; when DNSCP receives a command targeted for an NCL entity, it passes the command on to
NCL.

The general distinction between NCL and DNSCP is physical management versus logical management.
NCL commands allow you to manage the physical components of DECdns, such as the server and
clerk. Thus, you can include startup and shutdown commands for these components in NCL scripts. The
DNSCP commands manage primarily the logical parts of a namespace, such as directories and the names
they contain.

You can manage the following DECdns entities with either NCL or DNSCP:

• dns clerk

• dns clerk known namespace

• dns clerk manual name server

• DNS clerk remote clearinghouse

9

Chapter 1. Introduction to DECdns

• dns server

• dns server clearinghouse

You can manage the following DECdns entities only from DNSCP:

• Child

• Clearinghouse

• Directory

• Group

• Link

• Object

• Replica

• Subtree

See Chapter 4 for details on how to use DNSCP and an explanation of each of the entities.

1.7. Management Tasks
DECdns requires advance planning and, once the namespace has been established, ongoing maintenance.
For detailed planning guidelines, see the VSI DECnet-Plus Planning Guide. This section describes the
routine DECdns ongoing management tasks.

DECdns management tasks fall into two main categories: namespace administration and day-to-day
server management. In small networks, it is possible for one person to handle both types of tasks. In
larger networks, the responsibility will most likely be divided among several people.

The following are some common tasks of a namespace administrator:

• Oversee the creation of new directories and assign names according to a standard, or enforce
established guidelines in assigning and controlling access to names. (Beyond a certain directory level,
the namespace administrator might delegate the responsibility of creating and maintaining directories
to a server manager. The administrator should still keep track of the new directories being created to
make sure they are appropriately replicated.)

• Along with server managers, monitor the size and usage of clearinghouses and determine the need
for new DECdns servers and clearinghouses. Plan and oversee the configuration of these new servers
and clearinghouses.

• Determine where and when new replicas of a directory are necessary.

• Use the DECdns Control Program to monitor namespace directories and their contents. Determine
the need for new directories under the root.

• Create soft links for object entries whose names change or for entries that people can refer to by
more than one name. Publicize and encourage use of the new names so that eventually the soft links
can expire and be deleted.

• Solve or direct the resolution of problems involving multiple DECdns servers.

10

Chapter 1. Introduction to DECdns

The following are some common tasks of a DECdns server manager:

• Enable event logging, monitor DECdns events, and solve system-specific problems if they arise. If
necessary, notify the namespace administrator of problems that could affect other DECdns servers or
clerks.

• Monitor the success of skulks that originate at the server. This task is the most important
maintenance procedure.

• Monitor the size and usage of the server's clearinghouse and, if necessary, discuss with the
namespace administrator the need to relocate some replicas or create a new clearinghouse.

• Monitor and tune system parameters that affect or are affected by DECdns server operation.

11

Chapter 1. Introduction to DECdns

12

Chapter 2. How DECdns Looks Up
Names
This chapter describes the structure of DECdns names, illustrates the relationship between a name and
the physical resource it describes, and explains how DECdns handles requests to look up names. It also
explains how to create short forms of long DECdns names. Understanding these concepts can help you
plan the location of clearinghouses and directories in your namespace. It can also help you isolate the
source of problems if you encounter lookup errors or failures.

2.1. Structure of a Name
The complete specification of a name in the namespace is called its full name and includes the names of
all of its parent directories, starting from the root. Each element within a full name is separated by a dot
(.) and is known as a simple name.

A full name also can include a namespace nickname, but that is not necessary when only one namespace
exists in a network. A namespace administrator or system manager defines the default namespace during
configuration of a DECdns clerk, or later by a management command. Then, unless a user specifies
otherwise, DECdns always assumes a name is in the default namespace. If it is necessary to specify a
namespace, use the following format:

namespace_nickname:.simplename.simplename...

For example, ABC:.Dir1 specifies a directory called .Dir1 in the ABC namespace. Similarly,
JKL:.Dir1.Object denotes an object entry with the simple name Object in the Dir1 directory
and the JKL namespace.

2.2. Translating from Names to Resources
Just as directory names in a logical namespace hierarchy translate to physical replicas in clearinghouses,
DECdns names translate to physical resources that are used either internally by DECdns or by client
applications. The attributes of a name are what make the translation possible. This section illustrates the
relationship between DECdns names and the physical resources they describe.

Figure 2.1 shows three directories and their contents in a logical namespace, and how replicas of those
directories are physically implemented in two clearinghouses. The clearinghouses themselves have
DECdns names: .Boston_CH on Node 1 and .Sales.East.NY_CH on Node 2. The _CH suffix
is a recommended convention for naming clearinghouses. The .Boston_CH clearinghouse contains
replicas of the root directory and the .Sales.East directory. The .Sales.East.NY_CH
clearinghouse contains a replica of the .Sales directory. VSI recommends that you create at least two
replicas of every directory. Therefore, each directory shown should be replicated in at least one other
clearinghouse somewhere in the network.

13

Chapter 2. How DECdns Looks Up Names

Figure 2.1. Logical and Physical Views of a Namespace

To discover the physical location of a DECnet resource, for example, DECdns looks up an address
associated with its node name. The next four figures illustrate the connection between various kinds of
DECdns names and the resources they describe. The figures are based on the namespace in Figure 2.1.

Figure 2.2 shows the relationship between an object entry named .Sales.NY01 and the resource it
describes: a node at the organization's New York sales headquarters. The node object entry resides in a
replica of the .Sales directory in the .Sales.East.NY_CH clearinghouse. The entry has a DNA
$Towers attribute, which contains protocol and address information necessary to contact the node.
The name of this attribute reflects the fact that a DECnet Phase V address consists of separate layers,
sometimes called tower floors, in the Network Architecture (DNA) and Open Systems Interconnection
(OSI) models.

14

Chapter 2. How DECdns Looks Up Names

Figure 2.2. A Node Object Entry and a Node

Figure 2.3 shows the relationship between two clearinghouse object entries and the clearinghouses they
describe. A clearinghouse object entry differs from other kinds of object entries in that it is created and
maintained by the DECdns software instead of by a client application, and special rules exist regarding
where it can be stored (see Appendix B for details). However, it is just like any other object entry in that
it describes a physical resource in the network: the clearinghouse. The clearinghouse and its object entry
both have the same name; DECdns creates the object entry automatically when you create and name the
clearinghouse.

The figure shows two clearinghouse object entries: .Boston_CH, which points to the clearinghouse
named .Boston_CH on Node 1, and .Sales.East.NY_CH, which points to the clearinghouse
named .Sales.East.NY_CH on Node 2. Each clearinghouse object entry has a DNA$Towers
attribute that contains, among other things, the DECnet address of the node where the clearinghouse
resides. As the figure shows, it is not necessary for the clearinghouse object entry to be stored within the
clearinghouse to which it points.

15

Chapter 2. How DECdns Looks Up Names

Figure 2.3. Clearinghouse Object Entries and Clearinghouses

Figure 2.4 shows the relationship between a soft link, the object entry it points to, and the
resource that the object entry describes. The link, .Sales.LN03, has an attribute called
DNS$LinkTarget, which contains the name that the link points to: an object entry named
.Sales.East.Floor1LN03. The object entry describes an LN03 printer on the first floor of the
company's New York sales office. A replica containing the .Sales.East.Floor1LN03 object
entry exists in the .Boston_CH clearinghouse. The entry has an attribute that contains information on
how to locate the printer in the network.

16

Chapter 2. How DECdns Looks Up Names

Figure 2.4. A Soft Link and Its Resolution

Figure 2.5 shows the relationship between directories and their associated child pointers. It illustrates
that, although a child pointer has the same name as its associated directory, the pointer is a separate
entry in the namespace and resides in the parent of the directory to which it points.

In the .Boston_CH clearinghouse, the root replica contains a child pointer for the .Sales
directory. The child pointer has an attribute called DNS$Replicas that contains the name and
address of the Sales.East.NY_CH clearinghouse, where a replica of the .Sales directory exists.

In the .Sales.East.NY_CH clearinghouse, the .Sales replica contains a child pointer for the
.Sales.East directory. The child pointer's DNS$Replicas attribute contains the name and
address of the .Boston_CH clearinghouse, where a replica of the .Sales.East directory exists.

When a directory has multiple replicas, as would normally be the case, the DNS$Replicas attribute
lists all of the clearinghouses containing a replica of that directory.

17

Chapter 2. How DECdns Looks Up Names

Figure 2.5. Child Pointers and Directories

2.3. Resolving Names and Addresses with the
Naming Cache
DECnet-Plus software includes the common directory interface (CDI) which acts as an interface
between DECnet Phase V Session Control and all the supported name services (Local namespace,
DECdns, DNS/BIND). CDI performs the necessary switching between the various name services during
lookups, enabling the use of multiple name services. CDI uses an in-memory naming cache to improve
performance of name and address resolution for the supported name services.

Previous to the addition of the CDI, the DECdns clerk was the primary interface between DECnet Phase
V Session Control and DECdns servers or the Local namespace. Now most all DECnet-related calls to
DECdns (or to any other name service) are first handled by CDI.

The DECdns clerk receives requests for name/address information from client applications and looks up
the requested information on the appropriate DECdns server or in the Local namespace. The DECdns
clerk caches (saves) pointers to DECdns servers discovered during these lookups. For lookups involving
applications such as DECmcc and DFS, the DECdns clerk caches results of lookups. This saves the clerk
from repeatedly connecting to a server for the same information. Caching improves performance and
reduces network traffic.

The DECdns clerk cache still exists. When CDI calls DECdns for node name information, DECdns
searches the clerk cache to determine where to look up the requested information. DECdns continues
to use the clerk cache to determine the location of servers in the DECdns namespace. DECnet-Plus for

18

Chapter 2. How DECdns Looks Up Names

OpenVMS uses the DECdns clerk to parse the special namespace nicknames LOCAL: and DOMAIN:.
These nicknames in a node full name indicate to DECnet-Plus the name service where the name
and addressing information is stored. Note that DECdns clerks do not cache DECnet names for any
namespace. The clerk caches pointers to the servers where node names are stored.

The DECdns clerk cache continues to be used by applications other than DECnet-Plus that use DECdns
directly, such as the DECdfs application.

Using NCL commands, you can manage two CDI naming cache parameters: the checkpoint interval
and the timeout period, and you can flush entries from the in-memory naming cache. These parameters
control CDI; they do not control DECdns. For more information on managing CDI, see the VSI DECnet-
Plus for OpenVMS Network Management Guide.

2.4. How DECdns Finds Names
As the previous figures illustrate, DECdns finds information about the physical location of a resource
by looking up one or more attributes associated with its name. First, though, the clerk must know how
to find the name. If a name does not yet exist in the clerk's cache, the clerk must know of at least one
DECdns server to contact in search of the name.

The clerk can learn about servers and their locations in any of three ways:

• During configuration

A system manager either supplies or selects the address of at least one server during clerk
configuration.

• Through the solicitation and advertisement protocol

Clerks and servers on the same local area network (LAN) communicate using the solicitation and
advertisement protocol. A server transmits messages at regular intervals to advertise its existence to
clerks on its LAN. The advertisement message contains data about the namespace that the server
belongs to, the server's network address, and the clearinghouse it manages. Clerks learn about servers
by listening for these advertisements on the LAN. A clerk also sends out solicitation messages
(which request advertisements) at startup and when it encounters a namespace nickname that it does
not have in its cache.

• During a lookup

During a lookup, if a clearinghouse does not contain a name that the clerk is searching for, the server
managing that clearinghouse gives the clerk as much data as it can about where else to search for the
name. This information can come from two sources:

• The contents of a clearinghouse attribute called DNS$CHUpPointers

If a clearinghouse does not contain any replicas that are part of the full name being looked
up, the server returns a list of clearinghouses that helps the clerk search closer to the root for
replicas relevant to the name. The server keeps the list in a clearinghouse attribute called DNS
$CHUpPointers. The attribute contains the names of clearinghouses that store either a root
replica or replicas closer to the root than the replicas in that server's own clearinghouse.

• The contents of a child pointer attribute called DNS$Replicas

If a clearinghouse contains replicas that are part of the full name being looked up, but not the
replica containing the target simple name, it returns data from a relevant child pointer in the

19

Chapter 2. How DECdns Looks Up Names

replica it has. The data helps the clerk find the next child directory in the path toward the target
simple name. The child pointer's DNS$Replicas attribute contains this data.

Figure 2.6 is an example of how the clerk finds the root and works downward from it to locate an object
entry. The entry, .Sales.RSMcl, describes a client system at a company's London sales headquarters.

Figure 2.6. How the Clerk Finds a Name

1. On Node A, a client application requests the address of the .Sales.RSMcl object entry. The
clerk does not have that name in its cache, and the only clearinghouse it knows about so far is
.Paris.Site1_CH on Node B.

20

Chapter 2. How DECdns Looks Up Names

2. The clerk contacts the server on Node B with the lookup request.

3. The .Paris.Site1_CH clearinghouse contains no replicas relevant to the target name. However,
its DNS$CHUpPointers attribute contains the name and address of the .Bristol_CH
clearinghouse, which stores a replica of the root. Starting from the root, the clerk will be able to find
directories that are part of the name even if the .Bristol_CH clearinghouse does not contain
the target name itself. The server on Node B sends the requesting clerk the name and address of the
.Bristol_CH clearinghouse on Node C.

4. The clerk contacts the server on Node C with the lookup request.

5. The .Bristol_CH clearinghouse does not contain the target object entry, but from the .Sales
child pointer in the root, the clerk can learn the names and addresses of clearinghouses that have a
replica of the .Sales directory. The server on Node C returns this data to the clerk, informing it
that a replica of the .Sales directory is in clearinghouse .London_CH on Node D.

6. The clerk contacts the server on Node D with the lookup request.

7. The .Sales replica in the clearinghouse on Node D contains the .Sales.RSMcl object entry, so
the server passes the contents of the entry's address attribute to the clerk.

8. The clerk returns the address to the client application. The application can now locate the client
system in the network.

Long lookups like the one illustrated in Figure 2.6 should not happen often after a clerk establishes its
cache and becomes more knowledgeable about servers and their contents. The figure illustrates the
resources and connections that could be involved in an initial lookup—the clerk contacted three servers
before it found the information it needed. The figure also illustrates the important job DECdns has of
making sure the parent and child directories in the namespace remain connected. If the directory path
is broken or a clearinghouse is unreachable, a clerk might not be able to complete a lookup. Keep this
example in mind when planning the replication of directories.

2.5. Short Forms of DECdns Names
Because a full name consists of the complete directory path from the root directory to the target object
entry, directory, or soft link, full names can be long if a namespace has several levels of directories.

DECnet Phase V software supports a form of abbreviated name called the node synonym. A node
synonym is a soft link that points to the full name of a node object entry. Node synonym soft links, in
the form of a DECnet Phase IV-style node name, enable applications that do not support the length of
DECdns full names to continue to use six-character node names.

Node synonyms should not be viewed as a way for users to avoid typing the DECdns full name of a
node. Local names, and a feature called the local root, are a faster and more convenient method of
shortening names. Both local names and local roots are for use only on the system where they are
defined; unlike node synonyms, they do not have global meaning throughout the namespace. Local
names and local roots are usable for any DECdns name, not just node names. However, they are not
usable for DECnet node name lookups; they are used for DECdns Control Program lookups and lookups
for applications other than DECnet.

2.5.1. How Node Synonyms Work
A node synonym is optional; the system manager can supply it during configuration of the
DECnet-Plus software. DECnet-Plus systems store node synonyms in a DECdns directory called
.DNA_NodeSynonym.

21

Chapter 2. How DECdns Looks Up Names

When DECnet Phase V Session Control receives a node name of six alphanumeric characters or fewer
(one alphabetic character minimum) that does not contain a leading dot, it first uses local name mapping
with CDI to resolve the name. If that method fails, Session Control tries to look up the name in the
Session Control node synonym directory, which is typically .DNA_NodeSynonym. Suppose, for
example, DECnet is given the node name MIS01. Session Control sends a request to DECdns to look
up .DNA_NodeSynonym.MIS01. The node synonym exists and points to the full name of the node,
ABC:.Geneva.Admin.MIS01.

If a node synonym does not exist, DECnet asks the DECdns clerk to determine the full name. The clerk
uses the name abbreviation methods described in Section 2.5.2.

2.5.2. Name Abbreviation Methods
The DECdns clerk uses local name resolution methods when it encounters any abbreviated name; that
is, a name that does not start with a namespace nickname or a dot. The method by which DECdns clerks
interpret abbreviated names varies by operating system.

Local name mapping is accomplished with logical names. When the DECdns clerk is started, the system
creates a unique logical name table called DNS$SYSTEM. This unique table prevents unintended
interaction with other system logical names. To define a systemwide logical name for a DECdns full
name, enter a DCL command in the following format:

$ define/table=dns$system name1 "name2"

where name1 is the abbreviated name that a user can enter, and name2 is the name to be substituted
for it in the process of translation to a full name. Name2 can be either a DECdns full name or another
shortened name.

2.5.3. Local Root
The local root is a prefix that DECnet Phase V software obtains automatically by stripping off the
rightmost simple name of the local node's full name. For example, a node named IAF:.Dist.QA01
would have IAF:.Dist as its local root. Users will likely want to refer frequently to other names in
the hierarchy in which their local node is named. The local root capability makes such name references
more convenient by allowing users to omit the part of the full name that is also part of their node's full
name.

DECnet Phase V Session Control creates the local root under the fixed name dnsroot in the DNS
$SYSTEM logical name table.

2.5.4. How Local Name Substitution Works
When the DECdns clerk encounters a name with no leading dot or namespace nickname, it uses the
following procedure to obtain a full name:

1. The clerk first attempts to translate the leading (leftmost) simple name by using the local name-
mapping file. If it finds a translation in the file, the clerk replaces the leading simple name with
the result of the translation. This process is repeated until there is no local mapping for the leading
simple name, or until the translation results in either a namespace nickname or a leading dot.

2. If the clerk does not find a local name-mapping, and the name is still abbreviated, the clerk next
attaches the local root to the front of the name to create a full name.

3. If no local root exists, the clerk attaches a leading dot to the front of the name to create a full name.

22

Chapter 2. How DECdns Looks Up Names

4. Once the clerk obtains a full name, it attempts the requested operation on that name. If the name
does not exist, DECdns returns an error.

The following is an example of how DECdns would use a local name-mapping file to translate the name
Sales.Forecasts.

1. DECdns searches the local name-mapping file for a match for Sales.

2. The name Sales exists in the file and maps to the name IAF:.Sales.East.Region3, so the
name the user entered expands to IAF:.Sales.East.Region3.Forecasts.

The following is an example of how DECdns would use a local root to translate the name
Support_disk, entered by a user on node .Eng.Vega in the IAF namespace:

1. DECdns searches the local name-mapping file for the name Support_disk.

2. Not finding a match in the local name file, DECdns attaches the local root, IAF:.Eng, to the front
of the name, resulting in the full name IAF:.Eng.Support_disk.

The following example shows how DECdns would use both a local name-mapping file and a local root
to translate the name RSM_client, entered by a user on node .Sales.Monet in the IAF namespace:

1. DECdns searches the local name-mapping file for the name RSM_client.

2. The name RSM_client exists in the file and maps to Personnel.RSM_client, so the name the
user entered expands to Personnel.RSM_client.

3. Because the expanded name still does not include a leading dot or namespace nickname, DECdns
searches the file for Personnel.

4. DECdns does not find Personnel in the local name mapping file, so it attaches
the local root, IAF:.Sales, to the front of the name, resulting in the full name
IAF:.Sales.Personnel.RSM_client.

23

Chapter 2. How DECdns Looks Up Names

24

Chapter 3. How DECdns Updates Data
Once names exist in the namespace, users who have the appropriate access can make changes to the data
associated with them. Any addition, modification, or deletion of DECdns data initially happens in only
one replica: the master replica. This chapter introduces the main methods by which DECdns keeps other
replicas consistent: update propagation and the skulk operation. It also describes two timestamps that
help ensure consistency in DECdns data. By understanding the concepts in this chapter, you can more
effectively plan the content and replication of directories in your namespace.

3.1. Update Propagation
An update propagation is an immediate attempt to apply one change to all replicas of the directory
in which the change was just made. Its main benefit is that it delivers each change in an efficient and
timely way. Unlike a skulk operation, however, update propagation does not guarantee that the change
gets made in all replicas. If a particular replica is not available, the update propagation does not fail; the
change simply does not get made in that replica. The skulk operation ensures that when the replica is
available again, it becomes consistent with the other replicas in its set.

You can tune the degree of persistence that DECdns uses in attempting an update propagation—
or prevent propagation altogether—by adjusting a directory attribute called DNS$Convergence.
Convergence also affects the frequency of skulks on a directory. See Section 7.5 for details on viewing
and changing a directory's convergence.

3.2. Skulk Operation
The skulk operation is a periodic distribution of a collection of updates. Its main function is to ensure
that replicas receive changes that might not have reached them during an update propagation. It also
cleans outdated information out of the namespace. These maintenance functions include:

• Removing soft links that have expired (you can specify an expiration time when you create a soft
link).

• Maintaining child pointers, which includes removing pointers to directories that were deleted.

• Removing information about deleted replicas.

DECdns skulks each directory individually. During a skulk, DECdns collects all changes made to the
master replica since the last skulk completed and applies them to the replica on the server where the
skulk started. DECdns then disseminates the changes from the up-to-date replica to all other replicas of
the directory. All replicas must be available for a skulk to be considered successful. If DECdns cannot
contact a replica, it continues making changes in the replicas that it can contact, and generates an event
to notify you of the replica or replicas it could not update. DECdns then periodically reattempts the skulk
until it completes successfully.

A skulk can begin in one of three ways:

• A DECdns manager can enter a command to start an immediate skulk on a directory.

• DECdns starts a skulk as an indirect result of other namespace management activities, which include:

• Adding or removing a replica

• Creating or deleting a directory

25

Chapter 3. How DECdns Updates Data

• Creating a clearinghouse

• Redesignating replica types

All of these activities produce changes in the structure of the namespace, so an immediate skulk
ensures that the new structure is reflected throughout the namespace as quickly as possible.

• The DECdns server initiates skulks automatically at a routine interval called the background skulk
time.

The background skulk time guarantees a maximum lapse of time between skulks of a directory,
regardless of other factors, such as namespace management activities and user-initiated skulks. Every
24 hours, a DECdns server checks each master replica in its clearinghouse and initiates a skulk if
changes were made in a directory since the last time a skulk of that directory completed successfully.

3.3. How Timestamps Help Keep Data
Consistent
DECdns uses several timestamps to help ensure the consistency and accuracy of data. The following two
timestamps exist for every entry:

• Creation timestamp (CTS)

• Update timestamp (UTS)

DECdns assigns a creation timestamp (CTS) to everything within a namespace (clearinghouses,
directories, object entries, soft links, and child pointers) as well as to the namespace itself. On the
namespace, the timestamp is called a namespace creation timestamp (NSCTS).

The CTS is a unique value reflecting the date, time, and location where a namespace, clearinghouse,
directory, or entry in a directory was created. It consists of two parts: a time portion and the system
identifier of the node on which the name was created. The two parts guarantee uniqueness among
timestamps generated on different nodes.

During propagation of a new name to each replica of the directory where it was created, every DECdns
server checks the validity of the CTS before accepting the new name. A name's CTS is valid if it falls
between the current time and the time of the last skulk on the directory where it was created. When
determining the current time, the server allows a maximum acceptable time difference of 300 seconds
into the future.

The update timestamp (UTS) reflects the most recent change made to any of the attributes of a
clearinghouse, directory, object entry, soft link, or child pointer. When a DECdns server receives an
update to an existing entry in a directory, it checks the validity of the UTS before accepting the update.
Occasionally, between skulks or update propagations, separate changes may be made to the same
attribute of the same entry in different replicas. In that case, the change with the most recent UTS
remains.

Directories and replicas have several other timestamps that DECdns uses when determining whether
to skulk a directory or make a change in a directory. Chapter 11 describes those timestamps and how
DECdns uses them.

26

Chapter 4. Using the DECdns Control
Program
This chapter introduces the DECdns Control Program (DNSCP). The control program is an interface
with which you can manage the components of DECdns and the contents of the namespace.

To start the control program, enter the following command:

$ run sys$system:dns$control

To obtain online help while using DNSCP, enter the following command:

dns> help

To exit the control program, enter the following command:

dns> exit

4.1. Elements of a DECdns Command
All commands must include a verb, an entity name, and all required arguments. Depending on the
command, you can also specify one or more optional arguments, attributes, or prepositional phrases.
A comma must separate more than one attribute or argument, and a comma and a space must always
precede a prepositional phrase. A DECdns command can contain the following elements, in the order
shown:

verb [entity-name] [argument] [attribute] [, prepositional-phrase]

• Verb — A verb, or directive, denotes the action to be taken on the DECdns entity that you specify.

• Entity name — An entity name describes the DECdns entity on which the action specified by a
command's directive is taken. See Section 4.6 for details on how to set a default entity.

• Argument — An argument affects the result of the action specified by a command's directive. Some
arguments are required; others are optional.

• Attribute — An attribute is an element whose value (or values) describes a particular operational
property of an entity and specifies other information that reflects the entity's behavior.

• Prepositional phrase — A prepositional phrase affects the destination or content of command
output.

Refer to the command descriptions in Chapter 11 for complete listings of the arguments, attributes, and
prepositional phrases you can use with a particular DECdns command.

You can enter commands that manage Network Control Language (NCL) entities from either NCL or
DNSCP. You can abbreviate an NCL directive or entity name to a minimum of four unique characters.
You can abbreviate a DNSCP directive or entity name to its fewest number of unique characters.

4.2. DECdns Entities
This section lists the DECdns entities and describes what each entity represents.

27

Chapter 4. Using the DECdns Control Program

Child

A child pointer connects a parent and child directory in a hierarchical namespace. The child pointer is
stored in the parent directory.

Clearinghouse

A clearinghouse is a database containing a collection of directory replicas at a particular server.
Commands directed to this entity manage DECdns attributes of the clearinghouse (for example, its
access control set). You can enter these commands only from DNSCP.

Directory

A directory contains object entries and other namespace entries that are logically stored under one name
(the directory name).

DNS Clerk

The clerk is the interface between client applications and servers. You can enter commands directed to
this entity from either NCL or DNSCP.

DNS Clerk Known Namespace

A known namespace is a namespace that a clerk has discovered and cached as a result of configuration
information, datagrams received on a local area network (LAN), or an explicit management command.
You can enter commands directed to this entity from either NCL or DNSCP.

DNS Clerk Manual Name Server

A manual name server creates knowledge in the local clerk's cache about a server that exists across a
wide area network (WAN). You can enter commands directed to this entity from either NCL or DNSCP.

DNS Clerk Remote Clearinghouse

A remote clearinghouse is a clearinghouse that a clerk has discovered and cached. A clerk can learn
about clearinghouses as a result of configuration information, datagrams received on a local area network
(LAN), an explicit management command, or during the process of finding a name. To a clerk, all
clearinghouses are remote, even if they exist on the same node as the clerk. You can enter commands
directed to this entity from either NCL or DNSCP.

DNS Server

A server handles lookup requests from clerks and maintains the contents of the clearinghouse or
clearinghouses at its node. You can enter commands directed to this entity from either NCL or DNSCP.

DNS Server Clearinghouse

A clearinghouse is a database containing a collection of directory replicas at a particular server.
Commands directed to this entity manage NCL attributes of the clearinghouse and perform NCL
management functions such as enabling or disabling the clearinghouse. You can enter these commands
from either NCL or DNSCP.

Group

A group lets you assign a uniform set of access rights to several users at once. DECdns does this by
mapping a set of names representing the group members to a single name (the group name).

28

Chapter 4. Using the DECdns Control Program

Link

A soft link is a pointer providing an alternate name for an object entry, directory, or other soft link.

Object

An object entry is the name of a resource (such as a node, print queue, or application) that is stored in
the namespace.

Replica

A replica is a copy of a directory. Each copy, including the original or master, is referred to as a replica.

Subtree

A subtree is a specific directory and its contents or a hierarchy of directories and their contents.

4.3. Attribute Groups
Every DECdns entity has attributes that contain data associated with that entity. Attributes describe the
operational properties of an entity and specify other information that regulates or monitors the entity's
behavior. Some attributes have a single value; others contain a set of values. Attributes fall into one of
four categories:

Characteristics

Reflect or affect the operational behavior of an entity. Some characteristics are static and cannot be
modified; others can be modified with DNSCP or NCL commands.

Counters

Record the number of times a particular event or problem occurred since the entity was last enabled.

Identifiers

Uniquely distinguish an entity from any other entity.

Status Attributes

Reflect the current operational state of an entity.

4.4. Prepositional Phrases
You can use prepositional phrases to affect the destination or content of command output. Generally
these phrases are most useful with the show and directory commands. Chapter 11 documents the
appropriate use of prepositional phrases in individual commands.

You can use as many prepositional phrases as you want, being sure to precede each phrase with a
comma and a space. The following is an overview of the prepositional phrases:

, with attribute [relop] value Limits a directive only to those entities whose
attributes have certain values. If you do not specify
a relop (relational operator), the default is an equal
sign. Other valid relational operators are greater
than (>), less than (<), greater than or equal

29

Chapter 4. Using the DECdns Control Program

to (>=), less than or equal to (<=), and not
equal (<>). If you specify multiple with phrases
in a command, the target entity must satisfy all
of them to be selected. This phrase works only
with commands that can operate on multiple
items at a time (such as show and directory
commands).

, to file=filename Redirects the output to filename. If the file does
not exist, this command creates it. If the file does
exist, its contents are overwritten.

, to extend file=filename Appends the output to an existing filename. If the
file does not exist, it is created.

, to terminal Directs the output to the terminal. This is the
default option.

4.5. NCL Access Control Information
Commands that you can enter from either DNSCP or NCL allow you to manage entities on remote
systems in the network. You can specify an access control string, which consists of a user name and a
password, for an account on the remote system you wish to access. Enter the access control string as part
of the node name specification in the format nodename"user-name password". In the following example,
syspasswd is the password of the system account on node .nrl. (In this example, the default namespace
specified for the clerk is IAF.)

ncl> set node .nrl"system syspasswd" dns clerk default namespace IAF

The account you use to perform local or remote entity management system must have the NET
$MANAGE rights identifier. All show commands require the NET$EXAMINE rights identifier. See
Chapter 11 for complete information on the access rights and rights identifiers required for commands
you can enter from both DNSCP and NCL.

Note

Because of the way that NCL and OpenVMS interact, remote creation of DECdns clerks and servers is
not possible. To use the create dns clerk and create dns server commands, you must be
logged into the clerk or server to which you are directing the command.

4.6. Supplementary Commands
This section describes supplementary DNSCP commands that allow you to perform the following tasks:

• Read commands from files

• Control the confidence level, timeout value, and display format of timestamps and nicknames

• Specify a preferred clearinghouse to examine an attribute's value

• Specify a default entity name

Use the do command or run @filename from inside DNSCP to read a file of commands.

The following command reads a list of show status commands from the file .status.

30

Chapter 4. Using the DECdns Control Program

dns> do .status

You can create a .dnscpinit file if you want DECdns to execute a set of commands automatically
when you start the control program. The dnscpinit. file should reside in the SYS$LOGIN
directory. Note that the dot (.) follows the dnscpinit file name.

Confidence Level Commands

These commands set and display the confidence level of clerk calls. Setting the confidence controls
the accuracy level and cost of clerk calls. The set dnscp confidence[=]value command
sets the value as one of the following: low, medium, or high. A low confidence level means the clerk
obtains information from caches or the most convenient server. A medium level means the clerk obtains
information directly from a server, and a high level obtains information only at master replicas. The
initial value is medium.

The following command sets the confidence level of clerk calls to high:

dns> set dnscp confidence high

The show dnscp confidence command shows the current confidence level of clerk calls:

dns> show dnscp confidence

Timeout Commands

These commands set and display the length of time, in seconds, that the control program will wait for a
clerk call to complete. You can use the set dnscp timeout[=]value command to increase the
timeout value if you are having trouble with calls not completing. This command sets the value as either
a number of seconds or the word default, which is 30 seconds for most operations. You can also use
the value 0 to indicate the default value.

The following command sets the timeout value to 60 seconds:

dns> set dnscp timeout 60

The show dnscp timeout command displays the current timeout value:

dns> show dnscp timeout

Commands That Display Timestamps and Namespace Nicknames

The timestamp display commands set and display the format of timestamps, which is useful for
troubleshooting or if you need to discover the timestamp for a namespace. The set dnscp
timestamp display[=]value command controls the format in which timestamps are displayed.
Specify one of the following units for value: time, hexadecimal, or default. The initial setting is the
default value time, a human-readable date and time.

The following command causes the control program to display timestamps in hexadecimal notation:

dns> set dnscp timestamp display hex

The show dnscp timestamp display command displays the current format of timestamps:

dns> show dnscp timestamp display

The nickname display commands control the format in which namespace nicknames are displayed in
DNSCP. The set dnscp nickname display[=]value command sets the value as one of the

31

Chapter 4. Using the DECdns Control Program

following units: time, hexadecimal, timestamp, name, or default. The initial setting is the default value
name.

The following command sets the nickname to be displayed in the same way as its namespace creation
timestamp (NSCTS) is displayed:

dns> set dnscp nickname display timestamp

The show dnscp nickname display command displays the current format of nicknames in the
control program:

dns> show dnscp nickname display

Preferred Clearinghouse Commands

These commands enable you to specify a clearinghouse from which to read attribute values for entries
stored in that clearinghouse. You cannot specify a preferred clearinghouse for modifications.

The set dnscp preferred clearinghouse clearinghouse-name command enables you to
specify the clearinghouse from which to read the values of specific individual attributes using show
clearinghouse commands of the form:

show clearinghouse clearinghouse-name attribute-specifer

where the optional attribute-specifier is the name of an attribute or attribute group, such as all
characteristics or DNS$ACS (the access control set for the clearinghouse). The following
example sets the preferred clearinghouse to .paris_ch.

dns> set dnscp preferred clearinghouse .paris_ch

The set dnscp preferred clearinghouse command (or the set dnscp preferred
clearinghouse any command) causes DNSCP to revert to the default, which is to use any
clearinghouse.

The show dnscp preferred clearinghouse command displays the current clearinghouse
mode:

dns> show dnscp preferred clearinghouse

Default Entity Commands

These commands set and display a default entity. To set the default entity, enter set dnscp
default entity entity-type entity-name. When the control program starts, the default entity is the
root directory. This command only works for directory and show commands.

The following command sets the default entity to the directory .pjl.

dns> set dnscp default entity directory .pjl

The show dnscp default entity command displays the current default entity.

dns> show dnscp default entity

Local Root Commands

These commands set and display your local root setting. The local root is a prefix that DECnet-Plus
software obtains automatically by stripping off the rightmost simple name of the local node's full name.

32

Chapter 4. Using the DECdns Control Program

DECnet Phase V Session Control creates the local root as a reserved name in the DNS$SYSTEM logical
name table. The set dnscp local root command enables you to override the systemwide local
name setting for your current DNSCP session. To set the local root, enter set dnscp local root
directory-name.

The following command sets the local root to the .pjl directory in the IAF namespace:

dns> set dnscp local root IAF:.pjl

The show dnscp local root command displays the current local root.

dns> show dnscp local root

4.7. Wildcards
You can use wildcard characters in the last simple name of entity names you specify in show and
directory commands and in some subtree entity commands. You can also use wildcards for
specifying principals in commands that affect access rights and group membership. Table 4.1 describes
the valid wildcard characters you can use.

Table 4.1. Wildcard Characters

Symbol Meaning

* Matches zero (0) or more characters in the name you specify in a simple name
? Matches exactly one character in the name you specify
... Searches any part of the directory hierarchy at or below this level for a match

See Chapter 11 for more information on using wildcard characters in specific commands.

4.8. Editing the Commands
You can cancel commands, edit command lines, continue a command beyond one line, or recall
commands within DNSCP.

Canceling a Command

Press Ctrl/Y to cancel command processing during command entry or while the command is being
processed.

Continuing a Command Line

To continue a long command line onto the next line, type a space and then a hyphen at the end of the
first line:

dns> set group .sales.testgroup DNS$GroupRevoke -
_> 2019-12-31-12:00:00 090-00:00:00

Recalling a Command

You can recall previously typed commands and avoid the inconvenience of retyping long commands.
The recall buffer holds up to 20 previously entered commands. Once a command is displayed, you can
reexecute or edit it.

To display the commands stored in the recall buffer, press Ctrl/B or the up arrow and down arrow keys.

33

Chapter 4. Using the DECdns Control Program

Press Ctrl/B once to display your previous command. Press Ctrl/B again to display your next previous
command, and so on, to the last saved command.

Press the up arrow and down arrow keys to display the previous and successive commands, respectively.
Press the arrow keys repeatedly to move backward or forward through the buffer of saved commands
until you display the command you want to reuse or edit.

34

Chapter 5. Managing DECdns Access
Control
DECdns allows you to control access to the clearinghouses, directories, object entries, and soft links in
your namespace. The access rights to a name that you grant users determine how they can use the name
and what management operations they are allowed to perform on it. For object entries that represent
physical network resources, such as DECdfs access points, VSI Notes files, disks, and print queues,
remember that DECdns access control protects only the names that represent these resources in the
namespace, not the resources themselves.

You control access to dns server, dns clerk, dns clerk known namespace, dns
clerk manual nameserver, and dns clerk remote clearinghouse entities with
operating system rights identifiers. These are Network Control Language (NCL) entities, and because
they are not actually contained in a namespace, DECdns access control cannot protect them. See the VSI
DECnet-Plus for OpenVMS Network Management Guide to control access to these entities.

This chapter presents management information on the following topics:

• How DECdns access control works (Section 5.1)

• Adding, modifying, and denying access (Section 5.2)

• Setting up access control in a new namespace (Section 5.3)

• Displaying access rights (Section 5.4)

• Removing access (Section 5.5)

• Managing groups (Section 5.6)

• Modifying principals and removing access for a subtree (Section 5.7)

5.1. How DECdns Access Control Works
The access rights that you grant users to a name are stored as separate sets of values within the access
control set (ACS) associated with the name's DNS$ACS attribute. Within a name's ACS is a list of
access control entries (ACEs). Each ACE consists of two parts: a principal, describing the user (or
users) to whom the access is granted, and a rights list containing the specific access rights granted to
the principal. The ACEs stored in a name's ACS collectively determine who (which user or application
accounts) can access the name.

5.1.1. Specifying a DECdns Version 2 Principal
The principal of an ACE can be the name of an individual user, a name with one or more wildcard
characters to denote several users (see Section 4.7), or a group name. You specify a DECdns Version
2 (DECnet Phase V style) principal with a nodename.username combination, where nodename is the
DECdns full name of the node. Separate the node name and user name with a dot (.). For example, to
specify a user named jones, whose login account is on node .titan, enter .titan.jones.

You represent an application program as a principal with the node name and account name under which
the application is running. For example, you specify an application running on node .eng.orion
under an account named program1 as .eng.orion.program1.

35

Chapter 5. Managing DECdns Access Control

Specify the DNS$Server principal for the server running on node .polaris as .polaris.dns
$server.

5.1.2. Specifying a DNS Version 1 Principal
If your namespace uses servers running both DECdns Version 2 and Version 1 of the VAX Distributed
Name Service (DNS), you will sometimes need to create ACEs that specify principals in the Version 1
format. You specify a Version 1 principal with a nodename::username combination, where nodename is
the six-character-maximum DECnet Phase IV-style node name. Separate the node name and user name
with two colons (::) rather than with a dot as in a Version 2 principal.

For example, to specify a Version 1 principal for a user named jones, whose login account is on node
titan, enter titan::jones. (See Section 5.4 for an example display of access rights that include
Version 1 principals.)

If any of your Version 2 DECdns directories store replicas on DNS Version 1 servers, make sure you
always create two sets of ACEs when granting access to those directories and their contents. One set
must specify Version 2 principals, and the other set must specify Version 1 principals.

For example, suppose you replicated the Version 2 directory .eng in both Version 2 and Version 1
servers. To grant user jones on node titan access to the .eng directory, and to ensure that Jones
receives the same access to the directory in every clearinghouse where a replica is stored, you must
create two ACEs. One ACE must specify the Version 2-style principal .titan.jones. The other
ACE must specify the Version 1-style principal titan::jones.

Note

The DNS Version 1 and DECdns Version 2 principal expressions for granting world access, *::* and
.*... respectively, permit access to any user on any node, but only within the particular namespace
in which the access control entries (ACEs) containing these expressions were created. Because you do
not have to enter a namespace nickname as part of a principal expression, and DNS Version 1 does not
display the namespace nickname associated with the principal expression of ACEs, it is easy to assume
incorrectly that the expressions can be used for granting world access to any user, on any node, in any
namespace.

5.1.3. Specifying Group Principals
You can also specify a DECdns group as the principal of an ACE. A group is an object containing a list
of members that you can treat as a single unit for various purposes, including access control. A group
member can be an individual principal, a wildcard principal, or another group. See Section 5.6 for more
information on groups.

5.1.4. DECdns Access Rights and Their Meanings
The five DECdns access rights are read, write, delete, test, and control. Each access right has a slightly
different meaning, depending on the kind of name with which it is associated. The access rights are
defined as follows:

• Read access allows a principal to look up a name and view the attribute values associated with it.

• Write access allows a principal to create new names and change any modifiable attribute of a name
(except its ACS).

36

Chapter 5. Managing DECdns Access Control

• Delete access allows a principal to delete a name from the namespace.

• Test access allows a principal to test whether an attribute of a name has a particular value without
actually seeing any of the values (that is, without having read access to the name).

The main benefit of test access is that it gives application programmers a more efficient way to verify
an attribute value. Rather than reading the entire set of values, an application can test for the presence
of a particular value. DECdns itself uses this function to test for group membership during access
checking. You should grant at least test access to all users of client applications that use the test
function on their own objects.

• Control access allows a principal to perform any operation on a name, including modifying its
ACS. Control access also grants other rights normally reserved only for the creator account or
your namespace administrator group, such as the ability to replicate a directory or relocate a
clearinghouse. In a secure namespace, you should grant control access judiciously.

Table 5.1 lists the DECdns access rights and describes the operations they enable a principal to perform.

Table 5.1. Summary of DECdns Access Rights

Access Right Permitted Operation

Clearinghouse

Read Look up the clearinghouse by name.

Read any attribute of the clearinghouse.
Write Change the replica type of any replica stored in the clearinghouse.

Create or delete replicas in the clearinghouse.

Modify any modifiable attribute of the clearinghouse (except its ACS).
Delete Delete the clearinghouse.
Test Check for the presence of a specific value in any attribute of the clearinghouse.
Control Modify the ACS of the clearinghouse.

Relocate the clearinghouse on another server.
Directory

Read Look up the directory by name.

List the names of any child directories of the directory.

Read any directory attribute.
Write Create object entries or soft links in the directory.

Skulk the directory.

Create, modify, or delete child directories (delete access to the child directories is
also required).

Dump the directory.

Re-create object entries and soft links in the directory. Re-create an existing
directory as a child of the directory.

37

Chapter 5. Managing DECdns Access Control

Access Right Permitted Operation

Delete Delete the directory.

Delete any name in the directory.
Test Check for the presence of a specific value in any attribute of the directory.
Control Perform any operation on any object entry, soft link, or child pointer in the

directory.

Read or modify any attribute of the directory (including its ACS).

Modify the replica type of a replica or the epoch value of the directory.

Merge the directory.
Object Entry and Soft Link

Read Look up the object entry or soft link by name.

Read any attribute.

Perform a wildcard lookup.
Write Modify any attribute except the ACS.

Remove a value from an attribute of an application-defined object entry.
Delete Delete the name or any attribute associated with it.
Test Check for the presence of a specific value in any attribute.
Control Modify the ACS.

You can abbreviate each of the rights you specify in an ACE to its first character (read=r, write=w,
delete=d, test=t, control=c). These abbreviations are used in all the example commands that appear
throughout this manual.

5.1.5. How DECdns Checks Access
When a principal makes a request to view or manage a name, DECdns searches the name's ACS for
an ACE that grants the required access rights. DECdns conducts its search of an ACS in the following
order:

1. DECdns first looks for an ACE whose principal matches exactly with the name of the requesting
principal, ignoring all ACEs that contain wildcard principals. DECdns stops searching at the first
ACE that it finds containing a matching principal. If that ACE contains the required access rights, the
principal's requested operation is carried out; if not, DECdns returns an error message.

2. If DECdns cannot find an exact matching principal, it next examines any ACEs containing wildcard
principals for a match. If DECdns finds an ACE containing a matching wildcard principal that does
not include the required access rights, it ignores it. (This differs from the behavior described in step
1, where DECdns stops searching at the first ACE it finds that contains a matching principal.)

3. If DECdns cannot find an ACE containing a wildcard principal that grants the required access rights,
it searches the ACS for any ACEs referring to groups of which the requesting principal is a member.

4. If no match can be found among the wildcard principals or groups, DECdns denies the requested
access and returns an error message.

38

Chapter 5. Managing DECdns Access Control

Because DECdns stops searching as soon as it finds the first exact match of an individual principal name,
you can create special null ACEs for individual users that grant no access rights to the users, and deny
access that might otherwise be granted to them through wildcard principals or group membership. See
Section 5.2.4 for information on how to create null ACEs to deny access to individual users.

5.2. Adding, Modifying, and Denying Access
By default, DECdns grants all five access rights (read, write, delete, test, and control) to the creator
account of any new clearinghouse, directory, object entry, or soft link. As you expand and manage your
namespace, you can modify this default scheme by adding, modifying, or removing access rights for
particular names.

Note

When adding, modifying, or denying access to a name that exists in a namespace other than your clerk's
default namespace, you must specify the nickname of the nondefault namespace as part of the name.

5.2.1. Adding Access
Use the add access command to create an ACE and add it to the ACS of the name you specify.

Examples

The following command grants read, write, and test access to user smith on node .orion for an
object entry named .admin.disk3.

dns> add object .admin.disk3 access .orion.smith for r,w,t

The following command grants read access to all users that have accounts on node .vega to an object
entry named .sales.quota_disk.

dns> add object .sales.quota_disk access .vega.* for r

The following command grants all users of a namespace read and test access to an object entry named
.mfg.public_disk.

dns> add object .mfg.public_disk access ... for r,t

The following command grants read, write, test, and control access to the local .Paris2_CH
clearinghouse on behalf of an access control group named .testgroup.

dns> add clearinghouse .paris2_ch access .testgroup for r,w,t,c

5.2.2. Modifying Existing Access
You can also use the add access command to overwrite the list of rights granted to a principal by an
existing ACE.

Example

The following show object access command displays an ACE that grants read, write, and test
access to user smith on node .orion to a node object entry named .admin.mynode.

dns> show object .admin.mynode access

39

Chapter 5. Managing DECdns Access Control

 SHOW
 OBJECT IAF:.admin.mynode
 AT 31-MAY-2019:09:26:00
 DNS$ACS (set) = :
 Flags = propagate
 Rights = read, write, test
 (V) Principal = .orion.smith

The following add object access command overwrites this ACE and replaces it with a new ACE
that grants .orion.smith only read and test access to .admin.mynode.

dns> add object .admin.mynode access .orion.smith for r,t

The following show object access command displays the result of the preceding command:

dns> show object .admin.mynode access
 SHOW
 OBJECT IAF:.admin.mynode
 AT 31-MAY-2019:09:28:00
 DNS$ACS (set) = :
 Flags = propagate
 Rights = read, test
 (V) Principal = .orion.smith

5.2.3. Making Access Assignment Easier
Two features of DECdns access control make it easier for you to assign access to directories and their
future contents: automatic rights propagation and default ACEs.

5.2.3.1. Using Automatic Rights Propagation
When you create an ACE for a directory, DECdns automatically copies (propagates) the ACE into the
ACSs of all the child directories you may later create under that directory.

Example

The following command creates an ACE that grants read and test access to user jones on node
.rigel for the directory .sales.

dns> add directory .sales access .rigel.jones for r,t

The following show directory access command displays the ACE created with the preceding
command:

dns> show directory .sales access
 SHOW
 DIRECTORY IAF:.sales
 AT 11-JAN-2019:05:13:00
 DNS$ACS (set) = :
 Flags = propagate
 Rights = read, test
 (V) Principal = .rigel.jones

The Flags = propagate line indicates that, by default, DECdns will copy this ACE into the ACS
of any child directory later created under the .sales directory. This means that, by creating a single
ACE granting user Jones read and test access to .sales, you also automatically grant user Jones
the same rights to any child directory that may subsequently be created under the .sales directory.

40

Chapter 5. Managing DECdns Access Control

Remember that an ACE you create for a directory is inherited only by the child directories that you
create after you create the ACE; directory ACEs are not propagated to child directories that already
exist.

5.2.3.2. Suppressing Automatic ACE Propagation
Automatic propagation of every ACE that you create for a directory always occurs unless you include the
nopropagate option in the add access command that you enter to create the ACE.

You should use the nopropagate option when you want to create an ACE for a directory, but would
prefer that the rights you grant be applied only to that particular directory and not be inherited by any
future child directories.

Example

The following command creates an ACE that grants read, write, and test access to all users on node
.rigel for the .mfg directory. By including the nopropagate option, you prevent this access from
propagating to any child directories that may later be created under the .mfg directory.

dns> add directory .mfg nopropagate access .rigel.* for r,w,t

The following show access command displays the ACE created with the preceding command:

dns> show directory .mfg access
 SHOW
 DIRECTORY IAF:.mfg
 AT 25-AUG-2019:06:31:00
 DNS$ACS (set) = :
 Flags = nopropagate
 Rights = read, write, test
 (V) Principal = .rigel.*

5.2.3.3. Creating Default ACEs
You can use the add access command's default option to create a default ACE for a directory
that applies specifically to the directory's future contents (soft links, application-defined object entries,
groups, and clearinghouse object entries). Although a default ACE is associated with a directory name, it
applies only to the future contents of the directory, not to the directory itself.

Note

Because a clearinghouse itself is not contained in a directory, it cannot inherit ACEs. Only the
clearinghouse object entry (which represents a clearinghouse) is actually contained in a directory and
is, therefore, able to inherit ACEs automatically. To grant access to a clearinghouse itself, use the add
clearinghouse access command to explicitly create appropriate ACEs in the ACS of the
clearinghouse for the users and applications that require it.

Remember that default ACEs apply only to names that are created in the directory after you create the
ACEs; they do not affect access to names that already exist in the directory.

As with other directory ACEs, the access you grant with a default ACE also propagates to the future
contents of any child directories of the associated directory unless you suppress the propagation by
including the nopropagate option in the command that you use to create the default ACE. See
Section 5.2.3.2 for information on how to use the nopropagate option.

41

Chapter 5. Managing DECdns Access Control

Examples

The following command creates a default ACE that grants read and test access to user jones on node
.rigel for the future contents of the .dist directory and the future contents of its child directories:

dns> add directory .dist default access .rigel.jones for r,t

The following show directory access command displays the ACE created with the preceding
command:

dns> show directory .dist access
 SHOW
 DIRECTORY IAF:.dist
 AT 31-APR-2019:10:47:06
 DNS$ACS (set) = :
 Flags = propagate, default
 Rights = read, test
 (V) Principal = .rigel.jones

The following command creates a default ACE that grants read, write, and test access to all users on
node .orion for the future contents of the .admin directory. Because the nopropagate option is
also used in the command, these rights will not apply to the future contents of any child directories later
created under the .admin directory.

dns> add directory .admin default,nopropagate access .orion.* -
_> for r,w,t

The following command displays the ACE created with the preceding command:

dns> show directory .admin access
 SHOW
 DIRECTORY IAF:.admin
 AT 21-DEC-2019:16:24:21
 DNS$ACS (set) = :
 Flags = nopropagate, default
 Rights = read, write, test
 (V) Principal = .orion.*

5.2.4. Using Null ACEs to Deny Access
Because of the sequence in which DECdns searches a name's ACS for a security match, you can deny a
user access to a name by creating a null ACE for the name that specifies a user's individual login name as
principal, but contains no rights in the rights list. You can also create null ACEs that specify as principal
the account under which a client application is running. You express the absence of access rights in an
ACE by entering the word none in the rights list portion of the ACE.

Example

The following command creates a null ACE that denies user jones on node .vega access to an object
entry named .eng.rnd_notes.

dns> add object .eng.rnd_notes access .vega.jones for none

Note

Null ACEs are only valid for explicit principals. They are not valid for implicit or explicit groups. For
example, the following command creates an invalid ACE entry – a null ACE to deny access to all node

42

Chapter 5. Managing DECdns Access Control

.vega users whose principal names begin with the character string abc (that is, access to an object
entry named .eng.rnd_notes).

dns> add object .eng.rnd_notes access .vega.abc* for none

Null ACEs that you create for a directory will propagate to all future child directories and, by combining
these ACEs with default null ACEs to deny access to future directory contents, you can lock a user out of
the namespace from that directory level downward through the hierarchy. By creating such ACEs for the
root directory in a new namespace, you can deny a user account access to an entire namespace.

The following two commands deny user .orion.smith all access to the .eng directory. These
examples assume that the .eng directory has just been created, contains no object entries or soft links,
and has no child directories.

1. The following command creates an ACE that denies .orion.smith access to the .eng
directory. Because the nopropagate option is not used in the command, this ACE will be
inherited by all child directories that may later be created under the .eng directory.

dns> add directory .eng access .orion.smith for none

2. The following command creates a default ACE that denies access to all names that may be created
later in the .eng directory. Again, because the nopropagate option is omitted from the
command, this ACE will also be inherited by the contents of any child directories later created under
.eng.

dns> add directory .eng default access .orion.smith for none

For more information on how DECdns checks access, see Section 5.1.5.

5.3. Setting Up Access Control in a New
Namespace
If you intend to create a large namespace that will contain multiple directories at many levels, VSI
recommends that you first plan a consistent access control policy and be ready to implement the policy
after you configure your first DECdns server. At that time, and before you create and populate your
directory hierarchy, you should take the following steps:

1. Add members to the .DNS_Admin administrator group that was created for you automatically
during the configuration of the first server in your new namespace. Then, grant full access (read,
write, delete, test, and control) on behalf of the group to the entire namespace beginning at the root
directory.

2. Implement a namespacewide access control policy, beginning at the root directory, to grant the
general user population a minimum set of rights that will propagate to lower-level directories and
their contents as they are created.

5.3.1. Adding Members to Your Namespace
Administrator Group
To make the task of managing and troubleshooting your namespace easier, the DECnet-Plus
configuration process on the first DECdns server in your namespace automatically creates an access

43

Chapter 5. Managing DECdns Access Control

control group in the root directory named .DNS_Admin. Before the group can be of any use, you must
add, as members, the persons in your organization who are responsible for managing, administering,
and troubleshooting your namespace. Because this group can possess unlimited access to the entire
namespace, its members can intervene, whenever necessary, to restore lost access or solve other problems
that might arise. See Section 5.6.2 for complete information on how to add members to your namespace
administrator group and other access control groups that you create.

5.3.2. Adding Access for Your Namespace
Administrator Group
After you add members to your administrator group, you can create ACEs that grant the group full
access to the following names:

• Root directory (.) — You can assign full access to the root directory on behalf of the administrator
group that will be inherited by all future names created in the root directory. This access will also
propagate to all future child directories and their future contents.

• Initial clearinghouse — Unlike clearinghouse object entries, clearinghouses themselves (including
your namespace's initial clearinghouse) are not actually contained within a directory, and therefore
cannot inherit access. To grant the administrator group full access to the initial clearinghouse itself,
you must use the add clearinghouse access command to explicitly create appropriate
ACEs in the ACS of the clearinghouse.

Because clearinghouses cannot inherit access, you should institute a policy requiring that your
administrator group always be granted full access to all new clearinghouses as they are created. Most
new clearinghouses in your namespace will be created as a result of server configuration.

To Add Full Access

Enter the following add directory access commands to grant your .DNS_Admin
administrator group full access to the namespace's root directory, the root directory's initial
clearinghouse, and to every directory, object entry, and soft link that may later be created in the
namespace:

1. The following add directory access command grants the group .DNS_Admin full access
to the root directory. This access will be inherited by all directories later created under the root.

dns> add directory . access .DNS_Admin as group for r,w,d,t,c

2. The following add directory access command, using the default option, grants
.DNS_Admin full access to all names that may later be created in the root directory. This access
will also be inherited by the future contents of all directories that are later created under the root.

dns> add directory . default access .DNS_Admin as group for r,w,d,t,c

3. The final command grants .DNS_Admin full access to the initial clearinghouse .init_CH.

dns> add clearinghouse .init_ch access .DNS_Admin as group -
_> for r,w,d,t,c

Creating Directory-Level Administrator Groups

To delegate local authority, you can create additional directory-level access control groups for each of the
functional directories in your namespace (.Sales_Admin, .Eng_Admin, and so on). Each local
administrator group could have full access to the contents of the directory for which it is responsible

44

Chapter 5. Managing DECdns Access Control

and include as members all the names of the current managers of that directory. With groups as the
main method of granting access control, the namespacewide administrator group (.DNS_Admin) could
simply add and remove members of a local group instead of creating and deleting individual ACEs every
time there is a change in management responsibility for a directory.

5.3.3. Implementing a General Access Control Policy
Immediately after you add members to your administrator group and grant the group full access, VSI
recommends you implement a policy to control user access to the new namespace and its future contents.
The access control policies described in Section 5.3.3.1 to Section 5.3.3.4 are:

• Full Access

• Read, Write, and Test

• Read and Test

• Explicit Access

The first three policies (Full Access; Read, Write, and Test; and Read and Test) establish a basic set of
access rights for all potential users of your namespace and allow you to take advantage of automatic
rights propagation. When implemented at the root level in a new namespace, these policies automate
the creation of most of the ACEs that you would otherwise need to create individually. Although none
of these policies eliminates the need for some future access modifications, implementing the policy that
most closely provides the minimum level of security you require can help minimize the task of assigning
access to future directories and the names later created within them.

The fourth policy (Explicit Access) does not grant general users a specific set of access rights to the
namespace, and therefore does not take advantage of automatic rights propagation.

5.3.3.1. Full Access Policy
The Full Access policy grants all potential users read, write, delete, test, and control access to all names
(except clearinghouses). This policy permits all users (people and client applications) to perform any
operation on any directory, object entry, group, or soft link in your namespace.

Although the Full Access policy is the easiest to manage and minimizes the number of ACEs that you
must explicitly create, it is also the least secure because it allows all users to create new names, modify
attributes of names, delete names, relocate clearinghouses, and merge directories. You might implement
this policy in small or experimental, single-site namespaces where maintaining strict security is not an
issue, or where other measures already minimize the risk of unauthorized access to the namespace.

To implement the Full Access policy, beginning at the root directory in a new namespace, enter the
following two add directory access commands:

dns> add directory . access ... for r,w,d,t,c

dns> add directory . default access ... for r,w,d,t,c

The first command creates an ACE that grants full access to all principals for the root directory. These
rights will be inherited by all child directories later created under the root.

The second command, specifying the default option, creates an ACE that grants all principals full
access to the future contents of the root directory. These rights automatically propagate to the contents of
all child directories that are later created under the root.

45

Chapter 5. Managing DECdns Access Control

5.3.3.2. Read, Write, and Test Policy
The Read, Write, and Test policy grants all potential users read, write, and test access to the contents of
the namespace. Because this policy does not include delete and control access, users are prevented from
deleting names, relocating clearinghouses, modifying replica sets, and modifying a name's ACS. Because
the policy grants write access to all users, it is most appropriate for a namespace in which the majority of
users frequently need to create and populate their own directories.

To implement the Read, Write, and Test policy, enter the same two commands used to implement the
Full Access policy (Section 5.3.3.1), but include only read, write, and test access in the rights list of each
ACE for (r,w,t).

5.3.3.3. Read and Test Policy
The Read and Test policy grants all potential users read and test access to the contents of the namespace,
but requires you to explicitly assign write access every time a user or application needs to create a name,
modify an attribute of a name, create or delete a replica, modify replica types, or skulk a directory. The
Read and Test policy is most appropriate for a namespace in which the majority of users only need
to look up names or enumerate attributes, and where the tasks of creating names and modifying their
attributes are reserved for namespace administrators, server managers, or other management personnel.
In such a namespace, read and test rights provide users with all the access they normally require during
the day-to-day use of their DECdns client applications.

If you implement this policy, you should consider granting write access for client application accounts
to the particular directories in which they need to create their own object entries. This will save you the
trouble of modifying the access to those directories every time an application needs to create, modify, or
delete its own object entries.

To implement the Read and Test policy, enter the same two commands used to implement the Full
Access policy (Section 5.3.3.1), but include only read and test access in the rights list of each ACE for
(r,t).

Note

Although the preceding three access control policies are described beginning at the root directory
of the namespace, you can also implement them for any directory, at any level, and on behalf of any
principal or access control group. For example, to maintain greater security on your namespace's root
directory and its contents, you could implement the Read and Test policy at root level. Then, starting at
directories one level below the root, implement the Read, Write, and Test policy. As with a root-level
implementation, the best time to implement a policy for a lower-level directory is immediately after the
directory is created.

5.3.3.4. Explicit Access Policy
The Explicit Access policy differs from the preceding three policies because it does not grant a basic
set of rights to users, and therefore does not initially provide the convenience of automatic rights
propagation. You do not propagate ACEs from the root directory to implement this policy.

The Explicit Access policy provides the greatest namespace security, but can also require extensive
access control management. By using wildcards and groups to express multiple principals, and by taking
advantage of automatic propagation of lower-level directory ACEs, you can minimize the number of
ACEs you will need to explicitly create for each name.

46

Chapter 5. Managing DECdns Access Control

5.4. Displaying Access Rights
You use the show access commands to display the ACEs associated with the clearinghouse,
directory, object entry, or soft link that you specify.

Example 1

The following command displays the ACEs stored in the ACS of the .eng directory in the IAF
namespace:

dns> show directory .eng access

 SHOW
 DIRECTORY IAF:.eng
 AT 26-NOV-2019:18:36:03
 DNS$ACS (set) = :
 Flags = propagate, group
 Rights = read, write, delete, test, control
 Group = .DNS_Admin
 DNS$ACS (set) = :
 Flags = propagate, default
 Rights = read, test
 (V) Principal = .orion.smith
 DNS$ACS (set) = :
 Flags = propagate, default
 Rights = read, test
 (V) Principal = .rigel.jones

Note

You can also display access by using the show command and specifying the DNS$ACS attribute of the
name whose ACS you want to examine. See Chapter 8 for more information and examples of how to
display namespace information.

Example 2

The following example shows the access control set for directory .budget, which contains both
DECdns Version 2 (DECnet Phase V) and DNS Version 1 (DECnet Phase IV) principals.

dns> show directory .budget access
 SHOW
 DIRECTORY IAF:.budget
 AT 17-APR-2019:14:54:54
 DNS$ACS (set) = :
 Flags = none
 Rights = read, write, delete, test, control
 (IV) Principal = ABC::SYSTEM
 (V) Principal = IAF:.ABC.SYSTEM
 DNS$ACS (set) = :
 Flags = none
 Rights = read, write, delete, test, control
 (IV) Principal = ORION::DNS$SERVER
 (V) Principal = IAF:.ORION.DNS$SERVER
 DNS$ACS (set) = :
 Flags = authenticated
 Rights = read, write, delete, test, control

47

Chapter 5. Managing DECdns Access Control

 (V) Principal = IAF:.budget.orion_ch
 DNS$ACS (set) = :
 Flags = default, propagate, group
 Rights = read, write, delete, test, control
 Group = IAF:.ad_users

5.5. Removing Access
Use the remove access commands to remove an ACE from the ACS of the name that you specify.
This command removes ACEs from a name's ACS one at a time. You cannot remove individual access
rights (read, write, delete, test, or control) separately.

To remove a directory ACE created with the default option (default ACE), you must include the
default option in the remove access command.

Note

The DECdns software does not prevent you from deleting all the ACEs associated with a name. When
you remove ACEs, make sure that, by doing so, you do not remove all the access that exists to the name
you specify. If you accidentally delete all the access to a name, see Chapter 12 for instructions on how to
restore access.

Examples

The following show object access command displays an existing ACE that grants user smith
(on node .orion) read and test access to an object entry named .sales.work_disk2.

dns> show object .sales.work_disk2 access
 SHOW
 OBJECT IAF:.sales.work_disk2
 AT 26-JAN-2019:09:16:51
 DNS$ACS (set) = :
 Flags = none
 Rights = read, test
 (V) Principal = .orion.smith

To remove access rights of user Smith to .sales.work_disk2, enter the following remove
object access command:

dns> remove object .sales.work_disk2 access .orion.smith

The following show directory access command displays an existing ACE that grants user
jones (on node .polaris) full access to the .sales directory. Another ACE, created with the
default option, grants Jones full access to the future contents of the .sales directory.

dns> show directory .sales access
 SHOW
 DIRECTORY IAF:.sales
 AT 02-FEB-2019:21:09:31
 DNS$ACS (set) = :
 Flags = propagate
 Rights = read, write, delete, test, control
 (V) Principal = .polaris.jones
 DNS$ACS (set) = :
 Flags = default
 Rights = read, write, delete, test, control

48

Chapter 5. Managing DECdns Access Control

 (V) Principal = .polaris.jones

The following remove directory access command removes access rights of user Jones to the
.sales directory itself:

dns> remove directory .sales access .polaris.jones

The following remove directory access command removes access rights of user Jones to the
future contents of the .sales directory:

dns> remove directory .sales access as default .polaris.jones

The access rights of user Jones to the .sales directory and its future contents have now been
removed. Remember, however, that the preceding two commands do not remove any access rights that
Jones might have been granted to names that already exist in the .sales directory. To remove access
rights of user Jones to these names, you must issue separate remove access commands for each
name, or use the remove subtree access command to remove access for the entire directory
and its contents.

The following show directory access command displays an existing ACE, created with the
nopropagate option, that grants read and test access to the .mfg directory for user smith on node
.vega.

dns> show directory .mfg access
 SHOW
 DIRECTORY IAF:.mfg
 AT 21-MAR-2019:08:16:50
 DNS$ACS (set) = :
 Flags = nopropagate
 Rights = read, test
 (V) Principal = .vega.smith

The following remove directory access command removes this ACE. Note that you do not
have to include the nopropagate option in the command.

dns> remove directory .mfg access .vega.smith

Remember that removing an ACE associated with an individual user does not revoke the rights granted
to the user by any ACEs containing wildcard principals that include the user or access control groups
of which the user is a member. To revoke the access rights of individual members of an access control
group, remove the user from the group. See Section 5.6.4 for information on how to remove group
members.

5.6. Managing Groups
A group is an object entry that contains a collection of principals (members) stored in the group's DNS
$Members attribute. Whenever you identify users to whom you want to grant a common set of
access rights, you can treat the users as a unit by creating an access control group of which they all are
members. When you add a member to an access control group, the principal described by that member
acquires all the access rights assigned to the group. When you remove a member from an access control
group, the principal described by that member loses all the access granted to the group. By assembling
principals into access control groups, you can simplify the task of assigning access to multiple users.

Using access control groups can also improve performance by helping you avoid the creation of ACSs
that contain large numbers of ACEs specifying individual principals. Maintaining large ACSs degrades
response time during access checking and can consume significant amounts of memory and disk space.
Access control groups make it possible for you to keep the number of ACEs you require to a minimum.

49

Chapter 5. Managing DECdns Access Control

The DECnet-Plus configuration program on the first DECdns server in your namespace automatically
creates an access control group named .DNS_Admin to which you can add, as members, namespace
administrators, server managers, and other personnel to whom you want to grant unlimited access to the
entire namespace. See Section 5.6.2 for information on how to add group members. See Section 5.3.2
for information on assigning access for a namespace administrator group in a new namespace.

5.6.1. Creating a Group
Use the create group command to create a group with the name you specify. To create a group,
you need write access to the directory in which you intend to create the group.

You can use the set group command to cause requesting clerks to cache the results of the test
operations that they direct to the group. Although this may optimize the test operations of requesting
clerks, only a slight increase in overall performance is realized. See Chapter 11 for more information on
the set group command.

Example

The following create group command creates a group named .group1 in the .sales directory:

dns> create group .sales.group1

5.6.2. Adding Group Members
Immediately after creation, a group does not contain any members. The principal that creates a group is
not included as a member. Before a group can be of any use, you must add members.

To add members to a group, you must have write access to the group. The account under which a
group is created will already have this access. Do not store more than 100 members in a group. VSI
recommends that no group contain more than 75 members.

A simple way to limit the number of members in any group is to create subgroups that are members
of the original group. For example, an administrator wants to create a group with 200 members
who all have authorization to manage a certain directory in the namespace. The group will be called
.dir_admin. Two possible solutions are:

• Create three groups called .dir_admin_a_to_f, .dir_admin_g_to_l, and
.dir_admin_m_to_z. These three groups are entered as the only three members of the group
.dir_admin. Each contains a part of the alphabetically sorted list of members.

• Create subgroups that use some other partitioning algorithm, such as by site code or group function
instead of the alphabet as used in the preceding solution.

To Add Group Members

Use the add member command and specify the member (principal) you want to add to the group. You
can specify an individual principal, a wildcard principal, or another group as a group member.

Note

When adding another group as a member, be careful not to accidentally create a group loop by adding a
group of which another group is itself a member. In such a case, DECdns is unable to verify access and
generates an error message. See Chapter 12 for information on how to detect and eliminate loops.

50

Chapter 5. Managing DECdns Access Control

Examples

The following add group member command adds user smith on node .orion to the namespace
administrator group .DNS_Admin.

dns> add group .DNS_Admin member .orion.smith

The following add group member command adds all users on all nodes named in the .mfg
directory to a group named .mfg.camgroup.

dns> add group .mfg.camgroup member .mfg.*...

The following add group member command adds a group named .dist.transport_group
as a member to the existing group .mfg.camgroup.

dns> add group .mfg.camgroup member .dist.transport_group

Modifying a Group's ACS

Although the account under which a group is created automatically receives full access to the group,
membership in a group conveys no access rights to the group itself. To protect the identity of group
members, you may want to grant only test access to the group for most of the group's members. This
prevents individual members from determining who the other members of the group are. Be certain,
however, to grant at least one member full access to the group; this allows that member to add and
remove other members, or to delete the group if necessary.

5.6.3. Modifying Group Membership
You can use the change subtree group member command to replace an existing group
member with a new group member in all access control groups named in the directory or subtree
that you specify. (A subtree can be a single directory and its contents, or a directory and all its child
directories and their contents.) By appending the recursion notation (...) to the directory that you
specify, you can extend the command's effect to the groups contained in all child directories of that
directory. If you use the command recursively, you can use the exclude argument to exclude all
groups contained within particular child directories from group member modification.

This command provides a convenient way for you to modify a group member specification in multiple
groups with a single command. For example, user smith, whose login account is on node .orion, is
represented as a member in several access control groups as .orion.smith. If Smith's login account
is moved to node .trifid (or if node .orion is renamed .trifid), the old member specification
.orion.smith is no longer valid and will not grant Smith the access that membership in these
groups was intended to convey. To maintain Smith's access, you can use the change subtree
group member command to substitute the old member .orion.smith for the new member
.trifid.smith in all appropriate groups.

To use the change subtree group member command, you must have write access to the group
whose member you intend to modify. If you use the command recursively, you must have write access to
all groups affected by the command.

Examples

The following change subtree group member command replaces the old member
.orion.smith with the new member .trifid.smith in all groups named in the .sales
directory. Note that, for the new member, you only need to specify the portion you want to change (the
node name .trifid) in the command.

51

Chapter 5. Managing DECdns Access Control

dns> change subtree .sales group member .orion.smith .trifid

The following change subtree group member command replaces the old member
.vega.group1 with the new member .vega.group2 in all groups named in the .admin
directory and all its child directories. Note that, because you are changing the entire group member, you
must specify both the node name and user name (.vega.group2) as the new member.

dns> change subtree .admin... group member .vega.group1 .vega.group2

The following change subtree group member command replaces the old member
iaf:.orion.smith with the new member abc:.orion.smith in all groups named in the
abc: namespace. Note that you only need to specify the namespace nickname portion of the new
member (abc:) in the command.

dns> change subtree ... group member iaf:.orion.smith abc:.

5.6.4. Removing Group Members
Use the remove member command to remove a group member from the group or groups that you
specify. You must have write access to the group from which you intend to remove members.

Remember that removing a principal from membership in a group only denies that principal the access
rights granted to that group. Loss of membership in a group does not revoke the access rights that
may otherwise be granted to the group member as an individual principal, a wildcard principal, or by
membership in other groups.

Examples

The following remove member command removes user jones on node .orion from the
namespace administrator group .DNS_Admin.

dns> remove group .DNS_Admin member .orion.jones

The following remove member command removes all users on all nodes named in the .mfg
directory from the group named .mfg.camgroup.

dns> remove group .mfg.camgroup member .mfg.*...

The following command removes the group named .dist.transgroup from membership in the
group named .mfg.camgroup.

dns> remove group .mfg.camgroup member .dist.transgroup

5.6.5. Removing Group Members from Multiple Groups
You can use the remove subtree group member command to remove a group member from
all the groups named in the directory or subtree that you specify. When you remove a group member
from a group, the user specified by that member automatically loses all access rights granted to that
group.

By appending the recursion notation (...) to the directory that you specify, you can extend the
command's effect to all groups named in that directory and to all the child directories of that directory. If
you use the command recursively, you can use the exclude argument to exclude the groups in specific
child directories from group member removal.

52

Chapter 5. Managing DECdns Access Control

To use the remove subtree group member command, you must have write access to the group
(or groups) named in the directory or subtree that you specify. If you use the command recursively, you
must have write access to all groups affected by the command.

Remember that removing a principal from membership in a group only denies that principal the
access granted to the group. Loss of membership in a group does not revoke the access rights that
may otherwise be granted to a group member as an individual principal, a wildcard principal, or by
membership in other groups.

Examples

The following remove subtree group member command removes user .orion.jones
from membership in all groups named in the .sales directory:

dns> remove subtree .sales group member .orion.jones

The following remove subtree group member command removes user .vega.smith from
membership in all groups named in the .eng directory and all its child directories:

dns> remove subtree .eng... group member .vega.smith

The following remove subtree group member command removes the group named
.transport_group from membership in all the groups in the namespace:

dns> remove subtree ... group member .transport_group

5.6.6. Deleting a Group
You may want to delete a group when the circumstances that warranted the group's creation no longer
exist. For example, you should delete a group if the user group for whom the group was created
disbands, or if the directories to which the group was collectively granted access are deleted.

To delete a group, you must have delete access to the group. Make sure that, by deleting a group, you are
not removing the only access that exists to a particular name.

To Delete a Group

Use the delete group command to delete a group from the namespace. You do not need to remove
a group's members before you delete the group.

Example

The following delete group command deletes an access control group named .testgroup from
the .eng directory:

dns> delete group .eng.testgroup

After You Delete a Group

After you delete a group, the ACSs of the names to which the group was assigned access will still
contain ACEs that contain the deleted group as a principal. To avoid confusion, you should remove
the ACEs that refer to the deleted group from the ACSs of those names. You can use the remove
subtree access command to remove multiple ACEs with a single command. See Section 5.7.2 for
more information on the remove subtree access command.

53

Chapter 5. Managing DECdns Access Control

5.7. Modifying Principals and Removing
Access for a Subtree
DECdns provides several commands that allow you to modify existing principals in ACEs or to remove
ACEs associated with a particular directory and all of its contents or with an entire subtree of directories.
Section 5.7.1 and Section 5.7.2 describe how to use these commands to make the task of modifying or
removing multiple ACEs more convenient.

5.7.1. Modifying Principals
You can use the change subtree access command to replace an existing principal with a
new principal in all the ACEs associated with the directory (and contents) that you specify. Use the
command's optional exclude argument to exclude from principal modification the ACEs associated
with the object entries or soft links in the specified directory.

You can also use the change subtree access command recursively. By appending the recursion
notation (...) to the directory that you specify, you can also modify the ACEs associated with all the
child directories (and contents) of the specified directory. If you use the command recursively, you can
use the exclude argument to exclude from principal modification the ACEs associated with specific
child directories.

For example, a user named smith, whose login account is on node .orion, is expressed as principal
.orion.smith in the ACEs associated with names throughout the namespace. If Smith's login
account is moved to node .trifid (or if node .orion is renamed .trifid), the old principal
specification .orion.smith no longer grants Smith the proper access.

Rather than individually removing each of these old ACEs and replacing them with new ACEs that
specify .trifid.smith, you can use one change subtree access command to update the
old principal expression in all affected ACEs.

To use the change subtree access command, you must have the following access rights:

• Control and write access to the directory that you specify.

• Control and write access to the contents of the directory.

• If you use the command recursively, you also need control and write access to all child directories
(and contents) of the directory that you specify.

Examples

The following change subtree access command replaces the old principal .orion.smith
with the new principal .trifid.smith in all ACEs associated with the .sales directory and all its
contents. Note that, for the new principal, you only need to specify the portion you want to change (the
node name .trifid) in the command.

dns> change subtree .sales access .orion.smith .trifid

The following change subtree access command replaces the old principal .oberon.jones
with the new principal .oberon.smith in all ACEs associated with the .mfg directory, its contents,
and all child directories and their contents with the exception of ACEs associated with soft links. Note
that, since you are changing the entire principal, you must specify both the node name and user name
(.oberon.smith) as the new principal.

54

Chapter 5. Managing DECdns Access Control

dns> change subtree .mfg... access .oberon.jones .oberon.smith -
_> exclude links

You can also use the change subtree access command to maintain the usability of ACEs
associated with names that were merged from one namespace into another. For example, user smith,
in the iaf: namespace, is expressed as principal iaf:.orion.smith in ACEs throughout the
iaf: namespace. Suppose that, because of corporate restructuring, the iaf: namespace is merged
into the abc: namespace. To maintain the access that Smith needs in the new namespace, you can enter
the following change subtree access command to substitute the new namespace nickname
abc: for the old namespace nickname iaf: in the principal expression of every ACE that specifies
iaf:.orion.smith throughout the abc: namespace:

dns> change subtree ... access iaf:.orion.smith abc:

The following change subtree access command substitutes the new namespace nickname
abc: for the old namespace nickname iaf: in the principal expression of every ACE in the abc:
namespace:

dns> change subtree ... access iaf:. abc:.

5.7.2. Removing Access from Multiple Names
You can use the remove subtree access command to remove all ACEs containing the principal
that you specify from the ACSs associated with a particular directory (and its contents). Use the
command's optional exclude argument to exclude from removal the ACEs associated with all object
entries and soft links in the specified directory.

By appending the recursion notation (...) to the directory that you specify, you can also remove
the ACEs associated with all the child directories (and contents) of the specified directory. If you use
the command recursively, you can use the exclude argument to exclude from removal the ACEs
associated with specific child directories.

For example, if a user leaves your namespace, you can use the remove subtree access
command to remove all ACEs that specify the user as a principal. Similarly, if a particular access control
group is deleted, you can remove all ACEs that specify the group's name as a principal.

To use the remove subtree access command, you need the following access rights:

• Control and write access to the directory that you specify.

• Control and write access to the contents of the directory.

• Control and write access to all child directories (and contents) of the directory that you specify, if
you use the command recursively.

Examples

The following remove subtree access command removes all ACEs that contain
.vega.jones as a principal from the ACS of the .eng directory and from the ACSs of its contents:

dns> remove subtree .eng access .vega.jones

The following remove subtree access command removes all ACEs that specify an access
control group named .test_group as a principal from the ACS of the .sales directory, its
contents, and from the ACSs of all its child directories and their contents:

55

Chapter 5. Managing DECdns Access Control

dns> remove subtree .sales... access .test_group

The following remove subtree access command removes all ACEs that specify
.vega.jones as a principal from the ACS of the .eng directory and all its child directories. ACEs
associated with the object entries and soft links in these directories are not removed.

dns> remove subtree .eng... access .vega.jones exclude -
_> objects, exclude links

56

Chapter 6. Managing Clerks, Servers,
and Clearinghouses
All DECdns clerks are initially created and enabled as part of the DECnet configuration process. The
first server and clearinghouse in a namespace are created and enabled as part of the configuration
process (NET$CONFIGURE ADVANCED).

All additional servers and their resident clearinghouses are created and enabled with the DECdns
configuration program. See Chapter 10 for complete information on how to use the DECdns
configuration program.

The clerk, server, and clearinghouse entities are largely self-regulating and, apart from your routine
monitoring of their status and counter attributes, should require only minor management intervention.
You can manage these entities remotely by specifying the node name of their host systems in your
commands.

This chapter describes how to monitor the following clerk, server, and clearinghouse information:

• Status (Section 6.1)

• Counters (Section 6.2)

• Clerk communication with specific clearinghouses (Section 6.3)

• Contents of a clearinghouse (Section 6.4)

This chapter also describes the following additional management tasks that you may need to perform:

• Modifying a clerk's timeout interval (Section 6.5)

• Modifying a clerk to use the cluster alias (Section 6.6)

• Deleting and restarting clerks and servers (Section 6.7)

• Preserving a clearinghouse across a server system upgrade (Section 6.9)

• Backing up namespace information (Section 6.10)

For information on how to delete a clearinghouse, see Section 9.6.

6.1. Monitoring Status
At any time, a clerk, server, or clearinghouse can be in only one of the following states: off, initial,
on, shut, or broken. The clerk, server, and clearinghouse entities are available only when they are
enabled (in the on state). See the reference pages for the show dns clerk, show dns server,
and show dns server clearinghouse commands in Chapter 11 for full descriptions of the
states for these entities.

To Display Clerk Status

Use the show dns clerk command and specify the state attribute to check the current status of a
clerk.

To use the show dns clerk command, you must have the NET$EXAMINE rights identifier.

57

Chapter 6. Managing Clerks, Servers, and Clearinghouses

Example

The following command displays the status of the local clerk:

dns> show dns clerk state

To Display Server Status

Use the show dns server command and specify the state attribute to check the current status of
a server.

To use the show dns server command, you must have the NET$EXAMINE rights identifier.

Example

The following command displays the status of the local server:

dns> show dns server state

To Display Clearinghouse Status

Use the show dns server clearinghouse command and specify the state attribute to
check the current status of a clearinghouse.

To use the show dns server clearinghouse command, you must have the NET$EXAMINE
rights identifier.

Example

The following command displays the status of the clearinghouse running on the local server:

dns> show dns server clearinghouse state

6.2. Monitoring Counters
Every clerk, server, and clearinghouse maintains a set of counters to keep track of the read, write, and
other operations that it has performed (or that were performed on it) since it was last enabled. You can
monitor these counters to determine the type and volume of the DECdns traffic being generated on your
network. Clerk, server, and clearinghouse counters are fully described in Chapter 11.

Some clerk, server, and clearinghouse counters are incremented by DECdns events. See Appendix D for
more information on these events.

To Display Clerk Counters

Use the show dns clerk command with the all counters attribute specifier to display the
current counter values of a clerk.

To use the show dns clerk command, you must have the NET$EXAMINE rights identifier.

Example

The following command displays the current values of all counters associated with the clerk running on
remote node .umbriel.

dns> show node .umbriel dns clerk all counters

58

Chapter 6. Managing Clerks, Servers, and Clearinghouses

To Display Server Counters

Use the show dns server command with the all counters attribute specifier to display the
current counter values of a server.

To use the show dns server command, you must have the NET$EXAMINE rights identifier.

Example

The following command displays the current values of all counters associated with the local server:

dns> show dns server all counters

To Display Clearinghouse Counters

Use the show dns server clearinghouse command with the all counters attribute
specifier to display the current counter values of a clearinghouse.

To use the show dns server clearinghouse command, you must have the NET$EXAMINE
rights identifier.

Example

The following command displays the current value of all counters associated with the clearinghouse
.paris1_ch running on node .vega.

dns> show node .vega dns server clearinghouse .paris1_ch all -
_> counters

6.3. Monitoring Clerk Communication with
Specific Clearinghouses
Every clerk maintains a separate set of remote clearinghouse counters to keep track of read, write, and
other operations that it directs to each of the clearinghouses with which it communicates. These records
collectively represent the dns clerk remote clearinghouse entity for a particular clerk.

Note

The term remote in dns clerk remote clearinghouse applies to all clearinghouses. From
a clerk's perspective, all clearinghouses are remote, including any clearinghouse that resides on its own
system. See Chapter 4 for information on the dns clerk remote clearinghouse entity.

You can monitor a clerk's remote clearinghouse counters to look at the distribution of the clerk's
transactions to each of the clearinghouses that it uses and to find out where a clerk's requests are most
often directed.

To Monitor a Clerk's Communication with Specific Clearinghouses

Use the show dns clerk remote clearinghouse command with the all counters
attribute specifier to display the current counter values for any or all of the clearinghouses with which a
clerk has communicated.

To use the show dns clerk remote clearinghouse command, you must have the NET
$EXAMINE rights identifier.

59

Chapter 6. Managing Clerks, Servers, and Clearinghouses

Examples

The following command displays the dns clerk remote clearinghouse counters maintained
by the local clerk for the .ny1_ch clearinghouse:

dns> show dns clerk remote clearinghouse .ny1_ch all counters

The following command displays the dns clerk remote clearinghouse counter values for
all the clearinghouses used by the local clerk:

dns> show dns clerk remote clearinghouse * all counters

6.4. Monitoring the Contents of a
Clearinghouse
You can display the names and replica types of all the directories stored in a clearinghouse. This
information can help you perform the following tasks:

• Monitor the number of replicas in a directory's replica set.

• Modify the replica set of any directory stored in the clearinghouse.

• Gather the name and replica-type information that you need to create a duplicate clearinghouse on
another server.

To Monitor the Contents of a Clearinghouse

Use the show clearinghouse command and specify the DNS$CHDirectories attribute to
display the creation timestamps (CTSs) and names of all the directories stored in a clearinghouse.

To use the show clearinghouse command, you must have read permission to the clearinghouse.

Examples

The following command displays the value of the DNS$CHDirectories attribute for the local
clearinghouse .Paris1_CH:

dns> show clearinghouse .paris1_ch dns$chdirectories

6.5. Modifying a Clerk's Timeout Interval
The value assigned to a clerk's clerk timeout attribute specifies how long the clerk waits for
a response to a request. After a clerk issues a request, it waits for the specified length of time and, if
no response is received from DECdns within that time period, returns a timeout error message to the
requesting application.

A clerk's clerk timeout attribute is set to a value of 150 seconds when the clerk is created. If you
experience a large number of timeout errors on a clerk, you should either increase the clerk's timeout
interval or replicate the information the clerk most often requests in a clearinghouse that is located closer
on the network to the clerk system.

For example, a clerk that frequently initiates skulks of a directory whose replicas are spread over
extreme distances throughout the network may often time out before receiving a response from the
clearinghouses in which these remote replicas are stored. To make it possible for the clerk's skulks of this
directory to succeed, you should increase the clerk's clerk timeout attribute value to a duration

60

Chapter 6. Managing Clerks, Servers, and Clearinghouses

long enough to ensure that the clerk will not time out before receiving a response from the remote
locations.

To Modify a Clerk's Clerk Timeout Attribute

Use the set dns clerk command to specify a new value for the clerk timeout attribute. If
you do not specify a value in the command, the attribute is set to its default value of 150 seconds.

To use the set dns clerk command, you must have the NET$MANAGE rights identifier.

Example

The following command sets the clerk timeout attribute to a value of 180 seconds for the local
clerk:

dns> set dns clerk clerk timeout 180

6.6. Modifying a Clerk To Use the Cluster
Alias on Server Requests
DECdns clerk requests from nodes in an OpenVMS Cluster can send the cluster alias address as the
source address. The default behavior is to send the individual node address.

To use this functionality, edit the SYS$MANAGER:DNS$CLERK_CLUSTER.NCL file and set
outgoing alias = true.

To affect the running system, use the following NCL command on all nodes in your cluster:

NCL>set session control application dnsclerk outgoing alias = true

Note

Implementing this functionality might require nontrivial changes to the current access control in your
namespace because you are changing the source address of the DECdns clerk requests.

6.7. Deleting and Restarting Clerks and
Servers
You may want to delete the clerk or server running on a particular system when the active clerk or server
processes need to be stopped, such as to perform diagnostic or troubleshooting work on the system.

When you delete a clerk, only the active clerk processes are deleted. Deleting a clerk does not remove
the clerk software from the system or delete the clerk's cache. If you delete the clerk from a system that
also functions as a DECdns server, that server and the clearinghouse it serves become unavailable.

When you delete a server, only the active server processes are deleted. Deleting a server does not remove
the server software or the server's clearinghouse database from the system. Furthermore, deleting a
server from a system does not affect the system's ability to function as a DECdns clerk.

Note

Each system on which DECdns runs uses Network Control Language (NCL) startup and shutdown
scripts that you can edit and run as part of the DECnet startup or shutdown procedure. These scripts are

61

Chapter 6. Managing Clerks, Servers, and Clearinghouses

the recommended method of deleting and restarting clerks and servers. For more information, see the
VSI DECnet-Plus for OpenVMS Network Management Guide.

If you intend to delete only the server, leaving the clerk running, use the procedure described in
Section 6.7.2.

6.7.1. Deleting a Clerk
To delete a clerk, use the instructions provided in the subsections that follow.

Before You Delete a Clerk

Before you can delete a clerk, you first must disable it (turn it off) by entering the disable dns
clerk command.

To use the disable dns clerk command, you must have the NET$MANAGE rights identifier.

On systems running a DECdns server, be sure you disable the server before disabling the clerk. If you
do not disable the server and clerk in the right sequence, the server will not operate properly when you
restart it. When you disable the clerk, it writes the contents of its cache to disk. Unless you explicitly
delete the cached information, or change its file location, the information remains available and is
automatically read back into the clerk's cache when the clerk processes are next started up.

Example

The following command disables the local clerk:

dns> disable dns clerk

To Delete a Clerk

Use the delete dns clerk command to delete the clerk.

To use this command, you must have the NET$MANAGE rights identifier.

Examples

The following commands are required in the sequence shown to delete a clerk running on a local node
that is also running DECdns server software:

dns> disable dns server
dns> disable dns clerk
dns> delete dns clerk

The following commands disable and delete the clerk running on node .miranda, which is a clerk-
only system.

dns> disable node .miranda dns clerk
dns> delete node .miranda dns clerk

To Delete a Clerk Cache

To write the DECdns clerk in-memory cache to disk, you must stop DECnet. Simply deleting the
DECdns clerk software does not remove the in-memory copy of the cache. After stopping DECnet, you
can then delete the cache files, rename them, or change their file location. Then, reboot the system.

62

Chapter 6. Managing Clerks, Servers, and Clearinghouses

The cache files (DNS$CACHE.*) are in SYS$SYSROOT:[SYSEXE].

Example

The following commands shut down the DECnet software, delete the two clerk cache files, and restart
DECnet:

$ @sys$manager:net$shutdown
$ delete sys$sysroot:[sysexe]dns$cache.0000011411;1
$ delete sys$sysroot:[sysexe]dns$cache.version;11413
! Reboot the system!!!!

6.7.2. Deleting a Server
Before You Delete a Server

Before you can delete a server, you first must disable it (turn it off) by entering the disable dns
server command.

To use the disable dns server command, you must have the NET$MANAGE rights identifier.

Note

When you issue the disable dns server command, DECdns writes to disk a new clearinghouse
checkpoint file that contains all the updates received since the last time the checkpoint file was written to
disk. This can take up to 30 minutes to complete, depending on disk speed, memory, and the size of the
checkpoint file. By waiting for this write operation to complete, you decrease the time required for the
next server startup.

Example

The following command disables the server on node .vega.

dns> disable node .vega dns server

To Delete a Server

Use the delete dns server command to delete the server from the system that you specify.

To use the delete dns server command, you must have the NET$MANAGE rights identifier.

Example

The following command deletes the server from node .vega.

dns> delete node .vega dns server

Deleting Server Files Left Behind

When you delete a server, files used by the server are left behind. These files contain pointers to the
existing namespace, for example. If you want to reconfigure a deleted server to have a new namespace,
you must delete files that the deleted server had been using. Otherwise, the new server will attempt to use
files that point to the old server's default namespace. To delete these files and prepare for reconfiguring a
new server, take the following steps:

1. Stop and delete the DECdns server (see previous subheadings).

63

Chapter 6. Managing Clerks, Servers, and Clearinghouses

2. Delete the clearinghouse files and other files that point to the default namespace.

3. Stop the DECdns clerk and delete the DECdns clerk cache file and any other clerk-related files that
might have pointers to the default namespace (see Section 6.7.1).

4. Create a new NET$DNS_CLERK_STARTUP.NCL file without any Known Namespace
parameter.

5. Reboot the system. This is necessary because although the DECdns clerk is stopped, its cache
remains mapped in memory. The reboot clears this cache.

6. To create the new namespace for the reconfigured server, take the following steps:

a. Use the SYS$MANAGER:NET$CONFIGURE.COM procedure and, if DECnet-Plus has already
been configured on the new server system, select option 2 ("Change Naming Information"). If
DECnet-Plus has not been configured, do the full configuration rather than option 2.

b. The configuration procedure asks if you want to disable the DECdns server by renaming
the DECdns server startup procedure NET$DNS_SERVER_STARTUP.COM to NET
$DNS_SERVER_STARTUP.COM-DISABLED. Answer Yes.

c. The configuration procedure asks for a list of directory services to use on the system. You must
specify LOCAL only (Local namespace) this time—do not specify any other name services.

d. When prompted for the system's node name, specify a Local namespace name.

e. After the configuration procedure completes, rerun the configuration procedure and select option
2.

f. This time, when you are prompted for the name services to use, you must specify DECdns
as the first name service. VSI recommends listing DECdns only for now. Then, once the new
namespace is created successfully for the server, you can rerun the configuration procedure to
add other name services.

g. When the procedure asks for a node full name, you must enter a full name that includes the new
namespace name (not one that already exists in the network). The NET$CONFIGURE program
must determine and report that it did not find the specified namespace being served on the LAN
(or else you would create an Ambiguous Nickname problem on the DECdns clerks on your
LAN). The configuration procedure provides a list of currently available namespaces from which
to choose. You must reject this list by selecting option 0.

h. The procedure then asks if you wish to create a new namespace. Answer yes to this question
to proceed with creating a new DECdns Version 2 namespace. See Section 10.6 for more
information on how to create a new namespace.

Appendix G includes two sample command files that perform the steps outlined above.

6.7.3. Restarting a Deleted Clerk
To restart a clerk, enter the following command from the system prompt:

$ @sys$startup:dns$clerk_startup

To restart a server, enter the following command from the system prompt:

$ @sys$startup:dns$server_startup

64

Chapter 6. Managing Clerks, Servers, and Clearinghouses

Note that you must have the NET$MANAGE rights identifier to run these commands and that the
commands must be entered on the system where the clerk or server resides.

Depending on the disk speed, memory, and the size and state of the clearinghouse database (in
particular, the checkpoint file), the enable dns server command, which is called in the SYS
$STARTUP:DNS$SERVER_STARTUP command procedure, can take several minutes. If the server
did not complete the checkpoint operation the last time it was shut down (for example, the system
crashed during the shutdown process), server startup can take up to 30 minutes.

6.8. Controlling the LAN Devices Used By
DECdns
The static device tables formerly used to determine the devices used by DECdns have been removed.
Now, DECdns uses the $DEVSCAN and $GETDVI system services to build a list of devices that have
the following characteristics:

• a device class of DC$SCOM (synchronous communication device)

• a device characteristic of DEV$V_NET

• a device status of UCB$V_ONLINE and UCB$V_TEMPLATE

• a device name in the form _ddcn:

You can use the logical name DNS$ETHERNET_DEVICE to provide a list of devices that DECdns
should NOT use. All devices must be in the form _ddcn:, where dd is the OpenVMS physical device
name, c is the controller letter, and n is the port number. The string is limited to 255 characters and can
contain spaces and other text which is ignored by DNS. For example, the following two commands tell
DECdns not to use the _EIA0: and _FWA0: devices.

$ DEFINE/SYSTEM DNS$ETHERNET_DEVICE "Don’t use _EIA0: and _FWA0: "
$ DEFINE/SYSTEM DNS$ETHERNET_DEVICE "_EIA0:_FWA0:"

Note

Unterminated network adapters can cause the dynamic device recognition process to hang. Either
terminate all network adapters or include any unterminated devices in the DNS$ETHERNET_DEVICE
logical definition.

6.9. Preserving a Clearinghouse Across a
Server System Upgrade
If you plan to upgrade the operating system software on a DECdns server system, and you want to
preserve the clearinghouse (or clearinghouses) resident on the system, follow this procedure:

1. Before you perform a server system upgrade, invoke the DECdns Control Program and enter the
following command to disable the server:

dns> disable dns server

2. Exit the DECdns Control Program and return to the system prompt. Then, back up the following
DECdns files:

65

Chapter 6. Managing Clerks, Servers, and Clearinghouses

• SYS$SYSDEVICE:[DNS$SERVER]clearinghouse-
name.CHECKPOINTnnnnnnnnnn

• SYS$SYSDEVICE:[DNS$SERVER]clearinghouse- name.TLOGnnnnnnnnnn

• SYS$SYSDEVICE:[DNS$SERVER]clearinghouse-name.version

• SYS$MANAGER:DNS_FILES.TXT

• SYS$MANAGER:NET$DNS_SERVER_STARTUP.NCL

3. Perform the system upgrade.

4. Restore all DECdns files you backed up in step 2.

5. Run the SYS$MANAGER:NET$STARTUP procedure. It starts the clerk and then automatically
discovers the restored files and starts the server which, in turn, enables the clearinghouse. See the
VSI DECnet-Plus for OpenVMS Network Management Guide for complete information on how to run
@SYS$MANAGER:NET$STARTUP.

6.10. Backing Up Namespace Information
Because updates and skulks of directories can occur asynchronously, and because of the distributed
nature of a namespace itself, you cannot always depend on traditional backup methods to preserve
DECdns data. The following sections describe the proper use of the following three backup mechanisms:

• Directory replication — For most namespaces, replication is the only completely reliable method of
protecting namespace data. By maintaining multiple replicas of each directory, you can easily restore
lost or damaged clearinghouse database files. (See Section 6.10.1.)

• DECdns dump/merge facilities — You can merge recently dumped directory information back into
your namespace hierarchy to restore deleted directories and their contents. (See Section 6.10.2.)

• Operating system backups — VSI does not recommend that you use traditional operating system
backups unless your entire namespace resides on a single clearinghouse. (See Section 6.10.3.)

6.10.1. Using Replication to Back Up Namespace
Information
Directory replication is always the most reliable way to back up the information in your namespace.
When you create a new replica of a directory at a clearinghouse, you are not only distributing the
information but also creating an up-to-date, real-time backup of the information. If a replica in one
clearinghouse becomes unavailable, users can look up the information they need in another replica of the
directory in some other clearinghouse. The more replicas of a directory you create, the more likely users
will always be able to find the information contained in the directory somewhere in the namespace.

If an entire clearinghouse is corrupted, you can restore it by creating a new clearinghouse and then
creating new replicas of the directories that were stored there. See Chapter 12 for complete information
on how to restore a lost clearinghouse.

6.10.2. Using the Dump/Merge Facilities to Back Up
Directories and Their Contents

66

Chapter 6. Managing Clerks, Servers, and Clearinghouses

You can use the dump subtree command to produce an interim file that contains a copy of the
structure and contents of any portion of your directory hierarchy. You can then use this file as a backup
to restore deleted directories and their contents by loading the file back into your namespace with the
merge file command.

If you have an interim file available that contains a recent copy of a deleted directory, you can use the
merge file command to append that copy of the directory back under its former parent directory.
Then, using the create replica command, you can create a new replica of the directory in each
of the clearinghouses from which the directory was deleted. Although the information in an interim
file may be slightly out of date, using an interim file to restore the directory and its contents is usually
more efficient than creating a new directory and repopulating it one name at a time. See Section 9.4 for
information on how to create an interim file.

Note

If you try to restore only a subset of your directory hierarchy by using an interim file that contains
the entire namespace, be aware that, although the operation will restore the lost information, many
conflicting names will be displayed on your screen and sent to the failures file (if you specify a file). You
can ignore these conflict reports on the screen. If you specified a failures file, you can delete it after the
restoration.

Remember that the dump subtree command deals exclusively with directories and their contents.
It does not copy clearinghouses or their associated clearinghouse object entries to the interim file and
therefore cannot be used to restore clearinghouses or to account for discrepancies in information among
individual replicas resident on different clearinghouses. Furthermore, as with traditional operating system
backups, the directory information in an interim file only reflects what the directory (or directory
subtree) contained at the time you created the file.

See Chapter 9 for information on using the dump subtree and merge file commands.

6.10.3. Using Operating System Backups
Because a namespace is a distributed database to which modifications are synchronized at variable
intervals, any traditional backup of a particular server system will always contain old and incomplete
information. If you frequently create, modify, or delete names, restoring an out-of-date backup may
cause recently created names to disappear, recent modifications to be reversed, or recently deleted names
to reappear in the namespace. The degree to which a traditional backup reflects the current condition of
a clearinghouse depends entirely on how recently the backup was created and what modifications were
made since that time.

If you decide to use operating system backups, you should only back up the server systems whose
clearinghouses store master replicas of directories. Make sure you disable the clearinghouses on these
systems before you perform the backups.

If your namespace is small enough to be maintained on one clearinghouse, you can reliably use
traditional operating system backups to save and restore the clearinghouse data. If only one clearinghouse
exists, only one replica (the master replica) of each directory exists. This eliminates the need to account
for the discrepancies that may exist among multiple directory replicas. Remember that the more
frequently you back up clearinghouse data, the more up to date that information will be if you need to
restore it.

67

Chapter 6. Managing Clerks, Servers, and Clearinghouses

68

Chapter 7. Managing Directories
If you manage a namespace with 50 or fewer DECdns servers, you can name all your clearinghouses
and create all your object entries in the root directory and may not need to create additional directories.
However, if you manage a namespace with more than 50 DECdns servers, you should consider creating
at least one additional level of directories under the root.

This chapter contains management information on the following directory topics:

• Creating a directory (Section 7.1)

• Creating a replica (Section 7.2)

• Deleting a replica (Section 7.3)

• Skulking a directory (Section 7.4)

• Adjusting a directory's convergence (Section 7.5)

For information on how to delete a directory, see Section 9.3.

7.1. Creating a Directory
By creating directories, you make it possible to replicate and manage groups of object entries according
to where, how often, or by whom they are used. Grouping application-defined object entries into
separate directories also makes it possible to collectively control access to the entries and allows you to
take advantage of automatic rights propagation. See Chapter 5 for complete information on how to grant
access to directories and their contents.

You create directories for the following purposes:

• To establish an initial directory hierarchy for your namespace.

• To add directories to the upper levels of the hierarchy.

• To create additional lower-level directories to store object entries that are created locally and used by
namespace user groups and applications. Below a certain level in your hierarchy, you may prefer to
allow users to create and manage their own directories.

Creating a directory hierarchy requires planning. Make sure you read the naming and hierarchy design
information in the VSI DECnet-Plus Planning Guide before you create directories.

To Create a Directory

To create a directory, you need the following access rights:

• Write access to the parent of the new directory

• Write access to the clearinghouse in which you are naming the new directory

Use the create directory command to create a new directory (master replica) with the name
that you specify. When you use this command, DECdns, by default, stores the master replica of the new
directory in the same clearinghouse that stores the master replica of the new directory's parent directory.

69

Chapter 7. Managing Directories

Note

For the create directory command to execute successfully, the clearinghouse that stores the
master replica of the new directory's parent directory must be available when you enter the command.

Creating a Directory in a Nondefault Clearinghouse

Sometimes DECdns may not be able to create the new directory in the default clearinghouse. If this
happens, or if you want to create the directory in a clearinghouse other than the default clearinghouse,
use the create directory command's optional clearinghouse argument to specify another
clearinghouse. The clearinghouse you choose must be named in either the root directory or in a directory
that is closer to the root than the directory you are creating. (The DECdns software enforces this
requirement to guarantee compliance with clearinghouse rule 2. See Appendix B for more information
on the clearinghouse rules.)

Examples

The following command creates a directory named .sales. DECdns, by default, stores the master
replica of this new directory in the clearinghouse containing the master replica of the root directory.

dns> create directory .sales

The following command creates a new directory named .region1 under its parent directory
.sales. The clearinghouse argument directs DECdns to store the master replica of the new
directory in a clearinghouse named .eng.London1_CH rather than in the clearinghouse that stores
the master replica of the .sales directory.

dns> create directory .sales.region1 clearinghouse .eng.london1_ch

After You Create a Directory

After you create a directory, enter the show directory access command to display the DNS
$ACS attribute of the new directory. Make sure that the users and applications for whom the directory
was created have the proper access. If the required access was not inherited from the access control set
(ACS) of the new directory's parent directory, use the add directory access command to create
the necessary access control entries (ACEs). See Chapter 5 for complete information on how to add
access to a directory.

7.2. Creating a Replica
When you create a directory, it becomes the master replica. You can create read-only replicas of a
directory for the following purposes:

• To distribute the information contained in the directory throughout your network, and to make it
more accessible to users and applications at other locations.

• To improve response time, especially in a namespace dispersed over a large geographic area. You
should create replicas in clearinghouses that are located near the user groups and applications that
most frequently use the information contained in the directory.

• To preserve a backup of the information contained in the master replica of the directory. Maintaining
multiple replicas ensures that the temporary loss of an individual replica will not cause an
interruption in service and that permanent loss of a replica can be easily recovered. Even directories

70

Chapter 7. Managing Directories

that store information used at only one particular site should be replicated in at least one other
clearinghouse (preferably on a server at another location) so a local failure at one site will not cause
both replicas to be unreachable at the same time.

All replicas that you create with the create replica command are read-only replicas. In a read-
only replica, users and client applications can look up information, but are not permitted to create
new information or modify existing information. You should create replicas in clearinghouses whose
users need to access the directory but do not need (or are not permitted) to update its contents. You
can modify a directory's replica set to redesignate the master replica or to exclude certain replicas, as
explained in Section 9.2.

You can display the replica set for a directory by using the DECdns Control Program command show
directory directory-name dns$replicas (see Chapter 11).

Before You Create a Replica

Before you create a replica, perform the following steps:

1. Use the add directory access command to grant read, write, delete, and control access to
the directory for the DNS$Server principal on the server node (clearinghouse) where you intend
to create the replica. The DNS$Server principal requires this access to successfully carry out
updates and skulks of the directory. Specify this principal as nodename.dns$server in the
principal argument of the command.

For example, before creating a replica of the .eng directory in the .NY1_CH clearinghouse
(running on remote server .taurus), you would enter the following command:

dns> add directory .eng access .taurus.dns$server for r,w,d,c

Note

If a replica of the directory is stored on a VAX Distributed Name Service (DNS) Version 1 server
(on a DECnet Phase IV node), make sure that both Version 1 and Version 2 (DECnet Phase V)
style ACEs exist on the directory and all of the directory's contents before you try to create the
replica. Otherwise, the replication fails. See Section 5.1.1 and Section 5.1.2 for information on how
to specify Version 2 and Version 1 principals in ACEs.

2. Initiate a skulk of the directory to make sure the new access you added in step 1 is applied to all
existing replicas in the directory's replica set. (See Section 7.4 for information on how to skulk a
directory.)

3. Make sure all clearinghouses that already store a replica of the directory you intend to replicate are
running and available. If any replica in the directory's existing replica set cannot be reached, the
replication fails.

For example, if you intend to create a replica of the root directory, then all clearinghouses that
currently store a replica of the root directory must be running (in the on state) and available when
you try to create the new replica.

To verify that these conditions are satisfied, take the following steps:

a. For the directory you intend to replicate, use the show directory command and specify the
DNS$Replicas attribute to display the name of every clearinghouse that currently stores a
replica of the directory.

71

Chapter 7. Managing Directories

b. With this information, use the show dns server clearinghouse command and
specify the state attribute to make sure each of the clearinghouses is running and available.

4. If a directory contains node object entries, locate at least one replica (preferably the master) on the
same LAN as the nodes described by the node object entries. Locate the master replica of each
.DNA_BackTranslation area directory in the area it is named after, if that area contains
DECnet Phase V nodes. In addition, replicate an area directory in other areas most likely to
communicate frequently with the nodes whose addresses are contained by the directory.

5. In a solely WAN environment, try to replicate every directory so each can be reached reliably by any
DECnet system that needs it.

To Create a Replica

To create a replica, you need the following access rights:

• Control access to the directory you want to replicate

• Write access to that directory's parent directory

• Write access to the clearinghouse where you want to store the replica

Use the create replica command to create a read-only replica of a directory and store it in the
clearinghouse that you specify.

Example

The following command creates a replica of the .mfg directory and stores the replica in a root-level
clearinghouse named .paris1_ch.

dns> create replica .mfg at clearinghouse .paris1_ch

7.3. Deleting a Replica
Sometimes, you may need to delete a replica when the information it contains is no longer needed by the
local users of the clearinghouse in which the replica is stored. You may also need to delete a replica to
prepare for deleting the directory of which the replica is a member or before deleting the clearinghouse
in which the replica is stored.

To Delete a Replica

To delete a replica, you must have the following access rights:

• Control access to the directory whose replica you want to delete

• Write access to the clearinghouse from which you are deleting the replica

• Write and delete access to the directory's parent directory

Use the delete replica command to delete a replica from the clearinghouse that you specify.

Example

The following command deletes a replica of the .eng directory from the .chicago2_ch
clearinghouse:

72

Chapter 7. Managing Directories

dns> delete replica .eng at clearinghouse .chicago2_ch

Note

You can only delete a directory's master replica by using the delete directory or delete
subtree commands. See Chapter 9 for complete information on how to use these commands to delete
a master replica.

7.4. Skulking a Directory
DECdns skulks every directory at regular intervals according to the value assigned to the directory's DNS
$Convergence attribute. To ensure that updates are distributed to all replicas as soon as possible,
you can initiate a skulk of a directory yourself by using the set directory to skulk command,
rather than waiting for the next scheduled skulk to distribute the new information. You should use this
command for the following tasks:

• Distribute crucial updates made to a directory's contents (such as modifications to a name's ACS or a
directory's replica set, or the removal or addition of a member in a DECdns group) when you do not
want to wait for the next skulk.

• Skulk directories that store replicas on servers that were disabled for an extended period and were
just brought back on line.

To Skulk a Directory

To skulk a directory, you must have write access to the directory.

Use the set directory to skulk command to initiate an immediate skulk on the directory
that you specify. After you enter the command, the DECdns Control Program temporarily suspends the
dns> prompt while the skulk is in progress. (It may take some time for DECdns to complete skulks
of directories with large replica sets.) If the prompt returns with no error messages, the skulk was
successful (see Note). If errors are returned before the prompt reappears, the skulk failed. Skulk failure
also generates the DECdns Skulk Failed event at the server that stores the master replica of the directory
being skulked. See Appendix D for more information on this event.

Note

Under certain circumstances, it is possible to receive the dns> prompt before a skulk completes. To
be absolutely positive that a skulk operation succeeded, you should check the DNS$SkulkStatus
attribute at the master replica for the directory (using the show replica command).

For a skulk to succeed, every replica in the directory's replica set must be reachable. Skulks may
sometimes fail, especially on directories with large replica sets, or when the servers that store replicas of
the directory are located over great distances where network connectivity is not always reliable. Skulk
failure does not make DECdns unusable. Although the skulking process is unable to update information
in a replica that it cannot contact, it always updates information in the replicas it can reach. Temporarily,
some replicas contain the latest information and some do not. When a skulk fails, DECdns automatically
repeats the skulking process (at an interval based on the directory's convergence value) until all replicas
in the set are updated with the latest changes. When all replicas contain identical information, DECdns
considers the skulk to have succeeded, and updates the DNS$AllUpTo attribute of the directory.

If skulks of a particular directory continue to fail, you can determine the cause by reviewing the DECnet
event log of the server that stores the master replica of the directory.

73

Chapter 7. Managing Directories

Example

The following command initiates a skulk on the .admin directory:

dns> set directory .admin to skulk

7.5. Adjusting a Directory's Convergence
The value assigned to a directory's DNS$Convergence attribute determines how frequently the
server that stores the master replica of the directory initiates a skulk of the directory's replica set. A
directory's convergence can be set to a value of low, medium, or high.

A directory set to low convergence is skulked at least once every 24 hours. The server on which a low
convergence directory resides makes no attempt to propagate updates and waits for the next skulk to
synchronize the replica set.

A directory set to medium convergence is skulked at least once every 12 hours. If an update is made to
the directory, the server that stores the master replica attempts to propagate the new information to the
entire replica set. If the propagation fails, the server waits for the next skulk to synchronize the replica
set.

A directory set to high convergence is skulked at least once every 12 hours. If an update is made to
the directory, the server that stores the master replica attempts to propagate the new information to the
entire replica set. If this update propagation fails, the server schedules a skulk of the directory to begin
within the hour. If this initial skulk fails, additional skulks are initiated at 1-hour intervals until the skulk
succeeds.

Note

The high-convergence setting is intended only for temporary use such as for troubleshooting. Directories
that are permanently set to high convergence can, in certain cases, cause extensive network and memory
usage.

Every newly created directory inherits the convergence value of its parent directory. The root directory
of a namespace defaults to a convergence value of medium at its creation. Unless you change this value
(or the convergence value of any lower-level directories after you create them), all directories that you
create under the root will also default to medium. For most directories, you should never need to modify
this value. However, you may occasionally find it useful to set a directory's convergence to high or low.

Before You Modify a Directory's Convergence

Use the show directory command and specify the DNS$Convergence attribute to verify the
current value of the directory's convergence.

To Modify a Directory's Convergence

You must have write access to the directory whose convergence you intend to modify.

Use the set directory command to assign a value of high, medium, or low to a directory's DNS
$Convergence attribute.

Examples

The following command sets the convergence value of the .sales directory to high.

74

Chapter 7. Managing Directories

dns> set directory .sales dns$convergence = high

The following command sets the convergence value of the .mfg directory to low.

dns> set directory .mfg dns$convergence = low

75

Chapter 7. Managing Directories

76

Chapter 8. Viewing the Structure and
Contents of a Namespace
This chapter explains how to use the DECdns Control Program to display namespace information. (You
can also use the Browser utility to display namespace information, as explained in Appendix H; however,
the Browser utility is not supported by VSI.)

The DECdns Control Program provides two basic display commands, show and directory, you can
use to view namespace structure and contents.

With the show command, you can display:

• Current status of a clerk, server, or clearinghouse

• Current values of any or all attributes associated with any directory, object, link, group, or child
pointer

With the directory command, you can display a list of names that match the name you specify in the
command.

To use the show and directory commands, you must have read access to the name you want to
display.

Note

You also need the NET$EXAMINE rights identifier to use show commands you direct to clerks and
servers and their subentities. See Chapter 11 for complete information.

This chapter covers the following topics:

• Using prepositional phrases in show and directory commands (Section 8.1)

• Using the show command (Section 8.2)

• Using the directory command (Section 8.3)

8.1. Using Prepositional Phrases in show and
directory Commands
You can use prepositional phrases to redirect a command's output and to qualify commands that contain
wildcard characters. For example, with the to file [=] filename phrase, you can redirect the
output of a command to a file on disk. You can use the with attribute phrase to limit the action
of a command to affect only those entities that have the attribute value you specify. See Chapter 11 for
descriptions of the prepositional phrases you can use with the show and directory commands.

8.2. Using the show Command
With the show command, you can display the directories stored in a clearinghouse and the current
values of any or all of the attributes associated with a directory, group, link, object, or child pointer.

77

Chapter 8. Viewing the Structure and Contents of a Namespace

The basic syntax of all show commands is as follows:

show entity entity-name

where entity is the type of DECdns entity about which you want to display information and entity-name
is a complete directory specification terminating with a simple name (the full DECdns name of the
entity). You can use this command with any of the following entities:

• Child

• Clearinghouse

• Directory

• Group

• Link

• Object

You cannot use wildcard characters within the directory specification, but you can use wildcard
characters in the terminating (rightmost) simple name.

Variations of the show command using attribute specifiers and attribute groups are described in the
following list:

• show entity entity-name

Displays the current values of all identifier attributes associated with the entity you specify. (If the
entity you specify does not maintain any identifier attributes, all attributes are displayed.)

• show entity entity-name all

Displays the current values of all the attributes (identifiers, characteristics, counters, and status)
associated with the entity you specify. Not all entities maintain attributes from all four categories. See
Chapter 11 for complete listings of the attributes associated with each DECdns entity.

• show entity entity-name all characteristics

Displays the current values of all characteristic attributes associated with the entity you specify.

• show entity entity-name all counters

Displays the current values of all counter attributes associated with the entity you specify.

• show entity entity-name all status

Displays the current values of all the status attributes associated with the entity you specify.

• show entity entity-name attribute-name

Displays the current value of a particular attribute associated with the entity you specify. To display
values of multiple attributes in one command, separate the attribute names with commas on the
command line.

You can combine multiple all, all characteristics, all counters, all status, and
attribute qualifiers in a single command. Separate them with commas.

78

Chapter 8. Viewing the Structure and Contents of a Namespace

Examples

The following command displays the current values of all attributes associated with the clerk on the local
node:

dns> show dns clerk all

Node 0 DNS Clerk
AT 2019-04-29-10:38:48.306-04:00I0.102

Status

 State = On

Characteristics

 Version = V2.0.0
 Clerk Timeout = 0-00:01:00.000I0.000 Seconds
 Solicit Holddown = 0-00:00:15.000I0.000 Seconds
 UID = 32A56750-059F-11CA-B98E-08002B0DC09D
 Default Namespace = IAF

Counters

 Creation Time = 2019-04-28-22:54:24.163+00:00I0.000
 Incompatible Protocol Errors = 0
 Authentication Failures = 0
 Read Operations = 1194
 Cache Hits = 364
 Cache Bypasses = 830
 Write Operations = 293
 Miscellaneous Operations = 0

The following command displays the current values of all attributes associated with the server running on
the local node:

dns> show dns server all

Node 0 DNS Server
AT 2019-04-29-10:42:07.717-04:00I0.108

Status

 State = On

Characteristics

 UID = 3E6475F4-059F-11CA-B98E-08002B0DC09D
 Minimum Protocol Version = V1.0.0
 Maximum Protocol Version = V2.0.0
 Future Skew = 0-00:05:00.000I0.000 Seconds

79

Chapter 8. Viewing the Structure and Contents of a Namespace

Counters

 Creation Time = 2019-04-28-22:54:43.725+00:00I0.000
 Incompatible Protocol Errors = 0
 Authentication Failures = 0
 Read Accesses = 491
 Write Accesses = 211
 Skulks Initiated = 12
 Skulks Completed = 12
 Times Lookup Paths Broken = 0
 Possible Cycles = 0
 Crucial Replica Removals Backed Out = 0
 Child Pointer Update Failures = 0
 Security Failures = 0

8.3. Using the directory Command
You can use the directory command to display a list of names that match the name you specify in
the command or to display a list of the object entries, soft links, and child pointers in a directory.

The basic syntax of all directory commands is as follows:

directory entity entity-name

where entity is the type of entity for which you are searching and entity-name is a complete directory
specification terminating with a simple name. You can use this command with any of the following
entities:

• Child

• Clearinghouse

• Directory

• Group

• Link

• Object

You cannot use wildcard characters within the directory specification, but you can use wildcard
characters in the terminating (rightmost) simple name.

Examples

The following command displays the names of all the objects stored in the .eng directory:

dns> directory object .eng.*

 DIRECTORY
 OBJECT IAF:.eng
 AT 13-JUL-2019:18:45:00

sales_group
test_group
triton
work_disk1

80

Chapter 8. Viewing the Structure and Contents of a Namespace

work_disk2

The following command displays the names of all the objects stored in the .eng directory whose names
begin with the letter t.

dns> directory object .eng.t*

 DIRECTORY
 OBJECT IAF:.eng
 AT 13-JUL-2019:18:46:00

test_group
triton

81

Chapter 8. Viewing the Structure and Contents of a Namespace

82

Chapter 9. Restructuring a
Namespace
Over time, you may need to restructure or create alternative names for certain elements of your
namespace. For example, you can create soft links to provide users with one or more alternative names
for an existing namespace entry. You can reconfigure a directory's replica set to modify the locations
and types of particular replicas, or exclude a replica from the set. Occasionally, you may want to delete
certain directories when the information they contain is no longer needed by users. You may want to
merge or append directories to reflect organizational changes. You may also need to relocate or delete a
clearinghouse from a server system to perform diagnostic or troubleshooting work on the system, or to
prepare for removing the system from your network.

This chapter explains how to perform the following namespace-restructuring tasks:

• Managing soft links (Section 9.1)

• Modifying a directory's replica set (Section 9.2)

• Deleting directories (Section 9.3)

• Merging directories (Section 9.4)

• Relocating a clearinghouse (Section 9.5)

• Deleting a clearinghouse (Section 9.6)

9.1. Managing Soft Links
A soft link is an alternative name, or synonym, with which you can refer to another existing name in a
namespace. Soft links allow users and client applications to refer to a particular directory, object entry, or
soft link by more than one name.

In general, you should create soft links only to assign alternative names to particular network resources,
or to make minor changes to the original names of directories in your namespace hierarchy. To avoid
confusion, follow these general guidelines when creating and managing soft links:

• Do not use soft links to completely redesign your directory hierarchy or to change the names of
multiple directories at different levels.

• Do not create soft links only to provide abbreviations for long names that are difficult to remember
or type. System environment variables and logical names are available for that purpose.

• Avoid creating long chains of soft links in which one soft link points to another soft link which, in
turn, points to another soft link, and so on.

9.1.1. Creating a Soft Link
To create a soft link, you must have write access to the directory in which you intend to create the soft
link.

Use the create link command to create a soft link with the link name you specify. Use the required
destination argument to specify the soft link's destination name (the existing name to which the

83

Chapter 9. Restructuring a Namespace

new soft link will point). You can specify any name in the namespace as the destination name, including
another soft link.

If you create a soft link that points to another soft link, be careful not to create a soft link loop where the
destination name you specify eventually points back to the new soft link's own link name.

Using Optional Arguments

[expiration]

All soft links you create are permanent and never expire unless you use the optional expiration
argument. You can use this argument to specify a future date and time when the name service will
examine the soft link to make sure that the destination name to which it points still exists. If the
destination name cannot be found (has already been deleted) when the expiration date is reached,
DECdns automatically deletes the soft link. Enter the expiration time value using the yyyy-mm-dd-
hh:mm:ss format. For example, expiration 2019-01-25-16:00:00 indicates that DECdns
will check to see if the target of the soft link still exists on January 25, 2019, at 4:00 p.m. If, at that time,
the destination name cannot be found, DECdns deletes the soft link.

[extension]

If you specify an expiration value, you can also use the optional extension argument to specify a
period of time to be added to the expiration date and time that you assigned. Enter the extension time
value using the ddd-hh:mm:ss format. For example, extension 030-00:00:00 indicates that, if
the destination name of the soft link still exists when the assigned expiration date and time are reached,
DECdns allows another 30 days to pass before it again checks for the existence of the destination name.
If, at that time, the destination name cannot be found, DECdns deletes the soft link.

Examples

The following command creates a permanent soft link named .sales.asia that points to a directory
named .sales.eur.

dns> create link .sales.asia destination .sales.eur

The following command creates a soft link named .mfg.robo1 that points to an object entry named
.mfg.robotics_controller03:

dns> create link .mfg.robo1 destination .mfg.robotics_controller03 -
_> expiration 2019-12-12-09:00:00

In the preceding command, the expiration value indicates that DECdns will check to make sure that the
destination name .mfg.robotics_controller03 still exists on December 12, 2019, at 9:00 a.m.
If the destination name cannot be found, DECdns deletes the soft link. If the destination name exists, but
no extension value has been assigned, DECdns deletes the soft link.

The following command creates a soft link named .admin.linka that points to an object entry
named .sales.discount_stats.

dns> create link .admin.linka destination .sales.discount_stats -
_> expiration 2019-01-11-12:00:00 extension 090-00:00:00

In the preceding command, the expiration value indicates that DECdns will check to make sure that
the destination name .sales.discount_stats still exists on January 11, 2019, at 12:00 p.m. If
the destination name does not exist, DECdns deletes the soft link. If the destination name still exists,
DECdns will check for the existence of the destination name after a period of 90 days, as specified in

84

Chapter 9. Restructuring a Namespace

the command's extension argument. If, at that time, the destination name cannot be found, DECdns
deletes the soft link.

9.1.2. Changing a Soft Link's Destination Name
To change a soft link's destination name, you must have write access to the soft link.

Use the set link command to specify a new value for a soft link's DNS$LinkTarget attribute
and redirect the soft link from its current destination name to some other name in the namespace.

Example

The following set link command redirects a soft link named .admin.work_disk from its
current destination name to a new destination name .admin.work_disk03.

dns> set link .admin.work_disk dns$linktarget .admin.work_disk03

9.1.3. Changing a Soft Link's Expiration or Extension
Time
To change a soft link's expiration or extension time, you must have write access to the soft link.

Use the set link command to specify a new value for either or both the expiration and extension
times currently stored in a soft link's DNS$LinkTimeout attribute. Even if you want to modify only
one of the values, you must specify values for both expiration and extension in your command. You
specify a new value in the same format used to establish the original value. Specify an expiration
value in the yyyy-mm-dd-hh:mm:ss format, and an extension value in the ddd-hh:mm:ss format.

Examples

The following set link command sets the expiration time of a soft link named .eng.link01
to December 31, 2019, at 12:00 p.m. In this example, zero extension value (no extension) is currently
assigned to the soft link.

dns> set link .eng.link01 dns$linktimeout -
_> (2019-12-31-12:00:00 000-00:00:00)

The following command sets the expiration time of a soft link named .eng.link01 to December 31,
2019, at 12:00 p.m. and sets the soft link's extension value to 90 days:

dns> set link .eng.link01 dns$linktimeout -
_> (2019-12-31-12:00:00 090-00:00:00)

9.2. Modifying a Directory's Replica Set
A directory's replica set always contains a master replica, and can also contain other read-only replicas.
The values stored in the DNS$Replicas attribute associated with a directory contain information that
describes the directory's replica set, including how many replicas exist, their replica types, and the name
of the clearinghouse where each of the replicas is stored. You can use the set directory to new
epoch command to overwrite the current values stored in the directory's DNS$Replicas attribute
and perform either or both of the following operations in a single command:

• Redesignate the master replica in a directory's replica set (Section 9.2.1).

• Exclude a replica from a directory's replica set (Section 9.2.2).

85

Chapter 9. Restructuring a Namespace

You do not need to modify a directory's replica set when you create or delete read-only replicas; the
normal skulking process for the directory will distribute these modifications to all members of the
replica set automatically.

Before You Modify a Directory's Replica Set

Before you can modify a directory's replica set, you need to know how many replicas exist, the replica
type of each replica, and the name of the clearinghouse where each of the replicas is stored. The
command you use to modify a directory's replica set prevents you from accidentally leaving a replica
out of the new set. You must explicitly list all existing replicas in the set. You can include or exclude any
replica from the new set, but you must account for all replicas. Only one of the replicas that you include
in the new set can be designated as the master replica.

Use the show directory command and specify the directory's DNS$Replicas attribute to
gather this information. See Chapter 8 for complete information on how to use the show directory
command.

To modify a directory's replica set, you must have the following access:

• Read and control access to the directory

• Write access to each clearinghouse that stores a replica of the directory

Note

If the directory is replicated in both Version 1 (DNS Version 1) and Version 2 (DECdns Version 2)
clearinghouses, make sure that both Version 1 and Version 2 ACEs exist on the directory and all of
the directory's contents before you try to set the new epoch. See Section 5.1.1 and Section 5.1.2 for
information on how to specify Version 2 and Version 1 principals in ACEs.

After You Modify a Directory's Replica Set

After you use the set directory to new epoch command, DECdns automatically initiates
a special skulk of the directory. This skulk may require more time to complete than other regularly
scheduled skulks and will require more network resources.

9.2.1. Changing the Replica Type of a Replica
For configuration management reasons, you may want to designate a different replica as a directory's
master replica when:

• A server system whose clearinghouse contains a master replica will be down for an extended period
of time or removed permanently from the network.

• A clearinghouse that stores a master replica is going to be deleted from the namespace.

• You want to locate the master replica closer to where the majority of updates to the directory
originate.

Use the set directory to new epoch command to designate a new master replica.

Example

In this example, the replica set of the .eng directory consists of three replicas: the master replica (stored
in clearinghouse .ny1_ch), a read-only replica (stored in clearinghouse .ny2_ch), and a read-only
replica (stored in clearinghouse .chicago1_ch), as shown in Figure 9.1.

86

Chapter 9. Restructuring a Namespace

Figure 9.1. Example Replica Set

The following command designates the read-only replica (stored in clearinghouse .chicago1_ch)
as the directory's new master replica, designates the former master replica (stored in clearinghouse
.ny1_ch) as a read-only replica, and leaves the read-only replica (stored in clearinghouse .ny2_ch)
as it is. Figure 9.2 shows the result of this command.

dns> set directory .eng to new epoch master .chicago1_ch, read-only -
_> .ny1_ch, read-only .ny2_ch

Figure 9.2. Example Replica Set After Master Redesignation

9.2.2. Excluding a Replica from a Replica Set
You can temporarily exclude a replica from its replica set when the clearinghouse in which the replica
is stored unexpectedly becomes unavailable. Excluding this replica enables DECdns to complete
skulks of the directory during the time the replica is unavailable. Base your decision when to exclude a
replica on how long the clearinghouse where the replica is stored will be unavailable. For example, if a
clearinghouse will be off line for only a few hours, or even for several days, you may not need to ensure
that DECdns is able to complete skulks of the directories stored there. However, if a clearinghouse will
be unavailable for several weeks or more, you may want to exclude the replicas stored there from their
respective replica sets to make sure that new information can be updated to the other replicas in the sets.

Note

When you know in advance that a replica will become permanently unavailable because its clearinghouse
is being removed from the network, you should delete the replica rather than temporarily exclude it
from the replica set. You must delete the replica before the clearinghouse becomes unavailable. See
Section 7.3 for complete information on using the delete replica at clearinghouse
command.

Excluding a replica does not delete the replica; it only prevents the replica from being updated by a
skulk. DECdns clerks and servers still use the excluded replica for lookups. You should reintroduce the

87

Chapter 9. Restructuring a Namespace

excluded replica to its replica set as soon as possible after the clearinghouse on which it resides becomes
available. Otherwise, lookup requests directed to the excluded replica may return outdated information.

Use the set directory to new epoch command with the optional exclude argument to
rebuild a directory's replica set, excluding the replica that you specify. Remember that you must account
for all existing replicas in the command.

Example

In this example, the replica set of the .eng directory consists of three replicas: the master replica (stored
in clearinghouse .chicago1_ch) and read-only replicas (stored in clearinghouses .ny1_ch and
.ny2_ch).

In this case, the .ny1_ch clearinghouse has been cut off from the network because of accidental
damage to the network transmission lines. Connectivity to the clearinghouse will not be restored for
several days. During this period, skulks of the .eng directory will fail unless you temporarily exclude
the read-only replica stored in clearinghouse .ny1_ch.

To make it possible for skulks of the .eng directory to succeed during the repair period, you can enter
the following set directory to new epoch command to overwrite the current values of the
.eng directory's DNS$Replicas attribute with new values that include only the replicas stored in the
.ny2_ch and .chicago1_ch clearinghouses:

dns> set directory .eng to new epoch master .chicago1_ch, read-only -
_> .ny2_ch, exclude .ny1_ch

Figure 9.3 shows the result of the preceding command.

Figure 9.3. Example Replica Set After Replica Exclusion

When connectivity with the .ny1_ch clearinghouse is reestablished, enter the following set
directory to new epoch command to reintroduce the read-only replica stored in clearinghouse
.ny1_ch to the replica set.

dns> set directory .eng to new epoch master .chicago1_ch, read-only -
_> .ny1_ch, read-only .ny2_ch

Note

You should always reintroduce excluded replicas to their replica sets as soon as possible after the
clearinghouse in which they reside again becomes available. Otherwise, lookup requests directed to the
excluded replicas in the clearinghouse may return outdated information.

9.3. Deleting Directories

88

Chapter 9. Restructuring a Namespace

You may sometimes want to delete directories from your namespace when the information they contain
is no longer needed by users. DECdns provides two commands you can use to delete directories:
delete directory and delete subtree. (A subtree can be a single directory and its contents,
or a directory and all its child directories and their contents.)

When deleting directories, remember that DECdns does not permit you to delete a directory that stores
clearinghouse object entries.

To delete a directory, you must have the following access:

• Read and delete access to the directory

• Write, delete, or control access to the directory's parent directory

• Write access to the clearinghouse that stores the master replica of the directory (or directories) you
intend to delete

9.3.1. Deleting a Bottom-Level Directory
To delete a bottom-level directory (a directory that has no child directories), follow these steps:

1. Identify the clearinghouse locations of all replicas in the replica set of the directory you intend
to delete. Use the show directory command and specify the DNS$Replicas attribute to
display this information.

2. Use the delete replica at clearinghouse command to delete all the read-only replicas
you found in step 1.

3. Use the delete object and delete link commands to delete the directory's contents.

4. Use the delete directory or the delete subtree command (nonrecursive mode) to
delete the master replica of the directory from the namespace.

Example

The following sequence of commands deletes a directory named .sales. In this example, the contents
of the .sales directory were already deleted, making step 3 of the above procedure unnecessary.

1. The following show directory command, specifying the DNS$Replicas attribute, displays
the replica type and clearinghouse location of all replicas in the replica set of the .sales directory:

dns> show directory .sales dns$replicas
 SHOW
 DIRECTORY IAF:.sales
 AT 09-APR-2019:16:08:25
 DNS$Replicas (set) = :
 Clearinghouse’s DNS$CTS = 2018-03-22-14:39:34.58/aa-00-04-00-
de-11
 Tower 1 CTS = 2018-04-09-20:08:25.835/08-00-2b-0d-
c0-9d
 Floor 1 = 01 2c (null)
 Floor 2 = 02 00 2c ncacn_dnet_nsp
 Floor 3 = 04 (null)
 Floor 4 = 06 49 00 37 aa 00 04 00 22 dc 20
 Replica type = master
 Clearinghouse’s Name = IAF:.NY1_CH
 DNS$Replicas (set) = :

89

Chapter 9. Restructuring a Namespace

 Clearinghouse’s DNS$CTS = 2018-07-30-20:32:42.82/aa-00-04-00-
de-11
 Tower 1 CTS = 2019-04-09-20:08:25.835/08-00-2b-0d-
c0-9d
 Floor 1 = 01 2c (null)
 Floor 2 = 02 00 2c ncacn_dnet_nsp
 Floor 3 = 04 (null)
 Floor 4 = 06 49 00 14 aa 00 04 00 7e 52 20
 Replica type = readonly
 Clearinghouse’s Name = IAF:.NY2_CH
 DNS$Replicas (set) = :
 Clearinghouse’s DNS$CTS = 2018-01-12-18:15:01.77/aa-00-04-00-
de-11
 Tower 1 CTS = 2019-04-09-20:08:25.835/08-00-2b-0d-
c0-9d
 Floor 1 = 01 2c (null)
 Floor 2 = 02 00 2c ncacn_dnet_nsp
 Floor 3 = 04 (null)
 Floor 4 = 06 49 00 33 aa 00 04 00 0a ce 20
 Replica type = readonly
 Clearinghouse’s Name = IAF:.Chicago1_CH

The output of this command shows that the master replica of the .sales directory is stored in
clearinghouse .ny1_ch, a read-only replica is stored in clearinghouse .ny2_ch, and another read-
only replica is stored in clearinghouse .chicago1_ch.

2. The following command deletes the read-only replica stored in clearinghouse .ny2_ch.

dns> delete replica .sales at clearinghouse .ny2_ch

The following command deletes the read-only replica stored in clearinghouse .chicago2_ch.

dns> delete replica .sales at clearinghouse .chicago2_ch

3. With all read-only replicas deleted, the following command deletes the master replica of the
.sales directory stored in clearinghouse .ny1_ch.

dns> delete directory .sales

9.3.2. Deleting a Subtree of Directories
You can use the recursive mode of the delete subtree command to delete the directory (and its
contents) you specify, as well as all child directories (and their contents) that exist beneath it. Using this
command provides a convenient way to delete an entire subtree of directories and saves you the effort of
deleting the contents of each directory yourself.

You can use the recursive mode of the delete subtree command provided that the following
conditions are satisfied:

• You have already deleted all read-only replicas of all the directories in the subtree that you intend to
delete.

• No clearinghouse object entries exist in any of the affected directories.

Beginning at the lowest-level directory in the subtree you specify, the delete subtree command
deletes the directory's contents, deletes its master replica, then moves up to the next directory in the
subtree and repeats this process until all directories under and including the directory you specified are
deleted.

90

Chapter 9. Restructuring a Namespace

Note

If a clearinghouse object entry is found in a directory, the recursive delete subtree command does
not delete the clearinghouse object entry, the directory that contains it, or any directories further up that
branch of the subtree. However, DECdns continues to delete other directories in other branches of the
specified subtree that do not contain clearinghouse object entries.

Example

The following delete subtree command, using the recursion flag (...), deletes the .sales
directory and its child directory .sales.region1:

dns> delete subtree .sales...

When you enter the command, DECdns deletes the contents of the .sales.region1 directory,
then deletes the master replica of the directory itself. DECdns then moves up to the .sales directory,
deletes its contents, then deletes its master replica.

9.4. Merging Directories
Sometimes, because of corporate restructuring or other reasons, you may want to combine or rearrange
various directories, or subtrees of directories, in your namespace.

For example, suppose the engineering group in your organization (.eng) is combined with the research
and development group (.rnd) and that the two groups will begin to share a common set of network
resources. You can reflect this organizational change in your namespace hierarchy by combining these
directories. Similarly, if the engineering group becomes subordinate to the research and development
group, you can reflect this change by creating an empty directory named .rnd.eng and then merging
the contents of the .eng directory into .rnd.eng, thus appending .eng below .rnd.

9.4.1. Overview of the Merge Procedure
To merge or append directories, follow these steps:

1. Use the dump subtree command to create an interim file containing the information you intend
to merge or append.

2. Merge the interim file you created in step 1 with another existing directory. Use the merge file
command to combine the directory information in an interim file with another directory or to append
the information below an existing bottom-level directory.

The master replica of a directory that you dump and then merge with another directory is stored in
the clearinghouse that stores the master replica of the directory with which (or below which) you
merge the dumped directory.

For example, if you dump the .eng directory to the interim file and then merge the interim file
with the .rnd directory, the master replica of the .eng directory is stored in the clearinghouse that
stores the master replica of the .rnd directory.

3. Delete the directory or subtree (and contents) that you merged in step 2 from its old location in the
hierarchy and replace the deleted directory information with a single soft link of the same name to
redirect lookups of the information at its new location. See Section 9.3 for information on how to
delete a directory. See Section 9.1.1 for information on how to create a soft link.

91

Chapter 9. Restructuring a Namespace

If a directory or subtree that you merge stores a clearinghouse object entry, you may prefer to use the
replace subtree command to perform this step. See Section 9.4.4 and Chapter 11 for more
information on the replace subtree command.

Note

The presence of duplicate names, unreachable names, clearinghouse object entries, groups, and node
object entries in a merged directory requires special handling. See Section 9.4.4 to Section 9.4.7 for
details on merging directories that contain these elements. The basic merge and append operations
described in the following sections assume that no clearinghouse object entries, groups, or node object
entries exist in the source directory and that no duplicate or unreachable names exist in either the source
or target directory.

9.4.2. Basic Merge and Append Operations
The following merge and append operations are based on a sample namespace (Figure 9.4) that consists
of two directories under the root: .eng and .rnd. The source directory (.eng) contains two object
entries: .eng.obj1 and .eng.link1. The target directory (.rnd) also contains two object entries:
.rnd.obj2 and .rnd.link2.

Figure 9.4. Example Namespace Hierarchy

9.4.2.1. Performing a Basic Merge Operation
The following procedure merges the source directory .eng into the target directory .rnd. Step 3 of
the procedure deletes the merged .eng directory from its original location and replaces it with a soft
link to redirect lookups of .eng to the .rnd directory.

1. The following dump subtree command creates an interim file named eng.dat that contains
the .eng directory and its contents, .eng.obj1 and .eng.link1.

dns> dump subtree .eng into file eng.dat

Note

The .dat extension of the interim file eng.dat is added to the file name only to avoid confusion
in the following example commands. File extensions are not required in the names of interim files.
An interim file is a printable ASCII file.

92

Chapter 9. Restructuring a Namespace

The dump subtree command can take some time to execute, especially if you are dumping
large subtrees that contain many names. The clearinghouses that store the master replicas of
the directories in the subtree you specify must all be enabled and reachable when you enter the
command. Otherwise, the command fails and an error message is displayed explaining the reasons
for the failure. The interim file contains only the directory information that was successfully dumped
before the error occurred.

2. The following merge file command merges the interim file you created in step 1 (eng.dat)
with the .rnd directory. The failures to file argument copies, to a failures file named
failures.dat, any names that cannot be reached (and therefore cannot be created) when you
enter the command. In this example, it is assumed that all affected files were successfully merged.
See Section 9.4.5 for more information on using the failures file.

dns> merge file eng.dat into subtree .rnd failures to file -
_> failures.dat

Figure 9.5 shows the structure of the example namespace before and after this merge operation.

Figure 9.5. Example Namespace Before and After the Merge Operation

3. After the merge operation, the .eng directory (and its contents) still exists at the source location.
The following commands delete the .eng directory from its original location and then create a soft
link named .eng in place of the deleted directory. This soft link redirects lookups of .obj1 and
.link1 to their new locations in the .rnd directory.

dns> delete subtree .eng...

dns> create link .eng destination .rnd

9.4.2.2. Performing a Basic Append Operation
The following procedure merges the source directory .eng into the empty target directory .rnd.eng
(that is, appends the .rnd directory under the .eng directory). Step 4 of the procedure deletes the
merged .eng directory from its original location and replaces it with a soft link to redirect lookups of
.eng to the .rnd directory.

1. The following dump subtree command creates an interim file named eng.dat that contains
the .eng directory and its contents, .eng.obj1 and .eng.link1.

dns> dump subtree .eng into file eng.dat

2. The following create directory command creates a new empty directory named
.rnd.eng.

93

Chapter 9. Restructuring a Namespace

dns> create directory .rnd.eng

3. The following merge file command merges the interim file you created in step 1 (eng.dat)
with the new .rnd.eng directory. The failures to file argument copies, to a failures
file named failures.dat, any names that cannot be reached (and therefore cannot be created)
when you enter the command. In this example, it is assumed that all affected files were successfully
merged. See Section 9.4.5 for more information on using the failures file.

dns> merge file eng.dat into subtree .rnd.eng failures to file -
_> failures.dat

Figure 9.6 shows the structure of the example namespace before and after this append operation.

Figure 9.6. Example Namespace Before and After the Append Operation

4. After the append operation, the .eng directory (and its contents) still exists at the source location.
The following commands delete the .eng directory from its original location and then create a soft
link named .eng in place of the deleted directory. This soft link redirects lookups of .obj1 and
.link1 to their new locations in the .rnd.eng directory.

dns> delete subtree .eng...

dns> create link .eng destination .rnd.eng

9.4.3. Merging Directories with a Single Command
Although not always appropriate, you may sometimes be able to use the merge subtree command
to merge or append directories. The merge subtree command combines step 1 (dump subtree)
and step 2 (merge file) of a merge operation into a single command. See Section 9.4.2 for
information on how to use these commands individually.

You can use the merge subtree command when you are sure that the following two conditions are
satisfied:

• No duplicate names exist in the source and target directories.

• All clearinghouses that store master replicas of affected directories (at both the source and target
locations) are running and reachable when you enter the command.

94

Chapter 9. Restructuring a Namespace

If a duplicate name is detected, or if any affected clearinghouse cannot be reached while the merge
subtree command is in progress, the affected entries are not merged. In this case, the merge
subtree command creates a named interim file or failures file with a randomly generated name in the
current directory. Errors are reported only to your screen.

If the merge operation is incomplete, you can delete the partially merged information at the target
location. Then reenter the command after you delete any duplicate names and are certain that
connectivity to the affected clearinghouses can be maintained.

Example

The following merge subtree command (which produces the same result as steps 1 and 2 in
Section 9.4.2.1) merges the .eng directory with the .rnd directory. This example assumes that no
duplicate names exist and the master replicas of all affected directories are reachable.

dns> merge subtree .eng into subtree .rnd

9.4.4. Handling Clearinghouse Object Entries
Merge and append operations affect only directories, application-defined object entries, node object
entries, and groups. They do not affect clearinghouse object entries or the actual clearinghouses those
object entries represent. Any clearinghouse object entries that exist in the directory or subtree you
specify in a dump subtree command are not copied to the interim file. Clearinghouse object entries
cannot be merged because to do so would interrupt the connectivity of the namespace.

After a merge operation, do not delete a clearinghouse object entry, and the source directory in which it
resides, unless you also intend to abandon use of the clearinghouse that the clearinghouse object entry
represents.

If a directory that you merge contains a clearinghouse object entry (and you want to preserve the
associated clearinghouse), you cannot delete the directory and replace it with a single soft link. Instead,
you must delete only the contents of the directory (except the clearinghouse object entry) and replace
each name with a soft link of the same name to redirect lookups to the target location. To save time and
effort, you can use the replace subtree command to complete these tasks with a single command.
The replace subtree command deletes only a directory's contents (except for clearinghouse object
entries and the directories that contain them) and creates individual soft links for every name in the
source directory that was merged. These soft links redirect lookups of the names from their old (source)
locations to their new (target) locations. Using this command preserves both the clearinghouse object
entry and the directory that contains it while deleting the directory's contents and replacing each name
with an individual soft link.

9.4.5. Using the Failures File
Use the merge file command's failures to file argument to save a copy of directory and
name information that could not be merged. A failures file can contain the following information:

• Duplicate names detected during the merge operation

• Names in the source subtree stored in clearinghouses that were not reachable when the command
was executing

You can use this information as an index of the names that could not be merged or, when appropriate,
you can merge the failures file itself on a subsequent merge operation.

Section 9.4.5.1 and Section 9.4.5.2 explain how to deal with duplicate names and failures caused when
names to be merged are unreachable.

95

Chapter 9. Restructuring a Namespace

9.4.5.1. Handling Duplicate Names
If the full name of a source directory, object entry, or soft link is identical to a full name of a target
directory, object entry, or soft link, the merge file command does not merge the duplicate source
name. Duplicate names are not merged, to avoid overwriting and destroying the identical names in the
target directory.

The failures to file argument is especially useful in merge file commands that specify
directories in which you know or suspect that duplicate names exist. During execution, the merge
file command displays any duplicate names on your screen and copies them to the failures file.

If duplicate names exist, you need to decide which name you want to preserve: the name in the source or
the name in the target. You can perform any of the following operations to eliminate a conflict:

• Delete the duplicate name in the target directory, then reenter the merge file command and
specify the failures file (rather than the interim file) in the command's ifile argument.

• Delete the duplicate name from the source directory (the directory you dumped to the interim file)
and keep only the name in the target directory. If you choose this solution, you do not need to use
the failures file.

• Use the recreate commands to re-create a duplicate object entry, soft link, or directory in the
source subtree as a new object entry, soft link, or directory in the target subtree. Then delete the
duplicate name from the source subtree. New names that you create with these commands retain
the same writable attribute values as the existing duplicate names on which they are based. The
commands do not delete or modify the existing names. An additional ACE is created for the new
name (in the target subtree) that grants the creator full access to the name. The new name also
inherits any existing default ACEs that may be propagated from the parent directory (the directory
in which you recreate the name) in the target subtree. The name that you assign to the new directory,
object entry, or soft link in the target subtree must be different from the name of the existing
directory, object entry, or soft link in the source subtree.

Note

The recreate commands are also useful for creating new object entries whose user-defined,
writable attributes (with the exception of the DNS$ACS attribute) are identical to those of an existing
application-defined object entry. This is especially useful when the existing object entry maintains
many writable attributes whose values you would otherwise have to assign individually with the set
object command.

See Chapter 11 for more information on using the recreate commands.

9.4.5.2. Handling Unreachable Name Failures
Sometimes, a clearinghouse that stores the master replica of a directory you are trying to merge is
disabled or unreachable when you enter the merge file command. When this happens, DECdns is
unable to create the name at the target location.

When unable to merge a name for this reason, the merge file command copies the name to the
failures file and displays an error message specifying the name that could not be created. By maintaining
a log of these messages, you can identify failures that were caused by name conflicts as opposed to
failures that were caused because a name was unreachable or could not be created.

9.4.6. Adjusting Access After a Merge

96

Chapter 9. Restructuring a Namespace

When the name of a node changes, the principal specifications (nodename.username) for all users
with accounts on that node also change. All existing ACEs whose principals refer to users on the old
node name are invalid. For example, suppose that directory .eng is merged with directory .rnd.
Before the merge, user smith, whose login account was on node .eng.orion, was specified as a
principal in ACEs throughout the namespace as .eng.orion.smith. After the merge, Smith's new
principal specification becomes .rnd.orion.smith, invalidating all existing ACEs that specify
.eng.orion.smith as a principal. Until you replace the old principal with the new principal in
these ACEs, Smith will be denied the required access. You can use the change subtree access
command to substitute a new principal for an invalidated principal in all affected ACEs with a single
command. See Section 5.7.1 for information on how to use this command.

Updating Merged Group Names

When you merge an access control group, you change the full DECdns name of the group. Because such
a group name is specified as a principal in ACEs throughout a namespace, changing its name renders all
ACEs that refer to the group by its original name unable to convey access.

For example, suppose a group named .eng.group1 is specified as a principal in ACEs throughout
the namespace. If you append the .eng directory below the .rnd directory, the full name of the group
becomes .rnd.eng.group1. Until you update the principal specification in all ACEs that refer
to .eng.group1 with the new name .rnd.eng.group1, members of the group are denied the
access they need.

You can use the change subtree access command to update a group name in the principal
specification of all affected ACEs. The following change subtree access command replaces the
old group name .eng.group1 with the new group name .rnd.eng.group1 in all ACEs that refer
to the old group name throughout the entire namespace:

dns> change subtree ... access .eng.group1 .rnd.eng.group1

See Section 5.7.1 for additional examples of the change subtree access command.

If a merged group itself is specified as a member of another existing group, you also need to update the
group member specification in that group to reflect the new name of the group member. For example,
suppose the group .eng.group1 is a member of a group named .rnd.group2. If you merge
the .eng directory with the .rnd directory, the name .eng.group1 becomes .rnd.group1.
However, because group .rnd.group2 still refers to .eng.group1 as a member, you need
to update the old group member specification with the new group member specification in group
.rnd.group2. Since the old group name (.eng.group1) may also be a member of other groups in
the namespace, you need to update the old group member specification in all affected groups.

You can use the change subtree group member command to replace an existing group
member with a new group member in all access control groups named in the directory or subtree you
specify. The following command replaces the old group member .eng.group1 with the new group
member .rnd.group1 in all groups in the namespace, including .rnd.group2.

dns> change subtree ... group member .eng.group1 .rnd.group1

See Section 5.6.3 for additional examples of the change subtree group member command.

9.4.7. Handling Changed Node Object Entries
When you merge a node object entry, you change the name of the node that the node object entry
represents. For most types of object entries, deleting the merged name from the source location and

97

Chapter 9. Restructuring a Namespace

replacing it with a soft link of the same name that points to the new name is sufficient to maintain
usability of the object entry. However, because a merged node object entry no longer matches the node
name of the actual system, you need to edit the DECnet startup script on the system, resetting the node
name in the script to match the new name of the node object entry.

9.4.8. Merging Two Namespaces
In general, the procedure you follow to merge two namespaces is the same as the procedure you use
to merge two directories or subtrees within the same namespace. However, there are some additional
restrictions:

1. You must include the nickname and root directory (.) of the source namespace in step 1 (dump
subtree). See Section 9.4.2.1.

2. You must include the nickname of the target namespace in step 2 (merge file). See
Section 9.4.2.1.

3. Both namespaces are likely to contain the following four DECnet node directories created with the
node registration tool:

• .DNA_Node

• .DNA_NodeSynonym

• .DNA_BackTranslation

• .DTSS_GlobalTimeServers

Because these directories reside directly beneath the root directory in both namespaces, they are
duplicate names and are not merged in the initial merge operation. To merge these directories, you
must create a separate interim file for each source directory, then merge each file individually with its
counterpart in the target namespace.

You may also need to resolve duplicate node synonym conflicts. Backtranslation conflicts should not
occur as long as all nodes in the network have unique addresses. (See the DECnet-Plus configuration
and network management documentation for your operating system for more information on these
directories.)

4. In step 3 of a namespace merge operation, you must delete all directories that exist directly below
the root of the source namespace and replace them with individual soft links that point to their new
locations in the target namespace. Be sure to include the target namespace nickname in the soft link's
destination name (DNS$LinkTarget attribute).

5. After the merge operation, complete the following tasks in the target namespace:

a. Update the principal specifications in all ACEs associated with merged names. Replace the
source namespace nickname with the target namespace nickname. You can use the change
subtree access command to perform this operation with a single command. See
Section 5.7.1 for information on how to use this command.

b. In the DECnet node directories .DNA_NodeSynonym and .DNA_BackTranslation,
update the destination name of each merged soft link. Replace the source namespace nickname
with the target namespace nickname in each soft link's DNS$LinkTarget attribute. Use the
set link command to make these modifications.

98

Chapter 9. Restructuring a Namespace

9.5. Relocating a Clearinghouse
Occasionally, you may need to relocate a clearinghouse from the server system where it currently resides
to another server system. For example, you may want to move a clearinghouse when:

• You need to temporarily disconnect the host server system from the network for repair or for other
reasons.

• You no longer want the current host system to function as a DECdns server.

• You want to move the clearinghouse to a server system that is physically closer on the network to the
user groups and applications that use the information contained in the clearinghouse.

To relocate a DECdns Version 2 clearinghouse, use the following procedure:

1. For the server to which you intend to move the clearinghouse (the destination server system), grant
the following DECdns access to the clearinghouse:

a. For the DNS$Server principal on the server, grant read, write, delete, test, and control access
to the clearinghouse and the object. Specify the principal as nodename.dns$server, where
nodename is the full DECdns name of the node on which the server is running.

b. For the system account, grant read, write, delete, test, and control access to the clearinghouse.
Specify the principal as nodename.system.

2. Dissociate the clearinghouse from the server where it is currently running.

3. Copy the clearinghouse database files from their current location (source server system) to their new
location (target server system).

4. Create a new clearinghouse on the target server system using the same name used on the source
server system from which you copied the database files.

5. Enable the relocated clearinghouse at the target server.

9.5.1. Dissociating a Clearinghouse from Its Host
Server System
Whenever a DECdns server is enabled, one of the tasks the server software performs is to enable its
clearinghouse (or clearinghouses). The server performs this task automatically by examining its list of the
clearinghouses resident on the system. As the first task in relocating a clearinghouse, you must:

1. Disable the clearinghouse with the disable dns server clearinghouse command. This
command places the clearinghouse in a safe state and prohibits further transactions against it.

To use the disable dns server clearinghouse command, you must have the NET
$MANAGE rights identifier.

2. Use the clear dns server clearinghouse command to remove, from the server’s
internal memory, the clearinghouse you specify. This ensures that the clearinghouse is not
automatically enabled on server restarts (even if the clearinghouse files are not deleted).

To use the clear dns server clearinghouse command, you must have the NET
$MANAGE rights identifier.

99

Chapter 9. Restructuring a Namespace

Example

The following disable dns server clearinghouse command disables the clearinghouse
.chicago2_ch.

dns> disable dns server clearinghouse .chicago2_ch

The following clear dns server clearinghouse command removes knowledge of
clearinghouse .chicago2_ch from the memory of its host server:

dns> clear dns server clearinghouse .chicago2_ch

9.5.2. Copying the Clearinghouse Database Files to the
Target Server System
After you disable the clearinghouse and remove knowledge of the clearinghouse from the host server,
you must copy the clearinghouse database files to a specific location on the new host server system.

A clearinghouse database consists of the following three files, where nnnnnnnnnn represents an 10-digit
number:

• clearinghouse-name.checkpointnnnnnnnnnn

• clearinghouse-name.tlognnnnnnnnnn

• clearinghouse-name.version

These files reside, by default, in the SYS$SYSDEVICE:[DNS$SERVER] account. (If the
clearinghouse was created with DNS Version 1 software and later converted to DECdns Version 2
format, the clearinghouse files reside, by default, in the SYS$SYSROOT:[DNS$SERVER] account.)

Actual clearinghouse file locations may vary from one system to another if they were created explicitly
or moved to a different location. You should verify the existence of these three files before you attempt
to copy them to the new host system.

Note

You may sometimes find two .checkpointnnnnnnnnnn files in the directory. This can happen
as a result of a system crash, or other interruption, during the clearinghouse's most recent checkpoint
operation. If you do find two files, copy both of them to the target server system. The server software
on that system will automatically reconcile any problem that may exist as soon as the clearinghouse is
enabled at the target server.

9.5.3. Re-creating and Enabling the Clearinghouse on
the Target Server
After copying the clearinghouse database files to the appropriate location on the target server system, use
the create dns server clearinghouse command to recreate the clearinghouse there. Make
sure you specify the same clearinghouse name that was used at the source location.

To use the create dns server clearinghouse command, you must have the NET
$MANAGE rights identifier.

100

Chapter 9. Restructuring a Namespace

Example

In the following example, the database files for clearinghouse .chicago2_ch were successfully
copied (relocated) to the default file location on server .orion. The following create dns
server clearinghouse command (issued on server .orion) creates a new clearinghouse
named .chicago2_ch on that server:

dns> create dns server clearinghouse .chicago2_ch

After the .chicago2_ch clearinghouse is successfully created on server .orion, enter the following
enable dns server clearinghouse command (also at server .orion) to enable the new
clearinghouse:

dns> enable dns server clearinghouse .chicago2_ch

9.6. Deleting a Clearinghouse
You may eventually need to delete a clearinghouse from the server system on which it resides when:

• The system is scheduled for reallocation or removal from your network.

• You no longer want or need the system to function as a DECdns server.

• You have relocated the clearinghouse on another server system and need to delete the clearinghouse
from its original location.

Before You Delete a Clearinghouse

Before you delete a clearinghouse, consider the following restrictions:

• Make sure you have write and delete access to the clearinghouse you intend to delete and to its
clearinghouse object entry. If any read-only replicas exist in the clearinghouse, you also need control
access to the directories of which those replicas are members so that DECdns can automatically
delete them and rebuild the replica sets of the directories.

• Make sure the clearinghouse you intend to delete does not store a master replica of any directory.
DECdns does not allow you to delete a clearinghouse that contains a directory's master replica.
Before you can delete such a clearinghouse, you must designate another replica in that directory's
replica set as the master replica by using the DECdns Control Program set directory to
new epoch command. If no other replicas of the directory exist, you must create a read-only
replica at another clearinghouse and then designate it as the directory's new master replica before you
can delete the original master replica from the clearinghouse. See Section 9.2 for information on how
to modify a replica's replica type.

• Although the delete dns server clearinghouse command automatically deletes any
read-only replicas, VSI recommends that you delete each replica on the clearinghouse to be deleted.
In this way, should the clearinghouse deletion fail, none of these unwanted replicas are left available
for data requests. Be sure to leave one replica closest to the root, as required by the clearinghouse
rules explained in Appendix B.

Note

Use the DECdns Control Program delete replica at clearinghouse command to
delete replicas. Do not exclude replicas (using the exclude qualifier with the set directory
to new epoch command).

101

Chapter 9. Restructuring a Namespace

To Delete a Clearinghouse

To delete a clearinghouse, first disable it, using the disable dns clearinghouse command.
Then use the delete dns server clearinghouse command. Use both of these commands
locally.

To use these commands, you must have the NET$MANAGE rights identifier.

As part of the delete dns server clearinghouse command, DECdns automatically deletes
all read-only replicas from the clearinghouse and rebuilds the replica sets of those directories, excluding
the deleted replicas from their replica sets. In addition to deleting the clearinghouse, the command
deletes the clearinghouse's associated clearinghouse object entry. The command may not delete the
clearinghouse database files from the system. You should ensure that they are deleted, as indicated
below.

Clearinghouse deletion can take some time to complete. DECdns deletes a clearinghouse only after
successfully completing a skulk of the directory that stores its associated clearinghouse object entry.
Because a clearinghouse's deletion may not be made known immediately to all replicas of the directory
in which its clearinghouse object entry is stored, a deleted clearinghouse may appear to exist in the
namespace for some time after you issue the command. You can initiate a skulk on the directory yourself
to ensure that all replicas are updated as quickly as possible.

Example

The following commands disable and delete the clearinghouse .paris2_ch on your local server
system.

dns>disable dns server clearinghouse .paris2_ch
dns> delete dns server clearinghouse .paris2_ch

After You Delete a Clearinghouse

Verify that the following clearinghouse database files have been deleted from their default location on
the system (to ensure that they are not detected by the server during subsequent server restarts):

• clearinghouse-name.checkpointnnnnnnnnnn

• clearinghouse-name.tlognnnnnnnnnn

• clearinghouse-name.version

where nnnnnnnnnn represents an 10-digit number.

They reside, by default, in the SYS$SYSDEVICE:[DNS$SERVER] account. (If the clearinghouse
was created with DNS Version 1 software and later converted to DECdns Version 2 format, the
clearinghouse files reside, by default, in the SYS$SYSROOT:[DNS$SERVER] account.)

When you delete a clearinghouse, DECdns removes the contents of the dns_files.txt file
(created when the clearinghouse is created and containing the path to the clearinghouse). This file
is located in SYS$SPECIFIC:[SYSMGR]. Unless you have another clearinghouse on this server,
delete the dns_files.txt file to complete cleanup of all clearinghouse-related files. If you have
another clearinghouse on the server, keep this file and ensure that it includes a pointer to the remaining
clearinghouse only. (The pointer to the deleted clearinghouse should be removed from the file.)

102

Chapter 10. Using the DECdns
Configuration Program
Use the DECdns configuration program to perform the following tasks. Section 10.1 explains how to run
the DECdns configuration program.

• Changing a clerk's default namespace (Section 10.2)

• Establishing communications with an off-LAN server (Section 10.3)

• Configuring a DECdns server in an existing namespace (Section 10.4)

• Converting an existing DNS Version 1 clearinghouse to DECdns Version 2 format (Section 10.4.4)

• Displaying address information for your local node (Section 10.5)

Section 10.6 explains how to create a new namespace using the net$configure procedure.

10.1. Running the DECdns Configuration
Program
To invoke the DECdns configuration program, enter the following command:

$ @sys$manager:dns$configure.com

The following menu is displayed:

 DECdns Configuration

 [1] Set the default namespace
 [2] Establish communications with an off-LAN server
 [3] Configure server in an existing namespace
 [4] Show address information of this node
 [5] Exit
At anytime, you can enter ? for help or ^Z to quit the current operation

 Pick a number from the list:

Table 10.1 describes the tasks you can perform with each of these menu options.

Table 10.1. Summary of DECdns Configuration Menu Options

Option Task

1 Set the default namespace.
2 Establish an initial connection from this clerk to a server that exists outside the

clerk's LAN. (DECdns server advertisement messages do not span WAN links.)
3 Configure a DECdns server (and its clearinghouse) in an existing namespace.

Create an additional clearinghouse on an existing server.

Convert an existing DNS Version 1 clearinghouse to DECdns Version 2 format.

103

Chapter 10. Using the DECdns Configuration Program

Option Task

4 Display the network service access point (NSAP) address information for the local
node. Use this option on server nodes to provide address information needed by
the configuration program on clerks to make an initial connection to the server
across a WAN link.

5 Exit the DECdns configuration program and return to the system prompt.

10.2. Changing a Clerk's Default Namespace
To change a clerk's default namespace, follow these steps:

1. Choose option 1 ("Set the default namespace") from the configuration menu. The configuration
program displays the nickname and namespace creation timestamp (NSCTS) of your current default
namespace:

Your default namespace nickname is IAF

Your default namespace NSCTS is 00-12-34-56-77-A0-A1-A2-A3-A4-A5-A6-A7-
B0

 Do you want to change the default namespace?

2. If you do not want to change your default namespace, enter no to quit the procedure and return to
the configuration menu.

If you want to change your default namespace, enter yes. If you respond yes, the configuration
program displays a list of the nicknames for all the clerk's known namespaces:

Getting server data, please wait ...

 [1] IAF
 [2] NAF
 [3] DOMAIN
 [4] LOCAL
 [5] X500

 [0] - Reject this list -

 Pick a number from the list: 2

This list contains all known namespaces for this clerk, including all the namespaces being advertised
by servers on the clerk's own local area network (LAN) as well as off-LAN namespaces made
known to the clerk through the use of configuration menu option 2 ("Establish communications with
an off-LAN server"). This list also includes three special namespace nicknames that are already
known to DECdns: DOMAIN, LOCAL, and X500. Do not select any of these here. You can select
the DOMAIN and LOCAL namespace nicknames during the DECnet-Plus configuration procedure
(NET$CONFIGURE).

3. Enter the number corresponding to the nickname of the namespace that you want to be your default.
After you make a selection, the configuration program displays the nickname and NSCTS of your
new default namespace and informs you that the clerk's startup script has been amended so that the
clerk uses the new default namespace whenever it is enabled:

sys$manager:net$dns_clerk_startup.ncl changed to use the new default
 namespace.

104

Chapter 10. Using the DECdns Configuration Program

Your default namespace nickname is NAF.
Your default namespace NSCTS is AA-00-04-00-DE-11-A0-AA-F9-6E-56-
DE-8E-00.

If the namespace you want to designate as the clerk’s default namespace exists outside the clerk’s
LAN, its nickname may not appear on the list. In this case, enter 0 to reject the list and return
to the main menu. Then choose option 2 ("Establish communications with an off-LAN server").
See Section 10.3 for complete instructions on how to make an initial connection to an off-LAN
namespace; then, choose option 1 ("Set the default namespace").

10.3. Establishing Communications with an
Off-LAN Server
A clerk learns about all namespaces on its own LAN by listening to advertisements from servers on the
same LAN. Because server advertisements do not span wide area network (WAN) links, a clerk cannot
automatically learn about namespaces that exist outside the clerk's own LAN. For a clerk to make an
initial connection to an off-LAN server, you must provide the clerk with the server's network service
access point (NSAP) address, DECnet Phase IVcompatible address, or IP address. This information is
saved in the clerk's cache and is used to make subsequent connections to the off-LAN server.

To establish an initial connection to a server in an off-LAN namespace, follow these steps:

1. Contact the namespace administrator of the off-LAN namespace and obtain the DECnet Phase
IV-compatible address (if one exists), the NSAP address, or the IP address of some server in that
namespace. The system administrator of the off-LAN server can provide the NSAP or DECnet Phase
IV-compatible address by using the DECdns configuration program on that system and choosing
menu option 4 ("Show address information of this node").

Note

If the off-LAN server is a VAX Distributed Name Service (DNS) Version 1 server on an OpenVMS
VAX system, you must have read access to the SYS$LIBRARY:DNS$NS_DEF_FILE.DAT file
on that server. Otherwise, the configuration will fail.

2. Invoke the DECdns configuration program. See Section 10.1.

3. Choose option 2 ("Establish communications with an off-LAN server") from the configuration menu.
The configuration program prompts you for the address information of a server in the off-LAN
namespace. You can enter an NSAP address (as shown), a Phase IV-compatible address, or an IP
address:

Enter NSAP or Phase IV compatible address or IP address of the server
you want to connect to: %x490004aa0004066a1121

After you enter an address, the configuration program displays a list of the namespaces (known to
the remote server) that were added to your clerk's list of known namespaces. This information is
retained in the clerk's cache and will survive a reboot of the clerk system. For example:

Getting server data, please wait ...

These namespaces have been added to your clerk's list of known
 namespaces

 [1] EMV

105

Chapter 10. Using the DECdns Configuration Program

10.4. Configuring a DECdns Server in an
Existing Namespace
You can use option 3 on the DECdns configuration menu ("Configure server in an existing namespace")
to complete the following tasks:

• Configure a DECdns Version 2 server in an existing namespace (Sections 10.4.1 and 10.4.2).

• Create an additional clearinghouse on an existing server (Section 10.4.3).

• Convert an existing DNS Version 1 clearinghouse to DECdns Version 2 format (Section 10.4.4).

The first DECdns Version 2 server in a new namespace is usually configured as a result of (or following
the process of) configuring DECnet-Plus software. Even if you maintain a small namespace that services
only a few nodes, you should consider configuring at least one additional server on another stable system
whose connectivity to your network is reliable. By maintaining your namespace on two servers (two
clearinghouses), you create a real-time backup of namespace data and ensure that a failure on one of the
servers will not interrupt DECdns service. As your namespace and network expand, you may want to
configure additional servers to distribute namespace information around the network.

10.4.1. Before You Configure a Server
Before you configure a system as a DECdns server, perform the following tasks:

1. The most important step is planning how the namespace will be distributed across this and the
existing DECdns servers. Will all directories exist in each clearinghouse, or will you distribute them
across two or more clearinghouses? To keep this procedure simple, we assume you are configuring
the second server and clearinghouse in the namespace, and it will contain a read-only copy of all
directories found in the first (already existing) clearinghouse.

2. Determine the following information. In the examples given here, the information is obtained from
the SYSTEM account on the node with the first clearinghouse.

• What is the first DECdns server node's full name? For example:

$ show log sys$node_fullname
 "SYS$NODE_FULLNAME" = "WATTS_NS:.DNA_NODE.SHANTI::" (LNM
$SYSTEM_TABLE)

• On which node do you want to place the second clearinghouse? For example:

$ show log sys$node_fullname
 "SYS$NODE_FULLNAME" = "WATTS_NS:.DNA_NODE.META::" (LNM
$SYSTEM_TABLE)

• What is the name of the existing clearinghouse? For example:

$ mcr dns$control
DNS> dir clear .*
 DIRECTORY
 CLEARINGHOUSE WATTS_NS:.*
 AT 08-APR-2019:10:38:24
shanti_ch

• What directories are located in the namespace? Check the root directory first for child pointers,
then check all directories under the root for child pointers, as in the following example:

106

Chapter 10. Using the DECdns Configuration Program

$ mcr dns$control
DNS> dir dir .*
 DIRECTORY
 DIRECTORY WATTS_NS:.*
 AT 08-APR-2019:10:41:41
DNA_BackTranslation
DNA_NODE
DNA_NodeSynonym
DTSS_GlobalTimeServers

DNS> dir dir .*...
 DIRECTORY
 DIRECTORY WATTS_NS:.DNA_BackTranslation.*
 AT 08-APR-2019:10:46:32
%X49
 DIRECTORY
 DIRECTORY WATTS_NS:.DNA_BackTranslation.%X49.*
 AT 08-APR-2019:10:46:33
%X0028
%X0037
 DIRECTORY
 DIRECTORY WATTS_NS:.DNA_BackTranslation.%X49.%X0028.*
 AT 08-APR-2019:10:46:53
 DIRECTORY
 DIRECTORY WATTS_NS:.DNA_BackTranslation.%X49.%X0037.*
 AT 08-APR-2019:10:46:53
 DIRECTORY
 DIRECTORY WATTS_NS:.DNA_NODE.*
 AT 08-APR-2019:10:47:03
 DIRECTORY
 DIRECTORY WATTS_NS:.DNA_NodeSynonym.*
 AT 08-APR-2019:10:47:03
 DIRECTORY
 DIRECTORY WATTS_NS:.DTSS_GlobalTimeServers.*
 AT 08-APR-2019:10:47:04

No output means no subdirectories were found here.

Note

The WATTS_NS: example namespace is actually populated with
.DNA_BackTranslation.%X49.* directories for DECnet Phase IV areas 1 through 63,
(hexadecimal %X0001 through %X003F). To keep the output reasonably brief, only areas 40
and 55 (hexadecimal %X0028 and %X0037) are shown.

3. Verify that the DECdns server software and a valid server software license are installed on the
system. See Section 10.4.1.1.

4. Choose a name for the new clearinghouse. See Appendix A.

If you plan to name the clearinghouse in a directory other than the root directory, first verify that the
directory allows the storage of clearinghouse object entries. See Section 12.8.2.

5. Ensure that the new server has a node object registered in the namespace to be joined. For example,
use the following DECdns Control Program command:

107

Chapter 10. Using the DECdns Configuration Program

dnscp show obj ns:.newsrv

6. Ensure that the node object has the correct addressing information. For example, use the following
DECdns Control Program command:

dnscp show obj .newsrv dna$towers

The output should match output of the ncl show address command.

7. Ensure that the DECdns server storing the master replica of the directory to be joined is registered in
the namespace and has correct addressing information. Each system should be able to connect to the
other (for example, check using the set host command).

8. Grant required access to the directory in which you intend to name the new clearinghouse (usually
the namespace's root directory) on behalf of the DNS$Server principal and the system account
principal of the new server. See Section 10.4.1.2.

Configuring a DECdns Version 2 Server into a DNS Version 1 Namespace

Before you can configure a DECdns Version 2 server into an existing namespace that was created with
DNS Version 1 software, you must prepare the namespace for use by DECnet-Plus. To accomplish
this, you need to configure a DECdns Version 2 clerk into the DNS Version 1 namespace and create
and populate a backtranslation directory (.DNA_BackTranslation) and node synonym directory
(.DNA_Node_Synonym) in the root directory. You must create these directories to ensure that
the DECdns Version 2 clerks and servers you later create are able to interpret and process the DNS
Version 1-style access control entries that are already in use in the DNS Version 1 namespace. See the
appropriate DECnet-Plus installation and configuration documentation for complete information on
how to prepare a DNS Version 1 namespace for use by DECnet-Plus systems. Appendix F summarizes
interoperability considerations in an environment with both DNS Version 1 and DECdns Version 2.

10.4.1.1. Verifying DECdns Server Software and License
Requirements
Before you can configure a system as a DECdns server, you should verify that the following conditions
are satisfied:

• DECdns server software must be installed on the system.

The DECdns server software is included as optional software on the DECnet-Plus installation media.
Most system managers install the server software as part of the DECnet-Plus installation. Others
may choose to postpone the server software installation until they need to configure the system as a
DECdns server.

If DECdns server software has not been installed on the system, the following message is displayed
when you choose option 3 on the DECdns configuration menu ("Configure server in an existing
namespace") to configure the server.

The DECdns server software is not installed on this system. If you
 want to configure a server on the system, type N or ^Z to exit this
 procedure and install the server software before continuing.

After this message is displayed, you are returned to the main configuration menu.

If the DECdns server software was not installed during the initial DECnet-Plus installation, rerun
the DECnet-Plus installation procedure to install the the optional DECdns server software before

108

Chapter 10. Using the DECdns Configuration Program

you try to configure the system as a DECdns server. See the appropriate DECnet-Plus installation
documentation for information on how to install the DECdns server software.

• A valid server software license must exist on the system.

Before the DECdns configuration program permits you to configure a system as a DECdns server,
it verifies that a valid DNS Version 1 or DECdns Version 2 server license exists in the license
management database on the system. If a valid license cannot be found, the following message is
displayed when you choose option 3 on the DECdns configuration menu ("Configure server in an
existing namespace") to configure the server.

No DECdns server license is present. If you want to install a server on
 this system, type N or ^Z to exit this procedure and install a license
 before continuing.

If you purchased but never installed a DECdns Version 2 server software license, invoke the License
Management Facility (LMF) and install the license before you try to configure the system as a
DECdns server. See the LMF documentation for complete information on how to install a DECdns
server license. (If the system is currently configured as a DNS Version 1 server or, if you are creating
an additional clearinghouse on an existing DECdns Version 2 server, a valid server license should
already exist on the system.)

Note

If neither the DECdns server software nor a license can be found on the system, the following message is
displayed.

The DECdns server software is not installed on this system. If you want to
 configure a server on the system, type N or ^Z to exit this procedure and
 install the server software and a valid license before continuing.

10.4.1.2. Granting the Access Required for Clearinghouse Creation
To successfully create a clearinghouse and perform subsequent clearinghouse operations, the DNS
$Server principal and the system account principal on the server system that you intend to configure
must have sufficient access to the directory (usually the root) in which you intend to name the new
clearinghouse. You must grant this access before you configure the server.

Before you configure a server, make sure you grant the following access rights:

• For the DNS$Server principal on the server, grant read, write, delete, and control access
to the directory in which you intend to name the new clearinghouse. Specify the principal as
nodename.dns$server, where nodename is the DECdns full name of the node on which the
server is running.

• For the system account of the node, grant control access to the directory in which you intend to
name the new clearinghouse. Specify the principal as nodename.system

You must enter the add directory access commands to grant this access from an account that
has control access to the directory in which you intend to name the clearinghouse.

Example

The following two example commands grant the required access for the DNS$Server and
system principals to the root directory of the namespace in which a new clearinghouse on node

109

Chapter 10. Using the DECdns Configuration Program

.dna_node.meta will be created: Note that if any replica of the directory in which you intend to
name the new clearinghouse is stored on a VAX Distributed Name Service (DNS) Version 1 server
(on a DECnet Phase IV node), additional access is required. See the section called “Additional Access
Required for Interoperation with DNS Version 1 Servers” for more information.

1. The following command (entered from an account that has control access to the root directory)
grants read, write, delete, and control access to the root directory (.) for the DNS$Server
principal on node .dna_node.meta.

dns> add directory . access .dna_node.meta.dns$server for r,w,d,c

2. The following command (entered from an account that has control access to the root directory)
grants read, write, delete, and control access to the root directory for the system account on node
.dna_node.meta.

dns> add directory . access .dna_node.meta.system for r,w,d,c

Additional Access Required for Interoperation with DNS Version 1 Servers

If any replica of the directory in which you intend to name the new clearinghouse is stored on a VAX
Distributed Name Service (DNS) Version 1 server (on a DECnet Phase IV node), you must create two
additional access control entries (ACEs) that grant the same access described in the preceding example
commands but contain Version 1 principals (in the format nodename::username). Assuming, from the
preceding example, that a replica of the root directory is stored on a Version 1 server, you must enter the
following two add access commands (from an account with control access to the root directory) to
create the required Version 1-style ACEs:

dns> add directory . access dna_node.meta::dns$server for r,w,d,c
dns> add directory . access dna_node.meta::system for c

Appendix F summarizes interoperability considerations in an environment with both DNS Version 1 and
DECdns Version 2.

10.4.2. Configuring the Server
To configure the server and create a clearinghouse, follow the steps listed below.

You can examine SYS$SYSTEM:DNS$SERVER.LOG for clearinghouse creation failures.

1. Choose option 3 ("Configure server in an existing namespace") from the configuration menu. The
configuration program displays the nickname and NSCTS of this node’s default namespace, and
prompts you to enter the DECdns full name of the new clearinghouse that you are about to create on
this server. Note that short-form names (local names) are not allowed.

Your default namespace nickname is WATTS_NS

Your default namespace NSCTS is 00-12-34-56-77-A0-A1-A2-A3-A4-A5-A6-A7-
B0

Enter a name for the clearinghouse that will be created on this node.
If you want to join a namespace other than your default namespace,
 include the namespace nickname as part of the full name. If the
 namespace nickname is ambiguous, use the NSCTS instead of the nickname.
 You must have appropriate access to the DECdns directory in which this
 clearinghouse will reside. See DECdns Management for more information.

110

Chapter 10. Using the DECdns Configuration Program

 Enter full name of new clearinghouse (include leading dot): .Meta_CH

2. After you enter a clearinghouse name, the configuration program prompts you to enter the name
of the directory that you want be the clearinghouse's initial replica. Unless you specify otherwise
at the prompt, DECdns creates by default a replica of the directory in which you named the new
clearinghouse (see step 1) and stores the replica in the clearinghouse as its initial replica. This
directory is displayed as the default response to the prompt. For example, because the clearinghouse
name .Meta_CH was entered in step 1 of this sample procedure, the root directory [.] is shown as
the default response in this step.

Enter the name of the directory that is to be stored in the
 clearinghouse as the initial replica. The directory name must be closer
 to the root (have fewer simple names) than the clearinghouse name. The
 default is the parent directory of the clearinghouse.

 Enter replica full name (include leading dot) [.]:

If you named the clearinghouse in the root directory (such as .Meta_CH as shown in step 1), you
must press Return to accept the default response of root directory [.].

If you named the new clearinghouse in a directory other than the root directory, you can press
Return to accept the parent directory of the directory that you specified in step 1 as the initial replica,
or enter the name of another directory.

If you specify an initial replica directory other than the parent directory of the clearinghouse name
(the default), you must set the DNS$InCHName attribute for that directory to true (even if
you do not intend to store clearinghouse object entries in it). This attribute defines whether the
directory or its descendants can store clearinghouse names. Use the DECdns Control Program set
directory command to set this attribute.

3. After you specify the name of the new clearinghouse's initial replica, the configuration program
prompts you to select the directory version for all directories that you will later create in this
clearinghouse. If you intend to create only DNS Version 1 directories, set the directory version value
to V1.0.0. Set the value to V2.0.0 to create only DECdns Version 2 directories. Whether you
set the value to V1.0.0 or V2.0.0, you can still store both Version 1 and Version 2 directories in
the clearinghouse. However, if you set the value to V2.0.0, you cannot replicate the directories you
create in this clearinghouse in any Version 1 clearinghouse. Because a setting of V1.0.0 allows you
to create directories and replicate them in both Version 1 and Version 2 clearinghouses, the default
response to the prompt is V1.0.0 (option 1).

Enter the directory version for the clearinghouse. This affects all
 replicas stored in this clearinghouse. If you plan to replicate any of
 the directories created at this clearinghouse into a V1 clearinghouse,
 you must choose V1.0.0. Otherwise, choose V2.0.0.

 [1] V1.0.0
 [2] V2.0.0

 Pick a number from the list [1]:

To create only Version 1 directories, press Return to accept the default response, option 1. To create
only Version 2 directories, choose option 2.

After you make your selection, the configuration program creates the server and clearinghouse,
displays an informational message, then returns you to the main configuration menu. The following
message is displayed:

111

Chapter 10. Using the DECdns Configuration Program

Server created. Clearinghouse files are in sys$sysdevice:[dns$server].

If the clearinghouse creation fails, double check that the required access (as described in
Section 10.4.1.2) exists on the directory in which you are trying to name the new clearinghouse.
If the access is correct, see Section 12.8 for more information on handling clearinghouse creation
failures.

If any problem occurs at this step, verify that the new clearinghouse exists by using the DECdns
Control Program command shown in the following example:

$ mcr dns$control
DNS> dir clear meta_ch
 DIRECTORY
 CLEARINGHOUSE WATTS_NS:.meta_ch
 AT 08-APR-2019:10:38:24
meta_ch

4. Finally, replicate any directories from existing servers into the new clearinghouse, as explained in
Section 7.2. You can designate any of these replicas to be master replicas by modifying the replica
set, as explained in Section 9.2.

This step may require a large number of commands. VSI recommends that you create a command
file similar to the one in Section G.2 of Appendix G to complete the process.

10.4.3. Creating an Additional Clearinghouse on an
Existing Server
Although the DECdns configuration program supports the creation of multiple clearinghouses on
one server, VSI does not recommend permanently locating two or more clearinghouses on the same
server. A server cannot load-balance incoming clerk requests to multiple clearinghouses. Also, multiple
clearinghouses demand more than a proportionate increase of system resources when compared to an
individual clearinghouse and will compromise the performance of the one server on that system. As a
rule, you should create a second clearinghouse on a server only when another dedicated server system is
not available, or to temporarily relocate a functional clearinghouse when the server system on which the
clearinghouse usually resides is being removed from your network.

If you must create an additional clearinghouse on an existing server, follow the procedure described in
Sections 10.4.1 through 10.4.2. Be sure to choose a different name for the new clearinghouse than the
name of the clearinghouse that is already operating on the server system.

10.4.4. Converting an Existing DNS Version 1
Clearinghouse to DECdns Version 2 Format
If you are already using a namespace (created with Version 1 of the VAX Distributed Name Service
(DNS) software running on DECnet Phase IV), you may want to convert one or more of your existing
DNS Version 1 clearinghouses to DECdns Version 2 format. By doing so, you can take advantage of
the improved performance offered by DECdns Version 2. You can also continue to use your existing
namespace rather than abandoning it and create a new namespace when you upgrade your networking
software to DECnet-Plus for OpenVMS.

You convert a clearinghouse as part of the server configuration process performed by option 3
("Configure server in an existing namespace") on the DECdns configuration menu.

112

Chapter 10. Using the DECdns Configuration Program

Note

Before you try to convert a DNS Version 1 clearinghouse to DECdns Version 2 format, make
sure the namespace served by the Version 1 clearinghouse has been prepared for use by DECnet-
Plus. A backtranslation directory (.DNA_BackTranslation) and node synonym directory
(.DNA_Node_Synonym), containing the node names of all nodes participating in the Version 1
namespace, must exist in the root directory. This is necessary to ensure that the DECdns Version 2
servers you later create can interpret and process the DNS Version 1-style access control entries that
are already in use in the DNS Version 1 namespace. If these directories do not exist, be sure to create
and populate them before you attempt to convert any DNS Version 1 clearinghouses to DECdns Version
2 format. See the appropriate DECnet-Plus installation and configuration documentation for complete
information on how to configure the first DECdns Version 2 clerk into an existing DNS Version 1
namespace. See the appropriate DECnet-Plus network management documentation for information on
how to create and populate the node synonym and backtranslation directories.

To convert a DNS Version 1 clearinghouse to DECdns Version 2 format, follow these steps:

1. Log in to the server node that stores the DNS Version 1 clearinghouse you want to convert to
DECdns Version 2 format. Use the DNS Version 1 control program (DNS$CONTROL) add
access command to grant the following access on behalf of the system account:

• Grant read, write, delete, test, and control access to the DNS Version 1 clearinghouse
you intend to convert. Specify the principal of this ACE in DNS Version 1-style format
(nodename::system).

• Grant read, write, delete, test, and control access to the directory in which the clearinghouse is
named. Specify the principal of this ACE in DNS Version 1-style format (nodename::system).

• Grant read, write, delete, test, and control access to the DNS Version 1 clearinghouse you
intend to convert. Specify the principal of this ACE with the DECnet Phase V full name
(.dna_node.nodename.system).

• Grant read, write, delete, test, and control access to the directory in which the clearinghouse
is named. Specify the principal of this ACE with the full DECnet Phase V name
(.dna_node.nodename.system).

For example, if you intend to convert a clearinghouse named .eng.London_ch that resides on a
Phase-IV node named true, enter the following four commands:

dns> add access true::system clearinghouse .eng.London_ch /
rights=(r,w,d,t,c)

dns> add access true::system directory .eng /rights=(r,w,d,t,c)

dns> add access .dna_node.true.system clearinghouse .eng.London_ch -
_> /rights=(r,w,d,t,c)

dns> add access .dna_node.true.system directory .eng
/rights=(r,w,d,t,c)

You need to grant these access rights to ensure that the system account on the server has sufficient
access to the clearinghouse you want to convert, and to the directory in which the clearinghouse is
named (.eng in this example).

113

Chapter 10. Using the DECdns Configuration Program

Note

As a precaution, before you proceed to the next step, VSI recommends that you create a replica
of each directory stored in the Version 1 clearinghouse you intend to convert. In the event the
clearinghouse conversion fails, these directories will remain available.

2. While logged in to the server node that stores the DNS Version 1 clearinghouse you want to convert,
perform the following steps:

a. Install DECnet-Plus for OpenVMS software on the node and configure it as a DECdns Version
2 clerk in the namespace served by the DNS Version 1 server that you want to convert. See
VSI DECnet-Plus for OpenVMS Installation and Configuration or DECnet-Plus for OpenVMS
Applications Installation and Advanced Configuration Guide for complete information on how to
configure a DECdns clerk.

b. On the clerk system, at the OpenVMS system prompt, enter the following command to invoke
the DECdns configuration program:

$ @ sys$manager:dns$configure.com

c. Choose menu option 3 ("Configure server in an existing namespace"). When the configuration
program detects the presence of the Version 1 clearinghouse, the following message is displayed:

You must convert your version 1 DECdns data so that you can use it
 with version 2 DECdns. If you have already converted your data,
 press Return.

DNS Version 1 clearinghouse(s) database exists on this system. Do you
 want to convert the Version 1 data to DECdns Version 2 format [n]:

d. Enter Y to convert the DNS Version 1 clearinghouse.

Before the DECdns configuration program initiates the conversion process, it verifies that the
following server system parameters are satisfied:

• Available free page count is 2.5 times that of the Version 1 clearinghouse database you
intend to convert.

• User quota pgflquo is set to permit the use of 2.5 times that of the Version 1
clearinghouse database.

• SYSGEN parameter virtualpagcnt is set high enough to allow the database conversion
process to allocate 2.5 times that of the Version 1 clearinghouse database.

If any of these system criteria are not satisfied, the DECdns configuration program displays a
warning message to inform you about which parameters need to be reset and to what degree.
(See Section 10.4.5 for examples of these warning messages.) The clearinghouse conversion may
complete successfully with less than the recommended memory. In the event that the conversion
cannot complete, processing stops. If this occurs, you should reset any parameters for which you
received a warning message before you retry the conversion.

In addition to these parameter recommendations, the DECdns configuration program requires
that the available disk space on the server system is equal to the size of the DNS Version 1
clearinghouse database you intend to convert. If this requirement is not satisfied, the conversion

114

Chapter 10. Using the DECdns Configuration Program

process fails and the DECdns configuration program displays an informational message
specifying the number of free blocks required to successfully perform the clearinghouse
conversion. See Section 10.4.5 for an example of this informational message.

If the available disk space requirement is satisfied, no informational message is displayed, and the
conversion process continues as shown in the following example output:

Conversion proceeding - please wait.

Beginning to convert clearinghouse TRW0306_NS:.trw0306_ch
 Elapsed=0 00:00:23.33 CPU=0:00:10.81 DIRs done=44% MEM
 Kbytes=501
 Elapsed=0 00:00:44.12 CPU=0:00:27.01 DIRs done=86% MEM
 Kbytes=1004

Successfully converted clearinghouse TRW0306_NS:.trw0306_ch

Clearinghouse database conversion completed successfully.
After backing up the following version 1 server data files, please
 delete:
 SYS$SYSTEM:DNS$GLOBAL.GBL
 SYS$SYSROOT:[DNS$SERVER]trw0306_ch.DNS,.GBL
 Elapsed=0 00:00:59.27 CPU=0:00:32.59 DIRs done=100% MEM
 Kbytes=1004

Type Return to continue:

e. Press Return at the prompt to initiate the server creation process.

Server creation proceeding - please wait.

%RUN-S-PROC_ID, identification of created process is 0000005A
%PURGE-I-NOFILPURG, no files purged
%PURGE-I-NOFILPURG, no files purged
Create Node 0 DNS Server
 at 2019-03-24-15:16:48.424-05:00I0.629

Enable Node 0 DNS Server
 at 2019-03-24-15:17:00.301-05:00I0.513

When the server creation completes, the configuration program displays the following message
and then returns you to the main configuration menu.

Server created and enabled successfully.

3. Exit the DECdns configuration program; then, from the system prompt, invoke the
decnet_register utility. Choose menu option 2 to re-register the newly converted server node
as a DECnet-Plus node. For complete information on how to use the decnet_register node
registration tool, see VSI DECnet-Plus for OpenVMS Network Management Guide.

10.4.5. Clearinghouse Conversion Warnings and
Informational Messages

115

Chapter 10. Using the DECdns Configuration Program

OpenVMS Paging Recommendations

If the recommended Free Page Count, Page File Quota, or Virtual Page Count parameter requirements
on the system are not satisfied, one or more of the following warning messages is displayed as shown in
the following sample output:

Warning>> You may need your page file quota to be 10327 during conversion.

Warning>> You may require up to 10327 contiguous free pages during
 conversion.
 >> This may mean that you need to add an additional pagefile.

Warning>> You may need to increase your VIRTUALPAGECNT to 10327 to complete
 conversion.
Warning>> You may need your page file quota to be 10327 during conversion.

If any of these warnings is displayed, the clearinghouse conversion may still succeed. However, VSI
recommends that you stop the conversion process and reset the appropriate system/process parameters
before you continue. See your OpenVMS system management documentation for complete information
on how to reset these parameters.

Free Disk Space Requirement

If the available disk space on the server system is insufficient to accommodate the conversion operation,
an error message, similar to the following example, is displayed and you are returned to the DECdns
configuration menu.

ERROR>> Insufficient disk space on DKA100: disk;
 >> you need 4131 free blocks there for the conversion.
 >> Please make disk space available before continuing.

 Elapsed=0 00:00:10.75 CPU=0:00:02.47 DIRs done= 0% MEM Kbytes=13

%DNS-F-CONVERT Cannot convert V1 data

Before you again attempt to convert the clearinghouse, you must increase the available disk space on the
system to the number of free blocks specified in the message.

10.4.6. Reconfiguring a DECdns Server
If you want to reconfigure an existing server to have a new namespace, the reconfiguration process does
not replace or delete the DECdns files used by the existing server. You must delete these files before the
proper namespace pointers can take effect. For more information, see Section 6.7.2.

10.5. Displaying Address Information for Your
Local Node
If your node is a server, system managers of clerks that want to participate in your server's namespace,
but exist across WAN links, may contact you to obtain your server node's NSAP address. Clerks need
this information to make an initial connection to your server.

To display the NSAP address information for your local node, choose option 4 ("Show address
information of this node") from the DECdns configuration menu. The configuration program lists this
information as shown in the following sample display:

116

Chapter 10. Using the DECdns Configuration Program

This node's NSAP is %x490004aa0004066a1120
This node's NSAP is %x490004aa0004066a1121

The display will contain one or more NSAP addresses, each address corresponding to one of the
protocols that the server runs (TP4, NSP, and so on). If more than one NSAP is listed, make sure you
inform the manager of the clerk system of all addresses. At least one address is likely to correspond to
a protocol that the clerk can use to make its initial connection to your server. See VSI DECnet-Plus for
OpenVMS Network Management Guide for more information on NSAP addressing.

10.6. Creating and Initializing a New
Namespace
You only need to create a new DECdns namespace if you are configuring the first DECdns server for the
network (where no DECdns namespace exists) or if you are creating an additional namespace. When you
create a namespace, you need a namespace nickname and clearinghouse name. The namespace nickname
is part of the full name of every system configured subsequently in the network and should be unique to
your network. The namespace nickname that you specify becomes the actual name of the namespace.

Note

DECnet-Plus does not support the creation of more than one namespace on a single DECdns server
system. If you need more than one namespace in your network, you must initially create each namespace
on its own DECdns server system.

You create and initialize a namespace during the DECnet-Plus advanced configuration procedure. See
DECnet-Plus for OpenVMS Applications Installation and Advanced Configuration Guide for details.

Before creating and initializing a new namespace, first configure the server to use the Local namespace,
then check that the DECnet software works properly.

To create a new namespace while configuring a DECnet-Plus system:

• The DECdns server software must be installed on the system.

• DECdns must be specified as one of the naming services configured on the system.

In addition, VSI highly recommends you to refer to the VSI DECnet-Plus Planning Guide. Once you
understand what is involved in creating a namespace, you can configure the server node to use the new
DECdns namespace and create and initialize that namespace.

Use the DECnet-Plus configuration procedure (SYS$MANAGER:NET$CONFIGURE.COM) and
select option 2 ("Change Naming Information") to create a new namespace. Choose the DECdns
directory service as the primary directory service to be used on the system. The configuration procedure
then prompts you for other information required for creating a namespace and the initial namespace
directories.

The procedure instructs you to use the decnet_register tool to:

• Create a command file to automatically register previously defined Phase IV nodes. Execute this
command file before using the decnet_register tool to manually register any other nodes.

• Create any directories needed for node names that should be registered immediately, according to
your namespace design. (This includes the node on which you are currently running if the node is

117

Chapter 10. Using the DECdns Configuration Program

not in the root directory of the new namespace or if the configuration procedure indicates it was not
able to register the node automatically.)

• Add backtranslation directories for any non-Phase-IV areas/IDPs. Failure to do so will lead to
backtranslation failures. Once you have added the necessary backtranslation directories, you may
need to use the ncl flush session control naming cache entry "*" command.

• Change the local node’s registered name from its default name to its final full name. (The local
node is registered as a Phase IV node with a default name when you execute the Phase IV node
registration command file mentioned above.)

• Change the currently registered names of other nodes from their default names to their final full
names when appropriate (for example, when they are upgraded to run DECnet-Plus software).

• Continue to use the decnet_register tool to:

• Create any additional directories you need for node names, as new nodes are brought up on the
network.

• Register new nodes as they are brought up on the network.

• Add members to the new_ns:.DNA_Registrar access control group (where new_ns is the
new namespace name).

• Use the DECdns Control Program to:

• Add specific access control to individual directories, objects, and soft links.

• Create replicas of directories (see Section 7.2).

For more information about the decnet_register tool, see the VSI DECnet-Plus for OpenVMS
Network Management Guide.

118

Chapter 11. DECdns Control Program
Command Dictionary
This chapter describes the DECdns Control Program (DNSCP) commands. The DECdns Control
Program is an interface you can use to manage the components of DECdns and the contents of the
namespace.

Table 11.1 lists the DNSCP commands grouped by entity.

Table 11.1. DECdns Control Program Commands

Entity Command Function

Create Creates a child pointer
Delete Deletes a child pointer
Directory Displays a list of child pointers

Child

Show Displays a child pointer's attribute information
Add Access Adds an access control entry to a clearinghouse's access control set
Directory
Remove
Access

Displays a list of clearinghouses

Deletes an access control entry from a clearinghouse's access control
set

Show Displays a clearinghouse's DNSCP attribute information

Clearinghouse

Show
Access

Displays a clearinghouse's access control set

Add Access Adds an access control entry to a directory's access control set
Create Creates a directory
Delete Deletes a directory
Directory Displays a list of directories
Recreate Creates a copy of a directory with a new full name
Remove
Access

Deletes an access control entry from a directory's access control set

Set Modifies directory characteristics
Set to New
Epoch

Modifies a directory's replica set

Set to Skulk Initiates a skulk
Show Displays a directory's attribute information

Directory

Show
Access

Displays a directory's access control set

Create Creates a clerk
Delete Deletes a clerk
Disable Stops operation of the clerk
Dump Dumps the clerk cache

DNS Clerk

Enable Starts the clerk

119

Chapter 11. DECdns Control Program Command Dictionary

Entity Command Function

Set Modifies clerk characteristics
Show Displays a clerk's attribute information
Create Adds a namespace to the list of namespaces in a clerk's cache
Delete Removes a namespace from the list of namespaces in the clerk's

cache
Set Modifies a known namespace name attribute

DNS Clerk Known
Namespace

Show Displays a namespace's attribute information
Create Creates knowledge in the clerk's cache about a server that exists

across the wide area network (WAN)
Delete Deletes knowledge from the clerk's cache about a server that exists

across the WAN

DNS Clerk Manual
Name Server

Show Displays knowledge in the clerk's cache about a server that exists
across the WAN

DNS Clerk Remote
Clearinghouse

Show Displays a remote clearinghouse's attribute information

Create Creates a server
Delete Deletes a server
Disable Stops operation of the server
Enable Starts the server
Initialize Creates a new namespace and the first server in the namespace

DNS Server

Show Displays a server's attribute information
Clear Removes knowledge of a clearinghouse from a server
Create Creates a clearinghouse
Delete Deletes a clearinghouse
Disable Stops operation of a clearinghouse
Enable Starts a clearinghouse

DNS Server
Clearinghouse

Show Displays a clearinghouse's Network Control Language (NCL)
attribute information

Add Access Adds an access control entry to a group's access control set
Add
Member

Adds a member to an existing group

Create Creates a group
Delete Deletes a group
Directory Displays a list of groups
Remove
Access

Deletes an access control entry from a group's access control set

Remove
Member

Deletes a member from an existing group

Set Modifies group characteristics

Group

Show Displays a group's attribute information

120

Chapter 11. DECdns Control Program Command Dictionary

Entity Command Function

Show
Access

Displays a group's access control set

Add Access Adds an access control entry to a soft link's access control set
Create Creates a soft link
Delete Deletes a soft link
Directory Displays a list of soft links
Recreate Creates a copy of a soft link with a new full name
Remove
Access

Deletes an access control entry from a soft link's access control set

Replace Replaces a soft link to redirect lookups
Set Modifies a soft link's characteristics
Show Displays a soft link's attribute information

Link

Show
Access

Displays a soft link's access control set

Add Adds a value to an object's modifiable, set-valued attribute\
Add Access Adds an access control entry to an object entry's access control set
Create Creates a new object entry
Delete Deletes an object entry
Directory Displays a list of object entries
Recreate Creates a copy of an object entry with a new full name
Remove Deletes a value from an object's application-defined, set-valued

attribute
Remove
Access

Deletes an access control entry from an object entry's access control
set

Replace Replaces an object entry with a soft link
Set Changes the value of an object's modifiable, single-valued attribute
Show Displays an object entry's attribute information

Object

Show
Access

Displays an object entry's access control set

Create Adds a replica of an existing directory to a clearinghouse
Delete Removes a replica of a directory from a clearinghouse

Replica

Show Displays a replica's attribute information
Change
Access

Changes a principal in a subtree's access control entries

Change
Group
Member

Changes a group member in all access control groups containing that
member in a subtree

Delete Deletes a subtree and its contents

Subtree

Dump Dumps a subtree and its contents into an interim file

121

Chapter 11. DECdns Control Program Command Dictionary

Entity Command Function

Merge Dumps a directory and then merges its contents into an existing
subtree

Merge File Merges the contents of a file into an existing subtree
Remove
Access

Removes a principal from the access control set of a particular
directory and its contents

Remove
Group
Member

Removes a member from all groups in a subtree

Replace Replaces a subtree with soft links pointing to the new subtree
location

add clearinghouse access
add clearinghouse access — Adds an access control entry (ACE) to a clearinghouse's access control set
(ACS).

Format
add clearinghouse access clearinghouse-name access principal [as group] [for] access

Arguments
clearinghouse-name

The name of the clearinghouse to which access is being added.

principal

The principal for whom access is being added. You can specify a principal as a group name, a
collection of principals denoted with wildcards (for example, .org.name*), or an individual
name in the format nodename.username. To specify a DNS Version 1-style principal, use the format
nodename::username. The phrase as group indicates the specified principal is a group. You
cannot use this phrase with wildcard principal names.

access

The access rights for the specified principal. Rights are read, write, delete, test, control, and none,
and you can specify them as r, w, d, t, c, and non. Separate multiple access rights with commas.

Description
This command adds an access control entry to a clearinghouse's access control set. Access rights are
defined as follows:

Read The principal can look up the clearinghouse by name and read any attribute of the
clearinghouse.

Write The principal can change the replica type of any replica stored in the clearinghouse, create
or delete replicas in the clearinghouse, alter any modifiable attribute of the clearinghouse
(except the ACS).

122

Chapter 11. DECdns Control Program Command Dictionary

Delete The principal can delete the clearinghouse.
Test The principal can check the value of any attribute of the clearinghouse.
Control The principal can alter the clearinghouse's ACS and move the clearinghouse to another

server.
None The principal has no access rights.

For more information on defining and modifying access control, refer to Chapter 5.

Access Rights

You must have control access to the clearinghouse whose access control set (ACS) is being modified.

Example
The following command grants an access control group named .testgroup read, write, test, and
control access to the .paris2_ch clearinghouse.

dns> add clearinghouse .paris2_ch access .testgroup -
_> as group for r, w, t, c

add directory access
add directory access — Adds an access control entry (ACE) to a directory's access control set (ACS).

Format
add directory access directory-name [access-option] access principal [as group] [for] access

Arguments
directory-name

The full name of the directory.

access-option

The extent to which the access rights apply. Possible access options are default and
nopropagate. Enter one or both of them. If you enter both options, separate them with a
comma. If you omit this argument, the ACE applies to the directory and automatically propagates to
subsequent child directories.

default Indicates that the ACE applies to all new object entries created in this
directory. Access to already existing entries is not affected. A default ACE
applies only to the contents of the directory, not to the directory itself. If you
do not use the default option, the ACE applies to the directory.

nopropagate Prevents the access rights in this ACE from being inherited by subsequently
created child directories of the specified directory. When used in conjunction
with default, prevents the ACS from being inherited by the contents of
future children of the specified directory. Nopropagate is optional; if you
do not use it, access rights propagate automatically.

123

Chapter 11. DECdns Control Program Command Dictionary

principal

The principal for whom access is being added. You can specify a principal as a group name, a
collection of principals denoted with wildcards (for example, .org.name*), or an individual
name in the format nodename.username. To specify a DNS Version 1-style principal, use the format
nodename::username. The phrase as group indicates the specified principal is a group. You
cannot use this phrase with wildcard principal names.

access

The access rights for the specified principal. Rights are read, write, delete, test, control, and none,
and you can specify them as r, w, d, t, c, and non. Separate multiple access rights with commas.

Description
This command adds an ACE to a directory's access control set. Access rights are defined as follows:

Read The specified principal can look up the directory by name, list the contents of the
directory, and read any directory attribute.

Write The specified principal can create object entries or soft links in the directory, skulk the
directory, and create, modify, or delete child directories.

Delete The specified principal can delete the directory or any name in the directory.
Test The specified principal can check the value of any attribute of the directory.
Control The specified principal can perform any operation on any object entry, soft link, or child

in the directory, as well as read or modify any attribute of the directory (including its
ACS), and modify the replica type of a replica or the epoch value of the directory.

None Does not grant the specified principal any access rights.

For more information on defining and modifying access control, refer to Chapter 5.

Access Rights

You must have control access to the directory whose ACS is being modified. You also need write access
to the clearinghouse.

Example
The following command grants read and write access for the .DNS_Admin administration group to the
.sales directory.

dns> add directory .sales access .DNS_Admin as group for r,w

add group access
add group access — Adds an access control entry (ACE) to a group's access control set (ACS).

Format
add group group-name access principal [as group] [for] access

124

Chapter 11. DECdns Control Program Command Dictionary

Arguments
group-name

The full name of the group.

principal

The principal for whom access is being added as a member of the group. You can specify a principal
as a group name, a collection of principals denoted with wildcards (for example, .org.name*), or
an individual name in the format nodename.username. To specify a DNS Version 1-style principal,
use the format nodename::username. The phrase as group indicates the specified principal is a
group. You cannot use this phrase with wildcard principal names.

access

The access rights for the specified principal. Rights are read, write, delete, test, control, and none,
and you can specify them as r, w, d, t, c, and non. Separate multiple access rights with commas.

Description
This command adds an access control entry to a group's access control set. Access rights are defined as
follows:

Read The principal can look up the group by name and read any attribute of the group.
Write The principal can change any modifiable group attribute except the ACS.
Delete The principal can remove the member from the set of group members
Test The principal can check the value of any attribute of the group.
Control The principal can alter the group's ACS.
None The principal does not have access rights.

For more information on defining and modifying access control, refer to Chapter 5.

Access Rights

You must have control access to the group whose ACS is being modified.

Example
The following command grants user .sales.deneb.smith read access to the .DNS_admin
group.

dns> add group .DNS_admin access .sales.deneb.smith for r

add group member
add group member — Adds a member to an existing group.

Format
add group group-name member [=] principal [as group]

125

Chapter 11. DECdns Control Program Command Dictionary

Arguments
group-name

The full name of the group.

principal

The principal that is being added as a member of the group. You can specify a principal as a group
name, a collection of principals denoted with wildcards (for example, .org.name*), or an
individual name in the format, nodename.username. To specify a DNS Version 1-style principal, use
the format nodename::username. The phrase as group indicates the specified principal is itself a
group. You cannot use this phrase with wildcard principal names.

Description
This command adds a member to an existing group.

Access Rights

You must have write access to the group to which you are adding a member.

Example
The following command adds the member smith on node .sales.orion to the admin group.

dns> add group .admin member .sales.orion.smith

add link access
add link access — Adds an access control entry (ACE) to a soft link's access control set (ACS).

Format
add link link-name access principal [as group] [for] access

Arguments
link-name

The full name of the soft link.

principal

The principal for whom access is being added. You can specify a principal as a group name, a
collection of principals denoted with wildcards (for example, .org.name*), or an individual name
in the format, nodename.username. To specify a DNS Version 1-style principal, use the format
nodename::username. The phrase as group indicates the specified principal is a group. You
cannot use this phrase with wildcard principal names.

access

The access rights for the specified principal. Rights are read, write, delete, test, control, and none,
and you can specify them as r, w, d, t, c, and non. Separate multiple access rights with commas.

126

Chapter 11. DECdns Control Program Command Dictionary

Description
This command adds an access control entry to a soft link's access control set. Access rights are defined
as follows:

Read The principal can look up the soft link by name, read any soft link attribute, and perform
wildcard lookups.

Write The principal can change any modifiable attribute except the ACS.
Delete The principal can delete the soft link.
Test The principal can check the value of any attribute of the soft link.
Control The principal can alter the soft link's ACS.
None The principal does not have access rights.

For more information on defining and modifying access control, refer to Chapter 5.

Access Rights

You must have control access to the soft link whose ACS is being modified.

Example
The following command grants an access control group named .testgroup read, write, and test
access to the soft link .sales.asia.

dns> add link .sales.asia access .testgroup as group for r, w, t

add object
add object — Adds a value to a modifiable, set-valued attribute (including application-defined attributes)
of an object entry.

Format
add object object-name attribute-name [=] attribute-value

Arguments
object-name

The full name of an object entry.

attribute-name

The name of a particular attribute. Specify your own attribute name or one of the DECdns-defined
attributes. Separate multiple attributes with commas.

attribute-value

The value of a particular attribute. You can express the values of application-defined attributes as
quoted strings, "ps"; hexadecimal strings, %x FF00EE; or concatenations of them in parentheses,
(%x0103 "ps").

127

Chapter 11. DECdns Control Program Command Dictionary

Description
This command adds a value to a modifiable, set-valued attribute, including application-defined attributes.
If the value is already defined for the attribute, no error message is generated. Usually this task is
performed through the client application, because the client application defines the name of the attribute
and the syntax of its value.

Access Rights

You must have write access to the object entry or control access to the parent directory in which you
intend to store the attribute.

Example
The following command adds the value "ps" to the user-defined set-valued attribute printcap of an
object entry named .sales.east.deskprinter.

dns> add object .sales.east.deskprinter printcap "ps"

add object access
add object access — Adds an access control entry (ACE) to an object entry's access control set (ACS).

Format
add object object-name access principal [as group] [for] access

Arguments
object-name

The full name of the object entry.

principal

The principal for whom access is being added. You can specify a principal as a group name, a
collection of principals denoted with wildcards (for example, .org.name*), or an individual name
in the format, nodename.username. To specify a DNS Version 1-style principal, use the format
nodename::username. The phrase as group indicates the specified principal is a group. You
cannot use this phrase with wildcard principal names.

access

The access rights for the specified principal. Rights are read, write, delete, test, control, and none,
and you can specify them as r, w, d, t, c, and non. Separate multiple access rights with commas.

Description
This command adds an access control entry to an object entry's access control set. Access rights are
defined as follows:

128

Chapter 11. DECdns Control Program Command Dictionary

Read The principal can look up the object entry by name, read any object attribute, and
perform wildcard lookups.

Write The principal can change any modifiable attribute except the ACS.
Delete The principal can delete the object entry.
Test The principal can check the value of the object entry.
Control The principal can alter the object entry's ACS.
None The principal does not have access rights.

For more information on defining and modifying access control, refer to Chapter 5.

Access Rights

You must have control access to the object entry whose ACS is being modified.

Example
The following command grants read, write, and test access to user smith on node .sales.orion
for an object entry named .admin.work_disk3.

dns> add object .admin.work_disk3 access .sales.orion.smith for r, w, t

change subtree access
change subtree access — Replaces an existing principal with a new principal in all ACEs associated with
the subtree you specify.

Format
change subtree tree-name [...] access old-principal new-principal [exclude entry-type]

Arguments
tree-name

The name of the topmost directory in the subtree. When used without the optional recursion
notation (...), the change applies only to the specified directory and the soft links and objects in
that directory. The recursion notation causes the change to additionally apply to all child directories
and their contents.

old-principal

The principal that you want to change. You can specify a principal as a group name or an individual
name in the format nodename.username. To specify a DNS Version 1-style principal, use the format
nodename::username.

new-principal

The new principal. You can specify a principal as a group name or an individual name in
the format nodename.username. To specify a DNS Version 1-style principal, use the format
nodename::username.

129

Chapter 11. DECdns Control Program Command Dictionary

entry-type

One or more of the following arguments to exclude from principal modification: objects, links, or
directories. Multiple directories can be excluded in a single command. Use any combination of the
following entry-type specifiers, separating multiple arguments with commas:

objects
links
directory directory-name

Description
This command changes all relevant access control entries (ACEs) associated with the directory specified
in tree-name and all relevant ACEs associated with that directory's contents. You can use the optional
recursion notation (...) to modify the ACEs associated with all the child directories and their contents.
You can also use the optional exclude argument to restrict the type of entries affected by this
command.

Access Rights

You must have control and write access to the directory you specify as well as to the contents of the
directory. If you use the command recursively, you also need control and write access to all child
directories (and their contents) of the directory you specify.

Example
The following command changes the old principal .pjl.smith to the new principal .ins.smith
in all ACEs associated with the .admin directory and its contents. By using the recursion notation
(...), the command additionally changes the ACEs of all child directories and their contents.

dns> change subtree .admin... access .pjl.smith .ins.smith

change subtree group member
change subtree group member — Replaces an existing group member's principal specification with
a new group member's principal specification in all access control groups named in the directory or
subtree you specify.

Format
change subtree tree-name [...] group member old-member new-member [exclude directory
directory-name]

Arguments
tree-name

The name of the topmost directory in the subtree. When used without the optional recursion
notation, the change applies only to groups in the specified directory. The recursion notation causes
the change to additionally apply to groups in all child directories.

130

Chapter 11. DECdns Control Program Command Dictionary

old-member

The name of the existing group member that you want to replace.

new-member

The new name of the group member.

directory-name

One or more directories that contain groups you want to exclude from this change. You can exclude
multiple directories with a single command. Separate multiple arguments with commas.

Description
This command replaces an existing group member's principal specification with a new group member's
principal specification in all access control groups named in the directory or subtree you specify. You
can use the optional recursion notation (...) to extend the command's effect to the groups contained
in all child directories of that directory. If you use the command recursively, you can use the optional
exclude directory directory-name argument to exclude groups named in a particular directory
(and all its child directories) from group member modification. You can exclude multiple directories in a
single command. Specify multiple directories in the following format:

exclude directory directory-name, directory directory-name, directory
directory-name

Access Rights

You must have control access to the group whose member you intend to change. If you use the
command recursively, you must have control access to all groups affected by the command.

Example
The following command replaces the old member .pjl.smith with new member .jmh.smith in
all groups in the .admin directory and its child directories.

dns> change subtree .admin... group member .pjl.smith .jmh.smith

clear dns server clearinghouse
clear dns server clearinghouse — Removes knowledge of the specified clearinghouse from the server's
memory.

Format
clear [node node-id] dns server clearinghouse clearinghouse-name

Arguments
node-id

The name of the node. If you do not specify a node name, the local node is assumed.

131

Chapter 11. DECdns Control Program Command Dictionary

clearinghouse-name

The full name of the clearinghouse.

Description
This command removes the specified clearinghouse from the server's memory. This ensures that the
clearinghouse is not auto-enabled on server restarts, even if the clearinghouse database files themselves
are not deleted. This command is part of the process of relocating a clearinghouse. See Section 9.5 for
more information. You can also enter this command through the NCL interface.

Privileges Required

You must have the NET$MANAGE rights identifier.

Example
The following command removes knowledge of the .paris2_ch clearinghouse from the server's
memory.

dns> clear dns server clearinghouse .paris2_ch

create child
create child — Creates a child pointer at the master replica of the parent directory.

Format
create child child-name clearinghouse clearinghouse-name

Arguments
child-name

The full name of the child pointer.

clearinghouse-name

The name of a clearinghouse that contains a replica of the child directory.

Description
This command creates a child pointer at the master replica of the parent directory. When DECdns looks
up a name in the namespace, it uses child pointers to locate directory replicas. See Section 12.10 for
complete information on how to restore a deleted child pointer.

Note

You should use the create child command only to re-create a child pointer that was accidentally
deleted.

132

Chapter 11. DECdns Control Program Command Dictionary

Access Rights

You must have read access to the orphaned child directory and write access to the parent directory of the
orphaned child directory.

Example
The following command creates the child pointer for the .sales.east directory in the .ny_ch
clearinghouse.

dns> create child .sales.east clearinghouse .ny_ch

create directory
create directory — Creates a directory.

Format
create directory directory-name [clearinghouse clearinghouse-name]

Arguments
directory-name

The full name of the directory.

clearinghouse-name

The name of the clearinghouse where the directory is created.

Description
This command creates a new directory with the name you specify. If no clearinghouse is specified,
DECdns creates the master replica of the directory in the same clearinghouse as the parent directory's
master replica. For more information on creating and managing directories, see Chapter 7.

Access Rights

You must have write access to the clearinghouse in which you are creating the new directory and write
access to the parent of the new directory.

Example
The following command creates a new directory named .region1 and stores it in a clearinghouse
named .eng_ch1 rather than in the same clearinghouse as the master replica of the parent directory.

dns> create directory .region1 clearinghouse .eng_ch1

create dns clerk
create dns clerk — Creates a clerk on the specified node.

133

Chapter 11. DECdns Control Program Command Dictionary

Format
create [node node-id] dns clerk

Arguments
node-id

The name of the node. If you do not specify a node name, the local node is assumed.

Description
This command creates a clerk on the specified node. You can also enter this command through the NCL
interface. This command should not normally be executed outside of the DECnet startup procedure. For
more information on managing clerks, see Chapter 6.

Note

To create a clerk, enter the command @SYS$STARTUP:DNS$CLERK_STARTUP from the DCL
prompt. You must have the NET$MANAGE rights identifier to execute this command. You can only
use the command locally; you must be logged in to the system where the clerk resides. See Section 6.7.3
for more information on how to create or restart a clerk.

Privileges Required

You must have the NET$MANAGE rights identifier.

Example
The following command creates a clerk on node .mfg.umbriel.

dns> create node .mfg.umbriel dns clerk

create dns clerk known namespace
create dns clerk known namespace — Adds a namespace to the list of namespaces cached by a specified
DECdns clerk.

Format
create [node node-id] dns clerk known namespace name NSCTS nscts

Arguments
node-id

The name of the node. If you do not specify a node name, the local node is assumed.

name

A simple name for the namespace.

134

Chapter 11. DECdns Control Program Command Dictionary

nscts

The value of the namespace creation timestamp (NSCTS) that is automatically assigned when the
namespace is created. The format of the NSCTS is 14 pairs of hexadecimal digits (xx-xx).

Description
This command adds a namespace to the list of namespaces cached by the DECdns clerk. This is useful
for defining namespaces the clerk does not learn about automatically from advertisements on a local area
network (LAN). The simple name you supply in the name argument becomes both name and nickname.
If the name you supply conflicts with an existing name or nickname, this command is rejected. You can
also enter this command through the NCL interface.

Privileges Required

You must have the NET$MANAGE rights identifier.

Example
The following command adds the namespace with the name jns and NSCTS value of
08-00-2B-0D-C0-9D-CD-3B-C6-16-EC-3B-94-00 to the list of namespaces cached by the
local clerk.

dns> create dns clerk known namespace jns NSCTS -
_> 08-00-2B-0D-C0-9D-CD-3B-C6-16-EC-3B-94-00

create dns clerk manual nameserver
create dns clerk manual nameserver — Creates knowledge in the local clerk's cache about a server that
exists across a wide area network (WAN).

Format
create [node node-id] dns clerk manual nameserver name tower TowerSet

Arguments
node-id

The name of the node on which the clerk exists. If you do not specify a node name, the local node is
assumed.

name

A simple name for the manual name server. The name is used only as a handle for managing this
entity.

TowerSet

The Network Architecture (NA) TowerSet address of the server node. (You must use a continuation
character (-) for commands that extend beyond one line of text, but this only works if it is the very
last character on the line of text.) The format of a TowerSet is:

 {([DNA_OSInetwork , nsap-value])}

135

Chapter 11. DECdns Control Program Command Dictionary

Description
This command creates knowledge in the local clerk's cache about a server that exists across a WAN.
It gives the clerk the information it needs to contact the server across a WAN and cache the other
information that the clerk needs to communicate with that server. You can also enter this command
through the NCL interface. You can use the DECdns configuration program to establish communications
with a server across a WAN, as explained in Chapter 10.

Note

You should not normally enter this command from the DECdns Control Program (DNSCP). You can
use the configuration program to accomplish what this command does.

Privileges Required

You must have the NET$MANAGE rights identifier.

Example
The following command informs the clerk on node .mfg.umbriel about the existence of the server
nrl.

dns> create node .mfg.umbriel dns clerk manual nameserver nrl tower -
_> {([DNA_OSInetwork , 49::00-04:AA-00-04-00-6A-11:20])}

create dns server
create dns server — Creates a server on the specified node.

Format
create [node node-id] dns server

Arguments
node-id

The name of the node. If you do not specify a node name, the local node is assumed.

Description
This command creates a server on the specified node. You can also enter this command through
the NCL interface. This command should not normally be executed outside of the DECnet startup
procedure.

Note

To create a clerk, enter the command @SYS$STARTUP:DNS$SERVER_STARTUP from the DCL
prompt. You must have the NET$MANAGE rights identifier to execute this command. You can only
use the command locally; you must be logged in to the system where the clerk resides. See Section 6.7.3
for more information on how to create or restart a clerk.

136

Chapter 11. DECdns Control Program Command Dictionary

Privileges Required

You must have the NET$MANAGE rights identifier.

Example
The following command creates a DECdns server on the local node.

dns> create dns server

create dns server clearinghouse
create dns server clearinghouse — Creates a clearinghouse on the specified node.

Format
create [node node-id] dns server clearinghouse clearinghouse-name [new directory version
version-number,] [initial replica replica-name,] [file filespec]

Arguments
node-id

The name of the node. If you do not specify a node name, the local node is assumed.

clearinghouse-name

The full name of the clearinghouse.

version-number

The DECdns version number the new directories will have at this clearinghouse. Specify the value
as Vx.y.z, where x defines the major release number, y specifies the minor version number, and z
specifies an ECO level. This argument is optional. Set the value to V1.0.0 if you intend to create
DNS Version 1 directories. Set it to V2.0.0 to create only DECdns Version 2 directories. If you omit
this argument, the default is V2.0.0.

replica-name

The full name of the first directory replica to store in the clearinghouse. This argument is optional. If
you omit this argument, the parent directory of this clearinghouse becomes the initial replica.

filespec

A file specification that will contain the clearinghouse. This argument, which is optional, is useful
if you have moved an existing clearinghouse and do not want new default names to be generated
automatically. The default directory for the dns$server account.

Description
This command creates a clearinghouse on a specified node. You can specify the directory version, the
initial replica to be stored in the clearinghouse, and the file name. This command is useful after moving a

137

Chapter 11. DECdns Control Program Command Dictionary

clearinghouse or if you have moved the clearinghouse file. You can also enter this command through the
NCL interface.

Note

The create dns server clearinghouse command is normally executed only by the DECdns
configuration program during the configuration of a DECdns server in an existing namespace (see
Chapter 10). You should use this command only to re-create a clearinghouse whose database files are
relocated on another server system.

Access Rights

The account executing the command needs write access to the directory in which you want to name the
clearinghouse. This access must be propagated to all members of the directory's replica set before you
enter the create dns server clearinghouse command. Otherwise, the command fails. If
you do need to add write access for the directory, be sure to skulk the directory successfully before you
try to create the clearinghouse. For more information about the access rights required for this command,
see Section 12.8.1.

Privileges Required

You must have the NET$MANAGE rights identifier.

Example
The following command creates a clearinghouse named .sales.ny_ch on node .sales.orion.

dns> create node .sales.orion dns server clearinghouse .sales.ny_ch

create group
create group — Creates a group.

Format
create group group-name

Arguments
group-name

The full name of the group.

Description
This command creates a group. For more information on managing groups, see Chapter 5.

Access Rights

You must have write access to the directory in which you intend to create the group.

138

Chapter 11. DECdns Control Program Command Dictionary

Example
The following command creates a group named .sales_group1 in the directory .sales.

dns> create group .sales.sales_group1

create link
create link — Creates a soft link and optionally specifies an expiration time and an extension time.

Format
create link link-name destination destination-name [expiration expiration-time] [extension
extension-time]

Arguments
link-name

The full name of the soft link.

destination-name

The full name of the entry to which the soft link points.

expiration-time

A date and time after which DECdns checks for existence of the soft link's target and either extends
or deletes the soft link. The value is specified as yyyy-mm-dd-hh:mm:ss. This argument is optional.
If you omit the argument, the soft link is permanent and must be explicitly deleted.

extension-time

A period of time in which to renew the soft link's life if it expires but still points to an existing name.
The value is specified as ddd-hh:mm:ss. This argument is optional. The default is 000-00:00:00.

Description
This command creates a soft link and optionally specifies an expiration time and an extension time. For
more information on managing soft links, see Chapter 9.

Access Rights

You must have write access to the directory in which you intend to create the soft link.

Example
The following command creates a permanent soft link named .sales.asia.price-server that
points to an object entry named .sales.eur.price-server.

dns> create link .sales.asia.price-server destination -

139

Chapter 11. DECdns Control Program Command Dictionary

_> .sales.eur.price-server

create object
create object — Creates a new object entry.

Format
create object object-name DNS$Class class-name DNS$ClassVersion value

Arguments
object-name

The full name of the object entry.

class-name

The class of object entry being created. You can specify an application-defined class name. A class is
specified as a simple name limited to 31 characters.

value

The version of the class assigned to the object. Specify the value as v.n, where v defines the major
release number and n specifies the minor version number. Specifying a class version is useful for
allowing the definition of a class to evolve as an application is revised.

Description
This command creates a new object entry. This task is usually done through a client application.

Access Rights

You must have write access to the directory where you intend to store the object entry.

Example
The following command creates an object entry named .sales.east.floor1cprn with the DNS
$Class printer and DNS$ClassVersion value 1.0. The object entry describes a color printer
on the first floor of the company's eastern sales office.

dns> create object .sales.east.floor1cprn DNS$Class printer -
_> DNS$ClassVersion 1.0

create replica
create replica — Adds a replica of an existing directory to the specified clearinghouse.

Format
create replica directory-name [at] clearinghouse clearinghouse-name

140

Chapter 11. DECdns Control Program Command Dictionary

Arguments
directory-name

The full name of the directory.

clearinghouse-name

The full name of the clearinghouse in which you want to create the replica.

Description
This command adds a replica of an existing directory to the specified clearinghouse. You are creating
a read-only replica, which is a copy of the directory to which users cannot directly make changes. You
can only modify a directory at the master replica. The skulking process automatically distributes any
modifications made to the master replica to all read-only replicas in the directory's replica set. For
more information on creating replicas, see Chapter 7. For information on modifying a replica set, see
Chapter 9.

Access Rights

You must have read, write, delete, and control access to the directory you are replicating. You must also
have write access to that directory's parent directory, and write access to the clearinghouse in which you
are storing the replica.

The access required on the directory and parent directory must be propagated to all members of the
directories' replica sets before you enter the create replica command. Otherwise, the command
fails. If you need to add this access, be sure to skulk the directories successfully before you try to create
the replica.

The DNS$Server principal (nodename.dns$server) and the system principal (nodename.system)
on the server node where you intend to create the replica needs read, write, delete, and control access to
the directory you intend to replicate and write access to its parent directory.

Example
The following command creates a replica of the .mfg directory in the clearinghouse .paris1_ch:

dns> create replica .mfg at clearinghouse .paris1_ch

delete child
delete child — Deletes a child pointer from the namespace.

Format
delete child child-name

Arguments
child-name

The full name of the child pointer.

141

Chapter 11. DECdns Control Program Command Dictionary

Description
This command deletes a child pointer from the namespace.

Note

Use the delete child command only when the directory to which the child pointer refers was
deleted and the child pointer accidentally remains.

Access Rights

You must have delete access to the directory in which the child pointer is stored.

Privileges Required

You must have system administrator's privileges.

Example
The following command deletes the child pointer that accidentally remained after the .sales.east
directory was deleted:

dns> delete child .sales.east
Directory .sales is still reachable at clearinghouse iaf:.Paris1_ch.

delete directory
delete directory — Deletes a directory from the namespace.

Format
delete directory directory-name

Arguments
directory-name

The full name of the directory.

Description
This command deletes a directory from a namespace. The directory may not contain any object entries,
soft links, or child pointers. The master replica must be the only remaining replica in the namespace. Use
the delete replica at clearinghouse command if you need to remove read-only replicas.
For more information on deleting directories, see Chapter 9.

Access Rights

You need write access to the clearinghouse that stores the master replica of the directory and delete
access to the directory itself.

142

Chapter 11. DECdns Control Program Command Dictionary

Example
The following command deletes the .eng directory.

dns> delete directory .eng

delete dns clerk
delete dns clerk — Deletes the DECdns clerk on the specified node.

Format
delete [node node-id] dns clerk

Arguments
node-id

The name of the node. If you do not specify a node name, the local node is assumed.

Description
This command deletes the DECdns clerk on the specified node and reclaims all clerk system resources.
You must disable a clerk before you delete it (see the disable dns clerk command). You can
also enter this command through the NCL interface. For more information on managing clerks, see
Chapter 6.

Privileges Required

You must have the NET$MANAGE rights identifier.

Example
The following command deletes a clerk running on node .mfg.umbriel.

dns> delete node .mfg.umbriel dns clerk

delete dns clerk known namespace
delete dns clerk known namespace — Removes a namespace from a specified clerk's list of known
namespaces.

Format
delete [node node-id] dns clerk known namespace identifier

Arguments
node-id

The name of the node. If you do not specify a node name, the local node is assumed.

143

Chapter 11. DECdns Control Program Command Dictionary

identifier

The identifier of the namespace. This is a required argument. You can use one of the following:

name The name of the namespace. The name argument may be different from the
nickname if the nickname is ambiguous.

nscts The value of the namespace creation timestamp (NSCTS) assigned to the specified
namespace when it was created. The format is 14 pairs of hexadecimal digits (xx-xx).

Description
This command deletes a namespace from the list of namespaces cached by the specified DECdns clerk.
This command is useful if a namespace becomes obsolete, or if ambiguous namespace nicknames exist in
the clerk's cache. You can also enter this command through the NCL interface.

Note

You are not permitted to delete the known namespace that is currently the default namespace (that is, the
one shown by show dns clerk default namespace).

Privileges Required

You must have the NET$MANAGE rights identifier.

Example
The following command removes the namespace with the name jns from the clerk's list of known
namespaces.

dns> delete dns clerk known namespace jns

delete dns clerk manual nameserver
delete dns clerk manual nameserver — Removes the knowledge of a server that exists across a WAN
from the local clerk's cache.

Format
delete [node node-id] dns clerk manual nameserver name

Arguments
node-id

The name of the node on which the clerk exists. If you do not specify a node name, the local node is
assumed.

name

The simple name of the manual name server entity you want to delete.

144

Chapter 11. DECdns Control Program Command Dictionary

Description
This command removes the knowledge of a server that exists across a WAN from the local clerk's cache.
You can also enter this command through the NCL interface.

Privileges Required

You must have the NET$MANAGE rights identifier.

Example
The following command removes knowledge of server nrl from the clerk cache on node
.mfg.umbriel.

dns> delete node .mfg.umbriel dns clerk manual nameserver nrl

delete dns server
delete dns server — Deletes the DECdns server on the specified node.

Format
delete [node node-id] dns server

Arguments
node-id

The name of the node. If you do not specify a node name, the local node is assumed.

Description
This command deletes the DECdns server on the specified node and reclaims all server resources except
clearinghouses, which remain. You must disable a server before you can delete it. You can also enter this
command through the NCL interface. For more information on managing servers, see Chapter 6.

Privileges Required

You must have the NET$MANAGE rights identifier.

Example
The following command deletes the DECdns server from node .mfg.polaris.

dns> delete node .mfg.polaris dns server

delete dns server clearinghouse
delete dns server clearinghouse — Deletes a clearinghouse on the specified node. You must disable a
clearinghouse before you can delete it. You must disable and delete the clearinghouse from the local
node only.

145

Chapter 11. DECdns Control Program Command Dictionary

Format
delete dns server clearinghouse clearinghouse-name

Arguments
clearinghouse-name

The full name of the clearinghouse.

Description
This command deletes a clearinghouse from the specified node. You can also enter this command
through the NCL interface. You must disable a clearinghouse before you can delete it. This command
also automatically deletes all read-only replicas from the clearinghouse when executed. DECdns does not
permit you to delete a clearinghouse that contains a master replica. See Chapter 9 for more information
about handling master replicas when deleting a clearinghouse.

Note

Although deleting a clearinghouse automatically deletes the clearinghouse's replicas, VSI recommends
that, before deleting the clearinghouse, you manually delete each read-only replica. In this way, should
the clearinghouse deletion fail, none of these unwanted replicas are left available for data requests. Be
sure not to delete the replica closest to the root, as required by the clearinghouse rules explained in
Appendix B.

Access Rights

You must have delete access to the directories in the clearinghouse as well as to the clearinghouse.

Privileges Required

You must have the NET$MANAGE rights identifier.

Example
The following command deletes a clearinghouse named .sales.ny_ch:

dns> delete dns server clearinghouse .sales.ny_ch

delete group
delete group — Deletes a group from the namespace.

Format
delete group group-name

Arguments
group-name

The full name of the group.

146

Chapter 11. DECdns Control Program Command Dictionary

Description
This command deletes a group from the namespace. The group does not have to be empty to be deleted.
For more information on managing groups, see Chapter 5.

Access Rights

You must have delete access to the group you are deleting.

Example
The following command deletes the group named .sales_group1 from the .sales directory.

dns> delete group .sales.sales_group1

delete link
delete link — Deletes a soft link.

Format
delete link link-name

Arguments
link-name

The full name of the soft link.

Description
This command deletes a soft link. For more information on managing soft links, see Chapter 9.

Access Rights

You must have delete access to the soft link you want to delete.

Example
The following command deletes the soft link named .sales.asia.

dns> delete link .sales.asia

delete object
delete object — Deletes an object entry from the namespace.

Format
delete object object-name

147

Chapter 11. DECdns Control Program Command Dictionary

Arguments
object-name

The full name of the object entry.

Description
This command deletes an object entry from the namespace. This task is usually done through the
client application that created the object entry, except under specific circumstances (for example, if the
application is obsolete or no longer has access to the namespace).

Access Rights

You must have delete access to the object entry that you want to delete.

Example
The following command deletes the object entry .floor1pr2 from the directory .sales.east.

dns> delete object .sales.east.floor1pr2

delete replica
delete replica — Removes a replica of a directory from a clearinghouse.

Format
delete replica directory-name [at] clearinghouse clearinghouse-name

Arguments
directory-name

The full name of the directory.

clearinghouse-name

The full name of the clearinghouse.

Description
This command removes a replica of a directory from a clearinghouse. Use this command to delete read-
only replicas. Use the delete directory command to delete the master replica and the entire
directory. For more information on deleting replicas, see Chapter 7.

Access Rights

You must have control access to the directory whose replica you intend to delete, write access to the
clearinghouse from which you are deleting the replica, and write and delete access to the directory's
parent.

148

Chapter 11. DECdns Control Program Command Dictionary

Example
The following command deletes a replica of the .mfg directory from the .paris1_ch clearinghouse.

dns> delete replica .mfg at clearinghouse .paris1_ch

delete subtree
delete subtree — Deletes a specified directory and its contents, or a hierarchy of directories and their
contents.

Format
delete subtree tree-name [...] [exclude directory directory-name]

Arguments
tree-name

The name of the topmost directory in the subtree. The recursion notation causes the change to
additionally apply to all child directories and their contents. When used without the optional
recursion notation, the change applies only to the specified directory. This then behaves just like the
delete directory command in that the directory must be empty to be deleted.

directory-name

The full name of a directory that you want to exclude from deletion. When you exclude a directory,
its parent directory is preserved.

Description
This command deletes the specified directory and its contents, or a hierarchy of directories and their
contents. Before using this command, you must delete all read-only replicas and all clearinghouse
object entries in any of the affected directories. You can use the optional recursion notation (...)
to additionally delete all child directories and their contents. The optional exclude directory
argument lets you specify one or more directories to exclude from deletion. Specify multiple directories
in the following format:

exclude directory directory-name, directory directory-name, directory
directory-name

Access Rights

You must have read, write, and delete access to the directory you specify as well as the contents of the
directory. If you use the command recursively, you also need read, write, and delete access to all child
directories (and their contents) of the directory you specify.

Example
The following command deletes the .pjl directory and its contents as well as all of its child directories
and their contents.

149

Chapter 11. DECdns Control Program Command Dictionary

dns> delete subtree .pjl...

directory child
directory child — Displays a list of all the child pointers whose names match the specified child name.

Format
directory child child-name [prepositional-phrase]

Arguments
child-name

A specific child name or a complete directory specification followed by a wildcard template for
matching simple names of child pointers.

prepositional-phrase

A phrase that affects the destination or content of command output. You can use one or more
prepositional phrases. Be sure to precede each of the following prepositional phrases with a comma
and a space:

with attribute [relop]
value

When used with a wildcard child-name, limits the output only to
directories whose specified attributes have certain values.

to file[=]filename Redirects the output to filename. If the file does not exist, this
command creates it. If the file does exist, its contents are overwritten.

to extend
file[=]filename

Appends the output to an existing filename. If the file does not exist, it
is created.

to terminal Directs the output to the terminal. This is the default option.

Description
This command displays a list of all the child pointers whose names match the specified entity name.

Example
The following command displays all child pointers named in the .paris directory.

dns> directory child .paris.*

The following command displays all child pointers whose names begin with the string .z in the
.sales directory:

dns> directory child .sales.z*

 DIRECTORY
 CHILD NRL:.sales.z*
 AT 17-APR-2019:16:32:02
zba
zeh

150

Chapter 11. DECdns Control Program Command Dictionary

zpl
zsj

directory clearinghouse
directory clearinghouse — Displays a list of all the clearinghouses whose names match the specified
clearinghouse name.

Format
directory clearinghouse clearinghouse-name [prepositional-phrase]

Arguments
clearinghouse-name

A specific clearinghouse full name or a complete directory specification followed by a wildcard
template for matching simple names of clearinghouses.

prepositional-phrase

A phrase that affects the destination or content of command output. You can use one or more
prepositional phrases. Be sure to precede each of the following prepositional phrases with a comma
and a space:

with attribute [relop]
value

When used with a wildcard clearinghouse-name, limits the output only
to directories whose specified attributes have certain values.

to file[=]filename Redirects the output to filename. If the file does not exist, this
command creates it. If the file does exist, its contents are overwritten.

to extend
file[=]filename

Appends the output to an existing filename. If the file does not exist, it
is created.

to terminal Directs the output to the terminal. This is the default option.

Description
This command displays a list of the clearinghouses whose names match the specified name.

Example
The following command displays all clearinghouses named in the root directory (.).

dns> directory clearinghouse .*

The following command displays all clearinghouses named in the .pjl directory.

dns> directory clearinghouse .pjl.*

 DIRECTORY
 CLEARINGHOUSE NRL:.pjl.*
 AT 17-APR-2019:16:35:01

151

Chapter 11. DECdns Control Program Command Dictionary

ares_ch
athena_ch
mars_ch

directory directory
directory directory — Displays the names of all the directories whose names match the specified
directory name.

Format
directory directory directory-name [prepositional-phrase]

Arguments
directory-name

A specific directory name or a complete directory specification followed by a wildcard template for
matching simple names of directories.

prepositional-phrase

A phrase that affects the destination or content of command output. You can use one or more
prepositional phrases. Be sure to precede each of the following prepositional phrases with a comma
and a space:

with attribute [relop]
value

When used with a wildcard directory-name, limits the output only to
directories whose specified attributes have certain values.

to file[=]filename Redirects the output to filename. If the file does not exist, this
command creates it. If the file does exist, its contents are overwritten.

to extend
file[=]filename

Appends the output to an existing filename. If the file does not exist, it
is created.

to terminal Directs the output to the terminal. This is the default option.

Description
This command displays the names of all the directories whose names match the specified directory
name.

Example
The following command displays the names of all the directories whose names are stored in the
directory .sales.

dns> directory directory .sales.*

The following command displays the names of all the directories whose names begin with the string
.ad*.

dns> directory directory .ad*

152

Chapter 11. DECdns Control Program Command Dictionary

 DIRECTORY
 DIRECTORY NRL:.ad*
 AT 17-APR-2019:16:40:02
adb
admin
adx

directory group
directory group — Displays a list of groups whose names match the specified group name.

Format
directory group group-name [prepositional-phrase]

Arguments
group-name

A specific group name or a complete directory specification followed by a wildcard template for
matching simple names of groups.

prepositional-phrase

A phrase that affects the destination or content of command output. You can use one or more
prepositional phrases. Be sure to precede each of the following prepositional phrases with a comma
and a space:

with attribute [relop]
value

When used with a wildcard group-name, limits the output only to
directories whose specified attributes have certain values.

to file[=]filename Redirects the output to filename. If the file does not exist, this
command creates it. If the file does exist, its contents are overwritten.

to extend
file[=]filename

Appends the output to an existing filename. If the file does not exist, it
is created.

to terminal Directs the output to the terminal. This is the default option.

Description
This command displays a list of the groups whose names match the specified group name.

Example
The following command displays all the groups whose names are stored in the directory .dist.

dns> directory group .dist.*

The following command displays all the groups whose names begin with the string .d.

dns> directory group .d*

153

Chapter 11. DECdns Control Program Command Dictionary

 DIRECTORY
 GROUP NRL:.d*
 AT 17-APR-2019:16:44:02
des_registrar
dis_dev
drx_servers

directory link
directory link — Displays a list of soft links whose names match the link name that you specify.

Format
directory link link-name [prepositional-phrase]

Arguments
link-name

A specific name of a soft link or a complete directory specification followed by a wildcard template
for matching simple names of soft links.

prepositional-phrase

A phrase that affects the destination or content of command output. You can use one or more
prepositional phrases. Be sure to precede each of the following prepositional phrases with a comma
and a space:

with attribute [relop]
value

When used with a wildcard link-name, limits the output only to
directories whose specified attributes have certain values.

to file[=]filename Redirects the output to filename. If the file does not exist, this
command creates it. If the file does exist, its contents are overwritten.

to extend
file[=]filename

Appends the output to an existing filename. If the file does not exist, it
is created.

to terminal Directs the output to the terminal. This is the default option.

Description
This command displays the names of soft links whose names match the name that you specify.

Example
The following command displays all the soft links whose names begin with the .admin.new.link1
string.

dns> directory link .admin.new.link1*

The following command displays all the soft links whose names begin with the the string .c*.

dns> directory link .c*

154

Chapter 11. DECdns Control Program Command Dictionary

 DIRECTORY
 SOFTLINK NRL:.c*
 AT 17-APR-2019:16:44:30
crx_conf
crx_notes

directory object
directory object — Displays a list of all the object entries (including groups and clearinghouse object
entries) whose names match the object entry name that you specify.

Format
directory object object-name [prepositional-phrase]

Arguments
object-name

A specific object entry name or a complete directory specification followed by a wildcard template
for matching simple names of object entries.

prepositional-phrase

A phrase that affects the destination or content of command output. You can use one or more
prepositional phrases. Be sure to precede each of the following prepositional phrases with a comma
and a space:

with attribute [relop]
value

When used with a wildcard object-name, limits the output only to
directories whose specified attributes have certain values.

to file[=]filename Redirects the output to filename. If the file does not exist, this
command creates it. If the file does exist, its contents are overwritten.

to extend
file[=]filename

Appends the output to an existing filename. If the file does not exist, it
is created.

to terminal Directs the output to the terminal. This is the default option.

Description
This command displays a list of all the object entries (including groups and clearinghouse object entries)
whose names match the object name that you specify.

Example
The following command displays all the object entries in the directory .eng.

dns> directory object .eng.*

 DIRECTORY
 OBJECT NRL:.eng.*
 AT 17-APR-2019:16:51:33

155

Chapter 11. DECdns Control Program Command Dictionary

ny1_ch
ny1_admin
paris1_ch
perth1_ch
tokyo1_ch
tokyo1_sales

disable dns clerk
disable dns clerk — Stops the DECdns clerk on the specified node.

Format
disable [node node-id] dns clerk

Arguments
node-id

The name of the node. If you do not specify a node name, the local node is assumed.

Description
This command stops the DECdns clerk on the specified node, causing all active communication with
any DECdns server to be aborted and all client calls in progress to fail with an error. You can also enter
this command through the NCL interface. The clerk cache is copied to disk. When this procedure has
completed, the clerk's state attribute is set to off. For more information on managing clerks, see
Chapter 6.

Note

If you are disabling a clerk on a node where a server is running, make sure you disable the server first.

Privileges Required

You must have the NET$MANAGE rights identifier.

Example
The following command stops the DECdns clerk running on node .mfg.miranda.

dns> disable node .mfg.miranda dns clerk

disable dns server
disable dns server — Stops the DECdns server on the specified node.

Format
disable [node node-id] dns server

156

Chapter 11. DECdns Control Program Command Dictionary

Arguments
node-id

The name of the node. If you do not specify a node name, the local node is assumed.

Description
This command stops the DECdns server on the specified node. The server is disabled after all
transactions in process have completed and an updated clearinghouse checkpoint file has been written to
disk. You can also enter this command through the NCL interface. When this procedure is completed,
the server's state attribute is set to off.

Depending on the disk speed, memory, and the size of the database (in particular, the checkpoint file),
the disable dns server command can take up to 30 minutes. For more information on managing
servers, see Chapter 6.

Privileges Required

You must have the NET$MANAGE rights identifier.

Example
The following command stops the DECdns server running on the .eng.abc node.

dns> disable node .eng.abc dns server

disable dns server clearinghouse
disable dns server clearinghouse — Disables the specified clearinghouse. VSI recommends that you issue
this command locally only.

Format
disable dns server clearinghouse clearinghouse-name

Arguments
clearinghouse-name

The name of the clearinghouse being disabled.

Description
This command disables the specified clearinghouse on the local node. When this procedure is completed,
the clearinghouse's state attribute is set to off. You can also enter this command through the NCL
interface. For more information on managing clearinghouses, see Chapter 6.

Privileges Required

You must have the NET$MANAGE rights identifier.

157

Chapter 11. DECdns Control Program Command Dictionary

Example
The following command disables the .ny_ch clearinghouse on the local node:

dns> disable dns server clearinghouse .ny_ch

dump dns clerk cache
dump dns clerk cache — Dumps the clerk cache to the terminal for use in solving DECdns problems.

Format
dump dns clerk cache

Description
This command dumps the clerk cache to the terminal for use in solving DECdns problems. You can only
dump a local clerk's cache.

Privileges Required

You must have CMKRNL privileges.

Example
The following command dumps the clerk cache running on the local node.

dns> dump dns clerk cache

dump subtree
dump subtree — Dumps a subtree into an interim file.

Format
dump subtree tree-name [...] into file filename [exclude entry-type]

Arguments
tree-name

The name of the topmost directory in the subtree. When used without the optional recursion
notation, the dump applies only to the specified directory and its contents. The recursion notation
causes the command to additionally dump all child directories and their contents.

filename

The name of the interim file to which the subtree is dumped.

158

Chapter 11. DECdns Control Program Command Dictionary

entry-type

One or more of the following types of entries to exclude from the dump: objects, links, or specific
directories. Multiple directories can be excluded in a single command. Use any combination of the
following entry-type specifiers, separating multiple arguments with commas:

objects
links
directory directory-name

Description
This command dumps a directory and its contents into an interim file. Use the optional recursion flag
(...) to additionally dump all child directories and their contents. Use the optional exclude argument
to omit links, objects, or specific directories from the dump file. Use the file name extension .dat as a
convention for interim file names. This command is useful for backing up a directory or as the first step
of the merging directories procedure. See Section 9.4 for more information about merging directories.

Access Rights

You must have read access to the specified directory and its contents. If you use the command
recursively, you also need read access to all child directories (and their contents) of the directory you
specify.

Example
The following command creates an interim file named pjl.dat that contains the .pjl directory and
its contents.

dns> dump subtree .pjl into file pjl.dat

enable dns clerk
enable dns clerk — Starts the DECdns clerk on the specified node.

Format
enable [node node-id] dns clerk

Arguments
node-id

The name of the node. If you do not specify a node name, the local node is assumed.

Description
This command starts the DECdns clerk on the specified node. You can also enter this command through
the NCL interface. When this procedure is complete, the clerk's state attribute is set to on. For more
information on managing clerks, see Chapter 6.

159

Chapter 11. DECdns Control Program Command Dictionary

Privileges Required

You must have the NET$MANAGE rights identifier.

Example
The following command starts the DECdns clerk on the local node.

dns> enable dns clerk

enable dns server
enable dns server — Starts the DECdns server on the specified node.

Format
enable [node node-id] dns server

Arguments
node-id

The name of the node. If you do not specify a node name, the local node is assumed.

Description
This command starts the DECdns server on the specified node. You can also enter this command
through the NCL interface. All clearinghouses on the server are automatically enabled when this
command is issued. When this procedure is completed, the server's state attribute is set to on.

Depending on the disk speed, memory, and the size and state of the database (in particular, the
checkpoint file), the enable dns server command can take several minutes. If the previous
server shutdown was not completed correctly (for example, the system crashed during the process), this
command can take up to 30 minutes. For more information on managing servers, see Chapter 6.

Privileges Required

You must have the NET$MANAGE rights identifier.

Example
The following command starts the local DECdns server.

dns> enable dns server

enable dns server clearinghouse
enable dns server clearinghouse — Enables the specified clearinghouse on the specified node.

Format
enable [node node-id] dns server clearinghouse clearinghouse-name

160

Chapter 11. DECdns Control Program Command Dictionary

Arguments
node-id

The name of the node. If you do not specify a node name, the local node is assumed.

clearinghouse-name

The name of the clearinghouse being enabled. There is no default.

Description
This command enables the specified clearinghouse on the specified node. When this procedure is
complete, the clearinghouse's state attribute is set to on. Because the enable dns server
command auto-enables clearinghouses known to a server, this command is only necessary when a
clearinghouse has specifically been disabled (see the disable dns server clearinghouse
command). You can also enter this command through the NCL interface. For more information on
managing clearinghouses, see Chapter 6.

Privileges Required

You must have the NET$MANAGE rights identifier.

Example
The following command enables the .ny_ch clearinghouse on the local node.

dns> enable dns server clearinghouse .ny_ch

initialize dns server
initialize dns server — Creates a new namespace, assigns it the specified nickname, creates a
clearinghouse, and places the master replica of the root directory in that clearinghouse.

Format
initialize [node node-id] dns server nickname namespace-nickname, owner name, root
clearinghouse clearinghouse-name

Arguments
node-id

The name of the node. If you do not specify a node name, the local node is assumed.

namespace-nickname

The nickname of the namespace. You must specify the name; there is no default name.

name

The simple name of a user or account to be given initial access to the entities created with this
command. Based on the name that you must supply, the software generates ACEs that grant the user
or account read, write, delete, test, and control access to the first clearinghouse in the namespace and

161

Chapter 11. DECdns Control Program Command Dictionary

to the root directory. The principal name in the ACEs is derived by attaching the full name of the
node where the command is executed to the front of the simple name that you supply.

clearinghouse-name

The simple name of the first clearinghouse in the namespace. You must specify the name; there is no
default name.

Description
This command creates a new namespace, assigns it the specified nickname, creates a clearinghouse, and
places the master replica of the root directory in that clearinghouse. Initial access to the clearinghouse
and root directory is given to the specified user, who can then define an access control policy. You can
also enter this command through the NCL interface.

Note

This command should ordinarily be executed only by the DECnet configuration procedure. This
operation can only be performed once in the lifetime of a namespace. For details on creating and
initializing a namespace, see Section 10.6.

Privileges Required

You must have the NET$MANAGE rights identifier.

Example
The following command creates a namespace, assigns it the nickname jns, gives all access rights to
the root account, and creates the clearinghouse paris_ch, placing the master replica of the root
directory in that clearinghouse.

dns> initialize dns server nickname jns, owner root, -
_> root clearinghouse paris_ch

merge file
merge file — Merges the contents of an interim file that was created with the dump subtree
command into an existing subtree.

Format
merge file file ifile into subtree tree-name [failures to file [=] filename]

Arguments
ifile

The name of an interim file that contains a directory and its contents, or a hierarchy of directories
and their contents.

tree-name

The name of the topmost directory in the subtree.

162

Chapter 11. DECdns Control Program Command Dictionary

filename

The name of a file that contains names that could not be merged.

Description
This command merges the contents of an interim file that was created using the dump subtree
command into an existing subtree whose top directory is specified in tree-name. If the target tree-
name does not exist, the command returns an error and the user must use the create directory
command to create it. The failures to file = filename argument specifies a file name
to contain the names that could not be merged. For more information on merging directories, see
Chapter 9.

Access Rights

You must have control and write access to the directory you specify as well as the contents of the
directory.

Example
The following command merges the interim file branch1.dat with the .pjl directory.

dns> merge file branch1.dat into subtree .pjl

merge subtree
merge subtree — Dumps a directory or subtree and its contents into an interim file and then merges the
contents of that file into an existing subtree.

Format
merge subtree old-tree-name [...] [into] subtree new-tree-name [exclude entry-type]

Arguments
old-tree-name

The name of the topmost directory in the subtree that is being changed. When used without the
optional recursion notation (...), only the specified directory and its contents are merged. The
recursion notation additionally causes all child directories (and their contents) to merge into the
target subtree.

new-tree-name

The name of the topmost directory in the target subtree.

entry-type

One or more of the following types of entries to exclude from the change: objects, links, or
directories. Multiple directories can be excluded in a single command. Use any combination of the
following entry-type specifiers, separating multiple arguments with commas:

objects

163

Chapter 11. DECdns Control Program Command Dictionary

links
directory directory-name

Description
This command dumps a subtree into an interim file and then merges the contents of that file into an
existing subtree. Use the recursion flag (...) to merge an entire subtree and its contents. If you do not
use the recursion flag, only the specified directory and its contents are dumped and merged into the
target subtree.

This command is useful when all clearinghouses are available for every directory in both subtrees and
when no duplicate names exist in source and target directories. If a duplicate name is detected, or if any
affected clearinghouse cannot be reached while the merge subtree command is in progress, the
command completes what it can. In this situation, a named interim file or failures file with a randomly
generated name is created in the current directory. The directory new-tree-name must already exist. If it
does not, the command returns an error and you must use the create directory or recreate
directory command to create it.

Access Rights

You must have control and write access to the directory you specify as well as the contents of the
directory. If you use the command recursively, you also need control and write access to all child
directories (and their contents) of the directory you specify.

Example
The following command merges the contents of the .sth directory with the .pjl directory.

dns> merge subtree .sth into subtree .pjl

recreate directory
recreate directory — Creates a duplicate directory in the source subtree as a new directory in the target
subtree.

Format
recreate directory directory-name [as] directory newdirectory-name

Arguments
directory-name

The full name of the directory.

newdirectory-name

The new name of the copy of the directory.

Description
This command creates a duplicate directory in the same subtree as a new directory in the target subtree.
This is useful for resolving duplicate name conflicts that result from a merge of two subtrees. The

164

Chapter 11. DECdns Control Program Command Dictionary

command duplicates the directory only, not its contents. Its writable attribute values (DNS$ACS, DNS
$Convergence, and DNS$UpgradeTo) are retained.

Note

Although all original access control entries (ACEs) are retained, the new directory also inherits all ACEs
that may be propagated from the new parent directory in the target subtree. The principal executing this
command is granted full access to the new directory.

The following attribute values are updated and do not match the values of the original directory:
DNS$AllUpTo, DNS$CTS, DNS$DirectoryVersion, DNS$InCHName, DNS
$ParentPointers, DNS$Replicas, and DNS$UTS. This command does not delete or modify
the source directory.

Access Rights

You must have read, write, and delete access to the directory in which you intend to re-create the source
directory.

Example
The following command re-creates the existing directory .sales.quar1 as a new directory named
.mkt.quar1.

dns> recreate directory .sales.quar1 as directory .mkt.quar1

recreate link
recreate link — Creates a duplicate soft link in the source subtree as a new soft link in the target subtree.

Format
recreate link link-name [as] link newlink-name

Arguments
link-name

The full name of the soft link.

newlink-name

The new name of the copy of the soft link. If you specify the name of an existing directory in the
target subtree, the soft link is re-created in that directory with its original link name.

Description
This command creates a copy of a soft link with a new full name. This is useful for resolving duplicate
name conflicts that result from a merge of two subtrees. The soft link's writable attribute values are
retained, but DNS$CTS and DNS$UTS attribute values are not preserved.

165

Chapter 11. DECdns Control Program Command Dictionary

Note

Although all original access control entries (ACEs) are retained, the new soft link also inherits all ACEs
that may be propagated from the new parent directory in the target subtree. The principal executing this
command is granted full access to the new soft link.

Asterisk wildcards are acceptable in both arguments. This command does not modify or delete the
source soft link. For more information on managing soft links, see Chapter 9.

Access Rights

You must have read, write, and delete access to the directory in which you intend to re-create the soft
link.

Example
The following command re-creates all soft links that exist in the .sales directory as new soft links in
the .mkt directory.

dns> recreate link .sales.* as link .mkt.*

recreate object
recreate object — Creates a duplicate object entry in the source subtree as a new object entry in the
target subtree.

Format
recreate object object-name [as] object newobject-name

Arguments
object-name

The full name of the object entry.

newobject-name

The new name of the copy of the object entry. If you specify the name of an existing directory in the
target subtree, the object is re-created in that directory with its original object name.

Description
This command creates a copy of an object entry with a new full name. This is useful for resolving
duplicate name conflicts that result from a merge of two subtrees. The object's writable attribute values
are retained, but DNS$CTS and DNS$UTS attribute values are not preserved.

Note

Although all original access control entries (ACEs) are retained, the new object entry also inherits
all ACEs that may be propagated from the new parent directory in the target subtree. The principal
executing this command is granted full access to the new object entry.

166

Chapter 11. DECdns Control Program Command Dictionary

Asterisk wildcards are acceptable in both arguments. This command does not modify or delete the
source object entry.

Access Rights

You must have read, write, and delete access to the directory in which you intend to re-create the object
entry.

Example
The following command re-creates the existing object entry .sth.obj2 as a new object entry named
.pjl.obj4.

dns> recreate object .sth.obj2 as object .pjl.obj4

remove clearinghouse access
remove clearinghouse access — Deletes an access control entry (ACE) from a clearinghouse's access
control set (ACS).

Format
remove clearinghouse clearinghouse-name access principal

Arguments
clearinghouse-name

The name of the clearinghouse from which access is being deleted.

principal

The principal for whom access is being removed. You can specify a principal as a group name,
a collection of principals denoted with wildcards (for example, .org.name*), or an individual
name in the format nodename.username. To specify a DNS Version 1-style principal, use the format
nodename::username.

Description
This command deletes an access control entry from a clearinghouse's access control set (ACS).

Access Rights

You must have control access to the clearinghouse whose ACS is being modified.

Example
The following command removes access for the user group .testgroup from the .paris2_ch
clearinghouse.

dns> remove clearinghouse .paris2_ch access .testgroup

167

Chapter 11. DECdns Control Program Command Dictionary

remove directory access
remove directory access — Deletes an access control entry (ACE) from a directory's access control set
(ACS).

Format
remove directory directory-name access principal [as default]

Arguments
directory-name

The full name of the directory.

principal

The principal for whom access is being removed. You can specify a principal as a group name,
a collection of principals denoted with wildcards (for example, .org.name*), or an individual
name in the format nodename.username. To specify a DNS Version 1-style principal, use the format
nodename::username.

Description
This command removes an access control entry from a directory's access control set. The optional
argument as default indicates the ACE to be deleted is a default ACE. If this argument is not used,
DECdns assumes the ACE is associated with the directory.

Access Rights

You must have control access to the directory whose ACS is being modified.

Example
The following command removes the default ACE for user smith on node .admin from the .sales
directory.

dns> remove directory .sales access .admin.smith as default

remove group access
remove group access — Deletes an access control entry (ACE) from a group's access control set (ACS).

Format
remove group group-name access principal

Arguments
group-name

The full name of the group from which an ACE is being removed.

168

Chapter 11. DECdns Control Program Command Dictionary

principal

The principal whose access is being removed. You can specify a principal as a group name, a
collection of principals denoted with wildcards (for example, .org.name*), or an individual
name in the format nodename.username. To specify a DNS Version 1-style principal, use the format
nodename::username.

Description
This command deletes an access control entry from a group's access control set.

Access Rights

You must have write access to the group from which you are removing access.

Example
The following command removes the access rights of user smith on node .sales.deneb from the
administrator group .dns_admin.

dns> remove group .dns_admin access .sales.deneb.smith

remove group member
remove group member — Deletes one member from an existing group.

Format
remove group group-name member [=] principal [as group]

Arguments
group-name

The full name of a group.

principal

The principal who is being deleted from the group. You can specify a principal as as a collection
of principals denoted with wildcards (for example, .org.name*), or an individual name in
the format nodename.username. To specify a DNS Version 1-style principal, use the format
nodename::username. Use the phrase as group to specify that the member you are removing is
itself a group.

Description
This command deletes one member from an existing group.

Access Rights

You must have write access to the group from which you are removing a member.

169

Chapter 11. DECdns Control Program Command Dictionary

Example
The following command removes the user smith on node .sales.orion from the group .admin.

dns> remove group .admin member .sales.orion.smith

remove link access
remove link access — Deletes an access control entry (ACE) from a soft link's access control set (ACS).

Format
remove link link-name access principal

Arguments
link-name

The full name of the soft link.

principal

The principal for whom access is being removed. You can specify a principal as a group name,
a collection of principals denoted with wildcards (for example, .org.name*), or an individual
name in the format nodename.username. To specify a DNS Version 1-style principal, use the format
nodename::username.

Description
This command deletes an access control entry from a soft link's access control set.

Access Rights

You must have control access to the soft link whose ACS is being modified.

Example
The following command removes access for the user group .testgroup from the .sales.asia
soft link.

dns> remove link .sales.asia access .testgroup

remove object
remove object — Deletes a value from an application-defined, set-valued attribute of an object entry.

Format
remove object object-name attribute-name [=] attribute-value

170

Chapter 11. DECdns Control Program Command Dictionary

Arguments
object-name

The full name of the object entry.

attribute-name

The simple name of the attribute. Specify your own attribute name or one of the DECdns-defined
attributes. Separate multiple attributes with commas.

attribute-value

The value of a particular attribute. You can express the values of application-defined attributes as
quoted strings, "ps"; hexadecimal strings, %x FF00EE; or concatenations of them in parentheses,
(%x0103 "ps").

Description
This command deletes a value from an application-defined, set-valued attribute of an object entry. If
the value is not presently defined for the attribute, no error message is generated. Usually this task is
accomplished through the client application.

Access Rights

You must have write access to the object entry whose attribute value you intend to remove or have
control access to the parent directory.

Example
The following command removes the value of "ps" from the set-valued attribute printcap of the
object entry named .sales.east.deskprinter.

dns> remove object .sales.east.deskprinter printcap "ps"

remove object access
remove object access — Deletes an access control entry (ACE) from an object entry's access control set
(ACS).

Format
remove object object-name access principal

Arguments
object-name

The full name of the object entry.

principal

The principal for whom access is being removed. You can specify a principal as a group name,
a collection of principals denoted with wildcards (for example, .org.name*), or an individual

171

Chapter 11. DECdns Control Program Command Dictionary

name in the format, nodename.username. To specify a DNS Version 1-style principal, use the format
nodename::username.

Description
This command deletes an access control entry from an object entry's access control set.

Access Rights

You must have control access to the object entry whose ACS is being modified.

Example
The following command removes access for user smith on node .sales.orion from the object
entry .sales.work_disk2.

dns> remove object .sales.work_disk2 access .sales.orion.smith

remove subtree access
remove subtree access — Removes an access control entry (ACE) from the access control set (ACS) of a
directory and its contents, or from an entire subtree.

Format
remove subtree tree-name [...] access principal [exclude entry-type]

Arguments
tree-name

The name of the topmost directory in the subtree. When used without the optional recursion
notation, the change applies only to the specified directory and the links and objects in that
directory. The recursion notation causes the change to additionally apply to all child directories and
their contents.

principal

The principal whose ACE is being removed. Principals can be specified as a group name or an
individual name in the format nodename.user. To specify a DNS Version 1-style principal, use the
format nodename::username.

entry-type

One or more of the following types of entries to exclude from the change: objects, links, or
directories. You can exclude multiple directories with a single command. Use any combination of
the following entry-type specifiers, separating multiple arguments with commas:

objects
links
directory directory-name

172

Chapter 11. DECdns Control Program Command Dictionary

Description
This command removes an ACE from the access control set of a particular directory (and its contents)
or from an entire subtree of directories. You can use the optional recursion notation (...) to modify the
ACEs associated with all the child directories (and their contents). You can use the optional exclude
argument to restrict the type of entries affected by this command. You can also use exclude with the
recursion notation to prevent certain directories from being processed.

Access Rights

You must have control and write access to the directory you specify as well as to the contents of the
directory. If you use the command recursively, you also need control and write access to all child
directories (and their contents) of the directory you specify.

Example
The following command removes all ACEs that specify the principal .pjl.smith from the .admin
directory and all its child directories.

dns> remove subtree .admin... access .pjl.smith

remove subtree group member
remove subtree group member — Removes a specified group member from all groups in the specified
subtree.

Format
remove subtree tree-name [...] group member member-name [exclude directory directory-name]

Arguments
tree-name

The name of the topmost directory in the subtree. When used without the optional recursion
notation, the change applies only to the specified directory and to the links and objects in that
directory. The recursion notation causes the change also to apply to all child directories (and their
contents).

member-name

The name of the group member that you want to remove.

directory-name

One or more directories and their associated ACEs to exclude from the change. You can exclude
multiple directories with a single command. Separate multiple arguments with commas.

Description
This command removes a specified group member specification from all groups in the directory
specified in tree-name. If you use the recursive notation (...), you can use the optional exclude
directory directory-name argument to exclude groups named in a particular directory (and all its

173

Chapter 11. DECdns Control Program Command Dictionary

child directories) from group member modification. You can exclude multiple directories in a single
command. Specify multiple directories in the following format:

exclude directory directory-name, directory directory-name, directory
directory-name

Access Rights

You must have control access to the group whose member you intend to modify. If you use the
command recursively, you must have control access to all groups affected by the command.

Example
The following command removes user .pjl.smith from membership in all groups named in the
.admin directory.

dns> remove subtree .admin group member .pjl.smith

replace link
replace link — Deletes an individual soft link and replaces it with a new soft link to redirect lookups
from the original location to the new location.

Format
replace link link-name [with] link newtree-name

Arguments
link-name

The full name of the soft link in its old location.

newtree-name

The full name of the directory into which the soft link has moved.

Description
This command deletes a specified soft link and replaces it with a soft link whose link target is the
corresponding entry in the specified newtree-name directory. This command is useful when you need to
redirect lookups only for a subset of a directory's contents. For more information on managing soft links,
see Chapter 9.

Access Rights

You must have read, write, and delete access to the directory in which you intend to create the soft link.

Example
The following command replaces the soft link .ceb.link1 with a soft link whose link target is the
corresponding entry in the directory .pjl.

dns> replace link .ceb.link1 with link .pjl

174

Chapter 11. DECdns Control Program Command Dictionary

replace object
replace object — Deletes a specified object entry and replaces it with a new soft link whose link target is
the corresponding entry in a new location.

Format
replace object object-name [with] link newtree-name

Arguments
object-name

The full name of the object entry in its old location.

newtree-name

The full name of the directory to which the object entry was moved.

Description
This command deletes a specified object entry and replaces it with a soft link whose link target is the
corresponding entry in the specified newtree-name directory. This command is useful when you need to
redirect lookups only for a subset of a directory's contents.

Access Rights

You must have read, write, and delete access to the directory in which you intend to create the soft link.

Example
The following command replaces the object entry .ceb.obj2 with a soft link whose link target is the
corresponding entry in the directory .pjl.

dns> replace object .ceb.obj2 with link .pjl

replace subtree
replace subtree — Deletes the contents of a subtree that has just been merged or appended to a new
location and replaces the information with soft links whose targets are the corresponding entries in the
new location.

Format
replace subtree tree-name [...] [with] link newtree-name [exclude entry-type]

Arguments
tree-name

The full name of the topmost directory in the subtree.

175

Chapter 11. DECdns Control Program Command Dictionary

newtree-name

The full name of the topmost directory in the target subtree.

entry-type

One or more of the following types of entries to exclude from the change: objects, links, or
directories. Use any combination of the following entry-type specifiers, separating multiple
arguments with commas:

objects
links
directory directory-name

Description
This command is useful after you have merged or appended a subtree that contains clearinghouse object
entries. For all entries except clearinghouse object entries, this command deletes the entries in a directory
specified in tree-name and replaces them with soft links. These soft links redirect lookups of the names
from their old (source) locations to their new (target) locations. Using this command preserves both
the clearinghouse object entry and its enclosing directory while deleting the directory's contents and
replacing each name with an individual soft link. The optional recursion notation (...) also applies the
delete and replace operation to the contents of all child directories of tree-name.

Access Rights

You must have read, write, and delete access to the directory you specify as well as to the contents of the
directory. If you use the command recursively, you also need read, write, and delete access to all child
directories (and their contents) of the directory you specify.

Example
The following command deletes the entries in the directory .sales.quar1 and replaces them with
soft links whose targets are their corresponding entries in .total.quar1 .

dns> replace subtree .sales.quar1 with link .total.quar1

set directory
set directory — Modifies characteristics for the specified directory.

Format
set directory directory-name characteristic

Arguments
directory-name

The full name of the directory to be modified.

characteristic

The name and value of the characteristic to be modified. Specify one or more of the following:

176

Chapter 11. DECdns Control Program Command Dictionary

DNS$Convergence [=] value
DNS$InCHName [=] boolean
DNS$UpgradeTo [=] v.n

Description
This command modifies characteristics for the specified directory. You can specify one or more of the
listed characteristics to be modified. Use a comma to separate characteristics. For more information on
managing directories, see Chapter 7.

Characteristics

DNS$Convergence [=] value

Specifies the degree of consistency among replicas. Specify the value argument as one of the following:

Low The next skulk distributes all DECdns updates that occurred since the previous skulk.
Skulks occur at least once every 24 hours.

Medium DECdns attempts to propagate an update to all replicas. If the attempt fails, the next
scheduled skulk makes the replicas consistent. Skulks occur at least once every 12 hours.

High DECdns attempts to propagate an update to all replicas. If that attempt fails (for example,
if one of the replicas is unavailable), a skulk occurs within one hour. Background skulks
occur at least once every 12 hours. VSI recommends that you use this setting temporarily
(and briefly) because it uses extensive system resources.

By default, every directory inherits the convergence setting of its parent at creation time. The default
setting of the root directory is medium.

DNS$InCHName [=] boolean

Specifies whether a directory or any of its descendants can store clearinghouse names. The boolean
argument can be specified as one of the following:

True The directory or its descendants can store clearinghouse names.
False The directory or its descendants cannot store clearinghouse names. This is the default

value.

DNS$UpgradeTo [=] v.n

Controls the upgrading of a directory from one version of DECdns to another. By modifying this
attribute, you can initiate the upgrading of a directory to a higher version of DECdns. Specify the value
as v.n where v indicates the major version number and n specifies the minor version number. There is
no default.

Access Rights

You must have write access to the directory whose attribute you intend to modify.

Example
The following command sets a low convergence value on the .mfg directory.

dns> set directory .mfg DNS$Convergence = low

177

Chapter 11. DECdns Control Program Command Dictionary

set directory to new epoch
set directory to new epoch — Reconstructs a directory's replica set, allowing you to exclude a replica or
re-specify replica types.

Format
set directory directory-name to new epoch master clearinghouse-name [,read-only
clearinghouse-name] [...] [,exclude clearinghouse-name]

Arguments
directory-name

The full name of the directory.

clearinghouse-name

The name of the clearinghouse in which an individual replica is located. The first clearinghouse-
name specifies where the master replica is stored.

Description
This command reconstructs a directory's replica set, allowing you to exclude a replica or specify new
replica types. You must list each existing replica and indicate whether an existing replica should be
included in or excluded from the new replica set. You can include or exclude more than one replica;
you can respecify zero (0) or more read-only replicas in the format read-only clearinghouse-name,
read-only clearinghouse-name.

Note

When you include a replica, you are not creating it; you are simply specifying it as a member of the
replica set. Use the create replica command to create a replica.

Likewise, when you exclude a replica, you are not deleting it; you are merely excluding it from the skulk
process. DECdns clerks and servers continue to use the replica for lookups.

In general, exclude a replica when it is temporarily unavailable (its clearinghouse is temporarily
unreachable), and you want a skulk to complete successfully. Include the replica again to its replica set
as soon as possible after the clearinghouse on which it resides becomes available. Otherwise, lookup
requests directed to the excluded replica may return outdated information.

Exclude a replica permanently when you are certain it will never be reachable again, such as when
its clearinghouse has been corrupted and is being deleted. To remove a replica of a directory from a
clearinghouse, use the delete replica at clearinghouse command. For more information
on using the set directory to new epoch command, see Section 9.2.

Do not assume that the set directory to new epoch command completed successfully if you
do not get any errors reported. You must check the skulk status on the master replica to determine if the
command completed successfully. To check the skulk status, use the following show replica command:

show replica .directory clearinghouse .master_ch DNS$SkulkStatus

178

Chapter 11. DECdns Control Program Command Dictionary

Be sure to specify the name of the clearinghouse that contains the master replica, as the skulk status is
only available on the master replica.

After you use the set directory to new epoch command, a special skulk of the directory is
automatically initiated. This skulk may require more time to complete than other, regularly scheduled
skulks and will require more network resources.

Access Rights

You must have read and control access to all the replicas in the replica set. To change the type of replica,
you must have write access to the clearinghouse that stores the replica whose type is being changed.

Example
The following command sets a new epoch for the directory .mfg. The master replica is in
.paris_ch, and read-only replicas are in .chicago1_ch and .seattle_ch. The new replica set
excludes the replica in .ny1_ch.

dns> set directory .mfg to new epoch master .paris1_ch, -
_> read-only .chicago1_ch, read-only.seattle_ch, exclude .ny1_ch

set directory to skulk
set directory to skulk — Skulks a directory immediately.

Format
set directory directory-name to skulk

Arguments
directory-name

The full name of the directory.

Description
This command skulks a directory immediately. The DECdns Control Program prompt (dns>) does not
return until the skulk is complete. The amount of time for skulking to complete depends on the number
of replicas of the directory, the number of updates to be propagated through the network, and the speed
of the network connections between the nodes in the replica set. For more information on managing
directories and skulking them, see Chapter 7.

Note

Under certain circumstances, it is possible to receive the dns> prompt before a skulk completes. To
be absolutely positive that a skulk operation has succeeded, you should check the DNS$SkulkStatus
attribute at the master replica for the directory. To check the skulk status, use the following show
replica command:

show replica .directory clearinghouse .master_ch DNS$SkulkStatus

179

Chapter 11. DECdns Control Program Command Dictionary

Be sure to specify the name of the clearinghouse that contains the master replica, as the skulk status is
only available on the master replica.

Access Rights

You must have write access to the directory you intend to skulk.

Example
The following command initiates a skulk on the .admin directory.

dns> set directory .admin to skulk

set dns clerk
set dns clerk — Modifies characteristics of the clerk entity on the specified node.

Format
set [node node-id] dns clerk characteristic

Arguments
node-id

The name of the node. If you do not specify a node name, the local node is assumed.

characteristic

The name and the value of the characteristic to be modified. Specify one or any combination of the
following for the characteristic argument:

Clerk Timeout
[[=]secs]

Specifies the default timeout of client interface calls. If no response is
received in the specified timeout, the clerk generates an error message.
If you use this argument without specifying a value, it is set to the
default (150 seconds).

Default Namespace
[=]name

Designates the known namespace whose name is given as the default
namespace for this clerk. A name must be supplied; there is no default.

Solicit Holddown
[[=]secs]

Specifies the time (in seconds) to wait after initialization before
soliciting advertisements from servers. If you use this argument without
specifying a value, it is set to the default (15 seconds).

Description
This command modifies characteristics of the clerk entity on the specified node. You can specify one
or more of the listed characteristics to be modified. Use a comma to separate characteristics. If you do
not specify a value, the attribute is set to its default if that attribute has a default. You can also enter this
command through the NCL interface. For more information on managing clerks, see Chapter 6.

Privileges Required

You must have the NET$MANAGE rights identifier.

180

Chapter 11. DECdns Control Program Command Dictionary

Example
The following command sets the clerk timeout to a value of 90 seconds for the clerk running on
node .eng.rigel.

dns> set node .eng.rigel dns clerk clerk timeout 90

set dns clerk known namespace
set dns clerk known namespace — Modifies characteristics for the specified known namespace.

Format
set [node node-id] dns clerk known namespace identifier name [=]new-name

Arguments
node-id

The name of the node. If you do not specify a node name, the local node is assumed.

identifier

The identifier of the namespace. This is a required argument. You can use one of the following:

name A simple name for the namespace.
nscts The value of the namespace creation timestamp (NSCTS) that is automatically

assigned when the namespace is created. The format of the NSCTS is 14 pairs of
hexadecimal digits (xx-xx).

new-name

Specifies a new name for this known namespace, in effect, renaming the known namespace.

Description
This command modifies the Name attribute of a known namespace. The nickname attribute is not
changed. You will find this command useful in the case of ambiguous nicknames, where a name was
generated that you want to change. You can also enter this command through the NCL interface.

Privileges Required

You must have the NET$MANAGE rights identifier.

Example
The following command renames the IAF_1 namespace in the local clerk's cache with the new name
NDL.

dns> set dns clerk known namespace IAF_1 name NDL

181

Chapter 11. DECdns Control Program Command Dictionary

set group
set group — Modifies characteristics of the specified group.

Format
set group group-name DNS$GroupRevoke (expiration-time extension-time)

Arguments
group-name

The full name of the group.

expiration-time

A date and time after which a clerk must verify that a principal is still a member of a group. The
value is specified as yyyy-mm-dd-hh:mm:ss.

extension-time

A period of time for which to renew the clerk's reliance on cached data when checking for group
membership. After the specified expiration time, a clerk must verify group membership from the
server. If the test is positive, the clerk adds the extension time to obtain a new expiration date. The
extension time is specified as ddd-hh:mm:ss.

Description
This command modifies the attribute DNS$GroupRevoke for the specified group. This attribute
specifies a timeout that determines how long a positive result from a group membership test operation
may be cached by the clerk that issued the request. For more information on managing groups, see
Chapter 5.

Access Rights

You must have write access to the group whose attribute you intend to modify.

Example
The following command specifies a group membership test of the group .sales.admingroup with
an expiration time of December 31, 2019, that is extended 90 days if the clerk verifies membership.

dns> set group .sales.admingroup DNS$GroupRevoke -
_> (2019-12-31-12:00:00 090-00:00:00)

set link
set link — Modifies characteristics of the specified soft link.

Format
set link link-name characteristic

182

Chapter 11. DECdns Control Program Command Dictionary

Arguments
link-name

The full name of the soft link.

characteristic

The name and the value of the characteristic to be modified. Specify one or both of the following for
the characteristic argument:

DNS$LinkTarget [=] fullname
DNS$LinkTimeout [=] [(expiration-time extension-time)]

Description
This command modifies characteristics of the specified soft link. Enter one or both of the following
characteristics. If you enter both characteristics, separate them with a comma. For more information on
managing soft links, see Chapter 9.

DNS$LinkTarget

Specifies the full name of the directory, object entry, or other soft link to which the soft link points.

DNS$LinkTimeout

Specifies a timeout value after which the soft link is either extended or deleted. The timeout value
contains both an expiration time and an extension time. If a soft link expires and its target entry was
deleted, the soft link is deleted. If the link still points to an existing entry, its life is extended by the
extension time. Specify expiration-time in the format yyyy-mm-dd-hh:mm:ss. The default value of
0 means "never expire." Specify extension-time in the format ddd-hh:mm:ss. The default value is
000-00:00:00.

Access Rights

You must have write access to the soft link you intend to modify.

Example
The following command sets the expiration value of a soft link named .eng.link01 to December 31,
2019, at 12:00 p.m. and sets the soft link's extension value to 90 days.

dns> set link .eng.link01 dns$linktimeout -
_> (2019-12-31-12:00:00 090-00:00:00)

set object
set object — Changes the value of a modifiable, single-valued attribute (including application-defined
attributes) of an object entry.

Format
set object object-name attribute-name [=] attribute-value

183

Chapter 11. DECdns Control Program Command Dictionary

Arguments
object-name

The full name of the object entry. Specify your own attribute name or one of the DECdns-defined
attributes.

attribute-name

The name of the attribute to be modified.

attribute-value

The value of the attribute to be modified. You can express the values of application-defined
attributes as quoted strings, "ps"; hexadecimal strings, %x FF00EE; or concatenations of them in
parentheses (%x0103 "ps").

Description
This command changes the value of a modifiable, single-valued attribute (including application-defined
attributes) of an object entry. This task is usually accomplished through the client application. Use a
comma to separate attributes.

Access Rights

You must have write access to the object entry whose attribute you intend to modify or have control
access to the parent directory.

Example
The following command changes the Q1 attribute of the object entry .sales_records to a value of
2.

dns> set object .sales_records Q1 %x2

show child
show child — Displays current information about the specified child pointer.

Format
show child child-name [attribute-specifier] [prepositional-phrase]

Arguments
child-name

A specific child name or a complete directory specification followed by a wildcard template for
matching simple names of child pointers.

attribute-specifier

The name of an attribute or an attribute group. Enter one or more of the following attribute
specifiers:

184

Chapter 11. DECdns Control Program Command Dictionary

all [attributes]
all characteristics
DNS$ChildCTS
DNS$CTS
DNS$Replicas
DNS$UTS

prepositional-phrase

A phrase that affects the destination or content of command output. Specify one or more of the
following prepositional phrases:

with attribute [relop] value
to file[=]filename
to extend file[=]filename
to terminal

Description
This command displays the names and values of the attributes or attribute groups named in
attribute-specifier. If you do not supply any attribute specifier, the command displays all
attributes and their values. You can use any combination of attribute specifiers in any sequence in a
single command. Use a comma to separate specifiers.

Characteristics

The following are descriptions of valid characteristics:

DNS$ChildCTS

Specifies the creation timestamp (CTS) of the child directory referenced by the child pointer.

DNS$CTS

Specifies the CTS of the specified child pointer.

DNS$Replicas

Specifies the address, CTS, and name of a set of clearinghouses where a copy of the child directory
referenced by the child pointer is located. This attribute also specifies whether the directory in a
particular clearinghouse is a master or read-only replica.

DNS$UTS

Specifies the timestamp of the most recent update to an attribute of the child pointer.

Prepositional Phrases

You can affect the destination or content of command output by using prepositional phrases. Be sure to
precede each of the following prepositional phrases with a comma and a space:

with attribute [relop] value

When used with a wildcard child-name, limits the output only to directories whose specified attributes
have certain values.

185

Chapter 11. DECdns Control Program Command Dictionary

to file[=]filename

Redirects the output to filename. If the file does not exist, this command creates it. If the file does exist,
its contents are overwritten.

to extend file[=]filename

Appends the output to an existing filename. If the file does not exist, it is created.

to terminal

Directs the output to the terminal. This is the default option.

Access Rights

You must have read access to the directory in which the child pointer is located.

Example
The following command displays the creation timestamp (CTS) of the child directory .sales to which
the child pointer refers.

dns> show child .sales dns$cts

The following command displays all attributes and their values for the .admin child pointer.

dns> show child .admin

 SHOW
 CHILD IAF:.admin
 AT 17-APR-2019:13:59:01
 DNS$ChildUID = 2019-02-27-21:27:30.98/aa-00-04-00-2a-10
 DNS$Replicas (set) = :
 Clearinghouse's DNS$CTS = 2019-01-23-20:38:05.18/aa-00-04-00-de-11
 Tower 1 Floor 1 = 01 2c (null)
 Tower 1 Floor 2 = 02 00 2c ncacn_dnet_nsp
 Tower 1 Floor 3 = 04 (null)
 Tower 1 Floor 4 = 06 49 00 04 aa 00 04 00 2a 10 20
 Replica type = master
 Clearinghouse's Name = IAF:.admin1_ch
 DNS$Replicas (set) = :

 Clearinghouse's DNS$CTS = 2019-01-25-17:36:02.65/aa-00-04-00-de-11
 Tower 1 Floor 1 = 01 2c (null)
 Tower 1 Floor 2 = 02 00 2c ncacn_dnet_nsp
 Tower 1 Floor 3 = 04 (null)
 Tower 1 Floor 4 = 06 49 00 37 aa 00 04 00 49 dc 20
 Replica type = readonly
 Clearinghouse's Name = IAF:.admin2_ch
 DNS$CTS = 2019-02-27-21:27:31.79/aa-00-04-00-2a-10
 DNS$UTS = 2019-03-26-15:07:16.55/aa-00-04-00-2a-10

show clearinghouse
show clearinghouse — Displays DECdns attribute information about the specified clearinghouse.

186

Chapter 11. DECdns Control Program Command Dictionary

Format
show clearinghouse clearinghouse-name [attribute-specifier] [prepositional-phrase]

Arguments
clearinghouse-name

A specific clearinghouse name or a complete directory specification followed by a wildcard template
for matching simple names of clearinghouses.

attribute-specifier

The name of an attribute or an attribute group. Enter one or more of the following attribute
specifiers:

all [attributes]
all characteristics
all identifiers
all status
DNS$ACS
DNS$CHCTS
DNS$CHDirectories
DNS$CHLastAddress
DNS$CHName
DNS$CHState
DNS$CHUpPointers
DNS$NSCTS
DNS$NSNickname
DNS$UTS

prepositional-phrase

A phrase that affects the destination or content of command output. Specify one or more of the
following prepositional phrases:

with attribute [relop] value
to file[=]filename
to extend file[=]filename
to terminal

Description
This command displays the names and values of the attributes or attribute groups named in
attribute-specifier. You can use any combination of attribute specifiers in any sequence in
a single command. Use a comma to separate specifiers. If you do not supply any attribute specifier,
the command displays all attributes and their values. The following is a description of clearinghouse
attributes:

Characteristics

DNS$ACS

Specifies the access control set for the clearinghouse.

187

Chapter 11. DECdns Control Program Command Dictionary

DNS$CHCTS

Specifies the time at which the clearinghouse was created.

DNS$CHLastAddress

Specifies the current reported network address of the clearinghouse.

DNS$CHUpPointers

Specifies pointers to clearinghouses that contain replicas closer to the root than those in this
clearinghouse. If the attribute has no values, either this clearinghouse stores a replica of the root
directory, or it has not yet obtained the necessary up-pointer information from other clearinghouses.

DNS$NSCTS

Specifies the creation timestamp of the namespace of which the clearinghouse is a part.

DNS$NSNickname

Specifies the nickname of the namespace of which the clearinghouse is a part.

DNS$UTS

Specifies the timestamp of the most recent update to an attribute of the clearinghouse.

Identifier

DNS$CHName

Specifies the full name of the clearinghouse.

Status Attributes

DNS$CHDirectories

Specifies the full name and creation timestamp (CTS) of every directory that has a replica in this
clearinghouse.

DNS$CHState

Specifies the state of the clearinghouse.

Dying The clearinghouse is being deleted.
On The clearinghouse is running and available.
New The clearinghouse is being created.

Prepositional Phrases

You can affect the destination or content of command output by using prepositional phrases. Be sure to
precede each of the following prepositional phrases with a comma and a space:

with attribute [relop] value

When used with a wildcard clearinghouse-name, limits the output only to directories whose specified
attributes have certain values.

188

Chapter 11. DECdns Control Program Command Dictionary

to file[=]filename

Redirects the output to filename. If the file does not exist, this command creates it. If the file does exist,
its contents are overwritten.

to extend file[=]filename

Appends the output to an existing filename. If the file does not exist, it is created.

to terminal

Directs the output to the terminal. This is the default option.

Access Rights

You need read access to the clearinghouse to display a list of known attributes or the value of an
attribute.

Example
The following command displays the current values of the DNS$ACS attribute associated with the
.chicago1_ch clearinghouse.

dns> show clearinghouse .chicago1_ch DNS$ACS

The following command displays the current values of all the attributes associated with the local
.chicago1_ch clearinghouse.

dns> show clearinghouse .chicago1_ch all

 SHOW
 CLEARINGHOUSE IAF:.chicago1_ch
 AT 17-APR-2019:10:48:51
 DNS$ACS (set) = :
 Flags = none
 Rights = read, write, delete, test, control
 (V) Principal = IAF:.CHICAGO1.DNS$SERVER
 DNS$ACS (set) = :
 Flags = propagate
 Rights = read, write, delete, test, control
 (V) Principal = IAF:.chicago1.system
 DNS$ACS (set) = :
 Flags = propagate, group
 Rights = read, write, delete, test, control
 Group = IAF:.chicago1.chi_admin
 DNS$CHDirectories (set) = :
 CTS of Directory = 2018-09-04-18:52:56.19/aa-00-04-00-eb-27
 Name of Directory = .
 DNS$CHLastAddress = :
 Tower 1 Floor 1 = 01 2c (null)
 Tower 1 Floor 2 = 02 00 2c ncacn_dnet_nsp
 Tower 1 Floor 3 = 04 (null)
 Tower 1 Floor 4 = 06 49 00 04 aa 00 04 00 2a 10 20
 DNS$CHName = IAF:.chicago1_ch
 DNS$CHState = on
 DNS$CHCTS = 2018-01-23-20:38:05.18/aa-00-04-00-de-11
 DNS$CHUpPointers (set) = :

189

Chapter 11. DECdns Control Program Command Dictionary

 Clearinghouse's DNS$CTS = 2018-04-23-21:02:32.01/aa-00-04-00-de-11
 Tower 1 Floor 1 = 01 2c (null)
 Tower 1 Floor 2 = 02 00 2c ncacn_dnet_nsp
 Tower 1 Floor 3 = 04 (null)
 Tower 1 Floor 4 = 06 49 00 18 aa 00 04 00 eb 61 20
 Replica type = readonly
 Clearinghouse's Name = IAF:.chicago1_ch
 DNS$NSNickname = IAF
 DNS$NSCTS = 2018-04-23-21:02:32.01/aa-00-04-00-de-11
 DNS$CTS = 2019-01-23-20:38:05.18/aa-00-04-00-de-11
 DNS$UTS = 2019-04-17-14:04:41.88/aa-00-04-00-2a-10

show clearinghouse access
show clearinghouse access — Displays the access control set of a clearinghouse.

Format
show clearinghouse clearinghouse-name access [prepositional-phrase]

Arguments
clearinghouse-name

The name of the clearinghouse for which you want to see the access control set. It can be a specific
clearinghouse name or a complete directory specification followed by a wildcard template for
matching simple names of clearinghouses.

prepositional-phrase

A phrase that affects the destination or content of command output. Specify one or more of the
following prepositional phrases:

to file[=]filename
to extend file[=]filename
to terminal

Description
This command displays the access control set of a clearinghouse.

Prepositional Phrases

You can affect the destination or content of command output by using prepositional phrases. Be sure to
precede each of the following prepositional phrases with a comma and a space:

to file[=]filename

Redirects the output to filename. If the file does not exist, this command creates it. If the file does exist,
its contents are overwritten.

to extend file[=]filename

Appends the output to an existing filename. If the file does not exist, it is created.

190

Chapter 11. DECdns Control Program Command Dictionary

to terminal

Directs the output to the terminal. This is the default option.

Access Rights

You need read access to the clearinghouse.

Example
The following example displays the access control set of the .ny_ch clearinghouse.

dns> show clearinghouse .ny_ch access

The following example displays the access control set of the .paris2_ch clearinghouse.

dns> show clearinghouse .paris2_ch access

 SHOW
 CLEARINGHOUSE IAF:.paris2_ch
 AT 17-APR-2019:13:49:08
 DNS$ACS (set) = :
 Flags = none
 Rights = read, write, delete, test, control
 (V) Principal = IAF:.PARIS2.DNS$SERVER
 DNS$ACS (set) = :
 Flags = propagate
 Rights = read, write, delete, test, control
 (V) Principal = IAF:.paris2.system
 DNS$ACS (set) = :
 Flags = propagate, group
 Rights = read, write, delete, test, control
 Group = IAF:.paris_admin

show directory
show directory — Displays current information about the specified directory.

Format
show directory directory-name [attribute-specifier] [prepositional-phrase]

Arguments
directory-name

A specific directory name or a complete directory specification followed by a wildcard template for
matching simple names of directories.

attribute-specifier

The name of an attribute group or a particular attribute. Enter one or more of the following attribute
specifiers:

all [attributes]

191

Chapter 11. DECdns Control Program Command Dictionary

all characteristics
DNS$ACS
DNS$AllUpTo
DNS$Convergence
DNS$CTS
DNS$DirectoryVersion
DNS$InCHName
DNS$ParentPointer
DNS$Replicas
DNS$RingPointer
DNS$UpGradeTo
DNS$UTS

prepositional-phrase

A phrase that affects the destination or content of command output. Specify one or more of the
following prepositional phrases:

with attribute [relop] value
to file[=]filename
to extend file[=]filename
to terminal

Description
This command displays the names and values of the attributes or attribute groups named in
attribute-specifier. If you do not supply any attribute specifier, the command displays all
attributes and their values. You can use any combination of attribute specifiers in any sequence in a
single command. Use a comma to separate specifiers.

Characteristics

The following are descriptions of valid characteristics:

DNS$ACS

Specifies the access control set for the directory.

DNS$AllUpTo

Indicates the date and time of the last successful skulk on the directory. All replicas of the directory are
guaranteed to have received all updates whose timestamps are less than the value of this characteristic.

DNS$Convergence

Specifies the degree of consistency among replicas. This attribute's value can be one of the following:

Low The next skulk distributes all updates that occurred since the previous skulk. Skulks occur
at least once every 24 hours.

Medium DECdns attempts to propagate an update to all replicas. If the attempt fails, the next
scheduled skulk makes the replicas consistent. Skulks occur at least once every 12 hours.

High DECdns attempts to propagate an update to all replicas. If the attempt fails (for example,
if one of the replicas is unavailable), a skulk occurs within one hour. Background skulks

192

Chapter 11. DECdns Control Program Command Dictionary

will occur at least once every 12 hours. Use this setting temporarily and briefly, because it
uses extensive system resources.

By default, every directory inherits the convergence setting of its parent at creation time. The default
setting of the root directory is medium.

DNS$CTS

Specifies the creation timestamp (CTS) of the directory DECdns.

DNS$DirectoryVersion

Specifies the current version of the directory. (The version is derived from the DNS
$DirectoryVersion attribute of the clearinghouse in which the directory was created.) Multiple
directory versions are supported in a namespace.

DNS$InCHName

Specifies whether a directory or any of its descendants can store clearinghouse names. If this value is
true, the directory can store clearinghouse names. If it is false, the directory cannot store clearinghouse
names.

DNS$ParentPointer

A pointer that links a child directory to its parent directory, allowing clerks and servers to navigate up
and down the namespace hierarchy.

DNS$Replicas

Specifies the address, creation timestamp (CTS), and name of every clearinghouse where a replica of
this directory is located. This attribute also specifies whether the replica in a particular clearinghouse is a
master or read-only replica.

DNS$RingPointer

Contains the CTS of the next clearinghouse in the ring. This attribute is for internal use only.

DNS$UpgradeTo

Controls the upgrading of a directory from one version of DECdns to another. By modifying this
attribute, you can initiate the upgrading of a directory to a newer version of DECdns.

DNS$UTS

Specifies the timestamp of the most recent update to an attribute of the directory.

Prepositional Phrases

You can affect the destination or content of command output by using prepositional phrases. Be sure to
precede each of the following prepositional phrases with a comma and a space:

with attribute [relop] value

When used with a wildcard directory-name, limits the output only to directories whose specified
attributes have certain values.

193

Chapter 11. DECdns Control Program Command Dictionary

to file[=]filename

Redirects the output to filename. If the file does not exist, this command creates it. If the file does exist,
its contents are overwritten.

to extend file[=]filename

Appends the output to an existing filename. If the file does not exist, it is created.

to terminal

Directs the output to the terminal. This is the default option.

Access Rights

You need read access to the directory to use the show command.

Example
The following command displays the creation timestamp (CTS), the time at which the .admin
directory was created.

dns> show directory .admin dns$cts

The following command displays all attributes and their values for the .admin directory.

dns> show directory .admin

 SHOW
 DIRECTORY IAF:.admin
 AT 03-MAR-2019:16:39:03

 DNS$ACS (set) = :
 Flags = none
 Rights = read, write, delete, test, control
 (V) Principal = IAF:.ABC.SYSTEM

 DNS$ACS (set) = :
 Flags = none
 Rights = read, write, delete, test, control
 (V) Principal = IAF:.ORION.DNS$SERVER

 DNS$ACS (set) = :
 Flags = authenticated
 Rights = read, write, delete, test, control
 (V) Principal = IAF:.admin.orion_ch
 DNS$AllUpTo = 2019-03-03-11:52:16.851/08-00-2b-10-27-f4

 DNS$Convergence = medium
 DNS$CTS = 2018-07-22-15:09:49.102/08-00-2b-03-87-72

 DNS$DirectoryVersion = 1.0
 DNS$Epoch = 2018-07-22-15:09:50.102/08-00-2b-03-87-72
 DNS$LastSkulk = 2019-03-03-11:52:16.851/08-00-2b-10-27-f4
 DNS$LastUpdate = 2019-03-03-11:52:16.671/08-00-2b-10-27-f4

 DNS$ParentPointer = :
 Parent's DNS$CTS = 2018-03-25-22:49:33.409/08-00-2b-03-87-72

194

Chapter 11. DECdns Control Program Command Dictionary

 Timeout = :
 Expiration = 2019-03-04-11:52:16.581
 Extension = +1-00:00:00.000
 DNS$Replicas (set) = :

Clearinghouse's DNS$CTS = 2018-03-25-22:49:33.409/08-00-2b-03-87-72
 Tower 1 Floor 1 = 01 2c (null)
 Tower 1 Floor 2 = 03 00 2c
 Tower 1 Floor 3 = 05 de c0
 Tower 1 Floor 4 = 06 49 00 04 aa 00 04 00 a1 13 21
 Tower 2 Floor 1 = 01 2c (null)
 Tower 2 Floor 2 = 03 00 2c
 Tower 2 Floor 3 = 04 (null)
 Tower 2 Floor 4 = 06 49 00 04 aa 00 04 00 a1 13 20
 Tower 3 Floor 1 = 01 2c (null)
 Tower 3 Floor 2 = 03 00 2c
 Tower 3 Floor 3 = 05 de c0
 Tower 3 Floor 4 = 06 41 45 41 87 15 00 41 08 00 2b 10
 27 f4 21
 Tower 4 Floor 1 = 01 2c (null)
 Tower 4 Floor 2 = 03 00 2c
 Tower 4 Floor 3 = 04 (null)
 Tower 4 Floor 4 = 06 41 45 41 87 15 00 41 08 00 2b 10
 27 f4 20
 Replica type = master
 Clearinghouse's Name = IAF:.admin.orion_ch
 DNS$ReplicaState = on
 DNS$ReplicaType = master
 DNS$ReplicaVersion = 1.0
 DNS$RingPointer = 2018-03-25-22:49:33.409/08-00-2b-03-87-72
 DNS$UTS = 2019-03-03-11:52:16.671/08-00-2b-10-27-f4

show directory access
show directory access — Displays the access control set of a directory.

Format
show directory directory-name access [prepositional-phrase]

Arguments
directory-name

A specific directory name or a complete directory specification followed by a wildcard template for
matching simple names of directories.

prepositional-phrase

A phrase that affects the destination or content of command output. Specify one or more of the
following prepositional phrases:

to file[=]filename
to extend file[=]filename
to terminal

195

Chapter 11. DECdns Control Program Command Dictionary

Description
This command displays the access control set of a directory.

Prepositional Phrases

You can affect the destination or content of command output by using prepositional phrases. Be sure to
precede each of the following prepositional phrases with a comma and a space:

to file[=]filename

Redirects the output to filename. If the file does not exist, this command creates it. If the file does exist,
its contents are overwritten.

to extend file[=]filename

Appends the output to an existing filename. If the file does not exist, it is created.

to terminal

Directs the output to the terminal. This is the default option.

Access Rights

You must have read access to the directory.

Example
The following command displays the access control set of the directory .sales and stores the output in
a file called sdshow.

dns> show directory .sales access, to file sdshow

The following command displays the access control set of the directory .admin.

dns> show directory .admin access

 SHOW
 DIRECTORY IAF:.admin
 AT 17-APR-2019:14:54:54
 DNS$ACS (set) = :
 Flags = none
 Rights = read, write, delete, test, control
 (V) Principal = IAF:.ABC.SYSTEM
 DNS$ACS (set) = :
 Flags = none
 Rights = read, write, delete, test, control
 (V) Principal = IAF:.ORION.DNS$SERVER
 DNS$ACS (set) = :
 Flags = authenticated
 Rights = read, write, delete, test, control
 (V) Principal = IAF:.admin.orion_ch
 DNS$ACS (set) = :
 Flags = default, propagate, group
 Rights = read, write, delete, test, control
 Group = IAF:.ad_users

196

Chapter 11. DECdns Control Program Command Dictionary

If directory .admin is replicated on mixed-version servers (DECdns Version 2 and DNS Version 1),
the display of its access control set would include two styles of access control entries (DECnet Phase IV
and Phase V), as in the following example:

dns> show directory .admin access

 SHOW
 DIRECTORY IAF:.admin
 AT 17-APR-2019:14:54:54
 DNS$ACS (set) = :
 Flags = none
 Rights = read, write, delete, test, control
 (IV) Principal = ABC::SYSTEM
 (V) Principal = IAF:.ABC.SYSTEM
 DNS$ACS (set) = :
 Flags = none
 Rights = read, write, delete, test, control
 (IV) Principal = ORION::DNS$SERVER
 (V) Principal = IAF:.ORION.DNS$SERVER
 DNS$ACS (set) = :
 Flags = authenticated
 Rights = read, write, delete, test, control
 (V) Principal = IAF:.admin.orion_ch
 DNS$ACS (set) = :
 Flags = default, propagate, group
 Rights = read, write, delete, test, control
 Group = IAF:.ad_users

show dns clerk
show dns clerk — Displays current information about the specified DECdns clerk.

Format
show [node node-id] dns clerk [attribute-specifier]

Arguments
node-id

The name of the node. If you do not specify a node name, the local node is assumed.

attribute-specifier

The name of an attribute or an attribute group. Enter one or more of the following attribute
specifiers:

all [attributes]
all characteristics
all counters
all status
Authentication Failures
Cache Bypasses
Cache Hits
Clerk Timeout

197

Chapter 11. DECdns Control Program Command Dictionary

Creation Time
Default Namespace
Incompatible Protocol Errors
Miscellaneous Operations
Read Operations
Read Operations
Solicit Holddown
State
UID
Version
Write Operations

Description
This command displays the names and values of the attributes or attribute groups named in
attribute-specifier. You can also enter this command through the NCL interface. You can use
any combination of attribute specifiers in any sequence in a single command. Use a comma to separate
specifiers. If you do not supply any attribute specifier, the command displays all identifiers and their
values. The following is a description of the clerk attributes:

Characteristics

Clerk Timeout

Specifies the default timeout of client interface calls. If no response is received in the specified time, an
error message is generated. The default is 150 seconds.

Default Namespace

Contains the name of the clerk's default namespace.

Solicit Holddown

Specifies the time (in seconds) to wait after initialization before soliciting advertisements from servers.
The default is 15 seconds.

UID

Uniquely identifies the entity.

Version

Specifies the version of the DECdns architecture implemented by this clerk.

Counters

Authentication Failures

Specifies the number of times a requesting principal failed authentication procedures.

Cache Bypasses

Specifies the number of requests to read attributes for which the clerk was specifically directed by
the requesting application to bypass its own cache. Instead, a server is contacted to get the requested
information. This counter does not account for requests that the clerk is unable to satisfy from the cache
or for requests to look up names or enumerate the contents of directories.

198

Chapter 11. DECdns Control Program Command Dictionary

Cache Hits

Specifies the total number of read requests directed to this clerk that were satisfied entirely by the
information contained in its own cache. This figure accounts only for requests to read attribute values
and does not include requests to look up names or enumerate the contents of directories.

Creation Time

Specifies the time when this entity was created.

Incompatible Protocol Errors

Specifies the number of times this clerk received a response to one of its own requests from a server
running a protocol version of DECdns software that was incompatible with the protocol version of
DECdns software the clerk was running. Clerk requests directed to servers running incompatible protocol
versions do not complete.

Miscellaneous Operations

Specifies the number of operations other than read and write (that is, skulks, enumerating contents of
directories, and so on) performed by this clerk.

Read Operations

Specifies the number of lookup operations performed by this clerk. This counter accounts only for
requests to read attributes and does not include name lookups or enumerations of multiple names.

Write Operations

Specifies how many requests to modify data were processed by this clerk.

Status Attributes

State

Specifies the state of the DECdns clerk.

Broken The DECdns clerk has a fatal error condition.
Initial The DECdns clerk is in the process of initializing.
Off The DECdns clerk is not available.
On The DECdns clerk is running and available.
Shut The DECdns clerk is in the process of an orderly shutdown.

Privilege Required

You must have the NET$EXAMINE rights identifier.

Example
The following command displays the state of the clerk running on node .mfg.ariel.

dns> show node .mfg.ariel dns clerk state

The following command displays all attributes of the clerk running on the local node.

dns> show dns clerk all

199

Chapter 11. DECdns Control Program Command Dictionary

Node 0:. DNS Clerk
AT 2019-04-16-15:18:12.014-04:00I0.173

Status

 State = On

Characteristics

 Version = V2.0.0
 Clerk Timeout = 0-00:01:00.000I0.000 Seconds
 Solicit Holddown = 0-00:00:15.000I0.000 Seconds
 UID = D370CD10-DC0B-11B8-AB12-07001C0DC09D
 Default Namespace = IAF

Counters

 Creation Time = 2019-04-16-18:26:49.543+00:00I0.000
 Incompatible Protocol Errors = 0
 Authentication Failures = 0
 Read Operations = 7304
 Cache Hits = 2994
 Cache Bypasses = 1734
 Write Operations = 1090
 Miscellaneous Operations = 3100

show dns clerk known namespace
show dns clerk known namespace — Displays current information about the specified namespace.

Format
show [node node-id] dns clerk known namespace identifier [attribute-specifier] [prepositional-phrase]

Arguments
node-id

The name of the node. If you do not specify a node name, the local node is assumed.

identifier

The identifier of the namespace. You can use one of the following identifiers: the simple name for
the namespace, which can contain wildcard characters, or the NSCTS, which is the value of the
namespace creation timestamp that is automatically assigned when the namespace is created. The
format of the NSCTS is 14 pairs of hexadecimal digits (xx-xx).

attribute-specifier

The name of an attribute or an attribute group. Enter one or more of the following attribute
specifiers:

200

Chapter 11. DECdns Control Program Command Dictionary

all [attributes]
all characteristics
all counters
all identifiers
all status
Ambiguous
Creation Time
Explicit Creation
Name
Nickname
NSCTS
UID

prepositional-phrase

A phrase that affects the content of command output. Specify the following prepositional phrase:

with attribute [relop] value

Description
This command displays the names and values of the attributes or attribute groups named in
attribute-specifier. You can also enter this command through the NCL interface. You can use
any combination of attribute specifiers in a single command. Use a comma to separate the specifiers.
If you do not supply any attribute specifier, the command displays all identifiers and their values. The
following are descriptions of valid characteristics, counters, identifiers, and status attributes:

Characteristics

UID

Uniquely identifies the entity.

Counters

Creation Time

Specifies the time when the clerk added this known namespace to its cache.

Identifiers

Name

Specifies an external, human-readable name by which the namespace can be identified. If the namespace
nickname is unique, the Name is the same as the Nickname. Otherwise, the name is generated by
appending _n to the nickname for some value of n that makes it unique. The Ambiguous attribute is then
set to true for the known namespace.

NSCTS

Specifies the creation timestamp of the namespace.

Status Attributes

Ambiguous

201

Chapter 11. DECdns Control Program Command Dictionary

Indicates whether the nickname for this namespace is ambiguous; that is, more than one namespace
known to this clerk has the same nickname. If true, the namespace nickname is ambiguous. If false, the
namespace nickname is unique.

Explicit Creation

Specifies whether the namespace was created by a create command. If false, the namespace was
created by the clerk itself.

Nickname

The name given to the namespace when it was created.

Prepositional Phrases

You can affect the content of command output by using prepositional phrases. Be sure to precede the
following prepositional phrase with a comma and a space:

with attribute [relop] value

When used with a known namespace nickname wildcard, limits the output only to a namespace whose
specified attribute has a certain value.

Privilege Required

You must have the NET$EXAMINE rights identifier.

Example
The following command displays the identifiers of all namespaces with ambiguous nicknames.

dns> show dns clerk known namespace *, with ambiguous=true

The following command displays all of the attributes of the namespace on node .oberon.

dns> show node .oberon dns clerk known namespace * all

Node oberon:. DNS Clerk Known Namespace AA-00-01-00-01-FC-A0-4C-
FF-8C-06-64-94-00
AT 2019-04-16-17:39:42.765-04:00I0.112

Identifiers

 NSCTS = AA-00-01-00-01-FC-A0-4C-FF-8C-06-64-94-00
 Name = orion_ns

Status

 Nickname = orion_ns
 Ambiguous = False
 Explicit Creation = False

Counters

202

Chapter 11. DECdns Control Program Command Dictionary

 Creation Time = 2019-04-16-18:55:14.407+00:00I0.000

show dns clerk manual nameserver
show dns clerk manual nameserver — Displays the knowledge in the clerk's cache about a server that
exists across a wide area network (WAN).

Format
show [node node-id] dns clerk manual namespace name [attribute-specifier] [prepositional-phrase]

Arguments
node-id

The name of the node. If you do not specify a node name, the local node is assumed.

name

The name of the manual name server entity that you want to show. It can contain wildcard
characters.

attribute-specifier

The name of an attribute or an attribute group. Enter one or more of the following attribute
specifiers:

all [attributes]
all characteristics
all counters
all identifiers
all status
Creation Time
Failed Solicits
Last Solicit
Name
Successful Solicits
Towers
UID

prepositional-phrase

A phrase that affects the content of command output. Specify the following prepositional phrase:

with attribute [relop] value

Description
This command displays the names and values from the attributes or attribute groups named in
attribute-specifier. You can also enter this command through the NCL interface. You can use
any combination of attribute specifiers in a single command. Use a comma to separate the specifiers.
If you do not supply any attribute specifier, the command displays all identifiers and their values. The
following are descriptions of valid characteristics, counters, identifiers, and status attributes:

203

Chapter 11. DECdns Control Program Command Dictionary

Characteristics

Towers

Specifes the DECnet Phase V address of the server that this entity represents.

UID

Uniquely identifies the entity.

Counters

Creation Time

Specifies the time when the clerk created knowledge of this server in its cache.

Successful Solicits

The number of times the clerk made a successful solicit connection to the server and received
clearinghouse advertisement data.

Failed Solicits

The number of times solicitation of clearinghouse advertisement data from the server failed.

Identifier

Name

Specifies an external, human-readable name by which the server can be identified.

Status Attributes

Last Solicit

Indicates the time when the clerk last tried to solicit this server.

Prepositional Phrases

You can affect the content of command output by using prepositional phrases. Be sure to precede the
following prepositional phrase with a comma and a space:

with attribute [relop] value

When used with a wildcard name, limits the output only to directories whose specified attributes have
certain values.

Privilege Required

You must have the NET$EXAMINE rights identifier.

Example
The following command displays the Name attribute of the manual name server rns.

dns> show dns clerk manual nameserver rns Name

The following command displays all attributes of the manual name server emv.

204

Chapter 11. DECdns Control Program Command Dictionary

dns> show dns clerk manual nameserver emv all

Node DNS Clerk Manual Nameserver emv
AT 2019-04-02-15:21:21.326-04:00I0.127

Identifiers

 Name = emv

Status

 Last Solicit = 2019-04-02-19:19:59.596+00:00I0.000

Characteristics

 UID = D86D22D5-07A5-11BC-9814-07001B1027C4
 Towers =
 {
 (
 [DNA_SessionControlV2 , number=76] ,
 [DNA_NSP] ,
 [DNA_OSInetwork , 41::00-04:BB-00-04-00-A7-11:20]
)
 }

Counters

 Creation Time = 2019-04-02-19:19:59.596+00:00I0.000
 Successful Solicits= 0
 Failed Solicits = 0

show dns clerk remote clearinghouse
show dns clerk remote clearinghouse — Displays current information about the specified remote
clearinghouse.

Format
show [node node-id] dns clerk remote clearinghouse clearinghouse-name [attribute-specifier]
[prepositional-phrase]

Arguments
node-id

The name of the node. If you do not specify a node name, the local node is assumed.

clearinghouse-name

A specific clearinghouse name or a complete directory specification followed by a wildcard template
for matching simple names of clearinghouses.

205

Chapter 11. DECdns Control Program Command Dictionary

attribute-specifier

The name of an attribute or an attribute group. Enter one or more of the following attribute
specifiers:

all [attributes]
all characteristics
all counters
all identifiers
Creation Time
CTS
Miscellaneous Operations
Name
Read Operations
UID
Write Operations

prepositional-phrase

A phrase that affects the content of command output. Specify the following prepositional phrase:

with attribute [relop] value

Description
This command displays the names and values of the attributes or attribute groups named in
attribute-specifier. You can also enter this command through the NCL interface. You can use
any combination of attribute specifiers in a single command. Use a comma to separate the specifiers.
If you do not supply any attribute specifier, the command displays all identifiers and their values. The
following are descriptions of valid characteristics, counters, and identifiers:

Characteristics

UID

Identifies the remote clearinghouse entity.

Counters

Creation Time

Specifies the time when this entity was created.

Miscellaneous Operations

Specifies the number of operations other than read and write (that is, skulks, new epochs, and so on)
performed by this clerk on the remote clearinghouse.

Read Operations

Specifies the number of lookup operations of any sort performed by the clerk on the remote
clearinghouse.

Write Operations

206

Chapter 11. DECdns Control Program Command Dictionary

Specifies the number of write operations performed by this clerk on the remote clearinghouse.

Identifiers

CTS

Indicates the creation timestamp (CTS) of this entity.

Name

Specifies the full name of the clearinghouse.

Prepositional Phrases

You can affect the content of command output by using prepositional phrases. Be sure to precede the
following prepositional phrase with a comma and a space:

with attribute [relop] value

When used with a wildcard clearinghouse-name, limits the output only to directories whose specified
attributes have certain values.

Privilege Required

You must have the NET$EXAMINE rights identifier.

Example
The following command displays the CTS of the remote clearinghouse .paris2_ch cached by the
clerk on node .jmh.

dns> show node .jmh dns clerk remote clearinghouse .paris2_ch cts

The following command displays all identifiers of the remote clearinghouse .paris2_ch.

dns> show dns clerk remote clearinghouse .paris2_ch all

Node 0:. DNS Clerk Remote Clearinghouse IAF:.paris2.paris2_ch
AT 2019-04-17-11:25:00.786-04:00I0.495

Identifiers

 CTS = AB-01-03-00-CE-11-B0-1A-82-10-23-18-85-00
 Name = IAF:.paris2.paris_ch

Characteristics

 UID = 2C0435B0-CBF0-11B9-AC12-07001C0BC08D

Counters

 Creation Time = 2019-04-17-10:03:18.988-04:00I0.142
 Read Operations = 1735
 Write Operations = 3100
 Miscellaneous Operations= 1509

207

Chapter 11. DECdns Control Program Command Dictionary

show dns server
show dns server — Displays current information about the specified server.

Format
show [node node-id] dns server [attribute-specifier]

Arguments
node-id

The name of the node. If you do not specify a node name, the local node is assumed.

attribute-specifier

The name of an attribute or an attribute group. Enter one or more of the following attribute
specifiers:

all [attributes]
all characteristics
all counters
all status
Authentication Failures
Child Pointer Update Failures
Creation Time
Crucial Replica Removals Backed Out
Future Skew
Incompatible Protocol Errors
Maximum Protocol Version
Minimum Protocol Version
Possible Cycles
Read Accesses
Security Failures
Skulks Completed
Skulks Initiated
State
Times Lookup Paths Broken
UID
Version
Write Accesses

Description
This command displays the names and values of the attributes or attribute groups named in the
attribute-specifier argument. You can also enter this command through the NCL interface.
You can use any combination of attribute specifiers in a single command. Use a comma to separate the
specifiers. If you do not supply any attribute specifier, the command displays all identifiers and their
values. The following are descriptions of valid characteristics, counters, and status attributes:

Characteristics

Future Skew

208

Chapter 11. DECdns Control Program Command Dictionary

Specifies the maximum amount of time that a timestamp can vary from local system time at the server
node. This characteristic ensures data consistency.

Maximum Protocol Version

Specifies the maximum version of the DECdns clerk/server protocol that this particular DECdns server
supports.

Minimum Protocol Version

Specifies the minimum version of the DECdns clerk/server protocol that this particular DECdns server
supports.

UID

Uniquely identifies the entity.

Version

Specifies the version of the architecture implemented by this server.

Counters

Authentication Failures

Specifies the number of times a requesting principal failed authentication procedures.

Child Pointer Update Failures

Specifies the number of times the server background process was unable to contact all the clearinghouses
where a replica of a particular child directory's parent directory is stored, and was, therefore, unable
to apply the child updates that have occurred since the last skulk. This counter increases by 1 at each
occurrence of the Cannot Update Child Pointer event.

Creation Time

Specifies the time when the DECdns server entity was created.

Crucial Replica Removals Backed Out

Specifies the number of times a user attempted (from this server) to remove a replica that is crucial
to the connectivity of a directory hierarchy. The server background process prevents users from
accidentally disconnecting lower-level directories from higher-level directories. When it detects an
attempt to remove a crucial replica, it will not execute the command to do so. This counter increases by 1
at each occurrence of the Crucial Replica event.

Incompatible Protocol Errors

Accounts for the total number of requests received by this server from a clerk running an incompatible
protocol version. A server can communicate with any clerk running the same protocol version, or
the version previous to the one it is running. This counter increases by 1 at each occurrence of the
Incompatible Request event.

Possible Cycles

Specifies the number of times this server followed a chain and encountered an entry already in the chain.
For example, a soft link is created that points to a series of links that eventually point back to the first

209

Chapter 11. DECdns Control Program Command Dictionary

link, or a group that is a member of itself. This counter increases by 1 at occurrence of the Possible
Cycles event.

Read Accesses

Specifies the number of read operations directed to this DECdns server.

Security Failures

Specifies the number of times the Security Failures event was generated. This counter is increased
whenever a DECdns server has insufficient access rights to a directory or object to perform either a
client-requested action or a background operation.

Skulks Completed

Specifies the number of skulks that were successfully completed by this DECdns server.

Skulks Initiated

Specifies the number of skulks that were initiated by this DECdns server.

Times Lookup Paths Broken

Specifies the number of broken connections between clearinghouses on this server and clearinghouses
closer to the root. Incoming requests to this server that require a downward lookup in the directory
hierarchy may still succeed, but requests requiring lookup in directories closer to the root will fail. This
counter increases by 1 at each occurrence of the Broken Lookup Paths event.

Write Accesses

Specifies the number of write operations to this DECdns server.

Status Attributes

State

Specifies the state of the DECdns server.

Broken The server has a fatal error condition.
Initial The server is initializing.
Off The server is not available.
On The server is running and available.
Shut The server is undergoing an orderly shutdown.

Privileges Required

You must have the NET$EXAMINE rights identifier.

Example
The following command displays information about the number of completed skulks on the server
running on node .sales.orion.

dns> show node .sales.orion dns server skulks completed

The following command displays all identifiers of the server on the local node.

210

Chapter 11. DECdns Control Program Command Dictionary

dns> show dns server all

show dns server all
Node 0:. DNS Server
AT 2019-04-18-17:07:37.093-04:00I2.147

Status

 State = On

Characteristics

 UID = 8BD2B21C-FCB43-11B8-A702-07001B2602FB
 Minimum Protocol Version = V1.0.0
 Maximum Protocol Version = V2.0.0
 Future Skew = 0-00:05:00.000I0.000 Seconds

Counters

 Creation Time = 2019-04-18-20:59:29.042+00:00I0.000
 Incompatible Protocol Errors = 0
 Authentication Failures = 0
 Read Accesses = 1
 Write Accesses = 0
 Skulks Initiated = 0
 Skulks Completed = 0
 Times Lookup Paths Broken = 0
 Possible Cycles = 0
 Crucial Replica Removals Backed Out = 0
 Child Pointer Update Failures = 0
 Security Failures = 0

show dns server clearinghouse
show dns server clearinghouse — Displays current NCL attribute information about the specified
clearinghouse.

Format
show [node node-id] dns server clearinghouse clearinghouse-name [attribute-specifier] [prepositional-
phrase]

Arguments
node-id

The name of the node. If you do not specify a node name, the local node is assumed.

clearinghouse-name

A specific clearinghouse name or a complete directory specification followed by a wildcard template
for matching clearinghouse simple names.

211

Chapter 11. DECdns Control Program Command Dictionary

attribute-specifier

The name of an attribute or an attribute group. Enter one or more of the following attribute
specifiers:

all [attributes]
all characteristics
all counters
all identifiers
all status
Creation Time
Data Corruptions
Disable Counts
CTS
Enable Counts
Name
Read Accesses
References Returned
Skulk Failures
State
Times Clearinghouse Entry Missing
Times Root Not Reachable
UID
Upgrades Not Possible
Write Accesses

prepositional phrase

A phrase that affects the content of command output. Specify the following prepositional phrase:

with attribute [relop] value

Description
This command displays the names and values of the attributes or attribute groups named in
attribute-specifier. You can also enter this command through the NCL interface. You can use
any combination of attribute specifiers in a single command. Use a comma to separate the specifiers.
If you do not supply any attribute specifier, the command displays all identifiers and their values. The
following are descriptions of valid characteristics, counters, identifiers, and status attributes:

Characteristics

CTS

Specifies the creation timestamp (CTS) of this clearinghouse.

UID

Uniquely identifies the entity.

Counters

Creation Time

Specifies the time when the clearinghouse entity was created.

212

Chapter 11. DECdns Control Program Command Dictionary

Data Corruptions

Specifies the number of times the Data Corruption event was generated.

Disable Counts

Specifies the number of times the clearinghouse was disabled since it was last started.

Enable Counts

Specifies the number of times the clearinghouse was enabled since it was last started.

Read Accesses

Specifies the number of read operations directed to this clearinghouse.

References Returned

Specifies the number of requests directed to this clearinghouse that resulted in the return of a partial
answer instead of satisfying the client's request.

Skulk Failures

Specifies the number of times a skulk of a directory, initiated from this clearinghouse, failed to complete
—usually because one of the replicas in the replica set was unreachable.

Times Clearinghouse Entry Missing

Specifies the number of times the Clearinghouse Entry Missing event was generated.

Times Root Not Reachable

Specifies the number of times the Root Lost event was generated.

Upgrades Not Possible

Specifies the number of times the clearinghouse tried to upgrade a directory and failed.

Write Accesses

Specifies the number of write operations directed to this clearinghouse.

Identifier

Name

Specifies the full name of the clearinghouse.

Status Attributes

State

Specifies the state of the clearinghouse.

Broken The clearinghouse has a fatal error condition.
Initial The clearinghouse is in the process of initializing.
Off The clearinghouse is not available.
On The clearinghouse is running and available.

213

Chapter 11. DECdns Control Program Command Dictionary

Shut The clearinghouse is in the process of an orderly shutdown.

Prepositional Phrases

You can affect the content of command output by using prepositional phrases. Be sure to precede the
following prepositional phrase with a comma and a space:

with attribute [relop] value

When used with a wildcard clearinghouse-name, limits the output only to directories whose specified
attributes have certain values.

Access Rights

You need read access to the clearinghouse to display a list of known attributes or the value of an
attribute.

Privilege Required

You must have the NET$EXAMINE rights identifier.

Example
The following command displays the current value of the Write Accesses counter associated with
the .chicago1_ch clearinghouse on server node .midwest1.

dns> show node .midwest1 dns server clearinghouse .chicago1_ch 0 -
_> Write Accesses

The following command displays all the attribute values associated with the .dublin1_ch
clearinghouse on the local server.

dns> show dns server clearinghouse .dublin1_ch all

Node 0:. DNS Server Clearinghouse IAF:.dublin1_ch
AT 2019-04-17-11:16:21.598-04:00I0.447

Identifiers

 Name = IAF:.dublin1_ch

Status

 State = On

Characteristics

 CTS = 07-00-1C-0D-C0-8C-05-61-3C-4D-78-70-92-00
 UID = AB1234A5-CD67-87D1-EF23-07001BODC08C

Counters

 Creation Time = 2018-04-17-13:58:51.369+00:00I0.000
 Read Accesses = 0

214

Chapter 11. DECdns Control Program Command Dictionary

 Write Accesses = 0
 References Returned = 0
 Times Root Not Reachable = 0
 Data Corruptions = 0
 Skulk Failures = 0
 Times Clearinghouse Entry Missing = 0
 Directory Upgrade Failures = 0
 Enable Counts = 1
 Disable Counts = 0

show group
show group — Displays current information about the specified group.

Format
show group-name [attribute-specifier] [prepositional-phrase]

Arguments
group-name

A specific group name or a complete directory specification followed by a wildcard template for
matching simple names of groups.

attribute-specifier

The name of an attribute or an attribute group. Enter one or more of the following attribute
specifiers:

all [attributes]
all characteristics
DNS$ACS
DNS$CTS
DNS$GroupRevoke
DNS$Members
DNS$UTS

prepositional-phrase

A phrase that affects the destination or content of command output. Specify one or more of the
following prepositional phrases:

with attribute [relop] value
to file[=]filename
to extend file[=]filename
to terminal

Description
This command displays the names and values of the attributes or attribute groups named in
attribute-specifier. You can use any combination of attribute specifiers in a single command.
Use a comma to separate the specifiers. If you do not supply any attribute specifier, the command
displays all attributes and their values. The following are descriptions of valid characteristics:

215

Chapter 11. DECdns Control Program Command Dictionary

Characteristics

DNS$ACS

Specifies the access control set of the group.

DNS$CTS

Specifies the creation timestamp of this group.

DNS$GroupRevoke

Specifies a timeout that determines how long a positive result from a group membership test operation
may be cached by the clerk that issued the request.

DNS$Members

Specifies the DECdns full name of each member of the group. Members are specified as a group
name, a collection of principals denoted with wildcards (for example, .org.name*), or an individual
name in the format nodename.username. To specify a DNS Version 1-style principal, use the format
nodename::username.

DNS$UTS

Specifies the timestamp of the most recent update to an attribute of the group.

Prepositional Phrases

You can affect the destination or content of command output by using prepositional phrases. Be sure to
precede each of the following prepositional phrases with a comma and a space:

with attribute [relop] value

When used with a wildcard group-name, limits the output only to directories whose specified attributes
have certain values.

to file[=]filename

Redirects the output to filename. If the file does not exist, this command creates it. If the file does exist,
its contents are overwritten.

to extend file[=]filename

Appends the output to an existing filename. If the file does not exist, it is created.

to terminal

Directs the output to the terminal. This is the default option.

Access Rights

You need read access to the group for which you want to display attribute information.

Example
The following command displays the full name of each member of the group .sales_group1.

dns> show group .sales_group1 DNS$members

216

Chapter 11. DECdns Control Program Command Dictionary

The following command displays all the attributes of the group .sales_group1.

dns> show group .sales_group1 all

 SHOW
 GROUP MEH:.sales_group1
 AT 17-APR-2019:13:53:21
 DNS$ACS (set) = :
 Flags = none
 Rights = read, write, delete, test, control
 (V) Principal = MEH:.MIDAS.SYSTEM

 DNS$ACS (set) = :
 Flags = propagate
 Rights = read, write, delete, test, control
 (V) Principal = MEH:.camelot.system
 DNS$Class = DNS$Group

 DNS$ClassVersion = 1.0
 DNS$Members (set) = :
 (V) Principal = MEH:.midas.system
 DNS$Members (set) = :
 (V) Principal = MEH:.midas.dns$server
 DNS$Members (set) = :
 (V) Principal = MEH:.midas.snow
 DNS$CTS = 1991-06-12-18:57:31.18/aa-00-04-00-de-11
 DNS$UTS = 2019-04-04-15:38:09.31/aa-00-04-00-eb-61

show group access
show group access — Displays the access control set of a group.

Format
show group-name access [prepositional-phrase]

Arguments
group-name

A specific group name or a complete directory specification followed by a wildcard template for
matching simple names of groups.

prepositional-phrase

A phrase that affects the destination or content of command output. Specify one or more of the
following prepositional phrases:

to file[=]filename
to extend file[=]filename
to terminal

Description
This command displays the access control set of a group.

217

Chapter 11. DECdns Control Program Command Dictionary

Prepositional Phrases

You can affect the destination or content of command output by using prepositional phrases. Be sure to
precede each of the following prepositional phrases with a comma and a space:

to file[=]filename

Redirects the output to filename. If the file does not exist, this command creates it. If the file does exist,
its contents are overwritten.

to extend file[=]filename

Appends the output to an existing filename. If the file does not exist, it is created.

to terminal

Directs the output to the terminal. This is the default option.

Access Rights

You must have read access to the group.

Example
The following command displays the access control set of the group .eng.testgroup.

dns> show group .eng.testgroup access

The following command displays the access control set of the group .lex.edgroup.

dns> show group .lex.edgroup access

 SHOW
 GROUP IAF:.lex.edgroup
 AT 17-APR-2019:14:02:42
 DNS$ACS (set) = :
 Flags = none
 Rights = read, write, delete, test, control
 (V) Principal = IAF:.MIDAS.SYSTEM
 DNS$ACS (set) = :
 Flags = propagate
 Rights = read, write, delete, test, control
 (V) Principal = IAF:.camelot.system
 DNS$ACS (set) = :
 Flags = propagate
 Rights = read, test
 (V) Principal = IAF:.*...

show link
show link — Displays current information about the specified soft link.

Format
show link-name [attribute-specifier] [prepositional-phrase]

218

Chapter 11. DECdns Control Program Command Dictionary

Arguments
link-name

A specific name of a soft link or a complete directory specification followed by a wildcard template
for matching simple names of soft links.

attribute-specifier

The name of an attribute or an attribute group. Enter one or more of the following attribute
specifiers:

all [attributes]
all characteristics
DNS$ACS
DNS$CTS
DNS$LinkTarget
DNS$LinkTimeout

prepositional-phrase

A phrase that affects the destination or content of command output. Specify one or more of the
following prepositional phrases:

with attribute [relop] value
to file[=]filename
to extend file[=]filename
to terminal

Description
This command displays the names and values of the attributes or attribute groups named in
attribute-specifier. You can use any combination of attribute specifiers in a single command.
Use a comma to separate the specifiers. If you do not supply any attribute specifier, the command
displays all attributes and their values. The following are descriptions of valid characteristics:

Characteristics

DNS$ACS

Specifies the access control set for the soft link.

DNS$CTS

Specifies the creation timestamp of the soft link.

DNS$LinkTarget

Specifies the full name of the directory, object entry, or other soft link to which the soft link points.

DNS$LinkTimeout

Specifies a timeout value after which the soft link is either extended or deleted. The timeout value
contains both an expiration time and an extension time. If the soft link does not point to anything when it
is checked, it is deleted.

219

Chapter 11. DECdns Control Program Command Dictionary

DNS$UTS

Specifies the timestamp of the most recent update to an attribute of the soft link.

Prepositional Phrases

You can affect the destination or content of command output by using prepositional phrases. Be sure to
precede each of the following prepositional phrases with a comma and a space:

with attribute [relop] value

When used with a wildcard link-name, limits the output only to directories whose specified attributes
have certain values.

to file[=]filename

Redirects the output to filename. If the file does not exist, this command creates it. If the file does exist,
its contents are overwritten.

to extend file[=]filename

Appends the output to an existing filename. If the file does not exist, it is created.

to terminal

Directs the output to the terminal. This is the default option.

Access Rights

You must have read access to the soft link.

Example
The following command displays the full name of the directory, object entry, or other soft link to which
the soft link named .sales.australia points.

dns> show link .sales.australia DNS$LinkTarget

The following command displays all the attributes of the soft link .sales.australia:

dns> show link .sales.australia all

 SHOW
 SOFTLINK IAF:.sales.australia
 AT 18-APR-2019:14:38:10
 DNS$ACS (set) = :
 Flags = none
 Rights = read, write, delete, test, control
 (V) Principal = IAF:.JWH.AUS_OSG

 DNS$ACS (set) = :
 Flags = propagate, group
 Rights = read, write, delete, test, control
 Group = IAF:.name_sydney

 DNS$ACS (set) = :
 Flags = group

220

Chapter 11. DECdns Control Program Command Dictionary

 Rights = read, write, delete, test, control
 Group = IAF:.name_perth
 DNS$LinkTarget = IAF:.notes.aus_os
 DNS$LinkTimeout = :
 Expiration = 1583-10-25-00:00:00.0
 Extension = 0-00:00:00.000
 DNS$CTS = 2018-02-20-09:24:09.52/aa-00-04-00-de-11
 DNS$UTS = 2018-02-20-09:24:09.53/aa-00-04-00-de-11

show link access
show link access — Displays the access control set of a soft link.

Format
show link-name access [prepositional-phrase]

Arguments
link-name

A specific name of a soft link or a complete directory specification followed by a wildcard template
for matching simple names of soft links.

prepositional-phrase

A phrase that affects the destination or content of command output. Specify one or more of the
following prepositional phrases:

to file[=]filename
to extend file[=]filename
to terminal

Description
This command displays the access control set of a soft link.

Prepositional Phrases

You can affect the destination or content of command output by using prepositional phrases. Be sure to
precede each of the following prepositional phrases with a comma and a space:

to file[=]filename

Redirects the output to filename. If the file does not exist, this command creates it. If the file does exist,
its contents are overwritten.

to extend file[=]filename

Appends the output to an existing filename. If the file does not exist, it is created.

to terminal

Directs the output to the terminal. This is the default option.

221

Chapter 11. DECdns Control Program Command Dictionary

Access Rights

You must have read access to the soft link.

Example
The following command displays the access control set of the soft link .sales.australia and
stores the output in a file called slshow.

dns> show link .sales.australia access, to file=slshow

The following command displays the access control set of the soft link .admin.australia.

dns> show link .admin.australia access

 SHOW
 SOFTLINK IAF:..admin.australia
 AT 17-APR-2019:14:44:14
 DNS$ACS (set) = :
 Flags = none
 Rights = read, write, delete, test, control
 (V) Principal = IAF:.ARACHNE.WEB
 DNS$ACS (set) = :
 Flags = propagate, group
 Rights = read, write, delete, test, control
 Group = IAF:.name_admin
 DNS$ACS (set) = :
 Flags = propagate
 Rights = read, test
 (V) Principal = IAF:.*.*
 DNS$ACS (set) = :
 Flags = propagate
 Rights = read, test
 Group = IAF:.root_servers

show object
show object — Displays current information about the specified object entry.

Format
show object-name [attribute-specifier] [prepositional-phrase]

Arguments
object-name

A specific object entry name or a complete directory specification followed by a wildcard template
for matching simple names of object entries.

attribute-specifier

The name of an attribute or an attribute group. Enter one or more of the following attribute
specifiers:

222

Chapter 11. DECdns Control Program Command Dictionary

all [attributes]
all characteristics
DNA$Towers
DNS$ACS
DNS$Address
DNS$Class
DNS$ClassVersion
DNS$CTS
DNS$ObjectUID
DNS$UTS

prepositional-phrase

A phrase that affects the destination or content of command output. Specify one or more of the
following prepositional phrases:

with attribute [relop] value
to file[=]filename
to extend file[=]filename
to terminal

Description
This command displays current information about the specified object entry. Application-defined
attributes for an object are included in the output of this command (if they exist). Names and values of
the attributes or attribute groups named in attribute-specifier are shown. You can use any
combination of attribute specifiers in a single command. Use a comma to separate the specifiers. If you
do not supply any attribute specifier, the command displays all attributes and their values. The following
are descriptions of valid characteristics:

Characteristics

DNA$Towers

Specifies the DECnet Phase V address of every node at which the object entry may be found. This
attribute is used only by DECnet Phase V nodes and servers.

DNS$ACS

Specifies the access control set for the object entry. Refer to Chapter 5 for information about access
control sets and access control entries.

DNS$Address

Specifies the DECnet Phase IV address of every node at which the object entry may be found. This
attribute is used only by Phase IV nodes and servers.

DNS$Class

Classifies objects according to the type of object being named. Client application programs can define
their own classes for object entries that their application creates.

DNS$ClassVersion

Allows the definition of an object class to be evolved over time (for example, by changing the definition
of the class-specific attributes) without confusing the clients of the DECdns directory service.

223

Chapter 11. DECdns Control Program Command Dictionary

DNS$CTS

Specifies the creation timestamp of this object.

DNS$ObjectUID

Specifies the unique identifier (UID) associated with the object entry. This attribute is optional and, if
present, its value can be null. Clients are responsible for maintaining the UIDs of object entries that they
are using; DECdns does not ensure that object entry UIDs are valid or unique.

DNS$UTS

Specifies the timestamp of the most recent update to an attribute of the object entry.

In addition, application-specific attributes may exist for an object entry. See your application
programmer for a list of application-defined attributes.

Prepositional Phrases

You can affect the destination or content of command output by using prepositional phrases. Be sure to
precede each of the following prepositional phrases with a comma and a space:

with attribute [relop] value

When used with a wildcard object-name, limits the output only to directories whose specified attributes
have certain values.

to file[=]filename

Redirects the output to filename. If the file does not exist, this command creates it. If the file does exist,
its contents are overwritten.

to extend file[=]filename

Appends the output to an existing filename. If the file does not exist, it is created.

to terminal

Directs the output to the terminal. This is the default option.

Access Rights

You must have read access to the object entry.

Example
The following command lists the DNS$CTS value of the object entry new_dev.

dns> show object new_dev DNS$CTS

The following command lists all the characteristics and their values of the object entry rsm_dev.

dns> show object rsm_dev all

 SHOW
 OBJECT IAF:.rsm_dev

224

Chapter 11. DECdns Control Program Command Dictionary

 AT 17-APR-2019:14:48:56
 DNS$ACS (set) = :
 Flags = none
 Rights = read, write, delete, test, control
 (V) Principal = IAF:.MIDAS.SYSTEM
 DNS$ACS (set) = :
 Flags = propagate, group
 Rights = test
 Group = IAF:.name_minos
 DNS$Class = DNS$Group
 DNS$ClassVersion = 1.0
 DNS$CTS = 2018-07-22-15:09:49.102/08-00-2b-03-87-72
 DNS$UTS = 2019-03-03-11:52:16.671/08-00-2b-10-27-f4

show object access
show object access — Displays the access control set of an object entry.

Format
show object-name access [prepositional-phrase]

Arguments
object-name

A specific object entry name or a complete directory specification followed by a wildcard template
for matching simple names of object entries.

prepositional-phrase

A phrase that affects the destination or content of command output. Specify one or more of the
following prepositional phrases:

to file[=]filename
to extend file[=]filename
to terminal

Description
This command displays the access control set of an object entry.

Prepositional Phrases

You can affect the destination or content of command output by using prepositional phrases. Be sure to
precede each of the following prepositional phrases with a comma and a space:

to file[=]filename

Redirects the output to filename. If the file does not exist, this command creates it. If the file does exist,
its contents are overwritten.

to extend file[=]filename

225

Chapter 11. DECdns Control Program Command Dictionary

Appends the output to an existing filename. If the file does not exist, it is created.

to terminal

Directs the output to the terminal. This is the default option.

Access Rights

You must have read access to the object entry.

Example
The following command displays the access control set of the object entry
.sales.east.floor1Ln03 and stores the output in a file called coshow.

dns> show object .sales.east.floor1ln03 access, to file=coshow

The following command displays the access control set of the object entry .psl_dev.

dns> show object .psl_dev access

 SHOW
 OBJECT IAF:.psl_dev
 AT 17-APR-2019:15:01:14
 DNS$ACS (set) = :
 Flags = none
 Rights = read, write, delete, test, control
 (V) Principal = IAF:.MIDAS.SYSTEM
 DNS$ACS (set) = :
 Flags = none
 Rights = test
 (V) Principal = IAF:.*.DNS$SERVER
 DNS$ACS (set) = :
 Flags = propagate, group
 Rights = read, write, delete, test, control
 Group = IAF:.name_dev

show replica
show replica — Displays current information about the specified replica.

Format
show directory-name [at] clearinghouse clearinghouse-name [attribute-specifier] [prepositional-phrase]

Arguments
directory-name

The full name of the directory.

clearinghouse-name

The full name of the clearinghouse.

226

Chapter 11. DECdns Control Program Command Dictionary

attribute-specifier

The name of an attribute or an attribute group. Enter one or more of the following attribute
specifiers:

all [attributes]
all characteristics
all identifiers
all status
DNS$CTS
DNS$Epoch
DNS$LastSkulk
DNS$LastUpdate
DNS$ReplicaState
DNS$ReplicaType
DNS$ReplicaVersion
DNS$RingPointer
DNS$SkulkStatus

prepositional phrase

A phrase that affects the destination or content of command output. Specify one or more of the
following prepositional phrases:

to file[=]filename
to extend file[=]filename
to terminal

Description
This command displays the names and values from the attributes or attribute groups named in
attribute-specifier. This command displays directory-specific attributes as well as per-replica
attributes. If you do not supply any attribute specifier, the command displays all attributes and their
values. You can use any combination of attribute specifiers in any sequence in a single command. The
following are descriptions of valid characteristics, identifiers, and status attributes that pertain just to the
replica:

Characteristics

DNS$CTS

Specifies the creation timestamp (CTS) of the directory of which this replica is a copy.

DNS$LastSkulk

Records the timestamp of the last skulk that began processing this particular replica of a directory. This
will be zero for read-only replicas because they do not start processing for a skulk.

DNS$LastUpdate

Records the timestamp of the last update to any attribute of the replica, or any change to the contents of
the replica, including object entries, child pointers, and soft links. This will be zero for read-only replicas.

DNS$ReplicaType

227

Chapter 11. DECdns Control Program Command Dictionary

Specifies the type of this replica.

DNS$ReplicaVersion

Specifies the version of this replica.

DNS$RingPointer

Contains the CTS of the next clearinghouse in the ring. This attribute is for internal use only.

Identifier

DNS$Epoch

Identifies a replica as part of a directory's complete set.

Status Attribute

DNS$ReplicaState

Specifies the internal state of a replica. When you create or delete a replica, it goes through various
states.

DNS$SkulkStatus

If the replica is a master replica on the server for which this command is issued, this attribute contains
information about the status of the skulk, such as whether it completed successfully or how it failed. The
attribute does not display information for replicas mastered on DNS Version 1 servers.

Prepositional Phrases

You can affect the destination or content of command output by using prepositional phrases. Be sure to
precede each of the following prepositional phrases with a comma and a space:

to file[=]filename

Redirects the output to filename. If the file does not exist, this command creates it. If the file does exist,
its contents are overwritten.

to extend file[=]filename

Appends the output to an existing filename. If the file does not exist, it is created.

to terminal

Directs the output to the terminal. This is the default option.

Access Rights

You must have read access to the directory from which this replica was created.

Example
The following command displays the replica type of the .eng directory in the .chicago2_ch
clearinghouse.

dns> show replica .eng at clearinghouse .chicago2_ch DNS$ReplicaType

228

Chapter 11. DECdns Control Program Command Dictionary

The following command displays all the attributes of the replica of the .eng directory in the
.galbally_ch clearinghouse.

dns> show replica .eng at clearinghouse .galbally_ch all

 SHOW
 REPLICA IAF:.eng
 AT 17-APR-2019:15:14:39
 DNS$ACS (set) = :
 Flags = none
 Rights = read, write, delete, test, control
 (V) Principal = IAF:.MIDAS.SYSTEM
 DNS$ACS (set) = :
 Flags = none
 Rights = read, write, delete, test, control
 (V) Principal = IAF:.MINOS.DNS$SERVER
 DNS$ACS (set) = :
 Flags = authenticated
 Rights = read, write, delete, test, control
 (V) Principal = IAF:.galbally_ch
 DNS$ACS (set) = :
 Flags = propagate, group
 Rights = read, write, delete, test, control
 Group = IAF:.name_dev
 DNS$AllUpTo = 2019-04-17-15:13:09.45/aa-00-04-00-2a-10
 DNS$Convergence = medium
 DNS$DirectoryVersion = 1.0
 DNS$Epoch = 2018-04-27-21:27:30.98/aa-00-04-00-2a-10
 DNS$LastSkulk = 2019-04-17-15:13:09.45/aa-00-04-00-2a-10
 DNS$LastUpdate = 2019-04-17-18:04:47.55/aa-00-04-00-2a-10
 DNS$ParentPointer = :
 Parent's DNS$CTS = 2018-07-21-18:56:49.42/aa-00-04-00-2a-10
 Timeout = :
 Expiration = 2019-04-18-18:04:47.35
 Extension = 1-00:00:00.000
 MyName = IAF:.eng
 DNS$Replicas (set) = :
 Clearinghouse's DNS$CTS = 2019-01-20-20:38:05.18/aa-00-04-00-de-11
 Tower 1 Floor 1 = 01 2c (null)
 Tower 1 Floor 2 = 02 00 2c ncacn_dnet_nsp
 Tower 1 Floor 3 = 04 (null)
 Tower 1 Floor 4 = 06 49 00 04 aa 00 04 00 2a 10 20
 Replica type = master
 Clearinghouse's Name = IAF:.galbally_ch
 DNS$ReplicaState = on
 DNS$ReplicaType = master
 DNS$ReplicaVersion = 1.0
 DNS$RingPointer = 2018-01-20-17:07:28.11/aa-00-04-00-de-11
 DNS$CTS = 2018-05-28-21:27:30.98/aa-00-04-00-2a-10
 DNS$UTS = 2019-04-17-18:04:47.55/aa-00-04-00-2a-10
 DNS$SkulkStatus (set) = :
 Last status = Success

229

Chapter 11. DECdns Control Program Command Dictionary

230

Chapter 12. DECdns Problem Solving
This chapter provides tips for solving problems that may be related to the operation of DECdns. It
contains information on the following:

• Isolating the source of a problem - see Section 12.1

• Using tracing facilities - see Section 12.2

• Locating DECdns files - see Section 12.3

• Solving clerk startup problems - see Section 12.4

• Solving server startup problems - see Section 12.5

• Solving common access control problems - see Section 12.6

• Handling clearinghouse creation failures - see Section 12.7

• Restoring a corrupted clearinghouse - see Section 12.8

• Restoring a deleted child pointer - see Section 12.9

• Restoring a missing clearinghouse object entry - see Section 12.10

• Handling node verification failures - see Section 12.11

• Breaking soft link loops and group loops - see Section 12.12

• Eliminating ambiguous namespace nicknames - see Section 12.13

• Handling communication errors - see Section 12.14

• Fixing clock synchronization errors - see Section 12.15

• Handling clerk and server software errors - see Section 12.16

• Handling skulk failures - see Section 12.17

12.1. Isolating the Source of a Problem:
General Suggestions
Two basic rules should govern the process of isolating DECdns faults:

1. Prove you have a DECdns problem before making DECdns changes. If in doubt, do nothing to
DECdns components and get help from support services.

Remember that not all DECdns problems originate from faults with the DECdns software. The
majority of perceived DECdns clerk or server problems are caused by underlying network or
operating system problems. For example, the network path to a particular DECdns server could be
down or the system itself could have a resource problem.

Whatever you do, keep a log of your activities so that someone coming on to help later knows the
entire story.

2. Most problems originating from DECdns actually involve access control problems.

231

Chapter 12. DECdns Problem Solving

To control access to DECdns information and to prevent accidental or malicious damage to the
namespace, access control is applied on a node/user name basis. DECdns bars a person or process
from accessing its information if the node/user name cannot be determined. Turn on event logging
(the event dispatcher on DECnet Phase V systems) and enable any DECdns events. The DECdns
server reports access control problems effectively. For more information on event logging, see the
DECnet-Plus network management documentation. For more information on solving access control
problems, see Section 12.7.

The first step to isolating the source of a problem is to collect and verify information about the software
on the affected system. This is essential not only for fault isolation but also for providing important
background information for any report that you must make to escalate problems not resolved at an early
stage.

Obtain and verify the following:

1. Basic information about the DECnet system (Section 12.1.1).

2. Basic information about the clerk and (if applicable) server on your system (Section 12.1.2).

3. More specific information about the DECdns clerk (Section 12.1.3).

4. More specific information about the DECdns server (Section 12.1.4).

12.1.1. Obtain Basic DECnet Information
Collect key information about the DECnet system and its functionality. Verify the following information:

• That you have the required privileges for using the Network Control Language (NCL)—You use
NCL to examine and manage DECnet Phase V entities.

You require the NET$EXAMINE and NET$MANAGE rights identifiers to use NCL for read and
write operations.

• The DECnet-Plus software version of your system – Use the ncl show implementation command to
determine the DECnet-Plus version.

• The DECnet Phase V node name and address—Use the ncl show address command to obtain
the node name and address for your system. Ensure that backtranslation is indicated. The name
of your node should be displayed to the right of the address as in the following example for node
ACME:.ZOO.MONKEY:

49::00-30:AA-00-04-00-96-c0:20 (ACME:.ZOO.MONKEY)

If backtranslation is not evident, this could indicate a network or DECdns problem.

• Basic system information—Use the show system command to display system information. The
display includes information about DECnet.

Look for information on the following:

• NET$ACP on Alpha systems, NETACP on VAX systems.

• DNS$ADVER—the DECdns clerk advertiser

• LES$ACP—core DECnet-Plus ACP

232

Chapter 12. DECdns Problem Solving

• REMACP—process required for inbound SET HOST to work

• DNS$SERVER—DECdns server process (present only if the server software has been installed)

• NET$EVD—DECnet-Plus event dispatcher

• NET$MOP—DECnet-Plus MOP (Maintenance Operation Protocol) downline load process

• DTSS$CLERK—Distributed time service clerk process

• DTSS$SERVER—Distributed time service server process (present only if the server software
has been installed)

• Addresses of adjacent routers—Each transport protocol enabled on the node has an associated
routing port connecting the Transport layer to Routing. By displaying this port, you can show which
network address is being used to get data to each transport. Use the following command:

ncl show routing port * all status

The most important remote nodes displayed are the adjacent routers on the LAN. These nodes are
usually key to successful network connections. Use this command to check that your node can see an
adjacent router.

12.1.2. Obtain Basic Clerk and Server Information
After determining the basic name and address information for your system, check the following:

• Is the DECdns clerk running?

• Is the node also a DECdns server?

• What are the DECdns clerk and server versions?

The following subsections explain how to check for this information.

12.1.2.1. Checking the DECdns Clerk
Check that the DECdns clerk is loaded and running normally. If it is not, attend to this problem before
undergoing any further investigation. The DECdns clerk interoperates with the Session layer. A problem
with the DECdns clerk could indicate a DECnet startup problem.

To check that the clerk is running, use NCL as in the following example:

ncl> show dns clerk all status
Node 0 DNS Clerk
at 2019-07-05-17:18:30.372+02:00I35.989
Status
 State = On

If this command returns other output, such as the following, it indicates a problem.

[options]
command failed due to:
 no such object instance

In this example, the clerk has been loaded but subsequently disabled and removed. This could suggest
someone has shut down the DECdns clerk.

233

Chapter 12. DECdns Problem Solving

12.1.2.2. Checking the DECdns Server
If your system is a DECdns server, use NCL to check that the server is running and to check the
clearinghouse. Though the OpenVMS show system command might indicate that the DECdns server is
running on the system, certain server components might not be correctly loaded.

Use the NCL show dns server all status command to check the server, and the NCL show
dns server clearinghouse * command to check the clearinghouse.

12.1.2.3. Checking the Clerk and Server Software Versions
The DECdns clerk and server software is bundled and shipped with the DECnet-Plus software. The
DECdns version is identical to the DECnet-Plus version. If DECnet-Plus ECO kits have been installed,
you may want to determine the ECO level of the DECdns software components.

DECdns Clerk Software Version

No single image contains all the clerk functions. However, a significant part of the software code exists
in SYS$LOADABLE_IMAGES:SYS$NAME_SERVICES. Analyze this image to obtain a DECnet-Plus
ECO number, using the following command:

$ ana/image/inter sys$loadable_images:sys$name_services

The DECdns clerk software version is indicated as the image file identification in the
output.

DECdns Server Software Version

Analyze the SYS$SYSTEM:DNS$SERVER image to obtain a DECnet-Plus ECO number, using the
following command:

$ ana/image/inter sys$system:dns$server

The DECdns server software version is indicated as the image file identification in the
output.

12.1.3. Investigating the DECdns Clerk
Assuming you have the basic information about the clerk on your system described in Section 12.1.2,
you can now investigate further to find information about the clerk. Objects of investigation may include
the following:

• DECdns clerk cache

• DECdns clerk known namespaces

12.1.3.1. DECdns Clerk Cache Information
The DECdns clerk caches useful information about the results of lookup operations by DECdns servers.
The information is periodically saved in a file and preserved across reboots. You can use the DECdns
Control Program to dump the cache information (see Chapter 11). In addition, you can examine the
cache files. (A cache file may not have been created at server startup because of insufficient resources.)

Using the DECdns Control Program to Obtain Cache Information

The DECdns Control Program dump dns clerk cache command dumps the cache information.
This information can provide clues to the source of the problem, such as the following:

234

Chapter 12. DECdns Problem Solving

• Which DECdns servers the clerk knows

• Which namespaces the clerk can see (or has seen)

• The results of successful lookups in the namespace

• Clearinghouse information that has been cached in lookups

The dump dns clerk cache command dumps the cache information to your terminal. To
facilitate examination of this information, redefine output from the DECdns Control Program to a file
before you dump the cache. Then you can use an editor to search for useful information.

Removing Obsolete DNS$CACHE Files

Occasionally, obsolete copies of the DECdns clerk cache file (SYS$SYSTEM:DNS
$CACHE.nnnnnnnnnn can accumulate and cause disk space problems on the system. DECdns uses
only the files referenced in the SYS$SYSTEM:DNS$CACHE.VERSION file. DECdns normally deletes
prior unreferenced versions of the file.

If you check the contents of the SYS$SYSTEM: directory and see more than one DECdns clerk cache
file, check the DNS$CACHE.VERSION file to see which cache files DECdns is currently using and
delete all prior cache files from the directory.

Using CDI Trace to Obtain Cache Information

You can run the CDI Trace utility to obtain trace inforamtion. Use the following command to run CDI
$TRACE, located in SYS$SYSTEM: $ run sys$system:cdi$trace

You can use the following procedure to redirect CDI$TRACE output to a file:

1. Define a DCL foreign command symbol:

 $ cdi$trace == "$cdi$trace"

2. Specify the name of the file to contain the CDI$TRACE output:

 $ cdi$trace trace.log

The output file may occasionally be missing the last few records of the trace. This is a known
problem.

CDI$TRACE has known problems when run during a LAT terminal session (on an LT device). A
workaround is to issue the DCL spawn command first.

You can use NCL to manage two CDI naming cache parameters, the checkpoint interval and the timeout
period, and you can flush entries from the in-memory naming cache. See the VSI DECnet-Plus for
OpenVMS Network Management Guide.

Note

On OpenVMS systems, you can also use the Common Trace Facility to obtain naming trace information.
Use the following command to invoke the Common Trace Facility: $ Trace Start "SESSION
CDI *"

Including the CDI parameter restricts trace facility output to node name and address resolution
messages.

235

Chapter 12. DECdns Problem Solving

12.1.3.2. DECdns Clerk Known Namespaces
When the DECdns clerk starts up, the clerk uses the default namespace defined during DECnet-Plus
configuration. The DECdns clerk also may know about all other namespaces in the network in addition
to others that have been configured. Use NCL to check which namespace names the clerk knows.

ncl> show dns clerk known namespace *

12.1.4. Investigating the DECdns Server
If your system is a DECdns server, and you have the basic information about the server on your system
described in Section 12.1.2, investigate further to find information about the server. You can perform
remote and local checks on the server.

12.1.4.1. Remote Checks on the Server
The checks described here can be performed remotely as well as locally. The network must be running
and sufficient DECnet resources must be available on the DECdns server to allow incoming network
management commands. If these commands fail, the DECdns server could still be running properly. The
problem could be due to a DECnet or operating system fault.

Find out the name or address of the remote DECdns server by using the NCL show dns clerk
remote clearinghouse *. However, the NCL command does not clearly indicate whether the
server is a DECdns Version 2 or DNS Version 1 server. As an alternative, you can get the address of a
remote node with which a connection failed by examining the DNS$CHFAIL.LOG file.

You can determine the node name from the clearinghouse NSAP, as explained in Section 12.1.4.3.

With the node and address information you obtain, perform the following checks using NCL, in the
sequence shown:

1. show node address dns server

This command returns output such as the following:

Node 0 DNS Server at 2019-07-05-17:18:30.372+02:00I35.989

When this command fails to return information similar to this, the DECdns server is not running. It
was either never started or has stopped running.

If this command hangs but other commands to the remote node work, it indicates a DECdns server
problem that must be investigated locally.

2. Check that the DECdns server knows about its local clearinghouse files, as in the following example:

ncl> show node address dns server clearinghouse *
Node 0:. DNS Server Clearinghouse IAF:.dublin1_ch
AT 2019-04-17-11:16:21.598-04:00I0.447
Identifiers
Name = IAF:.dublin1_ch

If you get this output, the server has started and has found at least one DECdns clearinghouse file on
disk. However, this does not mean the DECdns server is running now.

3. Next examine the clearinghouse counters, as in the following example:

236

Chapter 12. DECdns Problem Solving

ncl> show node address dns server clearinghouse * all counters

Node 0:. DNS Server Clearinghouse IAF:.dublin1_ch
AT 2019-04-17-11:16:30.598-04:00I0.447

Counters
 Creation Time = 2019-04-17-13:58:51.369+00:00I0.000
 Read Accesses = 149679
 Write Accesses = 913
 References Returned = 31721
 Times Root Not Reachable = 0
 Data Corruptions = 0
 Skulk Failures = 0
 Times Clearinghouse Entry Missing = 0
 Directory Upgrade Failures = 0
 Enable Counts = 1
 Disable Counts = 0

The counters in this example only indicate that the server has (at some time) performed a number of
read and write operations successfully. They also indicate when the server was started (Creation
Time). This could differ from the boot time, which can be determined from the Creation Time
counter on routing. If the startup time for the server clearinghouse is later than the boot time for the
system, it may indicate that someone has already attempted to perform some troubleshooting on the
server. Note this in your log.

4. The ncl dns server clear * replicas command is crucial for checking if the server
and clearinghouse are actually running properly. Unlike the earlier commands which only query
DECnet and the DECdns server component, this command requires data to be read from the
DECdns clearinghouse database. The following example shows the command and resulting output:

ncl> show node address dns server clearinghouse * replicas

Node 0:. DNS Server Clearinghouse IAF:.dublin1_ch
AT 2019-04-17-11:17:31.598-04:00I0.447

Status
 Replicas =
 {
 IAF:. ,
 IAF:.uvo ,
 IAF:.ilo ,
 IAF:.Applications ,
 IAF:.Accounting ,
 IAF:.Europe ,
 IAF:.Asia ,
 IAF:.Downunder ,
 }

If the output includes replica information, the server is working properly. If the command hangs, or
produces an error, the DECdns server is probably not working properly. Perform the local checks in
Section 12.1.4.2.

If there is a significant difference in the elapsed time to execute the last two commands (displaying
all counters and displaying replicas), it usually indicates that the performance of the operating system
and network differs from the performance of the remote DECdns server itself. Very slow access
times to the replica data can indicate problems with process virtual memory or paging.

237

Chapter 12. DECdns Problem Solving

12.1.4.2. Local Checks on the Server
Check that the DECdns server process is present on the system, as in the following example:

$ show system/output=dns.tmp
$ search dns.tmp dns$server
0000027E DNS$Server LEF 9 52699 0 00:50:32.03 140958 49382
$ delete dns.tmp.*

12.1.4.3. Determining a Node Name from a Clearinghouse NSAP
Address
During troubleshooting or routine management of your namespace, you may need to determine the node
name of the system where a particular clearinghouse exists. For example, you may need to know the
name of the node where the clearinghouse that stores the master replica of a directory resides. Because
clearinghouses are not typically named after their host systems, you can use the following procedure to
determine the node name:

1. Use the show directory command and specify the DNS$Replicas attribute to display the
network service access point (NSAP) address of the clearinghouse. For example, suppose you need
to determine the name of the node where the clearinghouse that stores the master replica of the
root directory resides. The following command displays the DNS$Replicas attribute for the root
directory of the IAF namespace.

dns> show directory . dns$replicas

 SHOW
 DIRECTORY IAF:.
 AT 09-APR-2018:16:08:25
 DNS$Replicas (set) = :
Clearinghouse’s DNS$CTS = 2018-03-22-14:39:34.58/aa-00-04-00-de-11
 Tower 1 CTS = 2018-04-09-20:08:25.835/08-00-2b-0d-c0-9d
 Floor 1 = 01 2c (null)
 Floor 2 = 02 00 2c ncacn_dnet_nsp
 Floor 3 = 04 (null)
 Floor 4 = 06 49 00 37 aa 00 04 00 22 dc 20
 Replica type = readonly
 Clearinghouse’s Name = IAF:.Chicago2_CH
 DNS$Replicas (set) = :
Clearinghouse’s DNS$CTS = 2018-07-30-20:32:42.82/aa-00-04-00-de-11
 Tower 1 CTS = 2018-04-09-20:08:25.835/08-00-2b-0d-c0-9d
 Floor 1 = 01 2c (null)
 Floor 2 = 02 00 2c ncacn_dnet_nsp
 Floor 3 = 04 (null)
 Floor 4 = 06 49 00 14 aa 00 04 00 7e 52 20
 Replica type = readonly
 Clearinghouse’s Name = IAF:.Paris1_CH
 DNS$Replicas (set) = :
Clearinghouse’s DNS$CTS = 2018-01-12-18:15:01.77/aa-00-04-00-de-11
 Tower 1 CTS = 2018-04-09-20:08:25.835/08-00-2b-0d-c0-9d
 Floor 1 = 01 2c (null)
 Floor 2 = 02 00 2c ncacn_dnet_nsp
 Floor 3 = 04 (null)
 Floor 4 = 06 49 00 33 aa 00 04 00 0a ce 20
 Replica type = readonly
 Clearinghouse’s Name = IAF:.NY1_ch
 DNS$Replicas (set) = :

238

Chapter 12. DECdns Problem Solving

The display shows that the master replica of the root directory is stored in the .Chicago1_CH
clearinghouse and that the clearinghouse's NSAP address is 49 00 18 aa 00 04 00 eb 61 20 (see the
information for the last clearinghouse listed in this display).

2. To determine the node name associated with this NSAP address, you must use the show link
command to follow the soft link in the backtranslation tree (.DNA_BackTranslation) that
points from the NSAP address (Floor 4 of the Tower address) to the corresponding node name (DNS
$LinkTarget). The following command displays the node name stored in the backtranslation tree
that corresponds to the NSAP address 49 00 18 aa 00 04 00 eb 61 20, which you gathered in step 1.
(Note that you must specify the NSAP address on the command line exactly as shown.)

a. Preface the address with .DNA_BackTranslation, then type .%X and the first pair of
characters in the NSAP address (.%X49). This is the initial domain part (IDP) of the address.

b. Type .%X followed by the second and third pairs of characters (.%X0018). This is the local
area portion of the address.

c. Type .%X again, this time followed by the next six pairs of characters (.%Xaa000400eb61).
This is the node-ID portion of the address.

Ignore the last pair of characters (the selector portion of the address), in this case 20.

d. Specify the DNS$LinkTarget attribute at the end of the command.

dns> show link .DNA_BackTranslation.%X49.%x0018.%Xaa000400eb61 DNS
$LinkTarget

 SHOW
 SOFTLINK IAF:.DNA_BackTranslation.%X49.%X0018.
%XAA000400EB6
 AT 09-APR-2018:16:14:51
 DNS$LinkTarget = IAF:.orion

The output of the command shows that the name of the node corresponding to the NSAP address 49
00 18 aa 00 04 00 eb 61 20 is IAF:.orion.

12.2. Handling Communication Errors
When a clerk is unable to communicate with any DECdns server capable of processing its request, the
following error message is displayed:

Unable to communicate with any DECdns server

12.2.1. Identifying Clearinghouses to Which
Communication Failed
To troubleshoot this problem, first attempt to identify the clearinghouses with which your clerk tried
to communicate. Examine the SYS$MANAGER:DNS$CHFAIL.LOG file, especially the last few
entries. Output from the following example shows that the local clerk tried and failed to connect to three
clearinghouses: .Chicago1_CH, .NY2_CH, and .Paris1_CH.

$ type sys$manager:dns$chfail.log

Wed Mar 18 18:49:24 2019
 PID: 39, DNS status: NOCOMMUNICATION, IPC status: NOAPPLICATION

239

Chapter 12. DECdns Problem Solving

 Clearinghouse: IAF:.Chicago1_CH
 Tower:
 04-00-02-00-01-2c-00-00-01-00-02-02-00-00-2c-01-00-04-00-00-01-
 00-06-0a-00-49-00-04-aa-00-04-00-c8-11-20
Wed Mar 18 21:32:03 2019
 PID: 39, DNS status: NOCOMMUNICATION, IPC status: NODEUNREACHABLE
 Clearinghouse: IAF:.NY2_CH
 Tower:
 04-00-02-00-01-2c-00-00-01-00-02-02-00-00-2c-01-00-04-00-00-01-
 00-06-0a-00-49-00-04-aa-00-04-00-c7-11-20
Wed Mar 18 21:43:35 2019
 PID: 39, DNS status: NOCOMMUNICATION, IPC status: TIMEDOUT
 Clearinghouse: IAF:.Paris1_CH
 Tower:
 04-00-02-00-01-2c-00-00-01-00-02-02-00-00-2c-01-00-04-00-00-01-
 00-06-0a-00-49-00-04-aa-00-04-00-a5-10-20

With this information, you can further investigate the cause of the communication failure to each of the
clearinghouses. Table 12.1 explains the various elements of the DNS$CHFAIL.log file:

Table 12.1. Elements of the DNS$CHFAIL.LOG File

Field Description

DATE/TIME This is the date and time of the lookup failure.
PID This identifies the process that failed to look up information from DECdns.

Frequently this process ID can be that of NET$ACP, which might be looking
up this information on behalf of you as a user (for example, you issue the SET
HOST WATTS_NS:.dna_node.meta command, and the system looks up
the node address of node .dna_node.meta). In this case, use the date/time
information to determine which log file entry corresponds to your failure.

Running $ MCR CDI$TRACE from another window while repeating
the failing operation can also display more information. On DECdns server
systems, you often find the process ID of the server itself here. The server is
probably attempting to skulk with other systems or looking up access control
information (an access control group) that is stored on another system. The
server needs to do this to clear an incoming clerk lookup request for access to
information in its own clearinghouse.
In this case, DNS status will always be NOCOMM, but it will also log other
DECnds status failures, such as the following:
NONSRESOURCES Sufficient resources are not available to the server to

process your request. The server node may require
tuning, more memory, or faster hardware.

DNS status

RESOURCEERROR No resources are available elsewhere, probably
at the clerk. If the PID identifies NET$ACP, the
resource shortage probably involves a DECnet/
tuning need or a memory leak. If the PID identifies
another process, the process probably needs to have
more memory resources.

These status errors are returned to DECdns from DECnet. (IPC is the interface
DECdns uses to communicate with DECnet.) Common values are:

IPC status

MAXCONNECTEXCEE The local node has too many connections open;
that is, the number of open connections exceeds

240

Chapter 12. DECdns Problem Solving

Field Description
the value of the MAXIMUM TRANSPORT
CONNECTION parameter defined for the transport
protocol attempted for use, NSP or OSI. (Look
at the last byte in the tower: 20 denotes NSP,
while 21 denotes OSI transport.) If this error
happens regularly, increase the maximum number of
transport connections by using NET$CONFIGURE
ADVANCED.

NOAPPLICATION This means that a server is not running on the node
whose address you have for the listed tower set.
DECnet on the node itself is up and reachable.

NODEUNREACHABLE This means that the clerk could not contact the
indicated clearinghouse using the tower that is listed.
This error could mean the server node is down
(or DECnet is not running there), the network is
disconnected, the routers have marked the server
as unreachable, or the clerk has an incorrect tower
(DECnet address) cached for the clearinghouse
(this is usually caused by moving the clearinghouse
location).

NOSCRESOURCES This means session control has no resources. This
can happen on either end of the connection. It
probably means that NET$ACP has run out of
memory, either due to misconfiguration, poor
tuning, or memory leaks in DECnet or DECdns.

NOTRANSPORTRESO No transport resource. This indicates that the
remote system (that is, the server to which you
attempt to connect) has exceeded its maximum
transport connections (because of too many open
connections). See the description above for the
MAXCONNECTEXCEE value.

REMOTEDISCONN Remote node disconnected. This happens when the
remote server has accepted your connection and
then decides to drop it. For example, if it could not
authenticate your communications request properly
or if the server is being shut down.

TIMEDOUT This means that DECnet or the clerk on your system
gave up after waiting a length of time for a response.
This can happen if the server or network failed in
mid-request, or more often, if the server at the other
end is overloaded, or hung, and is not responding
after the initial lookup request was received. The
default timeout for the DECdns Control Program
can be modified as described in Section 4.6.

USERREJECT This usually means that the server is just coming up.
(DECdns OpenVMS servers reject connections until
they have fully read in the clearinghouse database.)
On large namespaces where the clearinghouse may
be over 50,000 blocks, this read action can take ten

241

Chapter 12. DECdns Problem Solving

Field Description
minutes or longer. Server configuration may also be
restricting the number of simultaneous connections.
See Section 10.4 for more information on server
configuration and Section 12.6 for information on
tuning your server to accommodate a higher number
of simultaneous connections.

Tower This can indicate such problems as your DECdns cache file having outdated
information for finding a clearinghouse, perhaps trying the wrong address
or tower. Compare this address with the address for the node that hosts the
clearinghouse you are failing to reach. If you can, log into that node and issue
the MCR NCL SHOW ADDRESS command. This address must match one of
the clearinghouse system's towers, or the connection will not work. If either
NSP or OSI transport (but not both) were turned off on the node, you might
also get this problem.

For DNS Version 1 servers, you can enable a very helpful DECnet event to see the reason for the
"Unable to communicate with any server" error you are getting in DNS$CONTROL.

You need to enable the DNS event 353.5. The 353.5 event gives you the reason for the communication
failure. You can see if the event is enabled by using NCP SHOW KNOWN LOGGING command (on the
DECnet Phase IV node). Turn on the event with the NCP SET LOG MONITOR EVENT 353.5
command. You may want to specify 353.* to turn on all the DNS events. After you enable the
event(s), issue the command that generates the communication error and wait a minute to receive the
event via OPCOM. If you enable the event in NCP and still do not receive an OPCOM message, you may
have an old version of the clerk image that did not implement this.

12.2.2. Determining Whether Communication Errors Are
Caused by DECdns or DECnet
To verify that a communication failure is caused solely by a problem with DECdns, take the following
steps in the order shown on the clerk system that received the error:

1. Set host to the local system:

$ set host 0

2. Set host again to the local system, this time specifying the numeric Phase IV-compatible network
address (in decimal format) of the node (such as 5.4 in the following example):

$ set host 5.4

3. Set host to the DECnet Phase V-compatible address of the local node. To determine this address, use
the NCL show address command, as shown:

$ mcr ncl
NCL>
NCL>show address

Node 0
at 2019-10-03-17:23:00.699-04:00I79.428
Identifiers

 Address =

242

Chapter 12. DECdns Problem Solving

 {
 (
 [DNA_CMIP-MICE] ,
 [DNA_SessionControlV3 , number = 19] ,
 [DNA_OSItransportV1 , ’DEC0’H] ,
 [DNA_OSInetwork , 49::00-04:AA-00-04-00-97-11:21
(LOCAL:.IAF.DHARMA)
]
) ,
 (
 [DNA_CMIP-MICE] ,
 [DNA_SessionControlV3 , number = 19] ,
 [DNA_OSItransportV1 , ’DEC0’H] ,
 [DNA_OSInetwork , 47:24:02-01-0A-04:08-00-2B-95-53-25:21
(LOCAL:.IAF.DHARMA)
]
) ,
 (
 [DNA_CMIP-MICE] ,
 [DNA_SessionControlV2 , number = 19] ,
 [DNA_OSItransportV1 , ’DEC0’H] ,
 [DNA_IP , 0.0.0.0]
) ,
 (
 [DNA_CMIP-MICE] ,
 [DNA_SessionControlV3 , number = 19] ,
 [DNA_NSP] ,
 [DNA_OSInetwork , 49::00-04:AA-00-04-00-97-11:20
(LOCAL:.IAF.DHARMA)
]
) ,
 (
 [DNA_CMIP-MICE] ,
 [DNA_SessionControlV3 , number = 19] ,
 [DNA_NSP] ,
 [DNA_OSInetwork , 47:24:02-01-0A-04:08-00-2B-95-53-25:20

Use the first DECnet Phase V address shown, which in this example is
49::00-04:AA-00-04-00-97-11:21, and remove all punctuation and dashes:
490004AA000400971121. Now append this address to the prefix net$ for the set host
command as follows: $ set host net$490004AA000400971121

DECdns full names are not allowed for these commands.

If these login commands succeed, the communication failure to DECdns servers is probably caused by
DECdns. If any of these login commands fails, the problem is more likely related to DECnet.

12.3. Handling Skulk Failures
This section discusses possible solutions to skulk problems.

12.3.1. General Considerations
If a skulk fails to complete, check the DNS$SkulkStatus attribute with the DECdns Control
Program show replica command, as in the following example. This attribute can provide details
on why the directory skulk failed. For troubleshooting purposes, specify the DNS$SkulkStatus

243

Chapter 12. DECdns Problem Solving

attribute explicitly as in this example. Note that failure-related information provided by this attribute is
also recorded in the DNS$SERVER.LOG file. The attribute does not display information for replicas
mastered on DNS Version 1 servers.

DNS> show repli .dave at clear .fact_ch DNS$SkulkStatus
 SHOW
 REPLICA AUTUMN:.dave
 AT 13-SEP-2019:10:45:00
 DNS$SkulkStatus (set) = :
 Last status = Failure
 Phase = Spread
 Reason = Attempted reading DNS$REPLICASTATE at
 clearinghouse AUTUMN:.dave.able_ch
 Reason = %DNS-E-NAMESERVERBUG, Software error detected in
 server

In this example, an error occurred because the .dave.able_ch clearinghouse object or the
clearinghouse itself was deleted or nonexistent. Rebuild the replica set to remove the missing
clearinghouse (use the set directory to new epoch command).

If the DNS$SkulkStatus attribute does not help you identify the source of the problem, do the
following:

• Verify that replicas of the directories being skulked do not exist in a corrupted clearinghouse. See
Section 12.9 for more information about corrupted clearinghouses.

• Ensure that the number of members (principals) for any access group does not exceed 100. If this
limitation is exceeded, the server process can crash during the skulk procedure. Because this skulk
does not necessarily happen immediately (it can occur up to 24 hours after the group size limit was
exceeded), diagnosis of this problem can be difficult.

• If the skulk failure occurs in an environment with both DECdns Version 2 and DNS Version 1
servers, see Section 12.3.2.

12.3.2. Skulk Problems in Mixed Server Environments
On DECdns Version 2 servers, the DNS$CHDirectories attribute for a clearinghouse object lists
the set of directories replicated at that particular clearinghouse. If the following two conditions exist, the
DNS$CHDirectories attribute may grow too large to be handled by the DNS Version 1 server.

• You have more than 200 directories stored in the DECdns Version 2 clearinghouse (for example,
.eng.host_ch).

• You have a DNS Version 1 server that replicates the directory containing the DECdns server's
clearinghouse object (for example, a DNS Version 1 server replicating the .eng directory).

The DNS server will have insufficient resources to support the skulk for the directory. The directory fails
to skulk with the following status: Insufficient local resources at the server
node

To prevent this problem, you can use a switch to delete, and disable updating of, the DNS
$CHDirectories attribute. These actions do not affect the operation of the server because this
attribute is read-only.

To set the switch, create a file called dns.conf in the SYS$SYSDEVICE:[DNS$SERVER]
directory and add the following line: dnsd.chdirectories_setting: switch_value

244

Chapter 12. DECdns Problem Solving

where switch_value can be:

• 0 – Disables updating the DNS$CHDirectories attribute.

• 1 – Deletes the DNS$CHDirectories attribute and never updates it.

• 2 – Enables automatic updating of DNS$CHDirectories until a size threshold is reached, at
which point the attribute is deleted.

To bring the switch into effect, stop and then restart the server (the dns.conf file is read once during
server startup).

12.4. Clerk Tuning
DNS clerk tuning includes the following tasks:

• Ensuring that the DNS$ADVER process has adequate process quotas.

• Ensuring that the clerk cache size is optimal for the system memory configuration.

The next two sections discuss these tuning tasks.

12.4.1. Defining Quotas for the DNS$ADVER Process
One of the functions of the DNS$ADVER process is to serve as the process-based component of the
DNS clerk software. If the DNS$ADVER process experiences quota problems you will notice clerk
errors.

Five user-defined system logicals are available to define process quotas for the DNS$ADVER process:

• DNS$ADVER_AST_LIMIT

• DNS$ADVER_BUFFER_LIMIT

• DNS$ADVER_EXTENT

• DNS$ADVER_MAX_WORKING_SET

• DNS$ADVER_PAGE_FILE

These system logical names correspond to qualifiers on the RUN statement which are described in the
OpenVMS documentation. If any of these system logical names are defined at the time that the DNS
$ADVER process is started (by SYS$SYSTARTUP:DNS_CLERK_STARTUP.COM), then the values
defined for these system logical names are used instead of the default quotas. Typically, these system
logical names are defined in the file SYS$MANAGER:SYLOGICALS.COM.

The default clerk configuration adequately supports two network adapters. Use these system logical
names if you have a system configured with three or more ethernet controllers. You can also use these
logicals to define increased quotas for the DNS$ADVER process when you receive a message on the
console during startup that the clerk’s cache is not initialized (DNS$_NOCACHE,"Clerk cache not
initialized").

In particular, you may need to modify the DNS$ADVER_BUFFER_LIMIT logical.

Generally, determine the value of the DNS$ADVER_BUFFER_LIMIT logical by using the greater of
300,000 or the value of the following formula:

DNS$ADVER_BUFFER_LIMIT = n * 75,000

245

Chapter 12. DECdns Problem Solving

where n is the number of network adapters.

Selected default quotas for the DNS$ADVER process have also been increased for this release. The
selected quotas that have been increased include direct I/0, enqueue limit, queue limit, buffer limit, and
maximum working set.

12.4.2. Clerk Cache Size and the GBLPAGFIL System
Parameter
On systems where the amount of physical memory has changed or the GBLPAGFIL system parameter
has changed, it is important to make the clerk aware of this change. The DECdns clerk resizes the clerk
cache file only when a sizing calculation determines that the file is less than whichever is smaller: 1,000
blocks or .5% of memory.

If the amount of physical memory available to a system has changed or if the GBLPAGFIL system
parameter has been modified, check the SYS$MANAGER:DNS$ADVER_ERROR.LOG file. The
DECdns clerk indicates in this file if it has calculated a new recommended cache size.

When you see the following message, fewer than 10 GBLPAGFILs are available and the cache file was
not created:

Insufficient Global Page File Limit - no cache

When this situation happens, increase the size of GBLPAGFIL, run AUTOGEN, and reboot your system
to get a functioning DECdns clerk.

If the cache file size exceeds 75 percent of the available GBLPAGFIL, it is set to that figure (75 percent
of the available GBLPAGFIL) so it does not use up all of the available GBLPAGFIL. The message
Cache Size ceiling exceeded in the log file indicates that this has occurred. The maximum size of the
clerk cache is 512 MB.

If the recommended change in the size of the cache file is substantial and you want DECdns to use the
new cache size, take the following steps:

1. Shut down the DNS clerk.

2. Delete the existing cache files (SYS$SYSTEM:DNS$CACHE.*).

3. Reboot the system (do not start DECdns before rebooting – the cache sizing algorithm must run on a
fresh boot of OpenVMS).

12.5. Solving Server Startup Problems
Usually a server startup problem involves a file configuration problem. Section 12.5.1 lists steps you can
take to solve the problem on an OpenVMS system.

Take the following steps to solve DECdns server startup problems:

1. Check that the SYS$MANAGER:DNS_FILES.TXT file exists and contains the correct file name
and location for the clearinghouse files.

2. Make sure that the SYS$SYSDEVICE:[DNS$SERVER] directory exists, even if the clearinghouse
is located elsewhere.

3. If the clearinghouse files are on a disk other than the system disk, make sure the disk is mounted
before DECnet starts up.

246

Chapter 12. DECdns Problem Solving

4. Make sure the disk on which the clearinghouse files are located has enough space to write out a
second checkpoint file plus 5,000 blocks for the TLOG file.

5. Make sure that SYS$MANAGER:NET$DNS_SERVER_STARTUP.NCL and SYS
$STARTUP:DNS$SERVER_STARTUP.COM exist.

If all these files seem correct, examine the SYS$MANAGER:DNS$SERVER.LOG files on the server
system that failed to start up.

Note

Depending on the size of the disk and the speed of memory, the startup can take up to 30 minutes.

12.5.1. Server Startup Delay in a TCP/IP Environment
There can be a delay in the startup of the DECdns server when the server is using DECnet over TCP/IP
connections. This delay is due to the time required for the server to obtain a non-zero IP address from
DECnet and the PATHWORKS Internet Protocol (PWIP) software. The IP address is initially zero until
it is updated by DECnet and PWIP with the actual IP address for the node.

12.6. Server Tuning
Server tuning is driven by two major factors:

• Clerk usage

• Database size

The next two sections discuss the tuning tasks related to these factors.

12.6.1. Tuning for Increased Clerk Use
A DECdns server is configured by default to accept up to 200 simultaneous network connections. If
you anticipate a higher load than that for your server, take the following steps to allow the server to
accommodate that load.

1. Edit the server configuration file, (SYS$SYSDEVICE:[DNS$SERVER]DNS.CONF), to increase
the resources available to the server. In particular, modify the parameters in the following table as
needed:

dns.dnsd.ta_conn_quota Limits the number of clerk-to-server connections.
The default is 200. Raise this value as needed for
increased server load.

dns.dnsd.back_conn_quota Limits the number of server-to-server
connections. The default is 20. This is usually
sufficient.

dns.dnsd.maximum_handlers_quota Limits the number of request handlers available
for clerk request processing. The default
value is 200. This value should be equal to
or slightly higher than the value specified for
dns.dnsd.ta_conn_quota.

dns.dnsd.maximum_buffers_quota Limits the number of buffers available for
request handlers. The default is 200. This

247

Chapter 12. DECdns Problem Solving

value should equal the value specified for
dns.dnsd.maximum_handlers_quota.

See Section 12.6.3 for more information about the server configuration file.

2. You should also make several other changes:

• Check DNS$SERVER_STARTUP.COM for any process limits that will stop the server from
accepting more links. FILLM, ASTLM can be increased if needed.

The default value of 100 for FILLM on a DECdns server limits the number of DECdns clerks
that can connect to the server. This limitation causes the DECdns clerk to log a USERREJECT
error into the DNS$CHFAIL.LOG file when the limit of 100 connections is exceeded. You can
raise this limit by modifying the line in SYS$STARTUP:DNS$SERVER_STARTUP.COM that
specifies /FILLM=100.

Note that the ASTLM value for the NET$ACP process also defaults to 100. This limits the
number of connections that NET$ACP can process at any one time thereby limiting the number
of clerk connections. Raise this value when increasing the server’s FILLM value.

• Check the actual size of the clearinghouse database files. On OpenVMS

VAX systems, set VIRTUALPAGECNT to be at least three times the sum of the database file
sizes (also known as the checkpoint file size). For example, if the checkpoint file is 80,000
blocks, set VIRTUALPAGECNT to the value 240,000 in MODPARAMS.DAT and do an
AUTOGEN to activate any other new values.

You must also size the page files on the node accordingly. If the system has more than one
page file, the individual page files must be at least as large as the checkpoint file. Because each
OpenVMS process is assigned to a single page file, the total combined size of the page files is not
useful to DECdns, because it can only use the capacity of one of them when it reads the entire
clearinghouse checkpoint file into memory. Note also that DECdns is not guaranteed to use the
larger page file if one page file is sufficiently large and others are not.

3. Now that the server will support more links than it did before, verify that the DECnet values for NSP
Maximum Transport Connections and/or OSI Transport Maximum Transport
Connections are increased also. To find out the current number of links on a system, use the
following NCL commands:

NCL> SHOW NSP CURRENTLY ACTIVE CONNECTIONS
NCL> SHOW OSI TRANSPORT CURRENTLY ACTIVE CONNECTIONS

12.6.2. Tuning for Increased Database Size
It is important to provide the DECdns server with adequate resources because the DECdns server
uses an "in memory" database. VSI strongly recommends that users be generous with system quotas,
especially the working set quota.

AUTOGEN does not correctly calculate the working set size required by the DECdns Server. The
working set size depends on the size of your checkpoint file. The size of the working set typically varies
from 50,000 to 250,000. Using working set sizes below 50,000 is generally not recommended.

If you need help on setting the quotas, contact your VSI representative to obtain the tools to monitor the
quota.

248

Chapter 12. DECdns Problem Solving

12.6.3. The Server Configuration File - DNS.CONF
The DECdns server configuration file, SYS$SYSDEVICE:[DNS$SERVER]DNS.CONF, contains
several parameters that allow you to control the following operational characteristics of the DECdns
server:

• Access control

• Node verification

• Timer values

• Resource limits

• Replica pruning

Table 12.2 describes the available parameters.

Table 12.2. DNS.CONF Configuration Parameters

dns.dnsd.acs_override Disables access control if set to 1. The
default setting is zero (access control
checking on).

Caution

While access control checking is overridden,
any privileged or nonprivileged user on your
network has complete read, write, delete, and
control privileges to any object, directory, or
clearinghouse managed on this server.

dns.dnsd.node_verification Disables node verification if set to zero.

The default setting is 1 (node verification
enabled).

If you set this option to 0, the server does not
backtranslate the incoming address to verify
that the incoming connection is actually
coming from where the incoming connection
claims it is coming from. With this disabled,
servers are vulnerable to intentional or
unintentional "node spoofing" where systems
make updates to the namespace for which
their node names are authorized but their
addresses are not.

dns.dnsd.idle_conn_timeout Time in seconds to wait while link is idle
before disconnecting the link. The default
value is 300 seconds (5 minutes). If this
value is set too low, it results in excessive
processing time to recreate links every time a
request is processed. If set too high, it ties up
resources for links that are not being used.

249

Chapter 12. DECdns Problem Solving

dns.dnsd.null_port_timeout Time in seconds to wait before
unconditionally disconnecting the link.

The default value is 1800 seconds (30
minutes).

The value should be set high enough to allow
the longest command to complete execution.
Typically, the longest command is set dir
to new epoch which includes a skulk as the
final part of its processing. Values for this
parameter can range anywhere from a couple
of minutes to 90 minutes depending on the
size of the directory involved and delays
present in the network.

Note

If you receive the message DNS
$_NOCOMMUNICATIONS, Unable to
communicate with any DECdns server during
a set directory to new epoch or create replica
command, you should increase the value
for this parameter. It is CRITICAL that you
increase this parameter on all servers that
are in the replica set for the directory that
had the problem. The timeout value should
be the same on all servers in the replica set.
If you fail to do this, any changes that you
make will have no effect. However, if the
time for long commands starts to approach 2
hours this may indicate a hung link or a hung
server.

dns.dnsd.maximum_handlers_quota Maximum number of request handlers to
allocate for request processing. The default
value is 200. In most cases, the number of
request handlers needed is approximately
equal to the number of clerks connecting to
the server.

dns.dnsd.standby_handlers_quota Maximum number of request handlers to
keep ready to process incoming requests.

The default is 10.
dns.dnsd.maximum_buffers_quota Maximum number of buffers available for

request handlers from the request pool
(rpool). The default is 200. Normally, the
value for this parameter should be the same
as the maximum_handlers_quota
parameter.

250

Chapter 12. DECdns Problem Solving

dns.dnsd.ta_conn_quota Maximum number of connections for front
end operations (lookups, modify operations).
The default is 200.

Typically, the value for this parameter
can be same or somewhat less than the
maximum_handlers_quota and
maximum_buffers_quota parameters.

Both the maximum_handlers_quota
and maximum_buffers_quota
parameters may include an additional
allowance for the back end operations.

See additional requirements in the
description of the back_conn_quota
parameter.

dns.dnsd.back_conn_quota Maximum number of connections for back
end operations (skulks, other back ground
activities). The default is 20.

Note that the sum of these two connection
quotas (specified by the ta_conn_quota
and back_conn_quota parameters)
should be below the values set (using NCL)
for the maximum transport connections
characteristic for either the osi transport
or nsp entities. VSI recommends that
the maximum transport connections
characteristics be set so that the system never
reaches the maximum number of connections
specified. Increase the maximum transport
connections characteristics for NSP and
OSI if required to meet this requirement.
In addition, increase NET$ACP process
defaults.

dns.dnsd.dormancy_evaluation_interval The time (in seconds) to keep resources used
by a request available in pool so that they
may be reused. The default is 60. Decreasing
the value from the default may allow
resources to be released earlier. However,
decreasing it too much results in a delay in
starting the processing of a new request.

Consequently, if it is changed, it should be
done very carefully.

dns.dnsd.db_version_to_prune Sequence number of a checkpoint file. All
dying replicas will be removed from this file.
The default is 0 (turned off).

The sequence number can be determined
by typing out the clearinghouse version

251

Chapter 12. DECdns Problem Solving

file (the file which has a file extension of
.VERSION). Next, restart the server and
then shut it down again. The server should
write out a new checkpoint file with the
dying replicas eliminated.

Finally, remove the above line from the
DNS.CONF file, and restart the server.

Only one prune operation is allowed per
server session.

Note

If you choose to leave the line in the file,
change the value to 0 (zero) to avoid
accidental pruning.

To display the results of a prune operation
in the DNS$SERVER.LOG file, insert
the db_checkpoint_info event
into the SYS$SYSDEVICE:[DNS
$SERVER]DNSD.EVENT file before
beginning the prune operation.

An example DNS.CONF file is shown below:

! all parameters in lowercase
dns.dnsd.acs_override: 1
dns.dnsd.node_verification: 0
!dns.dnsd.idle_conn_timeout: 500
!dns.dnsd.null_port_timeout: 5400
dns.dnsd.maximum_handlers_quota: 1000
dns.dnsd.standby_handlers_quota: 10
dns.dnsd.maximum_buffers_quota: 1000
dns.dnsd.ta_conn_quota: 600
!dns.dnsd.back_conn_quota: 100
dns.dnsd.dormancy_evaluation_interval: 30
!dns.dnsd.db_version_to_prune: 1236

Parameter lines can be commented out by placing a exclamation character (!) at the beginning of the
line.

12.7. Solving Common Access Control
Problems
This section contains information to help you solve access control problems involving the following
DECdns operations:

• Viewing namespace information

• Creating a clearinghouse

• Creating a directory

252

Chapter 12. DECdns Problem Solving

• Deleting a directory

• Creating a replica

• Deleting a replica

• Modifying a directory's replica set

• Restoring access

12.7.1. Access Problems Viewing Namespace
Information
The DECdns Control Program provides two basic display commands, show and directory, with
which you can view namespace structure and contents. To use these commands, you must have read
access to the name you want to display. If you try to display a name to which you do not have read
access, an error message appears, indicating the requested name does not exist:

Requested name does not exist

This error can also be caused by any of the following conditions:

• The name you tried to access does not exist in the namespace.

• The name exists but is newly created and is not yet known to the clearinghouse with which you are
communicating.

• The name you tried to access is being deleted.

• You mistyped the name.

If none of these conditions is true, ask your namespace administrator (or someone else who has
sufficient access to the name you want to display) to verify that you have read access to the name.
Administrators should check for the following when examining the access control set (ACS) associated
with the name:

• If read access has been granted to the name through the use of an access control group, make sure
the group flag is specified in the ACS.

• For directory names, check to see if the only access control entry (ACE) specifying the requesting
principal is a default ACE. (Default ACEs grant access only to the future contents of a directory and
not to the directory itself.) If this is the case, create another ACE on behalf of the principal that does
not specify the default flag.

12.7.2. Access Problems Creating a Clearinghouse
In DECdns, you can create a clearinghouse in the following ways:

• When you configure a DECdns server in an existing namespace.

• When you relocate an existing functional clearinghouse on another node and use the create dns
server clearinghouse command to re-create the clearinghouse at its new location.

To successfully create a clearinghouse and ensure that it is able to perform subsequent clearinghouse
operations, you must have the following access rights and privileges:

253

Chapter 12. DECdns Problem Solving

• The account under which you are executing the clearinghouse creation needs write access to the
directory in which you intend to name the clearinghouse.

• You must have the NET$MANAGE rights identifier.

• The DNS$Server principal on the server where you are creating the clearinghouse needs read,
write, delete, and control access to the directory in which you intend to name the new clearinghouse.
Specify the principal as nodename.DNS$Server, where nodename is the DECdns full name of the
node on which you are creating the clearinghouse.

• The system account of the node needs control access to the directory in which you intend to name
the new clearinghouse. Specify the principal as nodename.system

• If any replica of the directory in which you intend to name the new clearinghouse is stored on a
VAX Distributed Name Service (DNS) Version 1 server (on a DECnet Phase IV node), you must
create two additional ACEs that grant the same access described in the preceding bullet item but that
specify DNS Version 1 principals (in the format nodename::username).

You must grant this access before you try to configure the server. Otherwise, the server creation may
succeed, but the clearinghouse creation will fail and return one or both of the following error messages:

Insufficient rights to perform requested operation

Server process has insufficient access to clearinghouse

If either of these occur, use the show directory access commands to verify the rights currently
granted on behalf of your principal name, the DNS$Server principal, and the root or system
accounts. If the required access is not in place, ask your namespace administrator (or someone else who
has the necessary rights and privileges) to grant the required access. After the appropriate ACEs are
created, retry the clearinghouse creation.

12.7.3. Access Problems Creating a Directory
To successfully create a directory, you must have the following access rights:

• Write access to the parent directory of the directory you intend to create

• Write access to the clearinghouse in which you are naming the new directory

If you do not have these rights, the directory creation fails and returns the following error message:

Insufficient rights to perform requested operation

If this occurs, use the show directory access and show clearinghouse access
commands to verify the rights currently granted on behalf of your principal name. If you do not have
write access to both the parent directory and clearinghouse, ask your namespace administrator (or
someone else who has control access to the parent directory and clearinghouse) to grant you the required
access. After the appropriate ACEs are created, reenter your original create directory command.

Note

For the create directory command to execute successfully, the clearinghouse that stores the
master replica of the new directory's parent directory must be available when you enter the command.

254

Chapter 12. DECdns Problem Solving

After you create a directory, enter the show directory access command to display the DNS
$ACS attribute of the new directory. Make sure that the users and applications for whom the directory
was created have the proper access. If the required access was not inherited from the access control set
(ACS) of the new directory's parent directory, use the add directory access command to create
the necessary access control entries (ACEs). See Chapter 5 for complete information on how to add
access to a directory.

12.7.4. Access Problems Deleting a Directory
To delete a directory, you must have the following access rights:

• Read and delete access to the directory

• Write, delete, or control access to the directory's parent directory

• Write access to the clearinghouse that stores the master replica of the directory (or directories) you
intend to delete

If you do not have these access rights, the directory deletion fails and returns the following error
message:

Insufficient rights to perform requested operation

If this occurs, use the show directory access and show clearinghouse access
commands to verify the rights currently granted on behalf of your principal name. If you do not have all
the required access, ask your namespace administrator (or someone else who has control access to the
directory, parent directory and clearinghouse that stores the directory's master replica) to grant you the
required access. After the appropriate ACEs are created, reenter your original delete directory
command.

12.7.5. Access Problems Creating a Replica
To create a replica, you must have the following access rights:

• Control access to the directory you want to replicate

• Write access to the directory's parent directory

• Write access to the clearinghouse where you want to store the replica

• The DNS$Server principal on the server node (clearinghouse) where you intend to create the
replica needs read, write, delete, and control access to the directory you want to replicate. The DNS
$Server principal requires this access to successfully carry out updates and skulks of the directory.

If you do not have these access rights, the replica creation fails and returns one or both of the following
error messages:

Insufficient rights to perform requested operation

Server process has insufficient access to clearinghouse

If this occurs, use the show directory access and show clearinghouse access
commands to verify the rights currently granted on behalf of your principal name and the DNS
$Server principal. If the required access is not in place, ask your namespace administrator (or

255

Chapter 12. DECdns Problem Solving

someone else who has control access to the directory, parent directory and clearinghouse where you
intend to store the new replica) to grant the required access. After the appropriate ACEs are created,
initiate a skulk of the directory you want to replicate to make sure that the new access is applied to
all existing replicas in the directory's replica set. Then, reenter your original create replica
command.

12.7.6. Access Problems Deleting a Replica
To delete a replica, you must have the following access rights:

• Control access to the directory whose replica you want to delete

• Write access to the clearinghouse from which you are deleting the replica

• Write and delete access to the directory's parent directory

If you do not have these access rights, the replica deletion fails and returns the following error message:

Insufficient rights to perform requested operation

If this occurs, use the show directory access and show clearinghouse access
commands to verify the rights currently granted on behalf of your principal name. If you do not have all
the required access, ask your namespace administrator (or someone else who has control access to the
directory, parent directory and the clearinghouse from which you want to delete the replica) to grant you
the required access. After the appropriate ACEs are created, reenter your original delete replica
command.

12.7.7. Access Problems Modifying a Directory's
Replica Set
You can use the set directory to new epoch command to modify a directory's replica set.
To use this command, you must have the following access:

• Read and control access to the directory

• Write access to each clearinghouse that stores a replica of the directory

If you do not have these access rights, the command fails and returns the following error message:

Insufficient rights to perform requested operation

If this occurs, use the show directory access and show clearinghouse access
commands to verify the rights currently granted on behalf of your principal name. If you do not have all
the required access, ask your namespace administrator (or someone else who has control access to the
directory, parent directory and the clearinghouse from which you want to delete the replica) to grant you
the required access. After the appropriate ACEs are created, reenter your original set directory
to new epoch command.

Note

If the directory is replicated in both DNS Version 1 and DECdns Version 2 clearinghouses, make sure
that both Version 1 and Version 2 ACEs exist on the directory and all of its contents before you try to
set the new epoch. See Section 5.1.1 and Section 5.1.2 for information on how to specify Version 2 and

256

Chapter 12. DECdns Problem Solving

Version 1 principals in ACEs. Appendix F summarizes interoperability considerations in an environment
with both DNS Version 1 and DECdns Version 2.

12.7.8. Restoring Access to a Name
If all the access to a name is mistakenly deleted, you can use the DECdns diagnostic interface to
restore the appropriate access to the name. The diagnostic interface allows you to override the normal
restrictions preventing unauthorized modification of a name's access control set (ACS).

Note

You must perform the following procedure at the server that stores the master replica of the directory (or
contents) to which you intend to restore access. You cannot restore access remotely.

Use the diagnostic interface only as directed.

To restore access, take the following steps:

1. Make sure you are logged in under the system account. Invoke the DECdns diagnostic interface by
entering the following command:

$ run sys$system:dns$diag

The diag> prompt appears.

2. At the diag> prompt, enter the following command:

diag> enable acs_override

3. Type q to exit the diagnostic interface and return to the system prompt.

4. Invoke the DECdns Control Program and use the add access commands to restore minimum
required access. See Chapter 5 for information on granting access.

5. After you restore sufficient access, exit the DECdns Control Program and return to the system
prompt.

6. Repeat step 1 to invoke the diagnostic interface again. At the diag> prompt, enter the following
command to disable the access override:

diag> disable acs_override

7. Type q to exit the diagnostic interface and return to the system prompt.

With minimum required access restored, invoke the DECdns Control Program again to grant additional
access if necessary.

12.8. Handling Clearinghouse Creation
Failures
You create most clearinghouses with the DECdns configuration program when you configure new
DECdns servers. You also create (or, more specifically "re-create") a clearinghouse when you relocate

257

Chapter 12. DECdns Problem Solving

an existing clearinghouse on another server system. In most cases, if you name a new clearinghouse in
the root directory and grant the appropriate access before you create the clearinghouse, the creation will
succeed. If, however, you are repeatedly unable to create a clearinghouse, make sure you meet all the
following conditions before you try to create the clearinghouse again:

1. Check that the DNS$Server principal and the root principals on the server have the required
access to the directory in which you intend to name the clearinghouse (usually the namespace's root
directory). See Section 12.8.1 for information on how to grant the necessary access.

2. If you are trying to name the clearinghouse in a directory other than the root directory, verify that
the directory allows the storage of clearinghouse object entries (DNS$InCHName=true). See
Section 12.8.2.

3. Verify that the system on which you are trying to create the clearinghouse has been registered in the
namespace through the use of the DECnet-Plus node registration tool decnet_register.

If a replica of the directory in which you are trying to name the new clearinghouse is stored on a
DNS Version 1 server (on a Phase IV node), you must also verify that the name of the DECnet
Phase V server on which you are creating the clearinghouse is defined in the Phase IV server's
node database and that its address in the node database matches the DECnet Phase V server's node
address in the namespace. See Section 12.8.3.

4. Make sure all clearinghouses that store a replica of the directory in which you are trying to name the
new clearinghouse are running and are available. See Section 12.8.4.

12.8.1. Granting Required Access
Before you create a clearinghouse, grant the following DECdns access to the directory in which you
intend to name the new clearinghouse (usually the root directory of the namespace):

• For the DNS$Server principal on the server, grant read, write, delete, and control access to the
directory in which you intend to name the clearinghouse. Specify the principal as nodename.DNS
$Server, where nodename is the full DECdns name of the node on which the server is running.

• For the system account on the server, grant control access to the directory in which you intend to
name the clearinghouse. Specify the principal as nodename.root or nodename.system.

• If a replica of the directory in which you intend to name the new clearinghouse is stored on
a DNS Version 1 server, you must create two additional ACEs that grant the same access as
described above (for the DNS$Server principal, and for the system principals (in the format
nodename::username)). Thus, four ACEs (two in Version 2 format and two in Version 1 format) are
required. Appendix F summarizes interoperability considerations in an environment with both DNS
Version 1 and DECdns Version 2.

The add directory access commands that you use to grant this access must be entered from an
account that has control access to the directory in which you intend to name the new clearinghouse. For
more information on specifying principals and granting DECdns access, see Chapter 5.

Example

The following two example commands grant the required access for the DNS$Server and system
principals to the root directory of the namespace in which a new clearinghouse on node .mynode will
be created. You must enter both commands from an account that has control access to the root directory
of the namespace.

258

Chapter 12. DECdns Problem Solving

1. The following command grants read, write, delete, and control access to the root directory (.) for the
DNS$Server principal on node .mynode.

dns> add directory . access .mynode.dns$server for r,w,d,c

2. The following command grants control access to the root directory for the system account on node
.mynode.

dns> add directory . access .mynode.system for c

If a replica of the directory in which you are naming the clearinghouse (in this case, the root directory) is
stored on a DNS Version 1 server, you would enter the following two additional commands:

dns> add directory . access mynode::dns$server for r,w,d,c
dns> add directory . access mynode::system for c

12.8.2. Allowing a Directory to Store Clearinghouse
Object Entries
Before you try to name a clearinghouse in any directory below the root, make sure that the directory
allows the storage of clearinghouse object entries (even if you do not intend to store clearinghouse object
entries in the directory). If you are trying to name a clearinghouse in the root directory, this task is not
required.

You control whether a directory can store clearinghouse object entries by modifying the value of its DNS
$InCHName attribute. Except for the root directory (whose DNS$InCHName attribute is always set to
true), this directory attribute can have a value of true or false. By default, the DNS$InCHName attribute
of all directories that you create under the root is set to false. To name a clearinghouse (that is, to create
a clearinghouse object entry) in a lower-level directory, you must reset the value of the directory's DNS
$InCHName attribute to true.

Before You Modify a Directory's DNS$InCHName Attribute

Before you try to set a directory's DNS$InCHName attribute to true, make sure the directory's parent
directory already has its own DNS$InCHName attribute set to true.

To Set a Directory's DNS$InCHName Attribute to True

To modify the value of a directory's DNS$InCHName attribute, you must have control access to the
directory.

Use the set directory command to set the value of a directory's DNS$InCHName attribute from
false to true.

Example

The following command sets the DNS$InCHName attribute of the .admin directory to true:

dns> set directory .admin dns$inchname=true

12.8.3. Verifying Server Node Registration and Address
Information

259

Chapter 12. DECdns Problem Solving

The system on which you intend to create a clearinghouse must be registered in the namespace
for clearinghouse creation to succeed. You can use the DECnet-Plus node registration tool
(decnet_register) to display node information and verify that a node is properly registered in the
namespace.

For complete information on how to use the node registration tool for this purpose, see the VSI DECnet-
Plus for OpenVMS Network Management Guide.

DECnet Phase IV Interoperability Considerations

If a replica of the directory in which you are trying to name the clearinghouse is stored on a DNS
Version 1 server (on an OpenVMS Phase IV node), you must complete two additional tasks. For each
Phase IV node that stores such a replica, use the Phase IV Network Control Program (NCP) show
node nodename command to verify the following conditions:

1. Verify that the name of the DECnet Phase V node on which you are trying to create the
clearinghouse is defined in the Phase IV node's local node database.

2. Verify that the address of the DECnet Phase V node (as stored in the Phase IV node's local node
database) matches the DECnet Phase V address of the DECnet Phase V node.

The DECnet Phase V server on which you create the clearinghouse must be represented in the Phase
IV node database with a Phase IV compatible address (for example, 4.20).

12.8.4. Verifying Availability and Connectivity to
Clearinghouses
When you create a clearinghouse, a replica of the directory in which the clearinghouse is named is also
created and stored in the new clearinghouse as its initial replica. The replica creation succeeds only if
all the clearinghouses that store a replica of the directory containing the new clearinghouse name are
running and reachable when you try to configure the new server, because DECdns skulks a directory
when it creates a new replica.

For example, if you intend to name a new clearinghouse in the root directory, then all clearinghouses
that store a replica of the root directory must be running (in the on state) and reachable when you try to
create the clearinghouse.

To verify that these conditions are satisfied, take the following steps:

1. For the directory in which you intend to name the new clearinghouse (usually the root), use the
show directory command and specify the DNS$Replicas attribute to display the name
of every clearinghouse that stores a replica of the directory. For example, the following command
displays a list of all clearinghouses that store a replica of the root directory:

dns> show directory . DNS$Replicas

2. With this information, use the show replica command to verify that you can receive a response
to a look up request of any attribute associated with the replica at each of the clearinghouses you
found in step 1. If you receive a response to the show replica command, you can be sure that
the clearinghouse in which it is stored is running and available. (Remember that you must have
read access to the clearinghouse for the show replica command to succeed.) For example, the
following command displays the value of the DNS$CTS attribute associated with the replica of the
root directory stored at clearinghouse .Paris_CH:

260

Chapter 12. DECdns Problem Solving

dns> show replica . at clearinghouse .paris_ch dns$cts

3. Alternatively, if you know the node names of each of the clearinghouses you found in step 1, you
could use the show dns server clearinghouse command and specify the state
attribute to make sure each of the clearinghouses is running and available. For example, the following
command displays the current state of the clearinghouse on node .vega.

dns> show node .vega dns server clearinghouse state

Note

All DECdns operations that involve the modification of a directory's replica set require every
clearinghouse that stores a replica of the directory is running and reachable when you attempt the
operation. This requirement applies to the following DECdns commands:

• create replica

• delete replica

• create dns server clearinghouse

• delete dns server clearinghouse

• set directory to new epoch

12.9. Restoring a Corrupted Clearinghouse
If you see an error that indicates data corruption at a clearinghouse, or if the DECdns server crashes and
does not restart, the indicated clearinghouse may be corrupted. A clearinghouse database can become
corrupt for a variety of reasons. The most common reasons are:

• One or more of the clearinghouse's database files is missing, usually because of accidental deletion or
removal from its default location on disk.

• Individual entries within the database files are missing, incomplete, or out of sequence.

• The TLOG files on the system keep growing and fail to checkpoint. A TLOG file is a transaction log
file maintained on disk. All changes made to the running DECdns server database (held in memory)
are recorded in the TLOG file. A TLOG file is typically 201 blocks in size when empty. Whenever the
file is larger than 201 blocks, the memory copy of the database contains changes that are not in the
disk copy of the checkpoint file. Once a new copy of the checkpoint file has been written to disk, the
version file will be updated to a new sequence and the TLOG file emptied.

To determine the cause, check the DNS$SERVER.LOG file for clues.

To restore a corrupted clearinghouse, take the following steps:

1. Verify the corruption.

First, disable the clearinghouse by entering the disable dns server clearinghouse
command. With the clearinghouse in the off state, verify that the clearinghouse database files exist.
DECdns Version 2 clearinghouse database files reside in the SYS$SYSDEVICE:[DNS$SERVER]

261

Chapter 12. DECdns Problem Solving

directory (or in the alternative directory contained in SYS$MANAGER:DNS_FILES.TXT). (If the
clearinghouse was created with DNS Version 1 software and later converted to DECdns Version 2
format, the clearinghouse files reside in the SYS$SYSROOT:[DNS$SERVER] account.)

Clearinghouse files are named in the following format:

• clearinghouse-name.checkpointnnnnnnnnnn

• clearinghouse-name.tlognnnnnnnnnn

• clearinghouse-name.version

If any or all of these files are missing, the clearinghouse cannot be restored. Delete any remaining
files and go to step 2.

If all the database files exist, turn on the clearinghouse by using the enable dns server
clearinghouse command. If service is not restored, delete all database files and go to step 2.

2. Gather directory and replica-type information.

a. Use the show object command to examine the DNS$CHDirectories attribute of the
corrupted clearinghouse's associated clearinghouse object entry. This command displays the
names of all the directories that stored replicas in the corrupted clearinghouse. For example, the
following command displays the DNS$CHDirectories attribute values for a clearinghouse
object entry named .NY1_CH.

dns> show object .ny1_ch dns$chdirectories

 SHOW
 CLEARINGHOUSE IAF:.NY1_CH
 AT 17-JUL-2018:09:11:00

DNS$ChDirectories = :
 CTS of Directory = 2018-03-11-05:35:16.16000000/aa-00-05-00-de-09
Name of directory = .

DNS$ChDirectories = :
 CTS of Directory = 2018-06-15-15:50:44.18000000/aa-00-04-00-de-11
Name of directory = .sales

DNS$ChDirectories = :
 CTS of Directory = 2018-07-21-14:01:21.18000000/aa-00-05-00-de-11
Name of directory = .eng

b. For each directory you find in step 2a, use the show directory command and specify the
DNS$Replicas attribute to determine the replica type (master or read-only) of the replica
that each directory stored in the corrupted clearinghouse. For example, the following command
displays the DNS$Replicas attribute values for the .sales directory found by the example
command in step 2a.

dns> show directory .sales dns$replicas

 SHOW
 DIRECTORY IAF:.sales
 AT 09-APR-2018:16:08:25
 DNS$Replicas (set) = :

262

Chapter 12. DECdns Problem Solving

Clearinghouse's DNS$CTS = 2018-03-22-14:39:34.58/aa-00-04-00-de-11
 Tower 1 CTS = 2018-04-09-20:08:25.835/08-00-2b-0d-c0-9d
 Floor 1 = 01 2c (null)
 Floor 2 = 02 00 2c ncacn_dnet_nsp
 Floor 3 = 04 (null)
 Floor 4 = 06 49 00 17 aa 00 04 00 22 dc 20
 Replica type = master

 Clearinghouse's Name = IAF:.Chicago1_CH
 DNS$Replicas (set) = :

Clearinghouse's DNS$CTS = 2018-07-30-20:32:42.82/aa-00-04-00-de-11
 Tower 1 CTS = 2018-04-09-20:08:25.835/08-00-2b-0d-c0-9d
 Floor 1 = 01 2c (null)
 Floor 2 = 02 00 2c ncacn_dnet_nsp
 Floor 3 = 04 (null)
 Floor 4 = 06 49 00 13 aa 00 04 00 7e 52 20
 Replica type = readonly
 Clearinghouse's Name = IAF:.NY1_CH

Make a note of this directory and replica-type information. You will need it later (in step 4) to
rebuild the replica sets of the directories that were stored in the clearinghouse and to repopulate the
new clearinghouse that you create to replace the corrupted clearinghouse.

3. Delete the associated clearinghouse object entry.

After you gather the replica-type information, use the delete object command to delete the
corrupted clearinghouse's associated clearinghouse object entry. This prevents further lookup requests
to the corrupted clearinghouse.

4. Rebuild the replica sets of the directories.

With the information you gathered in step 2, use the set directory to new epoch
command to rebuild the replica set of each directory that stored a replica in the corrupted
clearinghouse. Use the exclude argument of the command to exclude the replica that was stored in
the corrupted clearinghouse from each directory's replica set. Until you perform this step, skulks of
these directories will fail.

Handling Master Replicas

If a replica stored on the corrupted clearinghouse was a master replica, and if other read-only replicas
of the directory exist, you must designate one of those read-only replicas as the directory's new
master replica.

You can simultaneously omit a replica and redesignate a new master replica of a directory with the
set directory to new epoch command. See Chapter 9 for information on how to use the
set directory to new epoch command to perform these tasks.

Handling Orphaned Child Directories

If a master replica stored on the corrupted clearinghouse was the only replica in that directory's
replica set, the directory is lost and cannot be retrieved. Furthermore, any child directory that exists
below a lost directory are orphaned (cut off from the directories that exist above it in the namespace
hierarchy). Although the directory and the information it contained are lost, you can reconnect an
orphaned child directory by creating a new directory in place of the lost directory and then creating a
new child pointer to the orphaned child directory.

263

Chapter 12. DECdns Problem Solving

Note

If none of the replicas stored on the corrupted clearinghouse were master replicas, you can skip this
step and go to step 5.

To reconnect an orphaned directory, perform the following steps:

a. For each orphaned directory, use the delete child command to delete (from the lost
directory's parent directory) the child pointer to the lost directory.

b. Use the create directory command to create a new directory of the same name as the
lost directory.

c. For each orphaned directory, follow the procedure described in Section 12.10 to create new child
pointers to those directories. After you create the necessary child pointers, go to step 5 of this
procedure.

5. Create a new clearinghouse.

Use the create dns server clearinghouse command to create a new clearinghouse of
the same name as the corrupted clearinghouse you are replacing. See Chapter 6 for information on
how to create a clearinghouse with the create dns server clearinghouse command.

6. Repopulate the new clearinghouse with the contents of the corrupted clearinghouse.

With the replica-type information that you gathered in step 2, use the create replica
command to populate the new clearinghouse with replicas (of the same replica types) of the same
directories that the corrupted clearinghouse originally contained. See Chapter 7 for information on
how to use the create replica command.

12.10. Restoring a Deleted Child Pointer
Occasionally, you may need to restore a child pointer that has been accidentally deleted. Child pointers
contain the information that DECdns uses to keep track of the clearinghouses where each replica of a
child directory's replica set is stored. If a child pointer is deleted, the parent directory and child directory
are cut off from each other. Name lookups downward from this point through the namespace hierarchy
fail because, without the child pointer, DECdns cannot determine where to find the information for
which it is searching.

To restore a deleted child pointer, use the following procedure:

1. Before you try to restore a deleted child pointer, make sure you have the following access rights:

• Write access to the parent directory of the orphaned child directory

• Read access to the orphaned child directory

2. Because the child pointer is missing, DECdns cannot determine where any replicas of the orphaned
directory are stored. Before you use the create child command to restore the child pointer, you
must make sure the create child operation will be directed to a clearinghouse that stores a replica of
the orphaned child directory. If this information is not readily available, use the show replica
command and specify the names of clearinghouses that you suspect might contain a replica of the

264

Chapter 12. DECdns Problem Solving

orphaned directory. Continue issuing this command until you find a clearinghouse that stores a
replica of the orphaned directory.

3. After you identify a clearinghouse that stores a replica of the orphaned directory, use the set
dnscp preferred clearinghouse command to ensure that the create child
command you enter in the next step is directed to the clearinghouse that stores a replica of the
orphaned directory.

4. Enter the create child command and specify the clearinghouse you identified in step 3 to
restore the child pointer.

12.11. Restoring a Missing Clearinghouse
Object Entry
Every time a clearinghouse is enabled, it tries to contact its corresponding clearinghouse object entry to
verify that the clearinghouse is still properly registered in the namespace. If a clearinghouse object entry
is mistakenly deleted, requesting clerks may not be able to access the associated clearinghouse.

To restore a lost clearinghouse object entry, perform the following steps:

1. Verify that the clearinghouse object entry was deleted.

2. Use the create object command to create a new clearinghouse object entry. Make sure you
specify the following values:

a. Specify the same name that was assigned to the deleted clearinghouse object entry.

b. Set the class attribute to DNS$Clearinghouse.

c. Set the class version attribute to 1.0.

For example, the following command creates a clearinghouse object entry named .Paris1_CH.

dns> create object .paris1_ch class=dns$clearinghouse, class -
_> version=1.0

3. Make sure that the DNS$Server principal on the server where the associated clearinghouse resides
has full access (read, write, delete, test, and control) to the restored clearinghouse object entry.

Normal service will be restored when the clerk (on the server system where the associated clearinghouse
resides) detects that the DNS$CTS attribute of the clearinghouse object entry has changed. This usually
occurs within one hour. Remember, however, that a record of the original clearinghouse object entry may
be temporarily retained in the caches of other clerks that regularly use the associated clearinghouse.

12.12. Handling Node Verification Failures
DECdns, together with DECnet, performs a special security check called node verification on
all operations that could modify information in the namespace. Whenever a clerk connects to a
DECdns Version 2 server, DECnet passes the clerk's request to the server and includes the principal
(nodename.username) associated with the request.

For read operations (show and directory commands), the server trusts that the node name provided
by DECnet is a valid node name and then performs the usual access control checks using that name.

265

Chapter 12. DECdns Problem Solving

However, for write and control operations (such as with the set, create, and delete commands)
the server must first authenticate the node name. That is, the server must authenticate the requesting
node by requesting DECnet to verify the node name.

If DECnet node verification fails, the server returns the following error message:

Requesting principal could not be authenticated to the clearinghouse

For node verification to succeed, the following conditions must be satisfied:

1. A node object entry representing the requesting clerk must exist and be properly registered in the
namespace.

You can use the DECnet-Plus node registration tool (decnet_register) to display node
information and verify that the clerk node has been properly registered in the namespace. See the
VSI DECnet-Plus for OpenVMS Network Management Guide for complete information on how to use
the node registration tool for this purpose.

2. The DNS$Server principal (nodename.dns$server) on the server storing the master replica of
the directory (or contents) you are trying to modify must have read access to the node object entry
that represents the requesting clerk in the namespace. Node object entries are typically created with
world read access. Unless this access has been changed, the DNS$Server principal of every server
in the namespace should have sufficient access to the node object entry.

See Section 12.1.4.3 for instructions on how to determine the node name of the server
(clearinghouse) that stores the master replica of a directory.

3. At least one clearinghouse that stores a replica of the directory containing the node object entry must
be running and available when the clerk makes its request. If the server cannot communicate with
such a clearinghouse, node verification fails due to insufficient information.

4. Assuming that the preceding conditions are satisfied, the DNA$Towers attribute associated
(registered) with the node object entry (which holds address information for the node) must match
the address information associated with the DECnet Phase IV or Phase V connection. If the towers
(addresses) match, the requesting node is verified. If the towers do not match, the verification fails.
For complete information on how to use the node registration tool to edit a node address, see the VSI
DECnet-Plus for OpenVMS Network Management Guide.

Note

Node verification can occasionally fail in response to a request to read a name. Permission to perform a
read operation is granted if the requesting principal has read access to the name itself, or control access
to the directory in which the named is stored. If the requesting principal has read access to the name,
permission to perform the read operation is granted based on that access. However, if the requesting
principal does not have read access, DECdns, before denying access, examines the ACS of the parent
directory of the name, to see if the principal has control access to that directory. This second check for
control access on the parent directory triggers the node verification process, which may succeed or fail
for the reasons described previously in this section.

Version 1 servers (running Version 1.1 of the VAX Distributed Name Service software) do not perform
node verification and grant or deny permission to modify a name based only on whether the requesting
principal has sufficient access to the master replica of the directory (or the name therein) to be modified.
If your namespace contains both Version 1 and Version 2 servers (running DECdns Version 2.0), you
may experience access or node registration problems if you move a master replica of a directory (through

266

Chapter 12. DECdns Problem Solving

the use of the set directory to new epoch command) from a Version 1 server to a Version 2
server on which node verification is enforced. Appendix F summarizes interoperability considerations in
an environment with both DNS Version 1 and DECdns Version 2.

Overriding Node Verification for Operations on Individual Names

You can override node verification on individual names by creating an ACE in the ACS of the name
that grants appropriate access to all potential users of your namespace, regardless of the node with which
their user accounts are associated. You express the idea of all users of the namespace in the principal of
the ACE by specifying the namespace nickname followed by .*... as the user name portion of the
ACE. For example, the following add access command creates an ACE that grants, to all users of
the IAF namespace, write access to the .eng directory:

dns> add directory .eng access IAF:.*... for r,w

Once this ACE is created, all users of the IAF namespace can perform write operations on the .eng
directory, even if the node name with which their individual user accounts are associated cannot be
verified by DECnet.

Enabling and Disabling Node Verification on Individual Servers

If you do not always require the added security that node verification provides, you can use the DECdns
diagnostic interface to locally disable node verification on individual server nodes. VSI recommends that
you do not permanently disable node verification on all servers. This creates a serious security risk.

Note

To disable node verification, you must be logged into the server whose node verification function you
want to disable. You cannot disable node verification remotely.

To disable node verification on a server, take the following steps:

1. While logged in under the system account, invoke the DECdns diagnostic interface by entering the
following command at the system prompt:

$ run sys$system:dns$diag

2. At the diag> prompt, enter the following command to turn off node verification on the local
server:

diag> disable node_verification

Node verification will remain disabled until the server is restarted or until you enter the following
command to reenable it manually:

diag> enable node_verification

3. To exit the diagnostic interface, type q.

Note

Use the diagnostic interface only as directed.

You can also use the dns.dnsd.node_verification parameter in the DNS.CONF file. See
Section 12.6 for more information.

267

Chapter 12. DECdns Problem Solving

12.13. Breaking Soft Link Loops and Group
Loops
A soft link loop occurs when a soft link (in a series of two or more soft links) points back to itself.
In its simplest form, a soft link loop involves only two soft links whose destination names (DNS
$LinkTarget attributes) specify each other. For example, suppose two soft links (.link1 and
.link2) exist in the root directory of a namespace. A soft link loop between these two soft links exists
if the destination name of .link1 points to .link2 and the destination name of .link2 points to
.link1. Soft link loops can involve more than two soft links.

A group loop occurs when two or more groups include each other as group members.

When DECdns detects a possible soft link loop or group loop, the following message is displayed:

Possible cycle detected

To identify the soft links in a soft link loop, take the following steps:

1. Enter the show link command and specify the DNS$LinkTarget attribute of the soft link
specified in the error message.

2. Enter the show link command and specify the DNS$LinkTarget attribute of the soft link you
found in step 1.

3. Continue this process until you find the soft link whose DNS$LinkTarget attribute specifies a
soft link earlier in the series of soft links.

To break a soft link loop, use the delete link command to delete the soft link that is causing the
loop, or use the set link command to redirect one (or more) of the soft links to different destination
names.

To identify the groups in a group loop, take the following steps:

1. Enter the show group command and specify the DNS$Members attribute to display the
members of the group specified in the error message.

2. For each group member that is itself a group, repeat step 1 until you find the group (or groups) that
specify each other as members.

To break a group loop, use the remove member command to remove from membership the particular
group (or groups) causing the loop.

12.14. Eliminating Ambiguous Namespace
Nicknames
The DECdns advertiser (DNS$ADVER) broadcasts messages, called server advertisement messages,
to the network so that clerks can determine the location and availability of DECdns servers. A clerk
detects an ambiguous nickname when it receives a server advertisement message containing a nickname
that matches the nickname of a known namespace in its cache but has a different namespace creation
timestamp (NSCTS) value than the NSCTS value of the cached namespace. After receiving the message,
the clerk detects that two entries exist in its list of known namespaces that use the same nickname but

268

Chapter 12. DECdns Problem Solving

have different NSCTS values. The clerk considers the nicknames in both entries to be ambiguous. The
next time you enter a command from the clerk that specifies either nickname, the clerk returns the
following error message:

Specified nickname is ambiguous

Ambiguous nicknames can be caused in the following ways:

• A namespace administrator creates a namespace on a server that is not currently connected to the
local area network (LAN) but assigns it a nickname that matches the nickname of a namespace
already in use on the LAN. The server is subsequently connected to the LAN and advertises the
duplicate nickname.

• A namespace administrator creates a namespace that advertises its existence to all clerks on
the LAN. Then, for some reason, the administrator deletes the namespace and creates another
namespace using the same nickname assigned to the deleted namespace. In this case, clerks on the
LAN have known namespace entries for two namespaces using the same nickname.

• A namespace administrator on a system running VAX Distributed Name Service (DNS) software
on your LAN creates a namespace and assigns a nickname matching that of a namespace already in
use on your LAN. (DNS Version 1 clerk software does not prevent users from assigning the same
nickname to different namespaces.)

• A user configures a clerk on a LAN to communicate with a server in a namespace that exists across
a wide area network (WAN) link. The nickname of the namespace across the WAN link matches the
nickname of a namespace already in use on the LAN.

Each DECdns clerk maintains a cache of known namespaces to keep track of the namespaces with which
it communicates. You can specify a known namespace by using any of the following attributes:

• NSCTS — The value of the NSCTS attribute is assigned automatically when the namespace is
created. A namespace's NSCTS cannot be modified and is guaranteed to be unique.

• Nickname — A namespace's nickname attribute is a human-readable name assigned by the
creator and coupled with the NSCTS attribute during namespace creation. After it is assigned, a
namespace nickname cannot be modified.

• Name — A namespace's name attribute is generated by the clerk when it receives an advertisement
message for the namespace. The value of a namespace's name attribute is usually the same as
its nickname attribute, whose value you assign during namespace creation. If a nickname in an
advertisement message is ambiguous, the clerk modifies the namespace's corresponding name
attribute by appending an underscore and a number (_n) to the Name. Remember that, because
each clerk maintains its own list of known namespaces, and because all clerks on the LAN may not
receive advertisements in the same sequence, the value of a namespace's name attribute can vary
from one clerk to another. (You can use the set dns clerk known namespace command
to modify the value of a namespace's name attribute. See Chapter 11 for more information on this
command.)

12.14.1. Locating the Source of an Ambiguous
Nickname
If a clerk detects that a requested operation involves an ambiguous nickname, for example, after an
attempt to access a name in the nondefault namespace nicknamed abc, you must locate the source of

269

Chapter 12. DECdns Problem Solving

the ambiguous nicknames. The following command displays the NSCTS and name attributes for all
namespaces with the nickname abc.

dns> show dns clerk known namespace *, with nickname=abc
Node 0 DNS Clerk Known Namespace 08-00-2B-0D-C0-9D-CD-3B-C6-16-EC-3B-94-00
AT 2018-02-07-10:38:23.387-05:00I0.189

Identifiers

 NSCTS = 08-00-2B-0D-C0-9D-CD-3B-C6-16-EC-3B-94-00
 Name = abc

Node 0 DNS Clerk Known Namespace 08-00-2B-0D-C0-9D-19-6B-56-B9-8C-3D-94-00
AT 2018-02-07-10:38:23.567-05:00I0.189

Identifiers

 NSCTS = 08-00-2B-0D-C0-9D-19-6B-56-B9-8C-3D-94-00
 Name = abc_1

The output of this command shows that the nickname abc was given to two different namespaces
whose NSCTS values are 08-00-2B-0D-C0-9D-CD-3B-B6-16-EC-3B-94-00 and 08-00-2B-0D-
C0-9D-19-6B-56-B9-8C-3D-94-00. Because of this ambiguity, the clerk on this system appended the
suffix _1 to the name attribute of the namespace uniquely identified by the latter NSCTS value.

If the clerk receives advertisements from servers associated with other name-spaces in use on the LAN
that are also using the abc nickname, the clerk will detect these additional ambiguities and append
suffixes incrementally (_2, _3, and so on) to the name attributes of these namespaces.

12.14.2. Eliminating an Ambiguous Nickname
To permanently eliminate an ambiguous nickname, perform the following tasks:

1. Eliminate all sources of ambiguous advertisements on your LAN that are associated with the
namespace or namespaces you intend to eliminate.

a. Locate all the servers on the LAN that are advertising the namespaces with the ambiguous
nickname you want to eliminate.

b. On the server where each clearinghouse resides, use the clear dns server
clearinghouse command to delete the clearinghouse associated with the ambiguous
nickname from the server's list of clearinghouses it needs to automatically enable during its
startup process. See Chapter 11 for information on how to use the clear dns server
clearinghouse command.

c. Delete or relocate the clearinghouse database files from each affected server system. If you
decide to relocate the clearinghouse, you must copy the database files to an off-LAN server. See
Chapter 9 for information on how to relocate a clearinghouse.

d. When a DECdns clerk starts the NET$DNS_CLERK_STARTUP.NCL file executes. This
file may contain an NSCTS of a name server that no longer exists on the LAN, in which case
the clerk will not be able to communicate with a name server. The clerk could be getting the
incorrect NSCTS from this file. Use option 1 of the DECdns configuration program to create a
new file with the correct NSCTS (see Section 10.2).

270

Chapter 12. DECdns Problem Solving

2. On each clerk on the LAN, use the delete dns clerk known namespace command to
eliminate the clerks' knowledge of the ambiguous nickname. You can use the namespace's name or
NSCTS attribute in the command to specify the correct namespace.

For example, either of the following commands deletes (from the local clerk's list of known
namespaces) the ambiguous nickname associated with the namespace whose name attribute is
abc_1 and whose NSCTS value is 08-00-2B-0D-C0-9D-19-6B-56-B9-8C-3D-94-00.

dns> delete dns clerk known namespace abc_1

dns> delete dns clerk known namespace -
_> 08-00-2B-0D-C0-9D-19-6B-56-B9-8C-3D-94-00

12.15. Fixing Clock Synchronization Errors
The error message Distributed update contained an invalid timestamp may
indicate a clock synchronization problem. Verify that DECdts is running and is correctly synchronizing
all servers listed in the message text. This error does not necessarily indicate that clocks are not
synchronized. Check the SYS$MANAGER:DNS$SERVER.LOG file for additional information about
this error.

A clock synchronization problem usually does not require immediate attention, but you should have it
fixed, because it can prevent replicas from receiving updates. Consult your VSI support representative.

If the server is run on a system that has the system time improperly set in the future, the server will
store information in the database with a timestamp set in the future. The server rejects updates with
timestamps more than 4 minutes into the future. You will see server messages when that happens. If
you believe a server has this problem, first correct the time. If the error persists for more than 48 hours
after the clocks have been corrected, contact your VSI support representative for help on correcting
the problem. See the VSI DECnet-Plus for OpenVMS DECdts Management for information on clock
synchronization.

12.16. Handling Clerk and Server Software
Errors
When a DECdns clerk or server encounters an internal problem, the following error messages may be
displayed:

Software error detected in clerk

Software error detected in server

These errors may indicate a serious problem in the clerk or server running on the system that receives
the message. However, if DECdns service is not interrupted, and even if the error recurs, you should
wait at least 24 hours before taking any action. For a server, the 24-hour waiting period allows sufficient
time for DECdns to complete skulks of all the directories stored in the server's clearinghouse. Often, the
skulking process solves the problem causing the error.

If, after 24 hours, the error messages continue to occur, or if DECdns service is interrupted, contact your
VSI support representative.

12.17. Using Tracing Facilities

271

Chapter 12. DECdns Problem Solving

This section explains how to use trace facilities to help ascertain the cause of DECdns-related problems.
You can trace the advertiser, clerk, server, and DECnet to record errors and help isolate the source of a
problem.

12.17.1. Tracing the Advertiser
To trace the advertiser, do the following:

1. Edit SYS$STARTUP:DNS$CLERK_STARTUP.COM, removing the exclamation point (!) from the
following line:

$! Define/system DNS$_ADVER_TRACE 65535

2. Shut down the clerk.

3. Stop the DNS$ADVER process.

4. Restart the clerk (using SYS$STARTUP:DNS$CLERK_STARTUP.COM.

When you restart the clerk, information will be logged to the file SYS$MANAGER:DNS
$ADVER_ERROR.LOG.

12.17.2. Tracing the Clerk
You can trace all events or only protocol-related activity.

Tracing All Clerk-Related Events

To trace all events in the system service, use the following command:

$ @sys$startup:dns$clerk_startup "DEBUG" "8191"

This creates a file called DNS$CLERK.LOG in SYS$MANAGER:. When you specify 8191, all
events will be logged. Inevitably, however, some internal buffer will be overrun, causing some events
to be dropped. If you display the SYS$STARTUP:DNS$CLERK_STARTUP.COM file, you will see
individual event types described for each of the bits in this mask. If you already know what you want to
observe, trace only a subset of all the events. For example, to look at arguments, service, and tree walk
information, enter the following command:

$ @sys$startup.dns$clerk_startup "DEBUG" "ARGS" "SERVICE" "TREEWALK"

To turn logging off, enter the following command:

$ @sys$startup:dns$clerk_startup "DEBUG" "0"

For tracing on the clerk, you can look in SYS$STARTUP:DNS$CLERK_STARTUP.COM for the list
of different trace points available (in comments).

If the clerk is consuming a large amount of CPU or writing excessive data to the DNS$CHFAIL.LOG,
you can raise the priority of the DNS$ADVER process to 8. This increases the throughput of the
advertiser. (The advertiser writes to the debug logs; in contrast, the clerk runs in kernel mode and does
not write information directly to the disk.)

Tracing Protocol Activity

To activate tracing of clerk-related protocol activity, enter the following command at the system prompt:

272

Chapter 12. DECdns Problem Solving

@sys$startup:dns$clerk_startup debug protocol

Run your DECdns application. You should see a file named SYS$MANAGER:DNS$CLERK.TRACE.

Turn off tracing by entering the following command:

@sys$startup:dns$clerk_startup "DEBUG" "0"

To convert the trace file into readable form, enter the following command:

$ mcr dns$analyze

This creates file DNS$CLIENT.ANA in your current directory.

12.17.3. Tracing the Server
To trace events on the DECdns server, use the DNS$DIAG tool only as directed:

$ MCR DNS$DIAG
diag> set events allon
diag> mark begin test

This writes the string "begin test" into the log.

To have the server flush the latest trace information to the log file, use the following command sequence:

 $ mcr dns$diag
diag> flush log

These commands write additional information into the DNS$SERVER.LOG file.

Note

VSI recommends using this diagnostic tool only as directed, unless you have in-depth understanding of
this tool and of the consequences of the commands you want to use. Consult your VSI software support
personnel for more assistance.

To turn logging off on the server, enter the following commands:

 $ mcr dns$diag
diag> set events normal
diag>mark end test

To have the server log information during startup, create the file SYS$SYSDEVICE:[DNS
$SERVER]DNSD.EVENTS and enter a single asterisk (*) in the file. Then restart the server.

12.17.4. Tracing DECnet
As mentioned earlier, problems that seem related to DECdns often actually originate elsewhere. Most
often, general lookup problems are related to DECnet. Check that the basic DECnet operations work.
First, execute commands that cause DECnet to take actions not using DECdns.

Next, execute commands using node addresses instead of node names. If a command that works with a
node name does not work with an address, then the problem lies in DECnet, not DECdns. If a command
works with a DECnet address but not with a node name, then the problem involves DECdns.

273

Chapter 12. DECdns Problem Solving

To isolate the source of a problem, type the following commands, in the order shown:

1. Enter the following SET HOST command to connect to the local system. If this command fails,
DECnet is at fault. DECdns cannot operate.

 $ SET HOST 0

2. Now use the SET HOST nn.nnn command to connect to the server that stores the information
you are looking up. Here nn.nnn is a host node address, as in the following example:

 $ SET HOST 24.723

After these steps, troubleshooting becomes more complex. The next best tracing tool is CDI$TRACE.
Start CDI$TRACE in one window (MCR CDI$TRACE), and then execute the command that fails in
another. Review the output closely. Often the failed lookup reveals that the information is first being
looked up in the CDI LOCAL: namespace, or under another name you had not expected as the target of
a lookup. If you do not see a lookup to DECdns listed in the CDI$TRACE, then DECnet is not looking
for the information from DECdns.

Sometimes an out-of-date entry is listed in the LOCAL: cache. You can purge the entire CDI cache by
using the following NCL command:

 $ MCR NCL FLUSH SESSION CONTROL NAMING CACHE ENTRY "*"

Or, you can purge single entries by specifying them individually in place of the asterisk (*) in the
command example. (Use the quotes in any case.)

Next, you can use the CTF (Common Trace Facility) trace tool for debugging Session Control (and
perhaps other parts of DECnet-Plus). Use CTF as shown in the following example:

 $ DELETE CTF*.DAT;*
$ TRACE CTF> START TRACE SESSION *
CTF> EXIT
$ TRACE CTF> STOP
CTF> ANAL/TRACE/FULL/OUT=filename.ext
CTF> EXIT $ TYPE filename.ext

Deletes old trace files.
Do whatever you want while tracing.
Use any file name except CTF*.DAT.

If you have an extra window, you can also use CTF to watch the trace live by entering the following
command:

 CTF> START/LIVE SESSION

274

Appendix A. DECdns Naming
Guidelines
This appendix defines the valid character set and syntax rules for DECdns names. It also contains
general guidelines for naming namespaces, clearinghouses, directories, and their contents.

A.1. Valid Characters and Syntax Rules
A name can be any combination of letters, digits, and certain punctuation characters from the ISO
Latin-1 character set. Valid characters include any in Figure A.2 that appear in a white or lightly shaded
box. Characters in lightly shaded boxes must be enclosed in quotation marks (") to be valid. Characters
in dark boxes are not valid. Binary names consist of pairs of hexadecimal characters and must be
preceded by %X or %x.

DECdns preserves the case of names as they are entered. Lookups, however, are case insensitive,
so it is not possible to create two names that differ only in their case. For example, requests to look
up .MYNODE, .mynode, and .MyNode would all produce the same result. Similarly, if someone
attempted to create all three of those names, only the first attempt would succeed.

A full name, including the namespace nickname, can have as many as 511 characters, as illustrated in
Figure A.1.

Figure A.1. Full Name

275

Appendix A. DECdns Naming Guidelines

Figure A.2. Character Codes in DECdns Names

Table A.1 defines syntax rules for external DECdns names, in Backus-Naur form. The left column
shows a component of a name or a type of name, and the right column shows the valid syntax. For
example, an EasyNameChar is any of the characters shown in Figure A.2 that is valid without quotation
marks, and a HardNameChar is any character that must be enclosed in quotation marks to be valid. An
EasySimpleName can consist of one EasyNameChar or a sequence of EasyNameChars. A FullName can
consist of a simple name string (SimpleNameStr) or a sequence of simple name strings separated by dots.

Table A.1. External Name Syntax in Backus-Naur Form

Name Component/Type Valid Syntax

EasyNameChar ← { Set of characters that are valid without quotation marks }
HardNameChar ← { Set of characters that are valid when enclosed in quotation

marks }

276

Appendix A. DECdns Naming Guidelines

Name Component/Type Valid Syntax

Separator ← .
Quote ← "
WildChar ← <EasyNameChar>|?|*
Ellipsis ← <Separator> <Separator> <Separator>
AnyNameChar ← <EasyNameChar>|<HardNameChar>|<Quote> <Quote>
HexChar ← 0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F|a|b|c|d|e|f
HexRadix ← %X|%x
HexPair ← <HexChar> <HexChar>
HexString ← <HexPair>|<HexString> < HexPair>
EasySimpleName ← <EasyNameChar>|<EasySimpleName> <EasyNameChar>
HardSimpleName ← <AnyNameChar>|<HardSimpleName> <AnyNameChar>
QuotedSimpleName ← <Quote> <HardSimpleName> <Quote>
HexSimpleName ← <HexRadix> <HexString>
WildSimpleName ← <WildChar>|<WildSimpleName> <WildChar>
SimpleName ← <EasySimpleName>|<QuotedSimpleName>|<HexSimpleName>
MaybeNullSimpleName ← <SimpleName>|<Quote> <Quote>
NSNickName ← <EasySimpleName>:
SimpleNameStr ← <SimpleName>|<SimpleNameStr> <Separator> <SimpleName>
WildNameStrNoE ← <WildSimpleName>| <SimpleNameStr> <Separator>

<WildSimpleName>
WildNameStr ← <Wild-NameStrNoE>|<SimpleNameStr> <Ellipsis>|

<WildNameStrNoE> <Ellipsis>
FullName ← <SimpleNameStr>|<Separator> <SimpleNameStr>|<Separator>
WildFullName ← <WildNameStr>|<Separator> <WildNameStr>
NSNFullName ← <FullName>|<NSNickName> <Fullname>
NSNWildFullName ← <WildFullName>|<NSNickName> <WildFullName>

A.2. General Naming Guidelines
As you choose all DECdns names, consider the following guidelines:

• A name should be meaningful and easy for its users to remember and type. Give meaning to a name
by making it descriptive of the resource it names. For example, .Aero.Dev.Project_disk
could be the name of the DECdfs access point used by a company's aerospace development division,
and .Sales.Topdollar could be the name of a node in the company's sales division.

• A name should be as short as is practical without causing it to lose meaning or uniqueness.

• If you create a directory hierarchy, choose directory names that are stable and are not likely to be
affected by reorganizations or changes in product strategy. It is difficult to change existing directory
names, especially at high levels in the namespace. Also, a change in a directory name affects all
applications that use names in that directory, as well as any users who memorized the full name of
a resource or created a local name for it. See Chapter 2 for details on how local name substititution
works.

277

Appendix A. DECdns Naming Guidelines

A.3. Guidelines for Naming Clearinghouses
If you configure your node as a DECdns server, you must supply a DECdns name for the clearinghouse
that the server will manage. Use the following guidelines for naming clearinghouses:

• In networks of fewer than 50 DECdns servers, name all clearinghouses in the root directory (for
example, .Bonn_CH). This enables you to automatically comply with two special clearinghouse
rules that protect the name service's ability to find names. In networks of 50 or more DECdns
servers, you should name some clearinghouses at levels below the root. See Appendix B for details.

• Including a suffix like _CH at the end of clearinghouse names (for example, .Paris_CH or
.Sales_CH) can help you to easily identify clearinghouse names and avoid accidentally deleting
them. Tightly controlling access to clearinghouse names also can help prevent accidental deletion.

• Avoid naming a clearinghouse based on the name of the server node where it exists. Although
using the node name conveniently indicates the exact location of a clearinghouse, it can make
things confusing if you later move the clearinghouse to another node, because you cannot rename a
clearinghouse once it is created. VSI does not recommend naming a clearinghouse based on the node
where it currently exists. Instead, consider naming clearinghouses based on the site, city, or region
where they are located. Even if you move a clearinghouse, you are not likely to move it far from the
site or city where it resides.

• If you intend to create an additional clearinghouse on an existing server system, be sure to choose a
name for the new clearinghouse that is different than the name of the clearinghouse that currently
resides on the system.

A.4. Guidelines for Naming Namespaces
When you create a new namespace, you must supply both a namespace nickname and a clearinghouse
name (the first node in a new namespace must configure as a DECdns server). Use the following
guidelines for choosing a namespace nickname:

• Choose a short and simple namespace nickname. When you refer to a name in your clerk's default
namespace, it is not necessary to specify a namespace nickname. However, the namespace nickname
still appears in command output, and even though the nickname can be as long as 255 characters, it
makes sense to keep it short.

• Because a namespace has no relationship to any individual node, you should give the namespace a
nickname that is meaningful to users networkwide. You might base the namespace nickname on your
company's name. For example, a company called International Air Freight could have a namespace
nickname of IAF. Choose the namespace nickname carefully; it is inconvenient to change it.

• You might decide to create a test namespace so you can become familiar with the DECdns software.
If you do, give the namespace a nickname like Test to clearly indicate its purpose. Do not give a test
namespace a nickname that you eventually want to use for a networkwide namespace. Namespace
nicknames are difficult to reuse once they have been established in clerk caches throughout the
network.

278

Appendix B. Special Clearinghouse
Rules
Two rules governing the creation of clearinghouses and the directories they can contain help to ensure
that DECdns can look up a name. The DECdns software enforces the rules through defaults and error
messages; so, in general, you are protected from breaking them. The only time you must explicitly
follow the rules is when you recover a lost or permanently unavailable clearinghouse. Understanding the
rules can help you interpret error messages you might receive, and can help prevent namespace design
problems that result in errors during configuration. This appendix introduces the clearinghouse rules and
explains their significance.

Clearinghouse Rule 1—Every clearinghouse must contain either the root directory or a directory whose
name is closer to the root than the clearinghouse's name.

This rule ensures that no matter what clearinghouse a clerk starts from, it eventually finds the root
directory. The clerk must always be able to locate a replica of the root because, as in the case illustrated
in Chapter 2, the clerk must sometimes find the root and work down from it to find a name.

DECdns enforces clearinghouse rule 1 by requiring that the first replica you place in a new clearinghouse
(the initial replica) complies with the rule. The software also prevents you from deleting a replica if that
replica is the last one in the clearinghouse that complies with the rule.

During configuration, rule 1 is easy to comply with if you name all clearinghouses in the root directory.
If you will have fewer than about 50 servers in the namespace, just name all clearinghouses in the format
.clearinghouse-name, and replicate the root directory in every new clearinghouse that you create.

If you do choose to name clearinghouses in a directory other than the root, count simple names to ensure
compliance with the rule. “Closer to the root” is another way of saying “having fewer simple names.” So
when you create a new clearinghouse, the number of simple names in the full name of its initial replica
must be fewer than the number of simple names in the clearinghouse's name.

The namespace structure shown in Figure B.1 helps illustrate rule 1:

279

Appendix B. Special Clearinghouse Rules

Figure B.1. Sample Namespace Structure

Suppose you have a namespace with a root directory and three lower levels of directories, as shown
in the figure. You want to name a clearinghouse .tokyo.site1.local_ch, thereby storing its
object entry in the .tokyo.site1 directory. To satisfy rule 1, the .tokyo.site1.local_ch
clearinghouse can contain a replica of any of the following directories:

• . (the root)

• .Tokyo

• .Paris

• .Tokyo.Site1

• .Tokyo.Site2

• .Paris.Site4

• .Paris.Site6

The .tokyo.site1.local_ch clearinghouse cannot contain replicas of the following three
directories, unless at least one other replica with a shorter name also exists in the clearinghouse:

• .tokyo.site1.dist

• .paris.site6.sales

• .paris.site6.svcs

These directories, and any others with three or more simple names, would not be able to exist alone in
the .tokyo.site1.local_ch clearinghouse because they have the same number of simple names
as the clearinghouse (three).

Clearinghouse Rule 2—Every directory other than the root must have a replica in at least one
clearinghouse whose name is closer to the root than the directory itself is.

280

Appendix B. Special Clearinghouse Rules

As with rule 1, counting simple names is an easy way to check compliance with this rule. When you
create a new directory, the number of simple names in its full name must be equal to or greater than the
number of simple names in the full name of the clearinghouse where you create it. Later, as you add
and remove replicas in different clearinghouses, at least one replica must remain in a clearinghouse that
complies with rule 2.

Again, the simplest way to comply with rule 2 is to configure all clearinghouses in the root. By limiting
all clearinghouse names to one simple name, you can create any directory and be assured that its number
of simple names is equal to or greater than the number of simple names in the name of the clearinghouse
where it is created.

Suppose, in the namespace shown in the previous figure, you create the clearinghouse
.tokyo.site1.local_ch and try to create a directory in it called .admin. That directory
consists of one simple name, whereas the clearinghouse has three simple names, so DECdns prevents you
from creating the directory there.

To comply with rule 2, you would first have to create the .admin directory in a clearinghouse with a
shorter name, and then replicate it into the .tokyo.site1.local_ch clearinghouse. For example,
creating the directory in a clearinghouse called .hq_ch would satisfy rule 2, because that clearinghouse
name consists of one simple name—the same number of simple names in the name of the .admin
directory.

Rule 2 ensures that the clerk can find any directory without having to look up a clearinghouse object
entry that, in itself, would require looking up the target directory. More specifically, the rule ensures
that a replica containing a clearinghouse object entry exists in at least one clearinghouse other than the
clearinghouse that the entry describes.

The protection that rule 2 provides is important because DECdns looks up a clearinghouse object entry
when no other method of finding the clearinghouse produces the correct address. For example, suppose
you move a clearinghouse from one node to another. DECdns updates the address in the clearinghouse
object entry immediately. However, directories with replicas in that clearinghouse, and their associated
child pointers, temporarily retain the inaccurate address in their DNS$Replicas attributes. DECdns
places the correct address in those attributes during a skulk or an update propagation. The clearinghouse
object entry is therefore the only place where a clearinghouse address is always guaranteed to be
accurate, and the clerk must be able to look up that object entry in a clearinghouse other than the one it
is trying to find.

Clearinghouses named in directories other than the root are more complex to administer than those
named in the root, because of the restrictions rule 2 places on creating and removing replicas in them.
For that reason, VSI recommends that the full names of clearinghouses do not contain more than three
simple names.

281

Appendix B. Special Clearinghouse Rules

282

Appendix C. DECdns Error Messages
This appendix lists error messages reported by the DECdns Control Program. The messages are listed in
alphabetical order by message text string. Following each message is an explanation of the conditions that
generated the message, and some general advice on how to proceed.

A known namespace with this name or namespace creation timestamp
(NSCTS) already exists

Explanation: The name or NSCTS of the namespace you specified in your create dns clerk
known namespace command is already known to the clerk.

User Action: None, or reenter your command and specify a namespace currently unknown to the clerk.

A manual nameserver with this name already exists

Explanation: The name of the server you specified in your create dns clerk manual
nameserver command is already known to the clerk.

User Action: None or reenter your command and specify a remote server currently unknown to the
clerk.

A remote clearinghouse with this name or CTS already exists

Explanation: The name or creation timestamp (CTS) of the namespace you specified in your create
dns clerk remote clearinghouse command is already known to the clerk.

User Action: None, or reenter your command and specify a clearinghouse currently unknown to the
clerk.

Bad local name abbreviation translation

Explanation: A local name abbreviation translation is invalid because it contains invalid characters or it
causes a translation loop.

User Action: Review the logical names in the DNS$SYSTEM logical name table (this is where local
name abbreviation translation occurs).

Cannot delete crucial replica

Explanation: You attempted to delete a replica crucial to the preservation of clearinghouse rule 2.
Deleting the replica would cause a loss of connectivity in the namespace.

User Action: See Appendix B for complete information on the clearinghouse rules. See Appendix D for
a description of the Crucial Replica server event.

283

Appendix C. DECdns Error Messages

Cannot delete the clerk while it is enabled

Explanation: You attempted to delete a DECdns clerk while it was enabled (in the on state).

User Action: Use the disable dns clerk command to disable the clerk. Then, use the delete
dns clerk command to delete the clerk.

Cannot delete the current default namespace

Explanation: The namespace nickname you specified in your delete dns clerk known
namespace command is the default namespace for this clerk. You cannot delete a clerk's default
namespace.

User Action: None or use the DECdns configuration program to select a new default namespace for the
clerk. Then, use the delete dns clerk known namespace command to delete the old default
namespace.

Cannot delete the entity when it is enabled

Explanation: You attempted to delete a server while it was enabled (in the on state).

User Action: Use the disable dns server command to disable the server. Then, use the
delete dns server command to delete the server.

Cannot upgrade replica in old clearinghouse

Explanation: DECdns was unable to upgrade a replica because the clearinghouse in which it is stored
was created with an earlier version of DECdns. DECdns cannot upgrade a directory to a later version
until all replicas in its replica set are stored in clearinghouses created with the later version of the server
software.

User Action: Delete the replicas created in earlier clearinghouses, upgrade the server software on the
servers where those clearinghouse reside, then re-create the replicas in their original locations.

Clearinghouse clearinghouse-name duplicated

Explanation: You specified the same clearinghouse name more than once in the preceding set
directory to new epoch command.

User Action: Reenter the command, omitting the duplicate clearinghouse specification.

Clearinghouse clearinghouse-name exclusion argument missing

Explanation: You did not account for clearinghouse clearinghouse-name (which stores a replica
of the directory that you specified) in your preceding set directory to new epoch command.

User Action: If the replica at this clearinghouse is still a part of the directory's replica set, you must
include the clearinghouse name and the replica type in the command. If you intend to exclude the replica
from the replica set, use the exclude argument in the command. See Chapter 9 for information on
how to exclude a replica from a replica set.

284

Appendix C. DECdns Error Messages

Clerk is not enabled

Explanation: The clerk process on this system has died. Any of the following conditions may have
caused the error:

• The clerk may have been deliberately disabled and deleted.

• The clerk process may have failed because of some other internal problems.

User Action: Run the Network Control Language (NCL) startup script or use the create dns
clerk (or the @SYS$STARTUP:DNS$CLERK_STARTUP command) followed by the enable
dns clerk commands) to re-create and enable the clerk process. See Section 6.7. Use the show
dns clerk command and specify the state attribute to verify that the clerk is in the on state.

Clerk timeout occurred before any modifications completed

Explanation: DECdns did not complete the operation you requested within the allotted clerk timeout
period, or the clerk crashed while trying to process your request. No modifications were made in the
namespace.

User Action: Use the show dns clerk command and specify the state attribute to verify that
the clerk is running and is in the on state. Reenter your command. If the error recurs, use the set dns
clerk command to increase the value of the clerk's clerk timeout attribute.

Clerk timeout occurred, modifications may have completed

Explanation: DECdns did not complete the operation you requested within the allotted clerk timeout
period, or the clerk crashed while trying to process your request. Requested modifications may or may
not have been made to the target name.

User Action: Verify that the clerk is running and is in the on state. Check to see if DECdns completed
the operation. If not, reenter your command. If the error recurs, use the set dns clerk command to
increase the value of the clerk's clerk timeout attribute.

Conflicting arguments specified

Explanation: Your command contains two or more conflicting arguments. The specified arguments
cannot be included within a single command.

User Action: Reenter your command, omitting the conflicting argument (or arguments).

285

Appendix C. DECdns Error Messages

Corrupted response returned by clearinghouse,

Explanation: The clerk received a corrupted response from the first clearinghouse to which it connected
and was unable to retry its request at another clearinghouse because no other clearinghouses containing
the requested information were available. The data corruption may be caused by a hardware or software
problem on either the clerk or server system.

User Action: None immediately. You should examine the syslog file to identify the server and
clearinghouse to which the clerk was connected when the error was returned. If the error recurs, always
specifying the same server and clearinghouse, the data corruption is most likely caused by the hardware
or DECdns server or clearinghouse software on the server system. If the error recurs specifying a
variety of different clearinghouses, the data corruption may be due to a hardware or software problem
on the clerk system. If the error persists, contact your network service providers to verify that the
network hardware is functioning properly, or contact your namespace administrators or your VSI support
representative.

Data corruption detected at clearinghouse

Explanation: An error occurred while DECdns was accessing the data in a clearinghouse. The
clearinghouse may be corrupted.

User Action: Refer to the DECnet event log to determine the cause of the error. See Chapter 12 for
instructions on how to recover a corrupted clearinghouse database.

DECdns license is not present or is invalid

Explanation: While trying to create the DECdns server on this server node (during system startup or
after entering the @SYS$STARTUP:DNS$SERVER_STARTUP command), the DECdns server license
could not be found or had been rendered unusable.

User Action: To determine the specific cause of the error, examine the DNS$SERVER_ERROR.LOG
file systems. Invoke the License Management Facility (LMF) to reload or activate the server license. See
the LMF documentation for complete information on how to use the License Management Facility.

Directory creation in this clearinghouse violates clearinghouse
rules

Explanation: Creating a directory in the clearinghouse that you specified violates the clearinghouse
rules.

User Action: Create the directory in another clearinghouse that is named closer to the root. If necessary,
you can then create a replica of the new directory in the clearinghouse where you originally intended to
create the directory. See Appendix B for a complete description of the clearinghouse rules.

Directory must be empty to be deleted

Explanation: You attempted to delete a directory that still contains entries.

User Action: Delete the contents of the directory before you reenter the delete directory
command. Make sure you do not accidentally delete any clearinghouse object entries.

286

Appendix C. DECdns Error Messages

Directory replicas are not synchronized

Explanation: During a skulk of a directory, the update procedure found that the values stored in the
DNS$Epoch attribute of each replica in the directory's replica set were not identical.

User Action: Use the set directory to new epoch command to synchronize all members of
the directory's replica set.

Distributed update contained an invalid timestamp

Explanation: While propagating updates, DECdns detected that an update contained an invalid
timestamp. The discrepancy between the server that issued the invalid timestamp and the other DECdns
servers on the network is greater than 4 minutes.

User Action: Verify that DECdts is running and is correctly synchronizing all servers listed in the
message text. This error does not necessarily indicate that clocks are not synchronized. Check the SYS
$MANAGER:DNS$SERVER.LOG file for additional information about this error. See Section 12.15
for more information on fixing clock synchronization errors. If the error persists for more than 48 hours
after the clocks have been corrected, contact your VSI support representative for help on correcting
the problem. See the VSI DECnet-Plus for OpenVMS DECdts Management for information on clock
synchronization.

Inappropriate name use

Explanation: You specified a name in an inappropriate context. For example, you entered a set
directory command specifying a name that is not a directory name.

User Action: Reenter your command correctly.

Insufficient local resources

Explanation: The system was unable to provide adequate memory or communications resources to
process your request.

User Action: Monitor the available memory and check system log files to determine the current
availability of system resources. If necessary, allocate additional resources.

Insufficient resources at server

Explanation: Available resources at the responding DECdns server were insufficient to process your
request. The server system was unable to provide adequate memory, communications, or other resources.

User Action: Reenter your command.

Insufficient rights to perform requested operation

Explanation: The user account from which you entered the command does not have the required
DECdns access rights to perform the operation you requested.

User Action: Assuming you have adequate access rights, grant yourself the appropriate access to
perform the operation. Otherwise, contact your namespace administrator to get the appropriate access, or
reenter the command while you are logged in to an account that has the required access.

287

Appendix C. DECdns Error Messages

Invalid argument

Explanation: One or more of the specified argument values is invalid. Argument values may be
syntactically incorrect or may be outside the range of allowed values. For example, you may have
specified a DNS$CTS value that refers to a future time.

User Action: Refer to Chapter 11 for descriptions of allowed argument values and proper usage. Reenter
the command, specifying valid argument values.

Invalid name

Explanation: The command you entered contains misspelled words, illegal characters, or other
typographical errors. You may have included extraneous words or omitted required node, option, or
argument specifications. Command arguments and options may not appear in proper sequence.

User Action: Invoke DECdns online help or refer to Chapter 11 for a description of proper syntax for
the command you are trying to use. Reenter your command correctly.

Note

The DECdns Control Program ordinarily detects all command syntax errors on the command line and
displays the Syntax error message. Appearance of the Invalid name message can sometimes
indicate that:

• A merge operation you requested (and which involved valid full names at the command line) was
concatenated internally to produce a new full name that was improperly formed or of illegal length.

• An internal conversion routine or other operation failed.

• A software error has developed within the control program itself.

If the Invalid name error message is displayed repeatedly in response to a command you are sure
you entered correctly, contact your VSI support representative.

More than one master replica specified

Explanation: You specified more than one master replica in your preceding set directory to
new epoch command. A directory's replica set can contain only one master replica.

User Action: Reenter your command specifying only one clearinghouse location for the directory's
master replica.

No replica of specified directory exists at clearinghouse

clearinghouse-name

Explanation: The clearinghouse clearinghouse-name (which you specified in the exclude argument
of your preceding set directory to new epoch command) does not store a replica of the
specified directory.

User Action: Enter the show directory command and specify the DNS$Replicas attribute
to display a list of the clearinghouses that contain replicas of the specified directory. Then, reenter your
original command, specifying the correct clearinghouse names.

288

Appendix C. DECdns Error Messages

Operation must be performed at master replica of root directory

Explanation: You entered a command requesting an operation that must be directed to the
clearinghouse that stores the master replica of the root directory.

User Action: Enter the show directory command for the root directory (.) and specify the DNS
$Replicas attribute to determine the name and location of the clearinghouse that stores the master
replica. Reenter your original command, specifying that clearinghouse.

Operation not supported by Local namespace

Explanation: The clerk on this node is using the Local namespace rather than the fully distributed
DECdns implementation. The command you entered specifies an operation that is not supported by the
Local namespace.

User Action: None.

Possible cycle detected

Explanation: While processing your command, DECdns detected a possible soft link loop or group
loop. A soft link loop occurs when a soft link (in a series of two or more soft links) points back to itself.
A group loop occurs when two or more groups include each other as group members.

User Action: See Chapter 12 for instructions on how to break soft link loops and group loops.

Replica of specified directory cannot be created in old
clearinghouse

Explanation: You attempted to create a replica of a directory in a clearinghouse running an earlier
version of the DECdns software than the version with which the directory itself was created. For
example, you cannot create a replica of a Version 2 directory in a clearinghouse maintained with DNS
Version 1 software.

User Action: Upgrade the DECdns software of the server on which the clearinghouse resides, or create
the replica in a clearinghouse that was created with the later version of the software.

Replica set of specified directory contains more than one replica

Explanation: You tried to delete a directory whose replica set still contains one or more read-only
replicas.

User Action: Enter the show directory command and specify the DNS$Replicas attribute
to display a list of the clearinghouses that contain replicas of the directory. You must delete all read-only
replicas before you can delete the directory's master replica.

289

Appendix C. DECdns Error Messages

Requested clearinghouse exists but is not available

Explanation: The clearinghouse that you tried to access resides on the specified server but is not
currently available. The clearinghouse may not be in the on state.

User Action: Enter the show dns server clearinghouse command and specify the state
attribute to verify that the clearinghouse is in the on state. Reenter your original command when the
clearinghouse is in the on state.

Requested function not supported by this version of architecture

Explanation: The function you requested is not supported by the current version of the DECdns
architecture.

User Action: None.

Requested name does not exist

Explanation: Any of the following conditions may have caused the error:

• The name you tried to access does not exist in the namespace.

• The name exists but is newly created and is not yet known to the clearinghouse with which you are
communicating.

• The name you tried to access is being deleted.

• The requesting principal (the user account from which you entered the command) does not have read
access to the requested name.

• Read access is granted to the requesting principal through the use of an access control group, but the
group flag is not specified in the ACE associated with the name.

• For a directory name, the only ACE specifying the requesting principal is a default ACE. Default
ACEs grant access only to the future contents of a directory and not to the directory itself.

• You mistyped the name.

User Action: Assuming you have adequate access rights, try to create the name yourself. If the name
exists, the creation fails and the following error message is displayed:

Specified full name already exists

If this occurs, ask your namespace administrator (or the owner of the name) to grant read access to the
name for your user account. If you mistyped the name, reenter your command specifying the correct
name.

Requested operation would result in lost connectivity to root
directory

Explanation: You entered a command requesting an operation that would have resulted in a loss of
connectivity with the root of the namespace. DECdns cannot process your request.

User Action: None.

290

Appendix C. DECdns Error Messages

Requested optional function is not implemented in this release

Explanation: You entered a command requesting an operation that is supported by the current version
of the DECdns architecture, but is defined as optional and has not been implemented in this release of
the DECdns software.

User Action: None.

Requesting principal could not be authenticated to the clearinghouse

Explanation: DECnet node verification failed. The server that stores the master replica of the directory
(or contents) you are trying to read or modify was unable to verify the DECnet node name portion of the
principal associated with the clerk from which you made the request.

User Action: Make sure that the following conditions are satisfied, then reenter your command:

• Verify that a node object entry representing the requesting clerk exists in the namespace and can be
reached, at the time you enter your command, by the server storing the master replica.

• Make sure the dns$server account (nodename.dns$server) on the server storing the master
replica has read access to the node object entry.

• Make sure the address (DNA$Towers attribute) associated with the node object matches the actual
address of the requesting clerk.

See Section 12.12 for more information on how to perform these tasks.

Responding entity in wrong state to process requested operation

Explanation: A responding entity (a DECdns clerk, DECdns server, clearinghouse, or replica) is not in
the on state and cannot process your request.

User Action: Verify that the entity you are trying to access is in the on state before you reenter your
command.

Server is in the wrong state to initialize namespace

Explanation: During the DECnet configuration process, the namespace creation process failed because
the DECdns server was not enabled (not in the on state).

User Action: Enter the enable dns server command to enable the server.

Server is in the wrong state to be disabled

Explanation: The DECdns server running on the node you specified in your disable dns server
command was not enabled (in the on state) when you issued the command.

User Action: Use the show dns server command to verify the status of the server.

291

Appendix C. DECdns Error Messages

Server process has insufficient access to clearinghouse

Explanation: The DNS$Server principal on the requesting server has insufficient access to a
clearinghouse that stores the name the server was trying to access.

User Action: Have your namespace administrator (or the manager of the server on which the
clearinghouse resides) grant the DNS$Server principal on the requesting server the access it requires
to perform the requested operation.

Skulk in progress terminated, superseded by more recent skulk

Explanation: A skulk in progress contacted a replica and found that the replica was modified by a more
recent skulk. The skulk in progress terminates.

User Action: None.

Software error detected in clerk

Explanation: DECdns detected a software problem in the clerk interface.

User Action: See Chapter 12 for information on recovering from this error.

Software error detected in server

Explanation: DECdns detected a software problem in a DECdns server.

User Action: See Chapter 12 for information on recovering from this error.

Specified attribute cannot be modified

Explanation: You attempted to modify the value of an attribute that cannot be modified.

User Action: None.

Specified attribute type is incorrect

Explanation: One or more of the attributes that you specified are not included in the correct attribute
group (identifiers, characteristics, counters, or status).

User Action: Before you reenter the command, see Chapter 11 to determine the attribute group to
which each of the specified attributes belongs.

Specified clearinghouse already contains a replica of that directory

Explanation: You tried to create a replica of a directory in a clearinghouse that already contains a
replica of that directory. A clearinghouse can store only one replica of a directory.

User Action: None, or choose another clearinghouse in which to create the replica.

292

Appendix C. DECdns Error Messages

Specified clearinghouse does not contain a replica of that directory

Explanation: The clearinghouse you specified in the command does not contain a replica of the
directory you are trying to access.

User Action: Enter the show directory command and specify the DNS$Replicas attribute to
display the names of the clearinghouses that contain a replica of the directory you are trying to access.
Reenter your original command and specify a clearinghouse that stores a replica of the target directory.

Specified clearinghouse does not exist

Explanation: The clearinghouse you specified in the command does not exist in the namespace.

User Action: Make sure you typed the full name of the clearinghouse correctly. Reenter the command
and specify the correct name of an existing clearinghouse.

Specified directory does not allow clearinghouse name storage

Explanation: You attempted to name a new clearinghouse in a directory that does not permit storage of
clearinghouse object entries. The directory's DNS$InCHName attribute is not set to true.

User Action: Use the set directory command to reset the value of the directory's DNS
$InCHName attribute to true, then reenter your original command. See Chapter 12 for information
on allowing a directory to store clearinghouse object entries.

Alternatively, you can name the new clearinghouse in a directory that already allows clearinghouse
creation.

Specified full name already exists

Explanation: You cannot create the name that you specified because an identical name already exists
in the namespace. (For directory creation, a directory of the same name may be in the process of being
deleted.)

User Action: Make sure that the full name you specified is actually the name you intended to create. If it
is, you must choose another name that does not already exist in the namespace.

Specified name exists but is not a soft link

Explanation: The name you specified exists in the namespace but is not a soft link.

User Action: Use the directory link command to display the names of all the soft links in the
appropriate directory. Reenter your command and specify the correct name of the soft link that you are
trying to access.

Specified nickname already assigned to another namespace

Explanation: In this clerk's cache, the namespace nickname you specified is already coupled with the
NSCTS attribute of another namespace.

User Action: Specify a namespace nickname that is not already in use on your network.

293

Appendix C. DECdns Error Messages

Specified nickname is ambiguous

Explanation: According to this clerk's cached list of known namespaces, the nickname you specified in
your command is coupled with the NSCTS attributes of two (or more) namespaces.

User Action: See Chapter 12 for information on how to eliminate the ambiguous namespace (or
namespaces) or specify the NSCTS (rather than the nickname) of the appropriate namespace in your
command. A namespace's NSCTS is guaranteed to be unique.

Specified nickname unknown to this clerk

Explanation: The namespace nickname you specified does not exist in this clerk's cached list of known
namespaces.

User Action: Make sure that you entered the namespace nickname correctly. Use the create dns
clerk known namespace command to add the namespace nickname to the list of known
namespaces in the clerk's cache.

Specified object is not a group

Explanation: The object you specified in your command is not a group; its object class is not DNS
$Group.

User Action: Use the directory group command to display the names of all the groups in the
appropriate directory. Reenter your original command and specify the correct name of the group you are
trying to access.

Specified soft link points to nonexistent name

Explanation: The destination-name (DNS$LinkTarget) to which the specified soft link points no
longer exists (or may never have existed) in the namespace.

User Action: Enter the delete link command to delete the soft link, or use the set link
command to modify the current destination-name.

Syntax error

Explanation: The DECdns Control Program detected a syntax error in your command before attempting
to execute it. The command may contain misspelled words, illegal characters, or other typographical
errors. You may have included extraneous words or omitted required node, option, or argument
specifications. Command arguments and options may not appear in proper sequence.

User Action: Invoke DECdns online help or see Chapter 11 for a description of proper syntax for the
command you are trying to use.

The DNS clerk entity already exists

Explanation: You tried to create a DECdns clerk on a node where a clerk already exists.

User Action: None.

294

Appendix C. DECdns Error Messages

The DNS clerk is not enabled

Explanation: You tried to disable a clerk that was not enabled (in the on state).

User Action: None, if you intend to disable the clerk.

The nameserver entity already exists

Explanation: You tried to create a DECdns server on a node where a server already exists.

User Action: None.

Unable to communicate with any DECdns server

Explanation: The clerk from which you issued your command was unable to communicate with any
DECdns server capable of processing your request. Any of the following conditions may have caused the
error:

• The requesting clerk was unable to establish a DECnet link to an appropriate DECdns server.

• The clerk was able to connect to an appropriate server, but the server was not in the on state.

• A clearinghouse containing a replica of the directory that stores the information you were trying to
access was not in the on state.

User Action: Verify DECnet connectivity to an appropriate server node. Make sure that the server is
in the on state. Make sure that at least one clearinghouse that stores a replica of the directory you want
to access is reachable and is in the on state. See Section 12.2 for more information on how to handle
communication errors.

295

Appendix C. DECdns Error Messages

296

Appendix D. DECdns Events
DECdns uses the DECnet-Plus event logger to record significant events for DECdns clerks, servers, and
clearinghouses. By default, all DECdns events are turned on by the DECnet-Plus configuration program.

This appendix alphabetically lists DECdns events, explains their meanings and, where appropriate,
suggests what action you should take.

Clerk Event
Parameters

Incompatible Protocol Error

The clerk received a response from a server running an incompatible or unsupported version (major
version number) of the DECdns clerk/server protocol. A clerk can only communicate with other clerks
or servers that are running the same version as (or one version earlier than) the protocol version that the
clerk itself is running. This event increments the Incompatible Protocol Errors clerk counter.

Argument:

Version Received Specifies the protocol version running on the responding entity.

Server Events
Parameters

Broken Lookup Paths

The clearinghouse on this server has become disconnected from clearinghouses that contain replicas
closer to the root. Incoming requests that require the server to look downward in the hierarchy may still
succeed, but requests requiring lookups in directories that exist closer to the root will fail because the
parent of the directory does not seem to exist. Without a parent, the directory is cut off from upper levels
of the hierarchy. This problem can be caused by either of the following conditions:

• During a directory lookup operation, the account (principal) under which the server is running
(nodename.dns$server) was found to have insufficient access to the child pointer of the target
directory. (A directory's child pointer exists in its parent directory.) Access to a directory's child
pointer is inherited from the access assigned to the directory's parent directory. To correct the
problem, make sure the nodename.dns$server principal has write access to the parent directory.

• The child pointer to the disconnected directory was accidentally deleted from its parent directory.
See Chapter 12 for complete information on how to restore a lost child pointer.

This event increments the Times Lookup Paths Broken server counter.

Argument:

Orphan Specifies the full name of the directory being accessed by the server at the
time the disconnection was detected.

Cannot Update Child Pointer

297

Appendix D. DECdns Events

The server was unable to update a parent directory's child pointer attribute (with update
information stored in the child directory's parent pointer attribute). This happens when the server
is unable to contact all the clearinghouses that store a replica of the directory's parent directory and
therefore cannot apply updates that occurred since the last skulk. One or more replicas of the parent
directory may be temporarily unreachable. This event increments the Child Pointer Update Failures
server counter.

This event may also be generated if the server was found to have insufficient access to perform the
update. In this case, the Security Failure server event is also logged.

Arguments:

Directory Specifies the full name of the directory for which the server's parent pointer
tracking failed.

Reason Specifies the reason for the update failure. Reasons are expressed as
DECdns or operating system error messages.

If the Security Failure or Broken Lookup Paths events are also logged, take action on those events first.
If DECdns only logs the Cannot Update Child Pointer event, then one or more of the clearinghouses that
stores a replica of the directory being updated could not be contacted. This condition will be corrected
when the server's ability to communicate with the clearinghouses is restored.

Crucial Replica

An attempt was made, from this server, to delete a replica that is crucial to the preservation of the
clearinghouse rules. The clearinghouse rules require every directory to store at least one of its replicas in
a clearinghouse that is named closer to the root than is the directory itself. (See Appendix B for complete
information on the clearinghouse rules.) When the background process on the server detects that a
crucial replica was deleted, it reverses the delete replica operation and returns the replica to the
on state.

This event is raised as a result of two separate delete replica operations. Although each operation
may be valid, the combination of the two operations is not. The server background process examines
the combined deletions and reverses the deletion of the replica that will preserve the clearinghouse rules
and restore the server's ability to communicate with the root directory. This event increments the Crucial
Replica Removals Backed Out server counter.

Arguments:

Directory Specifies the full name of the directory whose replica was being deleted
when the server background process detected the failure.

Clearinghouse Specifies the full name of the clearinghouse that stores the crucial replica
whose removal caused the failure.

If you must remove a crucial replica from a clearinghouse, first create another replica of the directory in
some other clearinghouse whose name is closer to the root directory than is the directory itself.

Incompatible Protocol Error

The server received a request from a clerk running an incompatible or unsupported version (major
version number) of the DECdns clerk/server protocol. A server can only communicate with clerks that
are running the same version (or one version previous to) the protocol version that the server itself is
running. This event increments the Incompatible Protocol Errors server counter.

298

Appendix D. DECdns Events

Arguments:

Version Received Specifies the protocol version running on the requesting entity.
Source Specifies the full name of the node entity containing the clerk that

generated the incompatible request.

Possible Cycle

The server detected a possible soft link loop or group loop while trying to resolve a name or group. This
event increments the Possible Cycles server counter.

Argument:

Name Specifies the full name being resolved when the loop was detected.

See Chapter 12 for information on how to break a soft link loop or group loop.

Security Failure

The server encountered an unexpected security failure while trying to perform an operation on behalf
of a user or application, or while trying to perform an internal background operation. For example,
the server, on behalf of a requesting application, was unable to create an object entry in a directory
because the account under which the application was running (principal) did not have write access to the
directory. This event increments the Security Failures server counter.

Arguments:

Accessing Specifies the full name being accessed when the security failure was
detected.

Source Specifies the full name of the accessing principal.

Time Went Backward

The time on this server system appears to have gone backward.

Argument:

Time Specifies the time after which you must reset the system clock to correct the
problem.

This problem can occur when a user mistakenly sets the system time ahead to adjust for normal clock
drift or for daylight saving time; then, after realizing an error was made, the user sets the system clock
back again. All DECdns transactions that occur while a server's system clock is set ahead appear, to
DECdns, to have occurred in the future. DECdns is unable carry out updates and other background
operations on names that bear timestamps specifying future times.

If the future timestamps are only a few minutes or hours in the future, you can simply wait until the date
and time expressed in the timestamps has passed. At that time, DECdns will continue to synchronize
update information in the normal manner.

If the timestamps are so far in the future that you would need to wait for days or weeks before resuming
normal operations, you must repair the damage manually.

299

Appendix D. DECdns Events

Clearinghouse Events
Parameters

Clearinghouse Created

The clearinghouse was created by use of the create dns server clearinghouse command.

Clearinghouse Deleted

The clearinghouse was deleted by use of the delete dns server clearinghouse command.

Clearinghouse Disabled

The clearinghouse was disabled by use of the disable dns server clearinghouse
command. This event increments the Disable Counts clearinghouse counter.

Argument:

How Specifies how the clearinghouse was disabled: graceful or abort.

Clearinghouse Enabled

The clearinghouse was enabled by use of the enable clearinghouse command. This event
increments the Enable Counts clearinghouse counter.

[Clearinghouse Entry Missing]

The clearinghouse object entry that represents this clearinghouse in the name-space has disappeared,
possibly because of accidental deletion. This event increments the Times Clearinghouse Entry Missing
clearinghouse counter.

See Chapter 12 for instructions on how to restore a deleted clearinghouse object entry.

Data Corruption

The clearinghouse data files may have become corrupted. This event increments the Data Corruptions
clearinghouse counter.

Argument:

Reason Specifies why the integrity of the clearinghouse data is suspect. Reasons are
expressed as DECdns or operating system error messages.

Check the appropriate DECdns error messages in Appendix C and take the indicated user actions. See
Chapter 12 for instructions on how to recover a corrupted clearinghouse.

Root Lost

The namespace tree has become disconnected; the root directory cannot be found starting from this
clearinghouse. This condition can occur when the clearinghouse does not store at least one directory with
both of the following properties:

1. The directory's name must be closer to the root (contain fewer simple names) than the name of the
clearinghouse itself.

300

Appendix D. DECdns Events

2. The directory must have its DNS$InCHName attribute set to true.

This event increments the Times Root Not Reachable clearinghouse counter.

To recover from this problem, use the create replica command to create (in this clearinghouse)
a replica of some directory that satisfies the preceding requirements. The root directory is guaranteed to
satisfy these requirements.

Skulk Failed

A skulk (initiated by this server) of some directory that stores a replica on this clearinghouse has failed.
This event increments the Skulk Failures clearinghouse counter.

Arguments:

Directory Specifies the full name of the directory being skulked.
Reason Specifies why the skulk failed. Reasons are expressed as DECdns or

operating system error messages.

Check the appropriate DECdns error messages in Appendix C and take the indicated user actions.

Upgrade Not Possible

The server where this clearinghouse resides was unable to upgrade a directory during a skulk of that
directory. This event increments the Upgrades Not Possible clearinghouse counter.

Arguments:

Directory Specifies the full name of the directory that could not be upgraded.
Why Specifies why the attempted upgrade failed. Reasons are expressed as

DECdns or operating system error messages.

Check the appropriate DECdns error messages in Appendix C and take the indicated user actions.

301

Appendix D. DECdns Events

302

Appendix E. Location of DECdns Files
This appendix contains information on the location of the DECdns clerk and server files. E.1 list the
locations of DECdns Version 2 files for OpenVMS systems.

Note that what files are on a system depends on whether the system has DECdns installed on it or it is a
clerk-only system.

Table E.1. Location of DECdns Files on OpenVMS Systems

File Description

SYS$SPECIFIC:[SYSEXE]
DNS$CACHE.000000nnnn The backing store file for the DECdns clerk

cache. The extension part of the file name
(000000nnnn) is incremented by 1 at each
backing store update and is updated in the
associated file dns$cache.version.

DNS$CACHE.VERSION Contains the version of the dns$cache backing
store file.

SYS$COMMON:[SYSEXE]
DNS$ADVER.EXE Executable image file for DECdns advertisement

process.
DNS$ANALYZE.EXE Executable image file for analyzing clerk protocol

traces.
DNS$CONFIGURE.EXE Executable image file for DECdns configuration

program.
DNS$CONTROL.EXE Executable image file for DNS management

control program.
DNS$CONVERT.EXE Executable image file for converting DNS Version

1 files to DECdns Version 2 format.
DNS$DIAG.EXE Executable image file for DECdns diagnostics tool.
DNS$DUMP.EXE Executable image file for DECdns dump utility.
DNS$SERVER.EXE Executable image file for the server.
DNSBROWSER.EXE Executable image file for the DECdns Browser

utility.
DNSCP.BPT Parse table for the DECdns Control Program.
DNSCP.MBF Message text file for the DECdns Control Program.
SYS$SPECIFIC:[SYSLIB]
DNS$NS_DEF_FILE.DAT The server default file.
SYS$COMMON:[SYSLIB]
DNS$CLIENT.EXE DNS client (clerk) shareable library, the old version

kept for backward compatibility with systems
having VMS software earlier than Version 5.3.
(OpenVMS VAX only)

303

Appendix E. Location of DECdns Files

File Description

DNS$PI.EXE DECdns shared library of DECdns run-time
routines. (OpenVMS VAX only)

DNS$RTL.EXE DECdns run-time library routines.
DNS$SHARE.EXE DECdns clerk shareable library. (OpenVMS VAX

only)
DNSDEF.BAS Definitions for DECdns application programming

interface (API).
DNSDEF.FOR Definitions for DECdns API.
DNSDEF.H Definitions for DECdns API.
DNSDEF.MAR Definitions for DECdns API.
DNSDEF.PAS Definitions for DECdns API.
DNSDEF.PLI Definitions for DECdns API.
DNSDEF.R32 Definitions for DECdns API.
DNSMSG.BAS Definitions for DECdns API.
DNSMSG.FOR Definitions for DECdns API.
DNSMSG.H Definitions for DECdns API.
DNSMSG.MAR Definitions for DECdns API.
DNSMSG.PAS Definitions for DECdns API.
DNSMSG.PLI Definitions for DECdns API.
DNSMSG.R32 Definitions for DECdns API.
SYS$HELP
DECDNS_BROWSER.HLB Help files for the DECdns Browser utility.
DNS$CPHELP.HLB Help files for the DECdns Control Program.
SYS$SPECIFIC:[SYS$STARTUP]
DNS$SERVER_STARTUP.COM Server startup command file.
SYS$COMMON:[SYS$STARTUP]
DNS$CLERK_STARTUP.COM Clerk startup command file.
DNS$CLERK_STOP.COM Clerk shutdown command file.
DNS$SERVER_SHUTDOWN.COM Server shutdown command file.
SYS$SPECIFIC:[SYSMGR]
DNS$CONVERT.COM Used for converting DNS Version 1 files to

DECdns Version 2 format.
DNS$STARTUP.COM DECdns startup command file.
DNS$STOP.COM DECdns shutdown command file.
NET$DNS_CLERK_STARTUP.NCL Clerk startup file with information specific for the

node.
NET$DNS_CLERK_STOP.NCL Clerk shutdown file.
NET$DNS_SERVER_STARTUP.NCL Server startup file with information specific for the

node.

304

Appendix E. Location of DECdns Files

File Description

NET$DNS_SERVER_STOP.NCL Server shutdown file.
DNS$ADVER_ERROR.LOG Log file that records errors related to the DNS

$ADVER advertiser process.
DNS$CHFAIL.LOG Log file that records errors related to clearinghouse

failures.
DNS$SERVER.LOG Log file that records server activity.
DNS$SERVER_ERROR.LOG Log file that records server errors.
DNS_FILES.TXT File created when the clearinghouse is created,

containing the path to the clearinghouse. It is
necessary for starting up the DECdns server.

SYS$COMMON:[SYSMGR]1

DECNET_DNS_REGISTER.COM DECnet-Plus registration tool used by
DECNET_REGISTER.

DECNET_DNS_TOWERS.COM Command file used by DECNET_REGISTER.
DECNET_REGISTER_DECDNS.COM Part of the DECNET_REGISTER tool.
DNS$CHANGE_DEF_FILE.COM DECdns command file that changes default server.
DNS$CLIENT_STARTUP.COM DNS Version 1 clerk startup file left over if you

have upgraded to DECdns Version 2.
DNS$CLIENT_STOP.COM DNS Version 1 clerk shutdown file left over if you

upgraded to DECdns Version 2.
DNS$CONFIGURE.COM DECdns configuration program.
DNS$CLERK_CLUSTER.NCL Script file for clerks on clusters.
NET$DNS_CLERK_STARTUP.NCL Script file for clerk startup.
SYS$SYSDEVICE:[DNS$SERVER]2

chfile_CH.CHECKPOINTn Clearinghouse checkpoint file, where chfile is the
name of the clearinghouse file and n denotes an
eight-digit number.

chfile_CH.TLOGn Clearinghouse file, where chfile is the name of the
clearinghouse file and n is the version number.

chfile_CH.VERSION Clearinghouse file (where chfile is the name of
the clearinghouse file) containing the value for the
version number on chfile_CH.TLOGn.

SYS$MESSAGE:
DNS$MSG.EXE Error message file.
SYS$COMMON:[SYSHLP.EXAMPLES.DNVOSI]
DNS_ADD_VALUE_TO_ATTRIBUTE.C Programming example.
DNS_CREATE_OBJECT.C Programming example.
DNS_READ_ATTRIBUTE.C Programming example.
SYS$COMMON:[SYS$LDR]
SYS$NAME_SERVICES.EXE File that loads clerk system services.

305

Appendix E. Location of DECdns Files

File Description

SYS$NAME_SERVICES.STB File that loads clerk symbol table.
1The SYS$COMMON:[SYS$MGR] directory contains files used for starting up DECdns tools and facilities.
2The SYS$SYSDEVICE:[DNS$SERVER] directory and the clearinghouse files it contains are created during configuration.

306

Appendix F. DECdns Version
Interoperability
DECdns is Version 2 of a product called VAX Distributed Name Service (DNS) Version 1. Version 1
and Version 2 clerks and servers can interoperate in the same namespace, with a few restrictions and
considerations. This appendix summarizes interoperability considerations in a mixed Version 1 and
Version 2 environment.

F.1. Version 2 Directories Cannot Be
Replicated in Version 1 Clearinghouses
This restriction is a problem only if you modify the default behavior of Version 2 software. Every
clearinghouse has a DNS$DirectoryVersion attribute, whose value determines the version number
of all directories created in that clearinghouse. Version 2 software creates clearinghouses with a default
directory version of 1, so that directories created in the clearinghouse can be replicated in either Version
1 or Version 2 clearinghouses. Therefore, even if a server is running Version 2 software, its normal
behavior is to create Version 1 directories.

If you would like the ability to replicate directories at servers running either Version 1 or Version 2 of
the software, accept the default directory version of 1 when you configure a clearinghouse.

Using Version 2 directories results in a smoother upgrade to the next higher version of DECdns when it
becomes available. Version 2 directories also improve performance on access checking. However, before
you specify a directory version of 2 when configuring a clearinghouse, make sure you never want or
need to replicate directories created at this clearinghouse into a Version 1 clearinghouse.

Note

If you have a DECdns Version 2 server clearinghouse (for example, .eng.host_ch) that stores more
than 200 directories and a DNS Version 1 server that replicates a directory containing the DECdns
Version 2 server's clearinghouse object (for example, a DNS Version 1 server replicating directory
.eng), then the DNS Version 1 server might have insufficient resources to handle the directory's skulk.
To prevent this problem, see Section 12.3.2.

F.2. Double ACEs on Directories Replicated at
Mixed-Version Servers
Version 1 and Version 2 use different formats for specifying principals in access control entries (ACEs).
If you plan to replicate a directory at both Version 1 and Version 2 servers, you must create both Version
1- and Version 2-style ACEs for the directory and its contents. If you do not, you can get unexpected
access violations on attempts to replicate, skulk, or otherwise manage the directory and its contents.

In a Version 1 ACE, you specify a principal as nodename::username, where nodename is the 6-
character-maximum DECnet Phase IV-style node name. In a Version 2 ACE, you specify a principal as
nodename.username, where nodename is the DECdns full name of the node. See Chapter 5 for details on
creating ACEs.

307

Appendix F. DECdns Version Interoperability

F.3. Command Interfaces Differ
The Version 1 and Version 2 command interfaces are different. The Version 1 interface, DNS
$CONTROL, has commands that are similar to the DECnet Phase IV Network Control Program (NCP).
The Version 2 DECdns Control Program (DNSCP) has commands that are styled after the DECnet
Phase V interface, Network Control Language (NCL).

It is possible to use either the Version 1 or Version 2 control program interface to manage a mixed-
version environment, with a few exceptions:

• The Version 2 interface offers more capabilities than the Version 1 interface, including commands
that allow you to merge and append portions of a namespace.

• When you use the Version 2 command set directory to new epoch, you cannot specify
a clearinghouse at a Version 1 server node as the location of the master replica. You must use the
Version 1 rebuild directory command to establish the master replica in a clearinghouse at a
Version 1 server.

• You cannot use the Version 2 interface to manage the following entities on remote systems running
Version 1:

• dns clerk

• dns clerk known namespace

• dns clerk manual nameserver

• dns clerk remote clearinghouse

• dns server

• dns server clearinghouse

F.4. Clerks on Nodes with Extended
Addresses
DECdns clerks on nodes with extended addresses (without DECnet Phase IV-compatible addresses)
can communicate only with DECdns Version 2 servers. They cannot communicate with DNS Version
1 servers, because these servers are DECnet Phase IV nodes. The DECdns clerk node needs a DECnet
Phase IV-compatible address to communicate with DNS Version 1 servers or any DECnet Phase IV
node.

F.5. Version 2 Clerks Connecting to Version 1
Servers Across a WAN
The Version 2 dnsconfigure utility lets a clerk contact a server across a wide area network (WAN)
link to obtain the information it needs to communicate with that server. For a Version 2 clerk to obtain
the required information from a Version 1 server, the account running dnsconfigure on the clerk
system must have read access to the SYS$LIBRARY:DNS$NS_DEF_FILE.DAT file on the server
system.

308

Appendix F. DECdns Version Interoperability

F.6. Version 1 Clerks Contacting a Version 2
Server's Namespace
DNS Version 1 clerks use a file called DNS$DEFAULT_FILE.DAT, which contains data necessary
for the clerk to contact at least one server in every namespace with which it needs to communicate.
To inform a Version 1 clerk of a namespace in which a DECdns Version 2 server exists, you must
sometimes manually create the information for this file and copy it to the clerk system. The manual
procedure is necessary in either of the following cases:

• The clerk is on a system running OpenVMS Version 5.4-1 or higher and the server you want it to
learn about exists across a WAN.

• The clerk is on a system running a version of OpenVMS lower than 5.4-1; in this case, you must
explicitly inform the clerk about the server even when the server exists on the clerk's own local area
network (LAN).

To obtain the data needed by the Version 1 clerk, follow this procedure:

1. On the DNS Version 1 clerk system, run the following command from the system prompt to stop the
clerk process:

$ @sys$manager:dns$clerk_stop.com

2. After you stop the clerk, enter the following command:

$ @sys$manager:dns$change_def_file.com

The following prompt appears:

Name of DNS server node?

3. At the prompt, enter either the Phase-IV node name or the decimal network address of the Version
2 server node you want to contact and press Return. After you enter this information, the command
procedure copies the contents of the DNS$NS_DEF_FILE.DAT on the Version 2 server in to the
SYS$SYSTEM:DNS$DEFAULT_FILE.DAT file on the Version 1 clerk node.

4. Restart the Version 1 clerk by entering the following command:

$ @sys$manager:dns$clerk_startup.com

309

Appendix F. DECdns Version Interoperability

310

Appendix G. Sample Command Files
This appendix includes samples of useful command files. A command file helps ensure that all necessary
information has been obtained and entered. If you make a mistake, you need only edit the file and run it
again to continue the process. You can save the command file for future use.

G.1. Deleting Server Files
The following two command file examples include commands that delete files left behind after deleting
a server, as explained in Section 6.7.2. You can use a command file similar to these to prepare for
reconfiguring a server with a new namespace. The command file in this example is designed for use
on a DECdns Version 2 server that is not replicated on any other DECdns Version 2 or DNS Version 1
servers.

Note

You can use this command file on a server that is a member of an existing namespace used by multiple
servers (either a Version 2.0 or a mixed version namespace). If this is the case, you need to take
additional steps on the remaining DECdns server nodes in the namespace to remove pointers to the
DECdns Version 2.0 server replica that is being deleted. Also, if the Version 2.0 DECdns server being
deleted is in a multi-server namespace, and it contains the only copy of a particular directory, that
directory must be copied and set up as a master replica for another server prior to using this procedure.
Otherwise, this directory will be lost. Use the DECdns Control Program create replica command
to create a copy of the directory (that is, create a replica), as explained in Section 7.2. Use the set
directory to new epoch command to set up the new replica as a master replica on another
server, as explained in Section 9.2.

G.1.1. Command File
Example G.1 is a command file for deleting files leftover from a deleted DECdns server.

Example G.1. Command File for Deleting Files Leftover from a Deleted OpenVMS
DECdns Server

$!
$! WARNING: This command file deletes DECdns files and automatically
$! reboots your system. If you are not sure about doing this, do not
$! use the file.
$!
$! This sample command procedure has been tested using DECnet/OSI for
$! OpenVMS VAX V6.2. However, VSI cannot guarantee its effectiveness
$! because of the possibility of error in transmitting or implementing it.

$! It is meant for use as a template for writing your own command
$! procedure and may require modification for use on your system.
$!
$! This command file is designed to eliminate an existing DECdns
$! Version 2.0 server installation on a DECnet Phase V installation.
$! Ignore any errors in command execution.
$!
$ set noverify
$ set noon
$ NCL :==$NCL

311

Appendix G. Sample Command Files

$!
$! stop dns server
$!
$ ncl disable dns server
$ ncl delete dns server
$!
$! Delete clearinghouse files
$!
$ del sys$specific:[dns$server]*.tlog*;*/nolog
$ del sys$specific:[dns$server]*.check*;*/nolog
$ del sys$specific:[dns$server]*.version;*/nolog
$ del sys$sysdevice:[dns$server]*.tlog*;*/nolog
$ del sys$sysdevice:[dns$server]*.check*;*/nolog
$ del sys$sysdevice:[dns$server]*.version;*/nolog
$!
$! Delete other server files
$!
$ del sys$manager:dns_files.txt;*/nolog
$ del sys$library:dns$ns_def_file.dat;*/nolog
$!
$! Stop dns clerk
$!
$ @sys$startup:dns$clerk_stop
$!
$! Delete other clerk cache files
$!
$ del sys$system:dns$cache.*;*/nolog
$!
$! Delete default namespace file for clerk
$!
$ del sys$system:dns$default_file.dat;* /nolog
$ del sys$startup:net$dns_clerk_startup.ncl;*/nolog
$!
$! Create a new net$dns_clerk_startup.ncl with no default namespace
$!
$ open/write test sys$sysroot:[sysmgr]net$dns_clerk_startup.ncl
$ write test "create dns clerk"
$ write test "enable dns clerk"
$ close test
$!
$! System must now be rebooted because clerk cache is mapped in memory
$!
$ @sys$system:shutdown 0 reboot no yes later yes none
$ exit

G.2. Replicating A Server's Directories Into a
New Clearinghouse
Example G.2 is a command file for use with OpenVMS systems that replicates for read-only all the
directories of an existing server (.dna_node.shanti) into the newly created clearinghouse
.dna_node.meta. The file was designed to execute on the system containing the newly created
clearinghouse. This command file does not use DECdns groups. If a significant number of principals
share equal access rights, you could use DECdns groups to facilitate adding or removing principals. For
more information on the use of groups, see Chapter 5.

The command file is divided into several sections:

312

Appendix G. Sample Command Files

Section 1 – Increase the DECdns Clerk Timeout Value for Replication of Large Directories

This timeout value specifies how long the clerk waits for a response to a request. If you are
replicating a large number of directories, or the replicas are distributed over a wide area, increase the
timeout value. For more information, see Section 6.5.

Section 2 – Expand ACEs on Directories

This step adds the proper access control entries on all the directories in the namespace.

Section 3 – Expand ACEs on Existing Clearinghouse

This step adds access control entries on the existing clearinghouse and the clearinghouse object.
Remember that this command file assumes the existing server and clearinghouse were the first in the
namespace and the server being configured is only the second one.

Section 4 – Expand ACEs on the New Clearinghouse

This step adds access control entries for the new (second) clearinghouse.

Section 5 – Create Additional Directory Replicas

This step includes commands that create replicas for the new clearinghouse. They are replicas of all
the directories in the original clearinghouse.

Section 6 – Rebuild all Directories with Master and Read-Only Clearinghouses

The commands in this section rebuild the directories listed in the preceding section so that
the existing (first) clearinghouse contains master replicas and the new (second) clearinghouse
contains read-only replicas. In effect, this command file builds a backup clearinghouse for the first
clearinghouse. You can customize this file to distribute read-only and master replicas in any way
suitable to you.

Section 7 – Set All Directories to Skulk

This step causes all directories to skulk immediately.

Example G.2. Sample OpenVMS Command File for Replicating Directories onto the New
Clearinghouse

$!
$! Introduction
$!
$! This template command file can be used to perform the majority of
$! dns$control commands necessary to replicate directories into a
$! second read-only DECdns Version 2.0 clearinghouse.You can name
$! the file create_replicas.com and modify it to conform to a
$! specific namespace design. This particular file must be executed from

$! the SYSTEM account on the first clearinghouse node. The example
 namespace
$! for this example file consists of the following:
$!
$! Namespace Nickname: watts_ns:
$! First Clearinghouse Node: watts_ns:.dna_node.shanti
$! First Clearinghouse Name: .shanti_ch
$! Second Clearinghouse Node: watts_ns:.dna_node.meta
$! Second Clearinghouse Name: .meta_ch
$! Directories in the Namespace: . (root)

313

Appendix G. Sample Command Files

$! .dna_node
$! .dna_nodesynonym
$! .DTSS_GlobalTimeServers
$! .dna_backtranslation
$! .dna_backtranslation.%X49
$! .dna_backtranslation.%X49.%X0028

$! .dna_backtranslation.%X49.%X0037

$!
$ set noon
$ set verify
$ ncl :== $ncl
$ dnscp :== dnscontrol
$! Section 1: Increase DECdns Clerk Timeout Value for Replication of Large
 Directories
$!
$ ncl
set dns clerk clerk timeout +0-00:10:00.000I0.000
exit
$!

$! Section 2: Expand ACEs on Directories
$!
$! This step adds proper ACEs on all the existing directories in
$! the namespace.
$!
$ dnscp
!
! Add ACEs to all directories for system account from node where
! the second clearinghouse clearinghouse exists
!
add dir . access .dna_node.meta.system for r,w,d,t,c
add dir . default access .dna_node.meta.system for r,w,d,t,c
add dir .* access .dna_node.meta.system for r,w,d,t,c
add dir .* default access .dna_node.meta.system for r,w,d,t,c
add dir .*... access .dna_node.meta.system for r,w,d,t,c
add dir .*... default access .dna_node.meta.system for r,w,d,t,c
!
! Add ACE's to all directories for dns$server account from node where

! the second clearinghouse exists
!
add dir . access .dna_node.meta.dns$server for r,w,d,t,c
add dir . default access .dna_node.meta.dns$server for r,w,d,t,c
add dir .* access .dna_node.meta.dns$server for r,w,d,t,c
add dir .* default access .dna_node.meta.dns$server for r,w,d,t,c
add dir .*... access .dna_node.meta.dns$server for r,w,d,t,c
add dir .*... default access .dna_node.meta.dns$server for r,w,d,t,c
!
! Add ACE's to all directories for the second clearinghouse named .meta_ch

!
add dir . access .meta_ch for r,w,d,t,c
add dir . default access .meta_ch for r,w,d,t,c
add dir .* access .meta_ch for r,w,d,t,c
add dir .* default access .meta_ch for r,w,d,t,c
add dir .*... access .meta_ch for r,w,d,t,c

314

Appendix G. Sample Command Files

add dir .*... default access .meta_ch for r,w,d,t,c
exit
$!

$! Section 3: Expand ACEs on Existing Clearinghouse
$!
$! A clearinghouse is a database containing a collection of directory

$! replicas at a particular server. Certain accounts must have access

$! to each clearinghouse for management and skulking operations to
 complete.
$! The following commands add ACEs on both the clearinghouse and the
$! clearinghouse object.
$!
$ dnscp
!
! Add ACEs for Existing Server Node Name and Accounts
!
add clear .shanti_ch access .dna_node.shanti.system for r,w,d,t,c

add clear .shanti_ch access .dna_node.shanti.dns$server for r,w,d,t,c

add clear .shanti_ch access .dna_node.shanti.DNA$SessCtrl for r,w,d,t,c

add obj .shanti_ch access .dna_node.shanti.system for r,w,d,t,c

add obj .shanti_ch access .dna_node.shanti.dns$server for r,w,d,t,c

add obj .shanti_ch access .dna_node.shanti.DNA$SessCtrl for r,w,d,t,c

!
! Add ACEs for New Server Node Name and Accounts
!
add clear .shanti_ch access .dna_node.meta.system for r,w,d,t,c

add clear .shanti_ch access .dna_node.meta.dns$server for r,w,d,t,c

add clear .shanti_ch access .dna_node.meta.DNA$SessCtrl for r,w,d,t,c

add obj .shanti_ch access .dna_node.meta.system for r,w,d,t,c

add obj .shanti_ch access .dna_node.meta.dns$server for r,w,d,t,c

add obj .shanti_ch access .dna_node.meta.DNA$SessCtrl for r,w,d,t,c

!
! Add ACEs for World Read and Test
!
add clear .shanti_ch access .*... for r,t
add obj .shanti_ch access .*... for r,t
exit
$!

$! Section 4: Expand ACEs on the New Clearinghouse
$!
$ dnscp
!

315

Appendix G. Sample Command Files

! Add ACEs for Existing (first) Server Node Name and Accounts
!
add clear .meta_ch access .dna_node.shanti.system for r,w,d,t,c

add clear .meta_ch access .dna_node.shanti.dns$server for r,w,d,t,c

add clear .meta_ch access .dna_node.shanti.DNA$SessCtrl for r,w,d,t,c

add obj .meta_ch access .dna_node.shanti.system for r,w,d,t,c

add obj .meta_ch access .dna_node.shanti.dns$server for r,w,d,t,c

add obj .meta_ch access .dna_node.shanti.DNA$SessCtrl for r,w,d,t,c

!
! Add ACEs for New (Second) Server Node Name and Accounts
!
add clear .meta_ch access .dna_node.meta.system for r,w,d,t,c
add clear .meta_ch access .dna_node.meta.dns$server for r,w,d,t,c
add clear .meta_ch access .dna_node.meta.DNA$SessCtrl for r,w,d,t,c
add obj .meta_ch access .dna_node.meta.system for r,w,d,t,c
add obj .meta_ch access .dna_node.meta.dns$server for r,w,d,t,c
add obj .meta_ch access .dna_node.meta.DNA$SessCtrl for r,w,d,t,c
!
! Add ACEs for World Read and Test
!
add clear .meta_ch access .*... for r,t
add obj .meta_ch access .*... for r,t
exit
$!

$! Section 5: Create Additional Directory Replicas
$!
$! The following commands create replicas of all the desired
$! directories for the second clearinghouse called .meta_ch. Use the
$! results of the tree-walk performed in Step 1 to determine which
$! directories need replication. The root [.] directory need not be
$! replicated because that operation was completed in a previous step

$! by the dns$configure.com utility.
$!
$! Note: DECnet PhaseIV areas 40 and 55 (hexadecimal %x0028 and %x0037)

$! are the only .dna_backtranslation.%x49.* directories shown.
$! If the namespace includes additional directories and you
$! want them replicated, include them.
$!
$ dnscp
create replica .dna_node clearinghouse .meta_ch
create replica .dna_nodesynonym clearinghouse .meta_ch
create replica .DTSS_GlobalTimeServers clearinghouse .meta_ch
create replica .dna_backtranslation clearinghouse .meta_ch
create replica .dna_backtranslation.%x49 clearinghouse .meta_ch
create replica .dna_backtranslation.%x49.%x0028 clearinghouse .meta_ch

create replica .dna_backtranslation.%x49.%x0037 clearinghouse .meta_ch

exit

316

Appendix G. Sample Command Files

$!

$! Section 6: Rebuild all Directories with Master and Read-Only
$! Clearinghouses.
$!
$! The following commands rebuild the same directories listed above
$! to include both clearinghouses. The root [.] directory is included.

$!
$dnscp set dir . to new epoch -
master .shanti_ch, read-only .meta_ch
$!
$dnscp set dir .dna_node to new epoch -
master .shanti_ch, read-only .meta_ch
$!
$dnscp set dir .dna_nodesynonym to new epoch -
master .shanti_ch, read-only .meta_ch
$!
$dnscp set dir .DTSS_GlobalTimeServers to new epoch -
master .shanti_ch, read-only .meta_ch
$!
$dnscp set dir .dna_backtranslation to new epoch -
master .shanti_ch, read-only .meta_ch
$!
$dnscp set dir .dna_backtranslation.%X49 to new epoch -
master .shanti_ch, read-only .meta_ch
$!
$dnscp set dir .dna_backtranslation.%X49.%X0028 to new epoch -
master .shanti_ch, read-only .meta_ch
$!
$dnscp set dir .dna_backtranslation.%X49.%X0037 to new epoch -
master .shanti_ch, read-only .meta_ch
$!

$! Section 7: Set All Directories to Skulk
$!
$! The following commands set all directories to skulk immediately.
$! Skulking is the process where read-only directories are updated from

$! the master copy. DECdns performs skulking at regular intervals
$! after this procedure is complete.
$!
$ dnscp
set dir . to skulk
set dir .dna_node to skulk
set dir .dna_nodesynonym to skulk
set dir .DTSS_GlobalTimeServers to skulk
set dir .dna_backtranslation to skulk
set dir .dna_backtranslation.%X49 to skulk
set dir .dna_backtranslation.%X49.%X0028 to skulk
set dir .dna_backtranslation.%X49.%X0037 to skulk
exit
$! Replication of All Directories into the Second Clearinghouse
$! is now Complete.
$ set noverify
$ exit

317

Appendix G. Sample Command Files

318

Appendix H. The DECdns Browser
Utility
DECdns provides the DECdns Browser utility (for DECwindows and Motif users only) to display
namespace information. This utility is not supported by VSI.

The DECdns Browser is a tool for viewing the namespace. To use it, you need DECwindows or Motif
software. The DECdns Browser can display an overall directory structure as well as the contents of
directories, enabling you to monitor growth and change in the namespace. You can customize the
DECdns Browser utility to display only certain kinds of object entries, such as those representing nodes,
Remote System Manager (RSM) servers, or DECdfs access points. You also can quickly change the
browser display from one directory to another, and even to a directory in another namespace.

This appendix gives an overview of the DECdns Browser utility. It assumes you are familiar with basic
DECwindows terms and concepts. For a detailed tutorial, see the DECwindows User's Guide. Detailed
online help is available from the browser window's Help pull-down menu.

H.1. Starting the Browser
To start the DECdns Browser, enter the following DCL command:

$ run sys$system:dnsbrowser

To end a browser session, choose Quit from the File menu.

H.2. Expanding and Collapsing Directories
When you start the DECdns Browser, the only item in the display is the root directory of the system's
default namespace. Double click on the root directory to expand (open) it. To collapse (close) an
expanded directory, double click on it.

When you expand a directory, you see the soft links and object entries to which you have read access.
You also see all child directories, but you can expand only those child directories to which you have read
access.

Directories, object entries, and soft links all have icons associated with them in the browser. Most object
entries have unique icons based on their class; the class indicates the type of resource that the entry
represents (nodes, DFS access points, and so on). When the browser does not recognize the class of an
entry, it displays a generic icon. Figure H.1 shows the browser icons and what they represent.

319

Appendix H. The DECdns Browser Utility

Figure H.1. DECdns Browser Icons and Their Meaning

By double clicking on single directories, you can continue expanding a particular directory path one level
at a time. Other methods are available to expand all directories at once or to expand selected groups of
directories.

Expanding or collapsing a group of directories involves selecting them and double clicking. Note that
because double clicking has a toggle effect, you can expand or collapse groups of directories only one
level at a time. If you double click multiple directory levels at a time, the result may be the opposite of
what you expect.

To expand or collapse selected directories, click on the first directory you want to select, then continue
selecting directories by shift clicking on them. When selecting the last directory, give it a double click
instead of a single click, while still pressing the Shift key (this selects the last directory and expands or
collapses all of the directories you have selected).

To expand all directories on all levels at once, choose the Expand All option from the File menu.
Likewise, choose Collapse All from the File menu to close an expanded namespace.

Note

Use the Expand All option carefully if you have a large namespace. The larger a namespace, the longer it
takes to display its entire contents.

H.3. Namespace Display Formats
The browser has two formats for displaying the namespace: outline format and tree format. The default
is outline format, as shown in Figure H.2.

320

Appendix H. The DECdns Browser Utility

Figure H.2. Namespace in Outline Format

Figure H.3 shows the same namespace in tree format. To toggle between the two formats, choose
Display Tree or Display Outline from the View menu.

321

Appendix H. The DECdns Browser Utility

Figure H.3. Namespace in Tree Format

H.4. Using a Virtual Root
To customize your view of the namespace, you can specify a virtual root—a directory other than the
root at which you want the browser to start displaying the namespace.

The virtual root is a convenient way to focus immediately on a particular directory of interest instead of
expanding directories level by level. It also enables you to quickly change the browser display from one
directory to another, and even to a directory in another namespace.

322

Appendix H. The DECdns Browser Utility

Another use of the virtual root is in a secure namespace that does not allow read access to all directories
for all users. For example, the browser normally displays the root directory (.) when it starts. However,
if you do not have read access to the root directory, you cannot expand it. To display and expand a
directory to which you do have access, you can specify its name as the virtual root.

To set a virtual root, choose Virtual Root from the Customize menu. A Virtual Root selection box
appears. At the Selection prompt, enter the full name of the directory (including the namespace
nickname, if necessary) that you want to specify as the virtual root.

Once you have entered one or more virtual root names, subsequent displays of the Virtual Root selection
box show an alphabetized list of the most recently specified names. The list always includes the root
directory (.) of the default namespace. Double click on a directory name in the list to cause it to become
the new virtual root.

You can save the list of virtual roots from one browser session to another by choosing Save Virtual Root
Settings from the Customize menu.

H.5. Filtering the Namespace Display
You can use the Filters menu to selectively display only objects of a specific class. For example, if you
are interested in seeing only node object entries, choose the class DNA$Node from the Filters menu.

Setting a filter does not affect the current display, but when you next expand a directory, you see only
object entries whose class matches the filter. Note that soft links and child directories still appear; they
are not object entries and the browser filters only object entries.

You can filter only one object class at a time. To change the filter, choose a new class from the Filter
menu. To reset the filter so you can view all entries, choose the asterisk (*) from the Filters menu.

H.6. Navigating the Namespace
Once you begin expanding the namespace, it may exceed the boundaries of the browser window, even if
you enlarge the window. You can use the horizontal and vertical scroll bars and stepping arrows to scroll
through the namespace.

H.6.1. Outline Navigation Aids
If the namespace display is in outline format, dragging the slider up and down the vertical scroll bar
produces an index window, as shown in Figure H.4. The index window shows the name where the
slider is currently positioned in the namespace. When the index window contains the name you want to
view, release MB1 (mouse button 1) to position that name at the top of the browser window.

323

Appendix H. The DECdns Browser Utility

Figure H.4. Namespace with Index Window

In namespaces that are larger than the length of the browser window, scrolling through directory levels
may produce a reference line toward the top of the window. The line orients you by showing the full
directory path from the current name to the root or virtual root. It also indicates that you have scrolled
past other parts of the namespace that are no longer displayed. Figure H.5 illustrates how a reference
line is produced. On the left is a display before it has been scrolled. On the right is the same display after
the user has scrolled to the middle of the .eng directory. The root and .eng directories above the
reference line indicate the hierarchy of which the .eng.RSM_Server entry is a part.

324

Appendix H. The DECdns Browser Utility

Figure H.5. Display with Reference Line

H.6.2. Tree Navigation Aids
If the namespace display is in tree format, dragging the slider on a scroll bar produces a navigation
window. Figure H.6 shows the navigation window within the browser window.

The navigation window contains a reduced image of the currently expanded part of the namespace. The
box within the navigation window indicates the portion of the namespace where the slider is positioned;
releasing MB1 displays that portion of the namespace in the browser window and closes the navigation
window.

325

Appendix H. The DECdns Browser Utility

Figure H.6. Display with Navigation Window

To make the navigation window a separate, permanent window, click on the button at the bottom right
corner of the browser window. Click on the same button to close the navigation window.

To move around in the namespace display, point anywhere in the navigation window and drag the mouse
up, down, left, or right to move the box that is inside the navigation window. When you release MB1, the
portion of the namespace that is inside the box appears in the browser window.

326

	VSI DECnet-Plus DECdns Management Guide
	Table of Contents
	Preface
	1. About VSI
	2. Intended Audience
	3. Document Structure
	4. Related Documents
	5. VSI Encourages Your Comments
	6. OpenVMS Documentation
	7. Typographical Conventions

	Chapter 1. Introduction to DECdns
	1.1. How DECdns Works
	1.2. Examples of Client Applications that Use DECdns
	1.3. How People Use DECdns
	1.4. What's in a Namespace?
	1.4.1. Replicas and Their Contents
	1.4.1.1. Object Entries
	1.4.1.2. Soft Links
	1.4.1.3. Child Pointers

	1.4.2. Putting It All Together

	1.5. How DECdns Protects Names
	1.6. Available Management Tools
	1.6.1. DECdns Control Program

	1.7. Management Tasks

	Chapter 2. How DECdns Looks Up Names
	2.1. Structure of a Name
	2.2. Translating from Names to Resources
	2.3. Resolving Names and Addresses with the Naming Cache
	2.4. How DECdns Finds Names
	2.5. Short Forms of DECdns Names
	2.5.1. How Node Synonyms Work
	2.5.2. Name Abbreviation Methods
	2.5.3. Local Root
	2.5.4. How Local Name Substitution Works

	Chapter 3. How DECdns Updates Data
	3.1. Update Propagation
	3.2. Skulk Operation
	3.3. How Timestamps Help Keep Data Consistent

	Chapter 4. Using the DECdns Control Program
	4.1. Elements of a DECdns Command
	4.2. DECdns Entities
	4.3. Attribute Groups
	4.4. Prepositional Phrases
	4.5. NCL Access Control Information
	4.6. Supplementary Commands
	4.7. Wildcards
	4.8. Editing the Commands

	Chapter 5. Managing DECdns Access Control
	5.1. How DECdns Access Control Works
	5.1.1. Specifying a DECdns Version 2 Principal
	5.1.2. Specifying a DNS Version 1 Principal
	5.1.3. Specifying Group Principals
	5.1.4. DECdns Access Rights and Their Meanings
	5.1.5. How DECdns Checks Access

	5.2. Adding, Modifying, and Denying Access
	5.2.1. Adding Access
	5.2.2. Modifying Existing Access
	5.2.3. Making Access Assignment Easier
	5.2.3.1. Using Automatic Rights Propagation
	5.2.3.2. Suppressing Automatic ACE Propagation
	5.2.3.3. Creating Default ACEs

	5.2.4. Using Null ACEs to Deny Access

	5.3. Setting Up Access Control in a New Namespace
	5.3.1. Adding Members to Your Namespace Administrator Group
	5.3.2. Adding Access for Your Namespace Administrator Group
	5.3.3. Implementing a General Access Control Policy
	5.3.3.1. Full Access Policy
	5.3.3.2. Read, Write, and Test Policy
	5.3.3.3. Read and Test Policy
	5.3.3.4. Explicit Access Policy

	5.4. Displaying Access Rights
	5.5. Removing Access
	5.6. Managing Groups
	5.6.1. Creating a Group
	5.6.2. Adding Group Members
	5.6.3. Modifying Group Membership
	5.6.4. Removing Group Members
	5.6.5. Removing Group Members from Multiple Groups
	5.6.6. Deleting a Group

	5.7. Modifying Principals and Removing Access for a Subtree
	5.7.1. Modifying Principals
	5.7.2. Removing Access from Multiple Names

	Chapter 6. Managing Clerks, Servers, and Clearinghouses
	6.1. Monitoring Status
	6.2. Monitoring Counters
	6.3. Monitoring Clerk Communication with Specific Clearinghouses
	6.4. Monitoring the Contents of a Clearinghouse
	6.5. Modifying a Clerk's Timeout Interval
	6.6. Modifying a Clerk To Use the Cluster Alias on Server Requests
	6.7. Deleting and Restarting Clerks and Servers
	6.7.1. Deleting a Clerk
	6.7.2. Deleting a Server
	6.7.3. Restarting a Deleted Clerk

	6.8. Controlling the LAN Devices Used By DECdns
	6.9. Preserving a Clearinghouse Across a Server System Upgrade
	6.10. Backing Up Namespace Information
	6.10.1. Using Replication to Back Up Namespace Information
	6.10.2. Using the Dump/Merge Facilities to Back Up Directories and Their Contents
	6.10.3. Using Operating System Backups

	Chapter 7. Managing Directories
	7.1. Creating a Directory
	7.2. Creating a Replica
	7.3. Deleting a Replica
	7.4. Skulking a Directory
	7.5. Adjusting a Directory's Convergence

	Chapter 8. Viewing the Structure and Contents of a Namespace
	8.1. Using Prepositional Phrases in show and directory Commands
	8.2. Using the show Command
	8.3. Using the directory Command

	Chapter 9. Restructuring a Namespace
	9.1. Managing Soft Links
	9.1.1. Creating a Soft Link
	9.1.2. Changing a Soft Link's Destination Name
	9.1.3. Changing a Soft Link's Expiration or Extension Time

	9.2. Modifying a Directory's Replica Set
	9.2.1. Changing the Replica Type of a Replica
	9.2.2. Excluding a Replica from a Replica Set

	9.3. Deleting Directories
	9.3.1. Deleting a Bottom-Level Directory
	9.3.2. Deleting a Subtree of Directories

	9.4. Merging Directories
	9.4.1. Overview of the Merge Procedure
	9.4.2. Basic Merge and Append Operations
	9.4.2.1. Performing a Basic Merge Operation
	9.4.2.2. Performing a Basic Append Operation

	9.4.3. Merging Directories with a Single Command
	9.4.4. Handling Clearinghouse Object Entries
	9.4.5. Using the Failures File
	9.4.5.1. Handling Duplicate Names
	9.4.5.2. Handling Unreachable Name Failures

	9.4.6. Adjusting Access After a Merge
	9.4.7. Handling Changed Node Object Entries
	9.4.8. Merging Two Namespaces

	9.5. Relocating a Clearinghouse
	9.5.1. Dissociating a Clearinghouse from Its Host Server System
	9.5.2. Copying the Clearinghouse Database Files to the Target Server System
	9.5.3. Re-creating and Enabling the Clearinghouse on the Target Server

	9.6. Deleting a Clearinghouse

	Chapter 10. Using the DECdns Configuration Program
	10.1. Running the DECdns Configuration Program
	10.2. Changing a Clerk's Default Namespace
	10.3. Establishing Communications with an Off-LAN Server
	10.4. Configuring a DECdns Server in an Existing Namespace
	10.4.1. Before You Configure a Server
	10.4.1.1. Verifying DECdns Server Software and License Requirements
	10.4.1.2. Granting the Access Required for Clearinghouse Creation

	10.4.2. Configuring the Server
	10.4.3. Creating an Additional Clearinghouse on an Existing Server
	10.4.4. Converting an Existing DNS Version 1 Clearinghouse to DECdns Version 2 Format
	10.4.5. Clearinghouse Conversion Warnings and Informational Messages
	10.4.6. Reconfiguring a DECdns Server

	10.5. Displaying Address Information for Your Local Node
	10.6. Creating and Initializing a New Namespace

	Chapter 11. DECdns Control Program Command Dictionary
	add clearinghouse access
	add directory access
	add group access
	add group member
	add link access
	add object
	add object access
	change subtree access
	change subtree group member
	clear dns server clearinghouse
	create child
	create directory
	create dns clerk
	create dns clerk known namespace
	create dns clerk manual nameserver
	create dns server
	create dns server clearinghouse
	create group
	create link
	create object
	create replica
	delete child
	delete directory
	delete dns clerk
	delete dns clerk known namespace
	delete dns clerk manual nameserver
	delete dns server
	delete dns server clearinghouse
	delete group
	delete link
	delete object
	delete replica
	delete subtree
	directory child
	directory clearinghouse
	directory directory
	directory group
	directory link
	directory object
	disable dns clerk
	disable dns server
	disable dns server clearinghouse
	dump dns clerk cache
	dump subtree
	enable dns clerk
	enable dns server
	enable dns server clearinghouse
	initialize dns server
	merge file
	merge subtree
	recreate directory
	recreate link
	recreate object
	remove clearinghouse access
	remove directory access
	remove group access
	remove group member
	remove link access
	remove object
	remove object access
	remove subtree access
	remove subtree group member
	replace link
	replace object
	replace subtree
	set directory
	set directory to new epoch
	set directory to skulk
	set dns clerk
	set dns clerk known namespace
	set group
	set link
	set object
	show child
	show clearinghouse
	show clearinghouse access
	show directory
	show directory access
	show dns clerk
	show dns clerk known namespace
	show dns clerk manual nameserver
	show dns clerk remote clearinghouse
	show dns server
	show dns server clearinghouse
	show group
	show group access
	show link
	show link access
	show object
	show object access
	show replica

	Chapter 12. DECdns Problem Solving
	12.1. Isolating the Source of a Problem: General Suggestions
	12.1.1. Obtain Basic DECnet Information
	12.1.2. Obtain Basic Clerk and Server Information
	12.1.2.1. Checking the DECdns Clerk
	12.1.2.2. Checking the DECdns Server
	12.1.2.3. Checking the Clerk and Server Software Versions

	12.1.3. Investigating the DECdns Clerk
	12.1.3.1. DECdns Clerk Cache Information
	12.1.3.2. DECdns Clerk Known Namespaces

	12.1.4. Investigating the DECdns Server
	12.1.4.1. Remote Checks on the Server
	12.1.4.2. Local Checks on the Server
	12.1.4.3. Determining a Node Name from a Clearinghouse NSAP Address

	12.2. Handling Communication Errors
	12.2.1. Identifying Clearinghouses to Which Communication Failed
	12.2.2. Determining Whether Communication Errors Are Caused by DECdns or DECnet

	12.3. Handling Skulk Failures
	12.3.1. General Considerations
	12.3.2. Skulk Problems in Mixed Server Environments

	12.4. Clerk Tuning
	12.4.1. Defining Quotas for the DNS$ADVER Process
	12.4.2. Clerk Cache Size and the GBLPAGFIL System Parameter

	12.5. Solving Server Startup Problems
	12.5.1. Server Startup Delay in a TCP/IP Environment

	12.6. Server Tuning
	12.6.1. Tuning for Increased Clerk Use
	12.6.2. Tuning for Increased Database Size
	12.6.3. The Server Configuration File - DNS.CONF

	12.7. Solving Common Access Control Problems
	12.7.1. Access Problems Viewing Namespace Information
	12.7.2. Access Problems Creating a Clearinghouse
	12.7.3. Access Problems Creating a Directory
	12.7.4. Access Problems Deleting a Directory
	12.7.5. Access Problems Creating a Replica
	12.7.6. Access Problems Deleting a Replica
	12.7.7. Access Problems Modifying a Directory's Replica Set
	12.7.8. Restoring Access to a Name

	12.8. Handling Clearinghouse Creation Failures
	12.8.1. Granting Required Access
	12.8.2. Allowing a Directory to Store Clearinghouse Object Entries
	12.8.3. Verifying Server Node Registration and Address Information
	12.8.4. Verifying Availability and Connectivity to Clearinghouses

	12.9. Restoring a Corrupted Clearinghouse
	12.10. Restoring a Deleted Child Pointer
	12.11. Restoring a Missing Clearinghouse Object Entry
	12.12. Handling Node Verification Failures
	12.13. Breaking Soft Link Loops and Group Loops
	12.14. Eliminating Ambiguous Namespace Nicknames
	12.14.1. Locating the Source of an Ambiguous Nickname
	12.14.2. Eliminating an Ambiguous Nickname

	12.15. Fixing Clock Synchronization Errors
	12.16. Handling Clerk and Server Software Errors
	12.17. Using Tracing Facilities
	12.17.1. Tracing the Advertiser
	12.17.2. Tracing the Clerk
	12.17.3. Tracing the Server
	12.17.4. Tracing DECnet

	Appendix A. DECdns Naming Guidelines
	A.1. Valid Characters and Syntax Rules
	A.2. General Naming Guidelines
	A.3. Guidelines for Naming Clearinghouses
	A.4. Guidelines for Naming Namespaces

	Appendix B. Special Clearinghouse Rules
	Appendix C. DECdns Error Messages
	Appendix D. DECdns Events
	Appendix E. Location of DECdns Files
	Appendix F. DECdns Version Interoperability
	F.1. Version 2 Directories Cannot Be Replicated in Version 1 Clearinghouses
	F.2. Double ACEs on Directories Replicated at Mixed-Version Servers
	F.3. Command Interfaces Differ
	F.4. Clerks on Nodes with Extended Addresses
	F.5. Version 2 Clerks Connecting to Version 1 Servers Across a WAN
	F.6. Version 1 Clerks Contacting a Version 2 Server's Namespace

	Appendix G. Sample Command Files
	G.1. Deleting Server Files
	G.1.1. Command File

	G.2. Replicating A Server's Directories Into a New Clearinghouse

	Appendix H. The DECdns Browser Utility
	H.1. Starting the Browser
	H.2. Expanding and Collapsing Directories
	H.3. Namespace Display Formats
	H.4. Using a Virtual Root
	H.5. Filtering the Namespace Display
	H.6. Navigating the Namespace
	H.6.1. Outline Navigation Aids
	H.6.2. Tree Navigation Aids

