
VSI OpenVMS

VSI OpenVMS RTL General Purpose
(OTS$) Manual

Document Number: DO–RTLOTS–01A

Publication Date: April 2024

Operating System and Version: VSI OpenVMS IA-64 Version 8.4-1H1 or higher
VSI OpenVMS Alpha Version 8.4-2L1 or higher

VMS Software, Inc. (VSI)
Boston, Massachusetts, USA

VSI OpenVMS RTL General Purpose (OTS$) Manual

Copyright © 2021 VMS Software, Inc. (VSI), Boston, Massachusetts, USA

Legal Notice

Confidential computer software. Valid license from VSI required for possession, use or copying. Consistent with FAR 12.211 and 12.212,
Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

The information contained herein is subject to change without notice. The only warranties for VSI products and services are set forth in the
express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional
warranty. VSI shall not be liable for technical or editorial errors or omissions contained herein.

HPE, HPE Integrity, HPE Alpha, and HPE Proliant are trademarks or registered trademarks of Hewlett Packard Enterprise.

ii

VSI OpenVMS RTL General Purpose (OTS$) Manual

Preface ... v
1. About VSI .. v
2. Intended Audience ... v
3. Document Structure ... v
4. Related Documents .. v
5. VSI Encourages Your Comments ... vi
6. OpenVMS Documentation .. vi
7. Typographical Conventions .. vi

Chapter 1. Run-Time Library General Purpose (OTS$) Facility 1
1.1. 1.1 Overview .. 1
1.2. Linking OTS$ Routines on Alpha and I64 Systems .. 3

1.2.1. 64-Bit Addressing Support (Alpha and I64 Only) .. 4
Chapter 2. General-Purpose (OTS$) Routines ... 7

OTS$CALL_PROC (Alpha and I64 Only) .. 7
OTS$CNVOUT ... 8
OTS$CVT_L_TB .. 9
OTS$CVT_L_TI ... 11
OTS$CVT_L_TL .. 13
OTS$CVT_L_TO .. 14
OTS$CVT_L_TU .. 16
OTS$CVT_L_TZ .. 18
OTS$CVT_T_x ... 20
OTS$CVT_TB_L .. 24
OTS$CVT_TI_L ... 27
OTS$CVT_TL_L .. 29
OTS$CVT_TO_L .. 31
OTS$CVT_TU_L .. 33
OTS$CVT_TZ_L .. 35
OTS$DIVCx ... 38
OTS$DIV_PK_LONG ... 41
OTS$DIV_PK_SHORT .. 45
OTS$JUMP_TO_BPV (I64 Only) .. 47
OTS$MOVE3 .. 49
OTS$MOVE5 .. 50
OTS$MULCx .. 52
OTS$POWCxCx .. 54
OTS$POWCxJ .. 57
OTS$POWDD ... 59
OTS$POWDJ .. 61
OTS$POWDR ... 62
OTS$POWGG ... 64
OTS$POWGJ .. 66
OTS$POWHH_R3 (VAX Only) ... 67
OTS$POWHJ_R3 (VAX Only) .. 69
OTS$POWII .. 71
OTS$POWJJ ... 72
OTS$POWLULU ... 73
OTS$POWRD ... 74
OTS$POWRJ .. 76
OTS$POWRR ... 78
OTS$POWSJ ... 80

iii

VSI OpenVMS RTL General Purpose (OTS$) Manual

OTS$POWSS .. 82
OTS$POWTJ .. 84
OTS$POWTT ... 86
OTS$POWxLU ... 88
OTS$SCOPY_DXDX .. 90
OTS$SCOPY_R_DX ... 91
OTS$SFREE1_DD .. 94
OTS$SFREEN_DD .. 95
OTS$SGET1_DD .. 96

iv

Preface
1. About VSI
VMS Software, Inc. (VSI) is an independent software company licensed by Hewlett Packard Enterprise
to develop and support the OpenVMS operating system.

2. Intended Audience
This manual is intended for system and application programmers who write programs that call OTS$
Run-Time Library routines.

3. Document Structure
This manual is organized into two parts as follows:

• Chapter 1 contains a brief overview of the OTS$ routines.

• Chapter 2 provides detailed reference information on each routine contained in the OTS$ facility of
the Run-Time Library. This information is presented using the documentation format described in
VSI OpenVMS Programming Concepts Manual. Routine descriptions appear in alphabetical order by
routine name.

4. Related Documents
The Run-Time Library routines are documented in a series of reference manuals. A description of
how the Run-Time Library routines are accessed and of OpenVMS features and functionality available
through calls to the OTS$ Run-Time Library appears in the VSI OpenVMS Programming Concepts
Manual. Descriptions of other RTL facilities and their corresponding routines and usages are discussed
in the following books:

• Compaq Portable Mathematics Library

• VSI OpenVMS RTL Library (LIB$) Manual

• VSI OpenVMS RTL Screen Management (SMG$) Manual

• VSI OpenVMS RTL String Manipulation (STR$) Manual

The Guide to POSIX Threads Library contains guidelines and reference information for POSIX Threads,
the Multithreading Run-Time Library.

Application programmers using any programming language can refer to the Guide to Creating OpenVMS
Modular Procedures for writing modular and reentrant code.

High-level language programmers will find additional information on calling Run-Time Library routines
in their language reference manual. Additional information may also be found in the language user's
guide provided with your OpenVMS language software.

For additional information about OpenVMS products and services, access the VSI website at the
following location:

v

Preface

5. VSI Encourages Your Comments
You may send comments or suggestions regarding this manual or any VSI document by sending
electronic mail to the following Internet address: <docinfo@vmssoftware.com>. Users who have
VSI OpenVMS support contracts through VSI can contact <support@vmssoftware.com> for
help with this product.

6. OpenVMS Documentation
The full VSI OpenVMS documentation set can be found on the VMS Software Documentation webpage
at https://docs.vmssoftware.com.

7. Typographical Conventions
The following conventions are used in this manual:

Convention Meaning

Ctrl/x A sequence such as Ctrl/x indicates that you must hold down the key labeled
Ctrl while you press another key or a pointing device button.

PF1 x A sequence such as PF1 x indicates that you must first press and release the
key labeled PF1 and then press and release another key (x) or a pointing
device button.

... A horizontal ellipsis in examples indicates one of the following possibilities:

• Additional optional arguments in a statement have been omitted.

• The preceding item or items can be repeated one or more times.

• Additional parameters, values, or other information can be entered.
.
.
.

A vertical ellipsis indicates the omission of items from a code example or
command format; the items are omitted because they are not important to the
topic being discussed.

() In command format descriptions, parentheses indicate that you must enclose
choices in parentheses if you specify more than one.

[] In command format descriptions, brackets indicate optional choices. You
can choose one or more items or no items. Do not type the brackets on the
command line. However, you must include the brackets in the syntax for
directory specifications and for a substring specification in an assignment
statement.

| In command format descriptions, vertical bars separate choices within
brackets or braces. Within brackets, the choices are optional; within braces,
at least one choice is required. Do not type the vertical bars on the command
line.

{ } In command format descriptions, braces indicate required choices; you
must choose at least one of the items listed. Do not type the braces on the
command line.

bold type Bold type represents the name of an argument, an attribute, or a reason. Bold
type also represents the introduction of a new term.

vi

https://docs.vmssoftware.com

Preface

Convention Meaning

italic type Italic type indicates important information, complete titles of manuals, or
variables. Variables include information that varies in system output (Internal
error number), in command lines (/PRODUCER=name), and in command
parameters in text (where dd represents the predefined code for the device
type).

UPPERCASE TYPE Uppercase type indicates a command, the name of a routine, the name of a
file, or the abbreviation for a system privilege.

Example This typeface indicates code examples, command examples, and interactive
screen displays. In text, this type also identifies website addresses, UNIX
commands and pathnames, PC-based commands and folders, and certain
elements of the C programming language.

- A hyphen at the end of a command format description, command line, or
code line indicates that the command or statement continues on the following
line.

numbers All numbers in text are assumed to be decimal unless otherwise noted.
Nondecimal radixes—binary, octal, or hexadecimal—are explicitly indicated.

vii

Preface

viii

Chapter 1. Run-Time Library General
Purpose (OTS$) Facility
This chapter describes the OpenVMS Run-Time Library General Purpose (OTS$) Facility. See the
Chapter 2 for a detailed description of each routine within the OTS$ facility.

Most of the OTS$ routines were originally designed to support language compilers. Because they
perform general-purpose functions, the routines were moved into the language-independent facility,
OTS$.

1.1. 1.1 Overview
The Run-Time Library General Purpose (OTS$) Facility provides routines to perform general-purpose
functions. These functions include data type conversions as part of a compiler's generated code, and
some mathematical functions.

The OTS$ facility contains routines to perform the following main tasks:

• Convert data types (see Table 1.1)

• Divide complex and packed decimal values (see Table 1.2)

• Move data to a specified destination address (see Table 1.3)

• Multiply complex values (see Table 1.4)

• Raise a base to an exponent (see Table 1.5)

• Copy a source string to a destination string (see Table 1.6)

• Return a string area to free storage (see Table 1.7)

• Use convenience routines related to the OpenVMS Calling Standard (see Table 1.8)

Some restrictions apply if you link certain OTS$ routines on an Alpha system or I64 system. See
Section 1.2 for more information about these restrictions.

Table 1.1. OTS$ Conversion Routines

Routine Name Function

OTS$CNVOUT Convert a D-floating, G-floating, H-floating, IEEE S-floating or IEEE
T-floating value to a character string.

OTS$CVT_L_TB Convert an unsigned integer to binary text.
OTS$CVT_L_TI Convert a signed integer to signed integer text.
OTS$CVT_L_TL Convert an integer to logical text.
OTS$CVT_L_TO Convert an unsigned integer to octal text.
OTS$CVT_L_TU Convert an unsigned integer to decimal text.
OTS$CVT_L_TZ Convert an integer to hexadecimal text.
OTS$CVT_TB_L Convert binary text to an unsigned integer value.
OTS$CVT_TI_L Convert signed integer text to an integer value.

1

Chapter 1. Run-Time Library General Purpose (OTS$) Facility

Routine Name Function

OTS$CVT_TL_L Convert logical text to an integer value.
OTS$CVT_TO_L Convert octal text to an unsigned integer value.
OTS$CVT_TU_L Convert unsigned decimal text to an integer value.
OTS$CVT_T_x Convert numeric text to a D-, F-, G-, H-, IEEE S-, or IEEE T-floating

value.
OTS$CVT_TZ_L Convert hexadecimal text to an unsigned integer value.

For more information on Run-Time Library conversion routines, see the CVT$ reference section in the
VSI OpenVMS RTL Library (LIB$) Manual.

Table 1.2. OTS$ Division Routines

Routine Name Function

OTS$DIVCx Perform complex division.
OTS$DIV_PK_LONG Perform packed decimal division with a long divisor.
OTS$DIV_PK_SHORT Perform packed decimal division with a short divisor.

Table 1.3. OTS$ Move Data Routines

Routine Name Function

OTS$MOVE3 Move data without fill.
OTS$MOVE5 Move data with fill.

Table 1.4. OTS$ Multiplication Routine

Routine Name Function

OTS$MULCx Perform complex multiplication.

Table 1.5. OTS$ Exponentiation Routines

Routine Name Function

OTS$POWCxCx Raise a complex base to a complex floating-point exponent.
OTS$POWCxJ Raise a complex base to a signed longword exponent.
OTS$POWDD Raise a D-floating base to a D-floating exponent.
OTS$POWDR Raise a D-floating base to an F-floating exponent.
OTS$POWDJ Raise a D-floating base to a longword integer exponent.
OTS$POWGG Raise a G-floating base to a G-floating or longword integer exponent.
OTS$POWGJ Raise a G-floating base to a longword integer exponent.
OTS$POWHH_R31 Raise an H-floating base to an H-floating exponent.
OTS$POWHJ_R31 Raise an H-floating base to a longword integer exponent.
OTS$POWII Raise a word integer base to a word integer exponent.
OTS$POWJJ Raise a longword integer base to a longword integer exponent.
OTS$POWLULU Raise an unsigned longword integer base to an unsigned longword

integer exponent.
OTS$POWxLU Raise a floating-point base to an unsigned longword integer exponent.

2

Chapter 1. Run-Time Library General Purpose (OTS$) Facility

Routine Name Function

OTS$POWRD Raise an F-floating base to a D-floating exponent.
OTS$POWRJ Raise an F-floating base to a longword integer exponent.
OTS$POWRR Raise an F-floating base to an F-floating exponent.
OTS$POWSJ Raise an IEEE S-floating base to a longword integer exponent.
OTS$POWSS Raise an IEEE S-floating base to an S-floating or longword integer

exponent.
OTS$POWTJ Raise an IEEE T-floating base to a longword integer exponent.
OTS$POWTT Raise an IEEE T-floating base to a T-floating or longword integer

exponent.
1VAX specific

Table 1.6. OTS$ Copy Source String Routines

Routine Name Function

OTS$SCOPY_DXDX Copy a source string passed by descriptor to a destination string.
OTS$SCOPY_R_DX Copy a source string passed by reference to a destination string.

Table 1.7. OTS$ Return String Area Routines

Routine Name Function

OTS$SFREE1_DD Free one dynamic string.
OTS$SFREEN_DD Free n dynamic strings.
OTS$SGET1_DD Get one dynamic string.

Table 1.8. OTS$ Convenience Routines

Routine Name Function

OTS$CALL_PROC Perform a call to a procedure that may be either in native code or in a
translated image.

OTS$JUMP_TO_BPV Transfer control to a bound procedure.

1.2. Linking OTS$ Routines on Alpha and I64
Systems
On Alpha and I64 systems, if you use the OTS$ entry points for certain mathematics routines, you must
link against the DPML$SHR.EXE library. Alternately, you can use the equivalent math$ entry point for
the routine and link against either STARLET.OLB or the DPML$SHR.EXE library. Math$ entry points
are available only on Alpha and I64 systems.

Table 1.9 lists the affected OTS$ entry points with their equivalent math$ entry points. Refer to the
Compaq Portable Mathematics Library for information about the math$ entry points.

Table 1.9. OTS$ and Equivalent Math$ Entry Points

OTS$ Entry Point Math$ Entry Point

OTS$DIVC math$cdiv_f
OTS$DIVCG_R3 math$cdiv_g

3

Chapter 1. Run-Time Library General Purpose (OTS$) Facility

OTS$ Entry Point Math$ Entry Point

OTS$DIVCS math$cdiv_s
OTS$DIVCT_R3 math$cdiv_t
OTS$MULCS math$cmul_s
OTS$MULCT_R3 math$cmul_t
OTS$MULCG_R3 math$cmul_g
OTS$POWCC math$cpow_f
OTS$POWCGCG_R3 math$cpow_g
OTS$POWCJ math$cpow_fq
OTS$POWCSCS math$cpow_s
OTS$POWCSJ math$cpow_sq
OTS$POWCTCT_R3 math$cpow_t
OTS$POWCTJ_R3 math$cpow_tq
OTS$POWGG math$pow_gg
OTS$POWGJ math$pow_gq
OTS$POWGLU math$pow_gq
OTS$POWII math$pow_qq
OTS$POWJJ math$pow_qq
OTS$POWLULU math$pow_qq
OTS$POWRJ math$pow_fq
OTS$POWRLU math$pow_fq
OTS$POWRR math$pow_ff
OTS$POWSS math$pow_ss
OTS$POWSJ math$pow_sq
OTS$POWSLU math$pow_sq
OTS$POWTJ math$pow_tq
OTS$POWTLU math$pow_tq
OTS$POWTT math$pow_tt

1.2.1. 64-Bit Addressing Support (Alpha and I64 Only)
On Alpha and I64 systems, the General Purpose (OTS$) routines provide 64-bit virtual addressing
capabilities as follows:

• All OTS$ RTL routines accept 64-bit addresses for arguments passed by reference.

• All OTS$ RTL routines also accept either 32-bit or 64-bit descriptors for arguments passed by
descriptor.

Note

The OTS$ routines declared in ots$routines.h do not include prototypes for 64-bit data. You must
provide your own generic prototypes for any OTS$ functions you use.

4

Chapter 1. Run-Time Library General Purpose (OTS$) Facility

See the VSI OpenVMS Programming Concepts Manual for more information about 64-bit virtual
addressing capabilities.

5

Chapter 1. Run-Time Library General Purpose (OTS$) Facility

6

Chapter 2. General-Purpose (OTS$)
Routines
This chapter provides detailed descriptions of the routines provided by the OpenVMS RTL General
Purpose (OTS$) Facility.

OTS$CALL_PROC (Alpha and I64 Only)
OTS$CALL_PROC (Alpha and I64 Only) — The Call Special Procedure routine performs a call to a
procedure that may be either in native code or in a translated image.

Format
OTS$CALL_PROC target-func-value ,target-sig-info ,standard-args ,...

Returns
None.

Arguments
target-func-value

OpenVMS usage: function value

type: quadword address

access: read only

mechanism: by value in register R23 (Alpha); by value in register R17 (I64)

Function value for the procedure to be called.

target-sig-info

OpenVMS usage: TIE signature information

type: TIE signature block

access: read only

mechanism: by reference in register R24 (Alpha); by value in register R17 (I64)

Signature information is used to transform the standard arguments into the form required by a translated
image (if needed). The representation of signature information is described in the OpenVMS Calling
Standard.

standard-args

Zero or more arguments to be passed to the called routine, passed using standard conventions (including
the AI register).

7

Chapter 2. General-Purpose (OTS$) Routines

Description
When translated code support is requested, the compiled code must call the special service routine,
OTS$CALL_PROC. The actual parameters to the target function are passed to OTS$CALL_PROC as
though the target routine is native code that is being invoked directly.

OTS$CALL_PROC first determines whether the target routine is part of a translated image.

If the target is in native code, then OTS$CALL_PROC completes the call in a way that makes its
mediation transparent (that is, control need not pass back through it for the return). The native
parameters are used without modification.

If the target is in translated code, then OTS$CALL_PROC passes control to the Translated Image
Environment (TIE). For additional information, see the VSI OpenVMS Calling Standard.

Condition Values Returned
None.

OTS$CNVOUT
OTS$CNVOUT — The Convert Floating to Character String routines convert a D-floating, G-floating,
H-floating, IEEE S-floating, or IEEE T-floating number to a character string in the Fortran E format.

Format
OTS$CNVOUT
 D-G-H-S-or-T-float-pt-input-val ,fixed-length-resultant-string
 ,digits-in-fraction

OTS$CNVOUT_G
 D-G-H-S-or-T-float-pt-input-val ,fixed-length-resultant-string
 ,digits-in-fraction

OTS$CNVOUT_H
 D-G-H-S-or-T-float-pt-input-val ,fixed-length-resultant-string
 ,digits-in-fraction (VAX only)

OTS$CNVOUT_S
 D-G-H-S-or-T-float-pt-input-val ,fixed-length-resultant-string
 ,digits-in-fraction (VAX only)

OTS$CNVOUT_T
 D-G-H-S-or-T-float-pt-input-val ,fixed-length-resultant-string
 ,digits-in-fraction (VAX only)

Returns
OpenVMS usage: cond_value

type: longword (unsigned)

access: write only

mechanism: by value

8

Chapter 2. General-Purpose (OTS$) Routines

Arguments
D-G-H-S-or-T-float-pt-input-val

OpenVMS usage: floating_point

type: D_floating, G_floating, H_floating, IEEE S_floating, IEEE T_floating

access: read only

mechanism: by reference

Value that OTS$CNVOUT converts to a character string. For OTS$CNVOUT, the D-G-H-S-or-
T-float-pt-input-val argument is the address of a D-floating number containing the value. For
OTS$CNVOUT_G, the D-G-H-S-or-T-float-pt-input-val argument is the address of a G-floating
number containing the value. For OTS$CNVOUT_S, the D-G-H-S-or-T-float-pt-input-val argument is
the address of an IEEE S-floating number containing the value. For OTS$CNVOUT_T, the D-G-H-S-
or-T-float-pt-input-val argument is the address of an IEEE T-floating number containing the value.

fixed-length-resultant-string

OpenVMS usage: char_string

type: character string

access: write only

mechanism: by descriptor, fixed length

Output string into which OTS$CNVOUT writes the character string result of the conversion. The fixed-
length-resultant-string argument is the address of a descriptor pointing to the output string.

digits-in-fraction

OpenVMS usage: longword_unsigned

type: longword (unsigned)

access: read only

mechanism: by value

Number of digits in the fractional portion of the result. The digits-in-fraction argument is an unsigned
longword containing the number of digits to be written to the fractional portion of the result.

Condition Values Returned
SS$_NORMAL Normal successful completion.
SS$_ROPRAND Floating reserved operand detected.
OTS$_OUTCONERR Output conversion error. The result would have exceeded the fixed-

length string; the output string is filled with asterisks (*).

OTS$CVT_L_TB
OTS$CVT_L_TB — The Convert an Unsigned Integer to Binary Text routine converts an unsigned
integer value of arbitrary length to binary representation in an ASCII text string. By default, a longword
is converted.

9

Chapter 2. General-Purpose (OTS$) Routines

Format
OTS$CVT_L_TB
 varying-input-value,fixed-length-resultant-string [,number-of-digits]
 [,input-value-size]

Returns
OpenVMS usage: cond_value

type: longword (unsigned)

access: write only

mechanism: by value

Arguments
varying-input-value

OpenVMS usage: varying_arg

type: unspecified

access: read only

mechanism: by reference

Unsigned byte, word, or longword that OTS$CVT_L_TB converts to an unsigned decimal representation
in an ASCII text string. (The value of the input-value-size argument determines whether varying-input-
value is a byte, word, or longword.) The varying-input-value argument is the address of the unsigned
integer.

fixed-length-resultant-string

OpenVMS usage: char_string

type: character string

access: write only

mechanism: by descriptor, fixed length

ASCII text string that OTS$CVT_L_TB creates when it converts the integer value. The fixed-length-
resultant-string argument is the address of a descriptor pointing to this ASCII text string. The string is
assumed to be of fixed length (CLASS_S descriptor).

number-of-digits

OpenVMS usage: longword_signed

type: longword (signed)

access: read only

mechanism: by value

Minimum number of digits in the binary representation to be generated. The number-of-digits argument
is a signed longword containing this minimum number. If the minimum number of digits is omitted, the
default is 1. If the actual number of significant digits is less than the minimum number of digits, leading

10

Chapter 2. General-Purpose (OTS$) Routines

zeros are produced. If the minimum number of digits is zero and the value of the integer to be converted
is also zero, OTS$CVT_L_TB creates a blank string.

input-value-size

OpenVMS usage: longword_signed

type: longword (signed)

access: read only

mechanism: by value

Size of the integer to be converted, in bytes. The input-value-size argument is a signed longword
containing the byte size. This is an optional argument. If the size is omitted, the default is 4 (longword).

Condition Values Returned

SS$_NORMAL Normal successful completion.
OTS$_OUTCONERR Output conversion error. The result would have exceeded the fixed-

length string; the output string is filled with asterisks (*).

OTS$CVT_L_TI
OTS$CVT_L_TI — The Convert Signed Integer to Decimal Text routine converts a signed integer to
its decimal representation in an ASCII text string. This routine supports Fortran Iw and Iw.m output and
BASIC output conversion.

Format
OTS$CVT_L_TI
 varying-input-value ,fixed-length-resultant-string [,number-of-digits]
 [,input-value-size] [,flags-value]

Returns

OpenVMS usage: cond_value

type: longword (unsigned)

access: write only

mechanism: by value

Arguments
varying-input-value

OpenVMS usage: varying_arg

type: unspecified

access: read only

mechanism: by reference, fixed length

11

Chapter 2. General-Purpose (OTS$) Routines

A signed integer that OTS$CVT_L_TI converts to a signed decimal representation in an ASCII text
string. The varying-input-value argument is the address of the signed integer.

On VAX systems, the integer can be a signed byte, word, or longword. The value of the input-value-size
argument determines whether varying-input-value is a byte, word, or longword.

On Alpha and I64 systems, the integer can be a signed byte, word, longword, or quadword. The value of
the input-value-size argument determines whether varying-input-value is a byte, word, longword, or
quadword.

fixed-length-resultant-string

OpenVMS usage: char_string

type: character string

access: write only

mechanism: by descriptor

Decimal ASCII text string that OTS$CVT_L_TI creates when it converts the signed integer. The fixed-
length-resultant-string argument is the address of a CLASS_S descriptor pointing to this text string.
The string is assumed to be of fixed length.

number-of-digits

OpenVMS usage: longword_signed

type: longword (signed)

access: read only

mechanism: by value

Minimum number of digits to be generated when OTS$CVT_L_TI converts the signed integer to a
decimal ASCII text string. The number-of-digits argument is a signed longword containing this number.
If the minimum number of digits is omitted, the default value is 1. If the actual number of significant
digits is smaller, OTS$CVT_L_TI inserts leading zeros into the output string. If number-of-digits is
zero and varying-input-value is zero, OTS$CVT_L_TI writes a blank string to the output string.

input-value-size

OpenVMS usage: longword_signed

type: longword (signed)

access: read only

mechanism: by value

Size of the integer to be converted, in bytes. The input-value-size argument is a signed longword
containing this value size. If the size is omitted, the default is 4 (longword).

On VAX systems, the value size must be 1, 2, or 4. If value size is 1 or 2, the value is sign-extended to a
longword before conversion.

On Alpha and I64 systems, the value size must be 1, 2, 4, or 8. If the value is 1, 2, or 4, the value is sign-
extended to a quadword before conversion.

flags-value

12

Chapter 2. General-Purpose (OTS$) Routines

OpenVMS usage: mask_longword

type: longword (unsigned)

access: read only

mechanism: by value

Caller-supplied flags that you can use if you want OTS$CVT_L_TI to insert a plus sign before the
converted number. The flags-value argument is an unsigned longword containing the flags.

The caller flags are described in the following table:

Bit Action if Set Action if Clear

0 Insert a plus sign (+) before the first nonblank
character in the output string.

Omit the plus sign.

If flags-value is omitted, all bits are clear and the plus sign is not inserted.

Condition Values Returned
SS$_NORMAL Normal successful completion.
OTS$_OUTCONERR Output conversion error. Either the result would have exceeded the

fixed-length string or the input-value-size is not a valid value. The
output string is filled with asterisks (*).

OTS$CVT_L_TL
OTS$CVT_L_TL — The Convert Integer to Logical Text routine converts an integer to an ASCII text
string representation using Fortran L (logical) format.

Format
OTS$CVT_L_TL longword-integer-value ,fixed-length-resultant-string

Returns
OpenVMS usage: cond_value

type: longword (unsigned)

access: write only

mechanism: by value

Arguments
longword-integer-value

OpenVMS usage: longword_signed

type: longword (signed)

access: read only

13

Chapter 2. General-Purpose (OTS$) Routines

mechanism: by reference

Value that OTS$CVT_L_TL converts to an ASCII text string. The longword-integer-value argument is
the address of a signed longword containing this integer value.

fixed-length-resultant-string

OpenVMS usage: char_string

type: character string

access: write only

mechanism: by descriptor, fixed length

Output string that OTS$CVT_L_TL creates when it converts the integer value to an ASCII text string.
The fixed-length-resultant-string argument is the address of a descriptor pointing to this ASCII text
string.

The output string is assumed to be of fixed length (CLASS_S descriptor).

If bit 0 of longword-integer-value is set, OTS$CVT_L_TL stores the character T in the rightmost
character of fixed-length-resultant-string. If bit 0 is clear, it stores the character F. In either case, it fills
the remaining characters of fixed-length-resultant-string with blanks.

Condition Values Returned

SS$_NORMAL Normal successful completion.
OTS$_OUTCONERR Output conversion error. The result would have exceeded the fixed-

length string; the output string is of zero length (descriptor LENGTH
field contains 0).

Example
5 !+
 ! This is an example program
 ! showing the use of OTS$CVT_L_TL.
 !-

 VALUE% = 10
 OUTSTR$ = ' '
 CALL OTS$CVT_L_TL(VALUE%, OUTSTR$)
 PRINT OUTSTR$
9 END

This BASIC example illustrates the use of OTS$CVT_L_TL. The output generated by this program is
'F'.

OTS$CVT_L_TO
OTS$CVT_L_TO — The Convert Unsigned Integer to Octal Text routine converts an unsigned integer
to an octal ASCII text string. OTS$CVT_L_TO supports Fortran Ow and Ow.m output conversion
formats.

14

Chapter 2. General-Purpose (OTS$) Routines

Format
OTS$CVT_L_TO
 varying-input-value ,fixed-length-resultant-string [,number-of-digits]
 [,input-value-size]

Returns

OpenVMS usage: cond_value

type: longword (unsigned)

access: write only

mechanism: by value

Arguments
varying-input-value

OpenVMS usage: varying_arg

type: unspecified

access: read only

mechanism: by reference

Unsigned byte, word, or longword that OTS$CVT_L_TO converts to an unsigned decimal representation
in an ASCII text string. (The value of the input-value-size argument determines whether varying-input-
value is a byte, word, or longword.) The varying-input-value argument is the address of the unsigned
integer.

fixed-length-resultant-string

OpenVMS usage: char_string

type: character string

access: write only

mechanism: by descriptor, fixed length

Output string that OTS$CVT_L_TO creates when it converts the integer value to an octal ASCII text
string. The fixed-length-resultant-string argument is the address of a descriptor pointing to the octal
ASCII text string. The string is assumed to be of fixed length (CLASS_S descriptor).

number-of-digits

OpenVMS usage: longword_signed

type: longword (signed)

access: read only

mechanism: by value

Minimum number of digits that OTS$CVT_L_TO generates when it converts the integer value to an
octal ASCII text string. The number-of-digits argument is a signed longword containing the minimum

15

Chapter 2. General-Purpose (OTS$) Routines

number of digits. If it is omitted, the default is 1. If the actual number of significant digits in the octal
ASCII text string is less than the minimum number of digits, OTS$CVT_L_TO inserts leading zeros into
the output string. If number-of-digits is 0 and varying-input-value is 0, OTS$CVT_L_TO writes a
blank string to the output string.

input-value-size

OpenVMS usage: longword_signed

type: longword (signed)

access: read only

mechanism: by value

Size of the integer to be converted, in bytes. The input-value-size argument is a signed longword
containing the number of bytes in the integer to be converted by OTS$CVT_L_TO. If it is omitted, the
default is 4 (longword).

Condition Values Returned
SS$_NORMAL Normal successful completion.
OTS$_OUTCONERR Output conversion error. The result would have exceeded the fixed-

length string; the output string is filled with asterisks (*).

OTS$CVT_L_TU
OTS$CVT_L_TU — The Convert Unsigned Integer to Decimal Text routine converts an unsigned
integer value to its unsigned decimal representation in an ASCII text string.

Format
OTS$CVT_L_TU
 varying-input-value ,fixed-length-resultant-string [,number-of-digits]
 [,input-value-size]

Returns
OpenVMS usage: cond_value

type: longword (unsigned)

access: write only

mechanism: by value

Arguments
varying-input-value

OpenVMS usage: varying_arg

type: unspecified

access: read only

16

Chapter 2. General-Purpose (OTS$) Routines

mechanism: by reference

An unsigned integer that OTS$CVT_L_TU converts to an unsigned decimal representation in an ASCII
text string. The varying-input-value argument is the address of the unsigned integer.

On VAX systems, the integer can be an unsigned byte, word, or longword. (The value of the input-
value-size argument determines whether varying-input-value is a byte, word, or longword.)

On Alpha and I64 systems, the integer can be an unsigned byte, word, longword, or quadword. (The
value of the input-value-size argument determines whether varying-input-value is a byte, word,
longword, or quadword.)

fixed-length-resultant-string

OpenVMS usage: char_string

type: character string

access: write only

mechanism: by descriptor, fixed length

Output string that OTS$CVT_L_TU creates when it converts the integer value to unsigned decimal
representation in an ASCII text string. The fixed-length-resultant-string argument is the address of a
descriptor pointing to this ASCII text string.

number-of-digits

OpenVMS usage: longword_signed

type: longword (signed)

access: read only

mechanism: by value

Minimum number of digits in the ASCII text string that OTS$CVT_L_TU creates. The number-of-
digits argument is a signed longword containing the minimum number. If the minimum number of digits
is omitted, the default is 1.

If the actual number of significant digits in the output string created is less than the minimum number,
OTS$CVT_L_TU inserts leading zeros into the output string. If the minimum number of digits is zero
and the integer value to be converted is also zero, OTS$CVT_L_TU writes a blank string to the output
string.

input-value-size

OpenVMS usage: longword_signed

type: longword (signed)

access: read only

mechanism: by value

Size of the integer to be converted, in bytes. The input-value-size argument is a signed longword
containing this value size. If the size is omitted, the default is 4 (longword).

On VAX systems, the value size must be 1, 2, or 4.

17

Chapter 2. General-Purpose (OTS$) Routines

On Alpha and I64 systems, the value size must be 1, 2, 4, or 8.

Condition Values Returned
SS$_NORMAL Normal successful completion.
OTS$_OUTCONERR Output conversion error. Either the result would have exceeded the

fixed-length string or the input-value-size is not a valid value. The
output string is filled with asterisks (*).

OTS$CVT_L_TZ
OTS$CVT_L_TZ — The Convert Integer to Hexadecimal Text routine converts an unsigned integer to
a hexadecimal ASCII text string. OTS$CVT_L_TZ supports Fortran Zw and Zw.m output conversion
formats.

Format
OTS$CVT_L_TZ
 varying-input-value ,fixed-length-resultant-string [,number-of-digits]
 [,input-value-size]

Returns
OpenVMS usage: cond_value

type: longword (unsigned)

access: write only

mechanism: by value

Arguments
varying-input-value

OpenVMS usage: varying_arg

type: unspecified

access: read only

mechanism: by reference

Unsigned byte, word, or longword that OTS$CVT_L_TZ converts to an unsigned decimal representation
in an ASCII text string. (The value of the input-value-size argument determines whether varying-input-
value is a byte, word, or longword.) The varying-input-value argument is the address of the unsigned
integer.

fixed-length-resultant-string

OpenVMS usage: char_string

type: character string

access: write only

18

Chapter 2. General-Purpose (OTS$) Routines

mechanism: by descriptor, fixed length

Output string that OTS$CVT_L_TZ creates when it converts the integer value to a hexadecimal ASCII
text string. The fixed-length-resultant-string argument is the address of a descriptor pointing to this
ASCII text string. The string is assumed to be of fixed length (CLASS_S descriptor).

number-of-digits

OpenVMS usage: longword_signed

type: longword (signed)

access: read only

mechanism: by value

Minimum number of digits in the ASCII text string that OTS$CVT_L_TZ creates when it converts the
integer. The number-of-digits argument is a signed longword containing this minimum number. If it is
omitted, the default is 1. If the actual number of significant digits in the text string that OTS$CVT_L_TZ
creates is less than this minimum number, OTS$CVT_L_TZ inserts leading zeros in the output
string. If the minimum number of digits is zero and the integer value to be converted is also zero,
OTS$CVT_L_TZ writes a blank string to the output string.

input-value-size

OpenVMS usage: longword_signed

type: longword (signed)

access: read only

mechanism: by value

Size of the integer that OTS$CVT_L_TZ converts, in bytes. The input-value-size argument is a signed
longword containing the value size. If the size is omitted, the default is 4 (longword).

Condition Values Returned
SS$_NORMAL Normal successful completion.
OTS$_OUTCONERR Output conversion error. The result would have exceeded the fixed-

length string; the output string is filled with asterisks (*).

Example
with TEXT_IO; use TEXT_IO;
procedure SHOW_CONVERT is

 type INPUT_INT is new INTEGER range 0..INTEGER'LAST;

 INTVALUE : INPUT_INT := 256;
 HEXSTRING : STRING(1..11);

 procedure CONVERT_TO_HEX (I : in INPUT_INT; HS : out STRING);
 pragma INTERFACE (RTL, CONVERT_TO_HEX);
 pragma IMPORT_routine (INTERNAL => CONVERT_TO_HEX,
 EXTERNAL => "OTS$CVT_L_TZ",
 MECHANISM =>(REFERENCE,

19

Chapter 2. General-Purpose (OTS$) Routines

 DESCRIPTOR (CLASS => S)));

begin
 CONVERT_TO_HEX (INTVALUE, HEXSTRING);
 PUT_LINE("This is the value of HEXSTRING");
 PUT_LINE(HEXSTRING);
end;

This Ada example uses OTS$CVT_L_TZ to convert a longword integer to hexadecimal text.

OTS$CVT_T_x
OTS$CVT_T_x — The Convert Numeric Text to D-, F-, G-, H-, IEEE S-, or IEEE T-Floating routines
convert an ASCII text string representation of a numeric value to a D-floating, F-floating, G-floating, H-
floating, IEEE S-floating, or IEEE T-floating value.

Format
OTS$CVT_T_D
 fixed-or-dynamic-input-string ,floating-point-value
 [,digits-in-fraction] [,scale-factor] [,flags-value] [,extension-bits]

OTS$CVT_T_F
 fixed-or-dynamic-input-string ,floating-point-value
 [,digits-in-fraction] [,scale-factor] [,flags-value] [,extension-bits]

OTS$CVT_T_G
 fixed-or-dynamic-input-string ,floating-point-value
 [,digits-in-fraction] [,scale-factor] [,flags-value] [,extension-bits]

OTS$CVT_T_H
 fixed-or-dynamic-input-string ,floating-point-value
 [,digits-in-fraction] [,scale-factor] [,flags-value] [,extension-bits]

OTS$CVT_T_S
 fixed-or-dynamic-input-string ,floating-point-value
 [,digits-in-fraction] [,scale-factor] [,flags-value] [,extension-bits]

OTS$CVT_T_T
 fixed-or-dynamic-input-string ,floating-point-value
 [,digits-in-fraction] [,scale-factor] [,flags-value] [,extension-bits]

Returns
OpenVMS usage: cond_value

type: longword (unsigned)

access: write only

mechanism: by value

Arguments
fixed-or-dynamic-input-string

OpenVMS usage: char_string

20

Chapter 2. General-Purpose (OTS$) Routines

type: character string

access: read only

mechanism: by descriptor, fixed-length or dynamic string

Input string containing an ASCII text string representation of a numeric value that
OTS$CVT_T_xconverts to a D-floating, F-floating, G-floating, H-floating, IEEE S-floating, or IEEE T-
floating value. The fixed-or-dynamic-input-string argument is the address of a descriptor pointing to
the input string.

The syntax of a valid input string is as follows:

E, e, D, d, Q, and q are the possible exponent letters. They are semantically equivalent. Other elements in
the preceding syntax are defined as follows:

Term Description

blanks One or more blanks
digits One or more decimal digits

floating-point-value

OpenVMS usage: floating_point

type: D_floating, F_floating, G_floating, H_floating, IEEE S_floating, IEEE
T_floating

access: write only

mechanism: by reference

Floating-point value that OTS$CVT_T_x creates when it converts the input string. The floating-point-
value argument is the address of the floating-point value. The data type of floating-point-value depends
on the called routine as shown in the following table:

Routine Floating-Point-Value Data Type

OTS$CVT_T_D D-floating
OTS$CVT_T_F F-floating
OTS$CVT_T_G G-floating
OTS$CVT_T_H H-floating
OTS$CVT_T_S IEEE S-floating

21

Chapter 2. General-Purpose (OTS$) Routines

Routine Floating-Point-Value Data Type

OTS$CVT_T_T IEEE T-floating

digits-in-fraction

OpenVMS usage: longword_unsigned

type: longword (unsigned)

access: read only

mechanism: by value

Number of digits in the fraction if no decimal point is included in the input string. The digits-in-fraction
argument contains the number of digits. If the number of digits is omitted, the default is zero.

scale-factor

OpenVMS usage: longword_signed

type: longword (signed)

access: read only

mechanism: by value

Scale factor. The scale-factor argument contains the value of the scale factor. If bit 6 of the flags-value
argument is clear, the resultant value is divided by 10scale-factor unless the exponent is present. If bit 6 of
flags-value is set, the scale factor is always applied. If the scale factor is omitted, the default is zero.

flags-value

OpenVMS usage: mask_longword

type: longword (unsigned)

access: read only

mechanism: by value

User-supplied flags. The flags-value argument contains the user-supplied flags described in the
following table:

Bit Action if Set Action if Clear

0 Ignore blanks. Interpret blanks as zeros.
1 Allow only E or e exponents. (This is

consistent with Fortran semantics.)
Allow E, e, D, d, Q and q exponents. (This is
consistent with BASIC semantics.)

2 Interpret an underflow as an error. Do not interpret an underflow as an error.
3 Truncate the value. Round the value.
4 Ignore tabs. Interpret tabs as invalid characters.
5 An exponent must begin with a valid

exponent letter.
The exponent letter can be omitted.

6 Always apply the scale factor. Apply the scale factor only if there is no
exponent present in the string.

If you omit the flags-value argument, OTS$CVT_T_x defaults all flags to clear.

22

Chapter 2. General-Purpose (OTS$) Routines

extension-bits (D-, F-floating, IEEE S-floating)

OpenVMS usage: byte_unsigned

type: byte (unsigned)

access: write only

mechanism: by reference

extension-bits (G-, H-floating, IEEE T-floating)

OpenVMS usage: word_unsigned

type: word (unsigned)

access: write only

mechanism: by reference

Extra precision bits. The extension-bits argument is the address of a word containing the extra precision
bits. Ifextension-bits is present, floating-point-value is not rounded, and the first n bits after truncation
are returned left-justified in this argument, as follows:

Routine Number of Bits
Returned

Data Type

OTS$CVT_T_D 8 Byte (unsigned)
OTS$CVT_T_F 8 Byte (unsigned)
OTS$CVT_T_G 11 Word (unsigned)
OTS$CVT_T_H 15 Word (unsigned)
OTS$CVT_T_S 8 Byte (unsigned)
OTS$CVT_T_T 11 Word (unsigned)

A value represented by extension bits is suitable for use as the extension operand in an EMOD
instruction.

The extra precision bits returned for H-floating may not be precise because OTS$CVT_T_H carries its
calculations to only 128 bits. However the error should be small.

Description
The OTSCVT_T_D, OTSCVT_T_F, OTSCVT_T_G, OTSCVT_T_H, OTS$CVT_T_S, and
OTS$CVT_T_T routines support Fortran D, E, F, and G input type conversion as well as similar types
for other languages.

These routines provide run-time support for BASIC and Fortran input statements.

Although Alpha and I64 systems do not generally support H-floating operations, you can use
OTS$CVT_T_H to convert a text string to an H-floating value on an Alpha or I64 system.

Condition Values Returned
SS$_NORMAL Normal successful completion.
OTS$_INPCONERR Input conversion error; an invalid character in the input string, or the

value is outside the range that can be represented. The floating-point-

23

Chapter 2. General-Purpose (OTS$) Routines

value and extension-bits arguments, if present, are set to +0.0 (not
reserved operand –0.0).

Example
C+
C This is a Fortran program demonstrating the use of
C OTS$CVT_T_F.
C-

 REAL*4 A
 CHARACTER*10 T(5)
 DATA T/'1234567+23','8.786534+3','-983476E-3','-23.734532','45'/
 DO 2 I = 1, 5
 TYPE 1,I,T(I)
 1 FORMAT(' Input string ',I1,' is ',A10)

C+
C B is the return status.
C T(I) is the string to be converted to an
C F-floating point value. A is the F-floating
C point conversion of T(I). %VAL(5) means 5 digits
C are in the fraction if no decimal point is in
C the input string T(I).
C-
 B = OTS$CVT_T_F(T(I),A,%VAL(5),,)
 TYPE *,' Output of OTSCVT_T_F is ',A
 TYPE *,' '
 2 CONTINUE
 END

This Fortran example demonstrates the use of OTS$CVT_T_F. The output generated by this program is
as follows:

Input string 1 is 1234567+23
 Output of OTSCVT_T_F is 1.2345669E+24
Input string 2 is 8.786534+3
 Output of OTSCVT_T_F is 8786.534
Input string 3 is -983476E-3
 Output of OTSCVT_T_F is -9.8347599E-03
Input string 4 is -23.734532
 Output of OTSCVT_T_F is -23.73453
Input string 5 is 45
 Output of OTSCVT_T_F is 45000.00

OTS$CVT_TB_L
OTS$CVT_TB_L — The Convert Binary Text to Unsigned Integer routine converts an ASCII text string
representation of an unsigned binary value to an unsigned integer value. The integer value can be of
arbitrary length but is typically a byte, word, longword, or quadword. The default size of the result is a
longword.

Format
OTS$CVT_TB_L

24

Chapter 2. General-Purpose (OTS$) Routines

 fixed-or-dynamic-input-string ,varying-output-value [,output-value-size]
 [,flags-value]

Returns
OpenVMS usage: cond_value

type: longword (unsigned)

access: write only

mechanism: by value

Arguments
fixed-or-dynamic-input-string

OpenVMS usage: char_string

type: character string

access: read only

mechanism: by descriptor

Input string containing the string representation of an unsigned binary value that OTS$CVT_TB_L
converts to an unsigned integer value. The fixed-or-dynamic-input-string argument is the address of a
descriptor pointing to the input string. The valid input characters are blanks and the digits 0 and 1. No
sign is permitted.

varying-output-value

OpenVMS usage: varying_arg

type: unspecified

access: write only

mechanism: by reference

Unsigned integer of specified size that OTS$CVT_TB_L creates when it converts the ASCII text string.
The varying-output-value argument is the address of the integer. The value of the output-value-size
argument determines the size in bytes of the output value.

output-value-size

OpenVMS usage: longword_signed

type: longword (signed)

access: read only

mechanism: by value

Arbitrary number of bytes to be occupied by the unsigned integer output value. The output-value-size
argument contains a value that equals the size in bytes of the output value. If the value ofoutput-value-
size is zero or a negative number, OTS$CVT_TB_L returns an input conversion error. If you omit the
output-value-size argument, the default is 4 (longword).

flags-value

25

Chapter 2. General-Purpose (OTS$) Routines

OpenVMS usage: mask_longword

type: longword (unsigned)

access: read only

mechanism: by value

User-supplied flag that OTS$CVT_TB_L uses to determine how to interpret blanks within the input
string. The flags-value argument contains this user-supplied flag.

OTS$CVT_TB_L defines the flag as follows:

Bit Action if Set Action if Clear

0 Ignore blanks. Interpret blanks as zeros.

If you omit the flags-value argument, OTS$CVT_TB_L defaults all flags to clear.

Condition Values Returned
SS$_NORMAL Normal successful completion.
OTS$_INPCONERR Input conversion error. OTS$CVT_TB_L encountered an invalid

character in the fixed-or-dynamic-input-string, an overflow of
varying-output-value, or an invalid output-value-size. In the case of
an invalid character or of an overflow, varying-output-value is set to
zero.

Example
 OPTION &
 TYPE = EXPLICIT

 !+
 ! This program demonstrates the use of OTS$CVT_TB_L from BASIC.
 ! Several binary numbers are read and then converted to their
 ! integer equivalents.
 !-

 !+
 ! DECLARATIONS
 !-

 DECLARE STRING BIN_STR
 DECLARE LONG BIN_VAL, I, RET_STATUS
 DECLARE LONG CONSTANT FLAGS = 17 ! 2^0 + 2^4
 EXTERNAL LONG FUNCTION OTS$CVT_TB_L (STRING, LONG, &
 LONG BY VALUE, LONG BY VALUE)

 !+
 ! MAIN PROGRAM
 !-

 !+
 ! Read the data, convert it to binary, and print the result.
 !-

26

Chapter 2. General-Purpose (OTS$) Routines

 FOR I = 1 TO 5
 READ BIN_STR
 RET_STATUS = OTS$CVT_TB_L(BIN_STR, BIN_VAL, '4'L, FLAGS)
 PRINT BIN_STR;" treated as a binary number equals";BIN_VAL
 NEXT I

 !+
 ! Done, end the program.
 !-

 GOTO 32767

999 Data "1111", "1 111", "1011011", "11111111", "00000000"

32767 END

This BASIC example program demonstrates how to call OTS$CVT_TB_L to convert binary text to a
longword integer.

The output generated by this BASIC program is as follows:

1111 treated as a binary number equals 15
1 111 treated as a binary number equals 15
1011011 treated as a binary number equals 91
11111111 treated as a binary number equals 255
00000000 treated as a binary number equals 0

OTS$CVT_TI_L
OTS$CVT_TI_L — The Convert Signed Integer Text to Integer routine converts an ASCII text string
representation of a signed decimal number to a signed integer value. The default size of the result is a
longword.

Format
OTS$CVT_TI_L
 fixed-or-dynamic-input-string ,varying-output-value [,output-value-size]
 [,flags-value]

Returns
OpenVMS usage: cond_value

type: longword (unsigned)

access: write only

mechanism: by value

Arguments
fixed-or-dynamic-input-string

OpenVMS usage: char_string

27

Chapter 2. General-Purpose (OTS$) Routines

type: character string

access: read only

mechanism: by descriptor, fixed-length or dynamic string

Input ASCII text string that OTS$CVT_TI_L converts to a signed integer. The fixed-or-dynamic-input-
string argument is the address of a descriptor pointing to the input string.

The syntax of a valid ASCII text input string is as follows:

OTS$CVT_TI_L always ignores leading blanks.

varying-output-value

OpenVMS usage: varying_arg

type: unspecified

access: write only

mechanism: by reference

Signed integer that OTS$CVT_TI_L creates when it converts the ASCII text string. The varying-
output-value argument is the address of the signed integer. The value of the output-value-sizeargument
determines the size of varying-output-value.

output-value-size

OpenVMS usage: longword_signed

type: longword (signed)

access: read only

mechanism: by value

Number of bytes to be occupied by the value created when OTS$CVT_TI_L converts the ASCII text
string to an integer value. The output-value-size argument contains the number of bytes in varying-
output-value.

On VAX systems, valid values for the output-value-size argument are 1, 2, and 4. The value determines
whether the integer value that OTS$CVT_TI_L creates is a byte, word, or longword.

On Alpha and I64 systems, valid values for the output-value-size argument are 1, 2, 4, and 8. The
value determines whether the integer value that OTS$CVT_TI_L creates is a byte, word, longword, or
quadword.

For VAX and Alpha systems, if you specify a 0 (zero) or omit the output-value-size argument, the size
of the output value defaults to 4 (longword). If you specify any other value, OTS$CVT_TI_L returns an
input conversion error.

flags-value

OpenVMS usage: mask_longword

28

Chapter 2. General-Purpose (OTS$) Routines

type: longword (unsigned)

access: read only

mechanism: by value

User-supplied flags that OTS$CVT_TI_L uses to determine how blanks and tabs are interpreted. The
flags-value argument is an unsigned longword containing the value of the flags.

Bit Action if Set Action if Clear

0 Ignore all blanks. Ignore leading blanks but interpret blanks after the first legal
character as zeros.

4 Ignore tabs. Interpret tabs as invalid characters.

If you omit the flags-value argument, OTS$CVT_TI_L defaults all flags to clear.

Condition Values Returned

SS$_NORMAL Normal successful completion.
OTS$_INPCONERR Input conversion error. OTS$CVT_TI_L encountered an invalid

character in the fixed-or-dynamic-input-string, an overflow of
varying-output-value, or an invalid output-value-size. In the case of
an invalid character or of an overflow, varying-output-value is set to
zero.

OTS$CVT_TL_L
OTS$CVT_TL_L — The Convert Logical Text to Integer routine converts an ASCII text string
representation of a FORTRAN-77 L format to a signed integer.

Format
OTS$CVT_TL_L
 fixed-or-dynamic-input-string ,varying-output-value [,output-value-size]

Returns

OpenVMS usage: cond_value

type: longword (unsigned)

access: write only

mechanism: by value

Arguments
fixed-or-dynamic-input-string

OpenVMS usage: char_string

type: character string

29

Chapter 2. General-Purpose (OTS$) Routines

access: read only

mechanism: by descriptor, fixed-length or dynamic string

Input string containing an ASCII text representation of a FORTRAN-77 L format that OTS$CVT_TL_L
converts to a signed integer value. The fixed-or-dynamic-input-string argument is the address of a
descriptor pointing to the input string.

Common ASCII text representations of a FORTRAN-77 logical are .TRUE., .FALSE., T, t, F, and f. In
practice, an OTS$CVT_TL_L input string is valid if it adheres to the following syntax:

One of the letters T, t, F, or f is required. Other elements in the preceding syntax are defined as follows:

Term Description

blanks One or more blanks
characters One or more of any character

varying-output-value

OpenVMS usage: varying_arg

type: unspecified

access: write only

mechanism: by reference

Signed integer that OTS$CVT_TL_L creates when it converts the ASCII text string. The varying-
output-value argument is the address of the signed integer. The value of the output-value-size
argument determines the size in bytes of the signed integer.

OTS$CVT_TL_L returns –1 as the contents of the varying-output-value argument if the character
denoted by "letter" is T or t. Otherwise, OTS$CVT_TL_L sets varying-output-value to zero.

output-value-size

OpenVMS usage: longword_signed

type: longword (signed)

access: read only

mechanism: by value

Number of bytes to be occupied by the signed integer created when OTS$CVT_TL_L converts the
ASCII text string to an integer value. The output-value-size argument contains a value that equals
the size in bytes of the output value. If output-value-size contains a zero or a negative number,
OTS$CVT_TL_L returns an input conversion error.

30

Chapter 2. General-Purpose (OTS$) Routines

On VAX systems, valid values for the output-value-size argument are 1, 2, and 4. The value determines
whether the integer value that OTS$CVT_TL_L creates is a byte, word, or longword.

On Alpha and I64 systems, valid values for the output-value-size argument are 1, 2, 4, and 8. This
value determines whether the integer value that OTS$CVT_TL_L creates is a byte, word, longword, or
quadword.

For VAX, Alpha, and I64 systems, if you omit the output-value-size argument, the default is 4
(longword).

Condition Values Returned
SS$_NORMAL Normal successful completion.
OTS$_INPCONERR Input conversion error. OTS$CVT_TL_L encountered an invalid

character in the fixed-or-dynamic-input-string or an invalid output-
value-size. In the case of an invalid character varying-output-value is
set to zero.

OTS$CVT_TO_L
OTS$CVT_TO_L — The Convert Octal Text to Unsigned Integer routine converts an ASCII text string
representation of an unsigned octal value to an unsigned integer. The integer value can be of arbitrary
length but is typically a byte, word, longword, or quadword. The default size of the result is a longword.

Format
OTS$CVT_TO_L
 fixed-or-dynamic-input-string ,varying-output-value [,output-value-size]
 [,flags-value]

Returns
OpenVMS usage: cond_value

type: longword (unsigned)

access: write only

mechanism: by value

Arguments
fixed-or-dynamic-input-string

OpenVMS usage: char_string

type: character string

access: read only

mechanism: by descriptor, fixed-length or dynamic string

Input string containing the string representation of an unsigned octal value that OTS$CVT_TO_L
converts to an unsigned integer. The fixed-or-dynamic-input-string argument is the address of a

31

Chapter 2. General-Purpose (OTS$) Routines

descriptor pointing to the input string. The valid input characters are blanks and the digits 0 through 7.
No sign is permitted.

varying-output-value

OpenVMS usage: varying_arg

type: unspecified

access: write only

mechanism: by reference

Unsigned integer of specified size that OTS$CVT_TO_L creates when it converts the ASCII text string.
The varying-output-value argument is the address of the unsigned integer. The value of the output-
value-size argument determines the size in bytes of the output value.

output-value-size

OpenVMS usage: longword_signed

type: longword integer (signed)

access: read only

mechanism: by value

Arbitrary number of bytes to be occupied by the unsigned integer output value. The output-value-size
argument contains a value that equals the size in bytes of the output value. If the value ofoutput-value-
size is zero or a negative number, OTS$CVT_TO_L returns an input conversion error. If you omit the
output-value-size argument, the default is 4 (longword).

flags-value

OpenVMS usage: mask_longword

type: longword (unsigned)

access: read only

mechanism: by value

User-supplied flag that OTS$CVT_TO_L uses to determine how to interpret blanks within the input
string. The flags-value argument contains the user-supplied flag described in the following table:

Bit Action if Set Action if Clear

0 Ignore all blanks. Interpret blanks as zeros.

If you omit the flags-value argument, OTS$CVT_TO_L defaults the flag to clear.

Condition Values Returned
SS$_NORMAL Normal successful completion.
OTS$_INPCONERR Input conversion error. OTS$CVT_TO_L encountered an invalid

character in the fixed-or-dynamic-input-string, an overflow of
varying-output-value, or an invalid output-value-size. In the case of
an invalid character or of an overflow, varying-output-value is set to
zero.

32

Chapter 2. General-Purpose (OTS$) Routines

Example
OCTAL_CONV: PROCEDURE OPTIONS (MAIN) RETURNS (FIXED BINARY (31));

%INCLUDE $STSDEF; /* Include definition of return status values */
DECLARE OTS$CVT_TO_L ENTRY
 (CHARACTER (*), /* Input string passed by descriptor */
 FIXED BINARY (31), /* Returned value passed by reference */
 FIXED BINARY VALUE, /* Size for returned value passed by value */
 FIXED BINARY VALUE) /* Flags passed by value */
 RETURNS (FIXED BINARY (31)) /* Return status */
 OPTIONS (VARIABLE); /* Arguments may be omitted */

DECLARE INPUT CHARACTER (10);
DECLARE VALUE FIXED BINARY (31);
DECLARE SIZE FIXED BINARY(31) INITIAL(4) READONLY STATIC; /* Longword */
DECLARE FLAGS FIXED BINARY(31) INITIAL(1) READONLY STATIC; /* Ignore
 blanks */

ON ENDFILE (SYSIN) STOP;

DO WHILE ('1'B); /* Loop continuously, until end of file */
 PUT SKIP (2);
 GET LIST (INPUT) OPTIONS (PROMPT ('Octal value: '));
 STS$VALUE = OTS$CVT_TO_L (INPUT, VALUE, SIZE, FLAGS);
 IF ^STS$SUCCESS THEN RETURN (STS$VALUE);
 PUT SKIP EDIT (INPUT, 'Octal equals', VALUE, 'Decimal')
 (A,X,A,X,F(10),X,A);
 END;

END OCTAL_CONV;

This PL/I program translates an octal value in ASCII into a fixed binary value. The program is run
interactively; press Ctrl/Z to quit.

$ RUN OCTAL
Octal value: 1
1 Octal equals 1 Decimal
Octal value: 11
11 Octal equals 9 Decimal
Octal value: 1017346
1017346 Octal equals 274150 Decimal
Octal value: Ctrl/Z

OTS$CVT_TU_L
OTS$CVT_TU_L — The Convert Unsigned Decimal Text to Integer routine converts an ASCII text
string representation of an unsigned decimal value to an unsigned integer value. By default, the size of
the result is a longword.

Format
OTS$CVT_TU_L
 fixed-or-dynamic-input-string ,varying-output-value [,output-value-size]
 [,flags-value]

33

Chapter 2. General-Purpose (OTS$) Routines

Returns
OpenVMS usage: cond_value

type: longword (unsigned)

access: write only

mechanism: by value

Arguments
fixed-or-dynamic-input-string

OpenVMS usage: char_string

type: character string

access: read only

mechanism: by descriptor

Input string containing an ASCII text string representation of an unsigned decimal value that
OTS$CVT_TU_L converts to an unsigned integer value. The fixed-or-dynamic-input-string argument
is the address of a descriptor pointing to the input string. Valid input characters are the space and the
digits 0 through 9. No sign is permitted.

varying-output-value

OpenVMS usage: varying_arg

type: unspecified

access: write only

mechanism: by reference

Unsigned integer that OTS$CVT_TU_L creates when it converts the ASCII text string. The varying-
output-value argument is the address of the unsigned integer. The value of the output-value-size
argument determines the size of varying-output-value.

output-value-size

OpenVMS usage: longword_signed

type: longword integer (signed)

access: read only

mechanism: by value

Number of bytes occupied by the value created when OTS$CVT_TU_L converts the input string. The
output-value-size argument contains the number of bytes in varying-output-value.

On VAX systems, valid values for the output-value-size argument are 1, 2, and 4. The value determines
whether the integer value that OTS$CVT_TU_L creates is a byte, word, or longword.

On Alpha and I64 systems, valid values for the output-value-size argument are 1, 2, 4, and 8. The
value determines whether the integer value that OTS$CVT_TU_L creates is a byte, word, longword, or
quadword.

34

Chapter 2. General-Purpose (OTS$) Routines

For VAX, Alpha, and I64 systems, if you specify a 0 (zero) or omit the output-value-size argument,
the size of the output value defaults to 4 (longword). If you specify any other value, OTS$CVT_TU_L
returns an input conversion error.

flags-value

OpenVMS usage: mask_longword

type: longword (unsigned)

access: read only

mechanism: by value

User-supplied flags that OTS$CVT_TU_L uses to determine how blanks and tabs are interpreted. The
flags-value argument contains the user-supplied flags as described in the following table:

Bit Action if Set Action if Clear

0 Ignore all blanks. Ignore leading blanks but interpret blanks after the first legal
character as zeros.

4 Ignore tabs. Interpret tabs as invalid characters.

If you omit the flags-value argument, OTS$CVT_TU_L defaults all flags to clear.

Condition Values Returned

SS$_NORMAL Normal successful completion.
OTS$_INPCONERR Input conversion error. OTS$CVT_TU_L encountered an invalid

character in the fixed-or-dynamic-input-string, overflow of varying-
output-value, or an invalid output-value-size. In the case of an invalid
character or of an overflow, varying-output-value is set to zero.

OTS$CVT_TZ_L
OTS$CVT_TZ_L — The Convert Hexadecimal Text to Unsigned Integer routine converts an ASCII text
string representation of an unsigned hexadecimal value to an unsigned integer. The integer value can be
of arbitrary length but is typically a byte, word, longword, or quadword. The default size of the result is a
longword.

Format
OTS$CVT_TZ_L
 fixed-or-dynamic-input-string ,varying-output-value [,output-value-size]
 [,flags-value]

Returns

OpenVMS usage: cond_value

type: longword (unsigned)

access: write only

35

Chapter 2. General-Purpose (OTS$) Routines

mechanism: by value

Arguments
fixed-or-dynamic-input-string

OpenVMS usage: char_string

type: character string

access: read only

mechanism: by descriptor, fixed-length or dynamic string

Input string containing the string representation of an unsigned hexadecimal value that OTS$CVT_TZ_L
converts to an unsigned integer. The fixed-or-dynamic-input-string argument is the address of a
descriptor pointing to the input string. The valid input characters are blanks, the digits 0 through 7, and
the letters A through F. Letters can be uppercase or lowercase. No sign is permitted.

varying-output-value

OpenVMS usage: varying_arg

type: unspecified

access: write only

mechanism: by reference

Unsigned integer of specified size that OTS$CVT_TZ_L creates when it converts the ASCII text string.
The varying-output-value argument is the address of the unsigned integer. The value of the output-
value-size argument determines the size in bytes of the output value.

output-value-size

OpenVMS usage: longword_signed

type: longword (signed)

access: read only

mechanism: by value

Arbitrary number of bytes to be occupied by the unsigned integer output value. The output-value-size
argument contains a value that equals the size in bytes of the output value. If the value ofoutput-value-
size is zero or a negative number, OTS$CVT_TZ_L returns an input conversion error. If you omit the
output-value-size argument, the default is 4 (longword).

flags-value

OpenVMS usage: mask_longword

type: longword (unsigned)

access: read only

mechanism: by value

User-supplied flags that OTS$CVT_TZ_L uses to determine how to interpret blanks within the input
string. The flags-value argument contains these user-supplied flags as described in the following table:

36

Chapter 2. General-Purpose (OTS$) Routines

Bit Action if Set Action if Clear

0 Ignore all blanks. Interpret blanks as zeros.

If you omit the flags-value argument, OTS$CVT_TZ_L defaults the flag to clear.

Condition Values Returned
SS$_NORMAL Normal successful completion.
OTS$_INPCONERR Input conversion error. OTS$CVT_TZ_L encountered an invalid

character in the fixed-or-dynamic-input-string, overflow of varying-
output-value, or an invalid output-value-size. In the case of an invalid
character or of an overflow, varying-output-value is set to zero.

Examples
1. 10 !+

 ! This BASIC program converts a character string representing
 ! a hexadecimal value to a longword.
 !-

100 !+
 ! Illustrate (and test) OTS convert hex-string to longword
 !-

 EXTERNAL LONG FUNCTION OTS$CVT_TZ_L
 EXTERNAL LONG CONSTANT OTS$_INPCONERR
 INPUT "Enter hex numeric";HEXVAL$
 RET_STAT% = OTS$CVT_TZ_L(HEXVAL$, HEX%)
 PRINT "Conversion error " IF RET_STAT% = OTS$_INPCONERR
 PRINT "Decimal value of ";HEXVAL$;" is";HEX% &
 IF RET_STAT% <> OTS$_INPCONERR

This BASIC example accepts a hexadecimal numeric string, converts it to a decimal integer, and
prints the result. One sample of the output generated by this program is as follows:

$ RUN HEX
Enter hex numeric? A
Decimal value of A is 10

2. HEX_CONV: PROCEDURE OPTIONS (MAIN) RETURNS (FIXED BINARY (31));

%INCLUDE $STSDEF; /* Include definition of return status values */
DECLARE OTS$CVT_TZ_L ENTRY
 (CHARACTER (*), /* Input string passed by descriptor */
 FIXED BINARY (31), /* Returned value passed by reference */
 FIXED BINARY VALUE, /* Size for returned value passed by
 value */
 FIXED BINARY VALUE) /* Flags passed by value */
 RETURNS (FIXED BINARY (31)) /* Return status */
 OPTIONS (VARIABLE); /* Arguments may be omitted */

DECLARE INPUT CHARACTER (10);
DECLARE VALUE FIXED BINARY (31);
DECLARE FLAGS FIXED BINARY(31) INITIAL(1) READONLY STATIC; /* Ignore
 blanks */

37

Chapter 2. General-Purpose (OTS$) Routines

ON ENDFILE (SYSIN) STOP;

DO WHILE ('1'B); /* Loop continuously, until end of file */
 PUT SKIP (2);
 GET LIST (INPUT) OPTIONS (PROMPT ('Hex value: '));
 STS$VALUE = OTS$CVT_TZ_L (INPUT, VALUE, , FLAGS);
 IF ^STS$SUCCESS THEN RETURN (STS$VALUE);
 PUT SKIP EDIT (INPUT, 'Hex equals', VALUE, 'Decimal')
 (A,X,A,X,F(10),X,A);
 END;

END HEX_CONV;

This PL/I example translates a hexadecimal value in ASCII into a fixed binary value. This program
continues to prompt for input values until the user presses Ctrl/Z.

One sample of the output generated by this program is as follows:

$ RUN HEX
Hex value: 1A
1A Hex equals 26 Decimal

Hex value: C
C Hex equals 12 Decimal

Hex value: Ctrl/Z

OTS$DIVCx
OTS$DIVCx — The Complex Division routines return a complex result of a division on complex
numbers.

Format
OTS$DIVC complex-dividend ,complex-divisor

OTS$DIVCD_R3 complex-dividend ,complex-divisor (VAX only)

OTS$DIVCG_R3 complex-dividend ,complex-divisor

OTS$DIVCS complex-dividend ,complex-divisor

OTS$DIVCT_R3 complex-dividend ,complex-divisor

Each of these formats corresponds to one of the floating-point complex types.

Returns
OpenVMS usage: complex_number

type: F_floating complex, D_floating complex, G_floating complex, IEEE
S_floating complex, IEEE T_floating complex,

access: write only

mechanism: by value

38

Chapter 2. General-Purpose (OTS$) Routines

Complex result of complex division. OTS$DIVC returns an F-floating complex number.
OTS$DIVCD_R3 returns a D-floating complex number. OTS$DIVCG_R3 returns a G-floating complex
number. OST$DIVCS returns an IEEE S-floating complex number. OTS$DIVCT_R3 returns an IEEE
T-floating complex number.

Arguments
complex-dividend

OpenVMS usage: complex_number

type: F_floating complex, D_floating complex, G_floating complex, IEEE
S_floating complex, IEEE T_floating complex

access: read only

mechanism: by value

Complex dividend. The complex-dividend argument contains a floating-point complex value. For
OTS$DIVC, complex-dividend is an F-floating complex number. For OTS$DIVCD_R3, complex-
dividend is a D-floating complex number. For OTS$DIVCG_R3, complex-dividend is a G-floating
complex number. For OTS$DIVCT_R3, complex-dividend is an IEEE T-floating complex number.

complex-divisor

OpenVMS usage: complex_number

type: F_floating complex, D_floating complex, G_floating complex, IEEE
S_floating complex, IEEE T_floating complex

access: read only

mechanism: by value

Complex divisor. The complex-divisor argument contains the value of the divisor. For
OTS$DIVC,complex-divisor is an F-floating complex number. For OTS$DIVCD_R3, complex-divisor
is a D-floating complex number. For OTS$DIVCG_R3, complex-divisor is a G-floating complex
number. For OTS$DIVCS, complex-divisor is an IEEE S-floating complex number. For OTS$DIVCS,
complex-dividend is an IEEE S-floating complex number. For OTS$DIVCT_R3, complex-divisoris an
IEEE T-floating complex number.

Description
These routines return a complex result of a division on complex numbers.

The complex result is computed as follows:

1. Let (a,b) represent the complex dividend.

2. Let (c,d) represent the complex divisor.

3. Let (r,i) represent the complex quotient.

The results of this computation are as follows:

r = (ac + bd)/(c2 + d2)
i = (bc - ad)/(c2 + d2)

39

Chapter 2. General-Purpose (OTS$) Routines

On Alpha and I64 systems, some restrictions apply when linking OTS$DIVC or OTS$DIVCG_R3. See
Chapter 1 for more information about these restrictions.

Condition Values Signaled
SS$_FLTDIV_F Arithmetic fault. Floating-point division by zero.
SS$_FLTOVF_F Arithmetic fault. Floating-point overflow.

Examples
1.

C+
C This Fortran example forms the complex
C quotient of two complex numbers using
C OTS$DIVC and the Fortran random number
C generator RAN.
C
C Declare Z1, Z2, Z_Q, and OTS$DIVC as complex values.
C OTS$DIVC will return the complex quotient of Z1 divided
C by Z2: Z_Q = OTS$DIVC(%VAL(REAL(Z1)), %VAL(AIMAG(Z1),
C %VAL(REAL(Z2)), %VAL(AIMAG(Z2))
C-

 COMPLEX Z1,Z2,Z_Q,OTS$DIVC
C+
C Generate a complex number.
C-
 Z1 = (8.0,4.0)
C+
C Generate another complex number.
C-
 Z2 = (1.0,1.0)
C+
C Compute the complex quotient of Z1/Z2.
C-
 Z_Q = OTS$DIVC(%VAL(REAL(Z1)), %VAL(AIMAG(Z1)), %VAL(REAL(Z2)),
 + %VAL(AIMAG(Z2)))
 TYPE *, ' The complex quotient of',Z1,' divided by ',Z2,' is'
 TYPE *, ' ',Z_Q
 END

This Fortran program demonstrates how to call OTS$DIVC. The output generated by this program is
as follows:

The complex quotient of (8.000000,4.000000) divided by
 (1.000000,1.000000)
 is (6.000000,-2.000000)

2. C+
C This Fortran example forms the complex
C quotient of two complex numbers by using
C OTS$DIVCG_R3 and the Fortran random number
C generator RAN.
C
C Declare Z1, Z2, and Z_Q as complex values. OTS$DIVCG_R3
C will return the complex quotient of Z1 divided by Z2:

40

Chapter 2. General-Purpose (OTS$) Routines

C Z_Q = Z1/Z2
C-

 COMPLEX*16 Z1,Z2,Z_Q
C+
C Generate a complex number.
C-
 Z1 = (8.0,4.0)
C+
C Generate another complex number.
C-
 Z2 = (1.0,1.0)
C+
C Compute the complex quotient of Z1/Z2.
C-
 Z_Q = Z1/Z2
 TYPE *, ' The complex quotient of',Z1,' divided by ',Z2,' is'
 TYPE *, ' ',Z_Q
 END

This Fortran example uses the OTS$DIVCG_R3 entry point instead. Notice the difference in the
precision of the output generated:

 The complex quotient of (8.000000000000000,4.000000000000000) divided
 by
(1.000000000000000,1.000000000000000) is
 (6.000000000000000,-2.000000000000000)

OTS$DIV_PK_LONG
OTS$DIV_PK_LONG — The Packed Decimal Division with Long Divisor routine divides fixed-point
decimal data, which is stored in packed decimal form, when precision and scale requirements for the
quotient call for multiple precision division. The divisor must have a precision of 30 or 31 digits.

Format
OTS$DIV_PK_LONG
 packed-decimal-dividend ,packed-decimal-divisor ,divisor-precision
 ,packed-decimal-quotient ,quotient-precision ,precision-data ,scale-data

Returns
OpenVMS usage: cond_value

type: longword (unsigned)

access: write only

mechanism: by value

Arguments
packed-decimal-dividend

OpenVMS usage: varying_arg

41

Chapter 2. General-Purpose (OTS$) Routines

type: packed decimal string

access: read only

mechanism: by reference

Dividend. The packed-decimal-dividend argument is the address of a packed decimal string that
contains the shifted dividend.

Before being passed as input, the packed-decimal-dividend argument is always multiplied by 10c,
where c is defined as follows:

c = 31 - prec(packed-decimal-dividend)

Multiplying packed-decimal-dividend by 10c makes packed-decimal-dividend a 31-digit number.

packed-decimal-divisor

OpenVMS usage: varying_arg

type: packed decimal string

access: read only

mechanism: by reference

Divisor. The packed-decimal-divisor argument is the address of a packed decimal string that contains
the divisor.

divisor-precision

OpenVMS usage: word_signed

type: word (signed)

access: read only

mechanism: by value

Precision of the divisor. The divisor-precision argument is a signed word that contains the precision of
the divisor. The high-order bits are filled with zeros.

packed-decimal-quotient

OpenVMS usage: varying_arg

type: packed decimal string

access: write only

mechanism: by reference

Quotient. The packed-decimal-quotient argument is the address of the packed decimal string into
which OTS$DIV_PK_LONG writes the quotient.

quotient-precision

OpenVMS usage: word_signed

type: word (signed)

access: read only

42

Chapter 2. General-Purpose (OTS$) Routines

mechanism: by value

Precision of the quotient. The quotient-precision argument is a signed word that contains the precision
of the quotient. The high-order bits are filled with zeros.

precision-data

OpenVMS usage: word_signed

type: word (signed)

access: read only

mechanism: by value

Additional digits of precision required. The precision-data argument is a signed word that contains the
value of the additional digits of precision required.

OTS$DIV_PK_LONG computes the precision-data argument as follows:

precision-data = scale(packed-decimal-quotient)
+ scale(packed-decimal-divisor)
- scale(packed-decimal-dividend)
- 31 + prec(packed-decimal-dividend)

scale-data

OpenVMS usage: word_signed

type: word (signed)

access: read only

mechanism: by value

Scale factor of the decimal point. The scale-data argument is a signed word that contains the scale data.

OTS$DIV_PK_LONG defines the scale-data argument as follows:

scale-data = 31 - prec(packed-decimal-divisor)

Description
On VAX systems, before using this routine, you should determine whether it is best to use
OTSDIV_PK_LONG, OTSDIV_PK_SHORT, or the VAX instruction DIVP. To determine this, you
must first calculate b, where b is defined as follows:

b = scale(packed-decimal-quotient)
+ scale(packed-decimal-divisor)
- scale(packed-decimal-dividend)
+ prec(packed-decimal-dividend)

If b is greater than 31, then OTS$DIV_PK_LONG can be used to perform the division. If b is less than
31, you could use the instruction DIVP instead.

When using this routine on an OpenVMS Alpha system, an I64 system, or on an OpenVMS VAX
system and you have determined that you cannot use DIVP, you need to determine whether you should
use OTS$DIV_PK_LONG or OTS$DIV_PK_SHORT. To determine this, you must examine the value
of scale-data. If scale-data is less than or equal to 1, then you should use OTS$DIV_PK_LONG. If
scale-data is greater than 1, you should use OTS$DIV_PK_SHORT instead.

43

Chapter 2. General-Purpose (OTS$) Routines

Condition Values Returned
SS$_FLTDIV Fatal error. Division by zero.

Example
1

 OPTION &
 TYPE = EXPLICIT

 !+
 ! This program uses OTS$DIV_PK_LONG to perform packed decimal
 ! division.
 !-

 !+
 ! DECLARATIONS
 !-

 DECLARE DECIMAL (31, 2) NATIONAL_DEBT
 DECLARE DECIMAL (30, 3) POPULATION
 DECLARE DECIMAL (10, 5) PER_CAPITA_DEBT

 EXTERNAL SUB OTS$DIV_PK_LONG (DECIMAL(31,2), DECIMAL (30, 3), &
 WORD BY VALUE, DECIMAL(10, 5), WORD BY VALUE, WORD BY VALUE, &
 WORD BY VALUE)

 !+
 ! Prompt the user for the required input.
 !-

 INPUT "Enter national debt: ";NATIONAL_DEBT
 INPUT "Enter current population: ";POPULATION

 !+
 ! Perform the division and print the result.
 !
 ! scale(divd) = 2
 ! scale(divr) = 3
 ! scale(quot) = 5
 !
 ! prec(divd) = 31
 ! prec(divr) = 30
 ! prec(quot) = 10
 !
 ! prec-data = scale(quot) + scale(divr) - scale(divd) - 31 +
 ! prec(divd)
 ! prec-data = 5 + 3 - 2 - 31 + 31
 ! prec-data = 6
 !
 ! b = scale(quot) + scale(divr) - scale(divd) + prec(divd)
 ! b = 5 + 3 - 2 + 31
 ! b = 37
 !

44

Chapter 2. General-Purpose (OTS$) Routines

 ! c = 31 - prec(divd)
 ! c = 31 - 31
 ! c = 0
 !
 ! scale-data = 31 - prec(divr)
 ! scale-data = 31 - 30
 ! scale-data = 1
 !
 ! b is greater than 31, so either OTS$DIV_PK_LONG or
 ! OTS$DIV_PK_SHORT may be used to perform the division.
 ! If b is less than or equal to 31, then the DIVP
 ! instruction may be used.
 !
 ! scale-data is less than or equal to 1, so OTS$DIV_PK_LONG
 ! should be used instead of OTS$DIV_PK_SHORT.
 !
 !-

 CALL OTS$DIV_PK_LONG(NATIONAL_DEBT, POPULATION, '30'W,
 PER_CAPITA_DEBT, & '10'W, '6'W, '1'W)

 PRINT "The per capita debt is ";PER_CAPITA_DEBT
 END

This BASIC example program uses OTS$DIV_PK_LONG to perform packed decimal division. One
example of the output generated by this program is as follows:

$ RUN DEBT
Enter national debt: ? 12345678
Enter current population: ? 1212
The per capita debt is 10186.20297

OTS$DIV_PK_SHORT
OTS$DIV_PK_SHORT — The Packed Decimal Division with Short Divisor routine divides fixed-point
decimal data when precision and scale requirements for the quotient call for multiple-precision division.

Format
OTS$DIV_PK_SHORT
 packed-decimal-dividend ,packed-decimal-divisor ,divisor-precision
 ,packed-decimal-quotient ,quotient-precision ,precision-data

Returns
OpenVMS usage: cond_value

type: longword (unsigned)

access: write only

mechanism: by value

Arguments
packed-decimal-dividend

45

Chapter 2. General-Purpose (OTS$) Routines

OpenVMS usage: varying_arg

type: packed decimal string

access: read only

mechanism: by reference

Dividend. The packed-decimal-dividend argument is the address of a packed decimal string that
contains the shifted dividend.

Before being passed as input, the packed-decimal-dividend argument is always multiplied by 10c,
where c is defined as follows:

c = 31 - prec(packed-decimal-dividend)

Multiplying packed-decimal-dividend by 10c makes packed-decimal-dividend a 31-digit number.

packed-decimal-divisor

OpenVMS usage: varying_arg

type: packed decimal string

access: read only

mechanism: by reference

Divisor. The packed-decimal-divisor argument is the address of a packed decimal string that contains
the divisor.

divisor-precision

OpenVMS usage: word_signed

type: word (signed)

access: read only

mechanism: by value

Precision of the divisor. The divisor-precision argument is a signed word integer that contains the
precision of the divisor; high-order bits are filled with zeros.

packed-decimal-quotient

OpenVMS usage: varying_arg

type: packed decimal string

access: write only

mechanism: by reference

Quotient. The packed-decimal-quotient argument is the address of a packed decimal string into which
OTS$DIV_PK_SHORT writes the quotient.

quotient-precision

OpenVMS usage: word_signed

type: word (signed)

access: read only

46

Chapter 2. General-Purpose (OTS$) Routines

mechanism: by value

Precision of the quotient. The quotient-precision argument is a signed word that contains the precision
of the quotient; high-order bits are filled with zeros.

precision-data

OpenVMS usage: word_signed

type: word (signed)

access: read only

mechanism: by value

Additional digits of precision required. The precision-data argument is a signed word that contains the
value of the additional digits of precision required.

OTS$DIV_PK_SHORT computes the precision-data argument as follows:

precision-data = scale(packed-decimal-quotient)
+ scale(packed-decimal-divisor)
- scale(packed-decimal-dividend)
- 31 + prec(packed-decimal-dividend)

Description
On VAX systems, before using this routine, you should determine whether it is best to use
OTSDIV_PK_LONG, OTSDIV_PK_SHORT, or the VAX instruction DIVP. To determine this, you
must first calculate b, where b is defined as follows:

b = scale(packed-decimal-quotient) + scale(packed-decimal-divisor) -
 scale(packed-decimal-dividend) + prec(packed-decimal-dividend)

If b is greater than 31, then OTS$DIV_PK_SHORT can be used to perform the division. If b is less than
31, you could use the VAX instruction DIVP instead.

When using this routine on an OpenVMS Alpha system, an I64 system, or on an OpenVMS VAX
system and you have determined that you cannot use DIVP, you need to determine whether you should
use OTS$DIV_PK_LONG or OTS$DIV_PK_SHORT. To determine this, you must examine the value
of scale-data. If scale-data is less than or equal to 1, then you should use OTS$DIV_PK_LONG. If
scale-data is greater than 1, you should use OTS$DIV_PK_SHORT instead.

Condition Values Returned
SS$_FLTDIV Fatal error. Division by zero.

OTS$JUMP_TO_BPV (I64 Only)
OTS$JUMP_TO_BPV (I64 Only) — The Jump to Bound Procedure Value routine transfers control to a
bound procedure.

Format
OTS$JUMP_TO_BPV bound-func-value ,standard-args ,...

47

Chapter 2. General-Purpose (OTS$) Routines

Returns
None.

Arguments
bound-func-value

OpenVMS usage: quadword address

type: address

access: read only

mechanism: by value in register R1 (GP)

Function value for the procedure being called.

standard-args

Zero or more arguments to be passed to the called routine, passed using standard conventions (including
the AI register).

Description
When a procedure value that refers to a bound procedure descriptor is used to make a call, the routine
designated in the OTS_ENTRY field (typically OTS$JUMP_TO_BPV) receives control with the
GP register pointing to the bound procedure descriptor (instead of a global offset table). This routine
performs the following steps:

1. Load the "real" target entry address into a volatile branch register, for example, B6.

2. Load the dynamic environment value into the appropriate uplevel-addressing register for the target
function, for example, OTS$JUMP_TO_BPV uses R9.

3. Load the "real" target GP address into the GP register.

4. Transfer control (branch, not call) to the target entry address.

Control arrives at the real target procedure address with both the GP and environment register values
established appropriately.

Support routine OTS$JUMP_TO_BPV is included as a standard library routine. The operation of
OTS$JUMP_TO_BPV is logically equivalent to the following code:

 OTS$JUMP_TO_BPV::
 add gp=gp,24 ; Adjust GP to point to entry address
 ld8 r9=[gp],16 ; Load target entry address
 mov b6=r9
 ld8 r9=[gp],-8 ; Load target environment value
 ld8 gp=[gp] ; Load target GP
 br b6 ; Transfer to target

Note that there can be multiple OTS$JUMP_TO_BPV-like support routines, corresponding to different
target registers where the environment value should be placed. The code that creates the bound function
descriptor is also necessarily compiled by the same compiler that compiles the target procedure, thus can
correctly select an appropriate support routine.

48

Chapter 2. General-Purpose (OTS$) Routines

Condition Values Returned
None.

OTS$MOVE3
OTS$MOVE3 — The Move Data Without Fill routine moves up to 232 - 1 bytes (2,147,483,647 bytes)
from a specified source address to a specified destination address.

Format
OTS$MOVE3 length-value ,source-array ,destination-array

Corresponding JSB Entry Point
OTS$MOVE3_R5

Returns
None.

Arguments
length-value

OpenVMS usage: longword_signed

type: longword (signed)

access: read only

mechanism: by value

Number of bytes of data to move. The length-value argument is a signed longword that contains the
number of bytes to move. The value of length-value may range from 0 to 2,147,483,647 bytes.

source-array

OpenVMS usage: vector_byte_unsigned

type: byte (unsigned)

access: read only

mechanism: by reference, array reference

Data to be moved by OTS$MOVE3. The source-array argument contains the address of an unsigned
byte array that contains this data.

destination-array

OpenVMS usage: vector_byte_unsigned

type: byte (unsigned)

access: write only

mechanism: by reference, array reference

49

Chapter 2. General-Purpose (OTS$) Routines

Address into which source-array will be moved. The destination-array argument is the address of an
unsigned byte array into which OTS$MOVE3 writes the source data.

Description
OTS$MOVE3 performs the same function as the VAX MOVC3 instruction except that the length-value
is a longword integer rather than a word integer. When called from the JSB entry point, the register
outputs of OTS$MOVE3_R5 follow the same pattern as those of the MOVC3 instruction:

R0 0
R1 Address of one byte beyond the source string
R2 0
R3 Address of one byte beyond the destination string
R4 0
R5 0

For more information, see the description of the MOVC3 instruction in the VAX Architecture Reference
Manual. See also the routine LIB$MOVC3, which is a callable version of the MOVC3 instruction.

Condition Values Returned
None.

OTS$MOVE5
OTS$MOVE5 — The Move Data with Fill routine moves up to 232 - 1 bytes (2,147,483,647 bytes)
from a specified source address to a specified destination address, with separate source and destination
lengths, and with fill. Overlap of the source and destination arrays does not affect the result.

Format
OTS$MOVE5
 longword-int-source-length ,source-array ,fill-value
 ,longword-int-dest-length ,destination-array

Corresponding JSB Entry Point
OTS$MOVE5_R5

Returns
None.

Arguments
longword-int-source-length

OpenVMS usage: longword_signed

type: longword (signed)

access: read only

50

Chapter 2. General-Purpose (OTS$) Routines

mechanism: by value

Number of bytes of data to move. The longword-int-source-length argument is a signed longword that
contains this number. The value of longword-int-source-length may range from 0 to 2,147,483,647.

source-array

OpenVMS usage: vector_byte_unsigned

type: byte (unsigned)

access: read only

mechanism: by reference, array reference

Data to be moved by OTS$MOVE5. The source-array argument contains the address of an unsigned
byte array that contains this data.

fill-value

OpenVMS usage: byte_unsigned

type: byte (unsigned)

access: read only

mechanism: by value

Character used to pad the source data if longword-int-source-length is less than longword-int-dest-
length. The fill-value argument contains the address of an unsigned byte that is this character.

longword-int-dest-length

OpenVMS usage: longword_signed

type: longword (signed)

access: read only

mechanism: by value

Size of the destination area in bytes. The longword-int-dest-length argument is a signed longword
containing this size. The value of longword-int-dest-length may range from 0 through 2,147,483,647.

destination-array

OpenVMS usage: vector_byte_unsigned

type: byte (unsigned)

access: write only

mechanism: by reference, array reference

Address into which source-array is moved. The destination-array argument is the address of an
unsigned byte array into which OTS$MOVE5 writes the source data.

Description
OTS$MOVE5 performs the same function as the VAX MOVC5 instruction except that the longword-
int-source-length and longword-int-dest-length arguments are longword integers rather than word
integers. When called from the JSB entry point, the register outputs of OTS$MOVE5_R5 follow the
same pattern as those of the MOVC5 instruction:

51

Chapter 2. General-Purpose (OTS$) Routines

R0 Number of unmoved bytes remaining in source string
R1 Address of one byte beyond the source string
R2 0
R3 Address of one byte beyond the destination string
R4 0
R5 0

For more information, see the description of the MOVC5 instruction in the VAX Architecture Reference
Manual. See also the routine LIB$MOVC5, which is a callable version of the MOVC5 instruction.

Condition Values Returned
None.

OTS$MULCx
OTS$MULCx — The Complex Multiplication routines calculate the complex product of two complex
values.

Format
OTS$MULCD_R3 complex-multiplier ,complex-multiplicand (VAX only)

OTS$MULCG_R3 complex-multiplier ,complex-multiplicand

OTS$MULCT_R3 complex-multiplier ,complex-multiplicand

OTS$MULCS complex-multiplier ,complex-multiplicand

These formats correspond to the D-floating, G-floating, IEEE S-floating, and IEEE T-floating complex
types.

Returns
OpenVMS usage: complex_number

type: D_floating complex, G_floating complex, IEEE S_floating complex, IEEE
T_floating complex,

access: write only

mechanism: by value

Complex result of multiplying two complex numbers. OTS$MULCD_R3 returns a D-floating complex
number. OTS$MULCG_R3 returns a G-floating complex number. OTS$MULCS returns an IEEE S-
Floating complex number. OTS$MULCT_R3 returns an IEEE T-floating complex number.

Arguments
complex-multiplier

OpenVMS usage: complex_number

52

Chapter 2. General-Purpose (OTS$) Routines

type: D_floating complex, G_floating complex, S_floating complex, S_floating
complex

access: read only

mechanism: by value

Complex multiplier. The complex-multiplier argument contains the complex multiplier. For
OTS$MULCD_R3, complex-multiplier is a D-floating complex number. For OTS$MULCG_R3,
complex-multiplier is a G-floating complex number. For OTS$MULCS, complex-multiplier is a IEEE
S-Floating complex number. For OTS$MULCT_R3, complex-multiplier is an IEEE T-floating complex
number.

complex-multiplicand

OpenVMS usage: complex_number

type: D_floating complex, G_floating complex, IEEE S_floating complex, IEEE
T_floating complex

access: read only

mechanism: by value

Complex multiplicand. The complex-multiplicand argument contains the complex multiplicand. For
OTS$MULCD_R3, complex-multiplicand is a D-floating complex number. For OTS$MULCG_R3,
complex-multiplicand is a G-floating complex number. For OTS$MULCS, complex-multiplicandis an
IEEE S-floating complex number. For OTS$MULCT_R3, complex-multiplicand is an IEEE T-floating
complex number.

Description
OTS$MULCx calculates the complex product of two complex values.

The complex product is computed as follows:

1. Let (a,b) represent the complex multiplier.

2. Let (c,d) represent the complex multiplicand.

3. Let (r,i) represent the complex product.

The results of this computation are as follows:

 (a,b) * (c,d) = (ac-bd) + (ad+bc)

 Therefore: r = ac - bd
 Therefore: i = ad + bc

On Alpha and I64 systems, some restrictions apply when linking OTS$MULCG_R3, OTS$MULCS,
and OTS$MULCT_R3. See Chapter 1 for more information about these restrictions.

Condition Values Signaled
SS$_FLTOVF_F Floating value overflow can occur.
SS$_ROPRAND Reserved operand. OTS$MULCx encountered a floating-point reserved

operand because of incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit of 1 and a biased

53

Chapter 2. General-Purpose (OTS$) Routines

exponent of zero. Floating-point reserved operands are reserved for
future OpenVMS use.

Example
C+
C This Fortran example forms the product of
C two complex numbers using OTS$MULCD_R3
C and the Fortran random number generator RAN.
C
C Declare Z1, Z2, and Z_Q as complex values. OTS$MULCD_R3
C returns the complex product of Z1 times Z2:
C Z_Q = Z1 * Z2
C-

 COMPLEX*16 Z1,Z2,Z_Q
C+
C Generate a complex number.
C-
 Z1 = (8.0,4.0)
C+
C Generate another complex number.
C-
 Z2 = (2.0,3.0)
C+
C Compute the complex product of Z1*Z2.
C-
 Z_Q = Z1 * Z2
 TYPE *, ' The complex product of',Z1,' times ',Z2,' is'
 TYPE *, ' ',Z_Q
 END

This Fortran example uses OTS$MULCD_R3 to multiply two complex numbers. The output generated
by this program is as follows:

 The complex product of (8.000000000000000,4.000000000000000) times
(2.000000000000000,3.000000000000000) is
 (4.000000000000000,32.00000000000000)

OTS$POWCxCx
OTS$POWCxCx — The Raise a Complex Base to a Complex Floating-Point Exponent routines raise a
complex base to a complex exponent.

Format
OTS$POWCC complex-base ,complex-exponent-value

OTS$POWCDCD_R3 complex-base ,complex-exponent-value (VAX only)

OTS$POWCGCG_R3 complex-base ,complex-exponent-value

OTS$POWCSCS complex-base ,complex-exponent-value

OTS$POWCTCT_R3 complex-base ,complex-exponent-value

Each of these formats corresponds to one of the floating-point complex types.

54

Chapter 2. General-Purpose (OTS$) Routines

Returns
OpenVMS usage: complex_number

type: F_floating complex, D_floating complex, G_floating complex, IEEE
S_floating complex, IEEE T_floating complex

access: write only

mechanism: by value

Result of raising a complex base to a complex exponent. OTS$POWCC returns an F-floating complex
number. OTS$POWCDCD_R3 returns a D-floating complex number. OTS$POWCGCG_R3 returns
a G-floating complex number. OTS$POWCSCS returns an IEEE S-floating complex number.
OTS$POWCTCT_R3 returns an IEEE T-floating complex number.

Arguments
complex-base

OpenVMS usage: complex_number

type: F_floating complex, D_floating complex, G_floating complex, IEEE
S_floating complex, IEEE T_floating complex

access: read only

mechanism: by value

Complex base. The complex-base argument contains the value of the base. For OTS$POWCC,
complex-base is an F-floating complex number. For OTS$POWCDCD_R3, complex-base is a D-
floating complex number. For OTS$POWCGCG_R3, complex-base is a G-floating complex number.
For OTS$POWCSCS, complex-base is an IEEE S-floating complex number. For OTS$POWCTCT_R3,
complex-base is an IEEE T-floating complex number.

complex-exponent-value

OpenVMS usage: complex_number

type: F_floating complex, D_floating complex, G_floating complex, IEEE
S_floating complex, IEEE T_floating complex

access: read only

mechanism: by value

Complex exponent. The complex-exponent-value argument contains the value of the exponent. For
OTS$POWCC, complex-exponent-value is an F-floating complex number. For OTS$POWCDCD_R3,
complex-exponent-value is a D-floating complex number. For OTS$POWCGCG_R3, complex-
exponent-value is a G-floating complex number. For OTS$POWCSCS, complex-exponent-value is an
IEEE S-floating complex number. For OTS$POWCTCT_R3, complex-exponent-value is an IEEE T-
floating complex number.

Description
OTS$POWCC, OTS$POWCDCD_R3, OTS$POWCGCG_R3, OTS$POWCSCS, and
OTS$POWCSCT_R3 raise a complex base to a complex exponent. The American National Standard
FORTRAN-77 (ANSI X3.9—1978) defines complex exponentiation as follows:

55

Chapter 2. General-Purpose (OTS$) Routines

xy = exp(y * log(x))

In this example, x and y are of type COMPLEX.

On Alpha and I64 systems, some restrictions apply when linking OTS$POWCC or
OTS$POWCGCG_R3. See Chapter 1 for more information about these restrictions.

Condition Values Signaled
MTH$_INVARGMAT Invalid argument in math library. Base is (0.,0.).
MTH$_FLOOVEMAT Floating-point overflow in math library.
SS$_ROPRAND Reserved operand.

Examples
1. C+

C This Fortran example raises a complex base to a complex
C power using OTS$POWCC.
C
C Declare Z1, Z2, Z3, and OTS$POWCC as complex values. Then OTS$POWCC
C returns the complex result of Z1**Z2: Z3 = OTS$POWCC(Z1,Z2),
C where Z1 and Z2 are passed by value.
C-

 COMPLEX Z1,Z2,Z3,OTS$POWCC
C+
C Generate a complex base.
C-
 Z1 = (2.0,3.0)
C+
C Generate a complex power.
C-
 Z2 = (1.0,2.0)
C+
C Compute the complex value of Z1**Z2.
C-
 Z3 = OTS$POWCC(%VAL(REAL(Z1)), %VAL(AIMAG(Z1)),
 + %VAL(REAL(Z2)), %VAL(AIMAG(Z2)))
 TYPE *, ' The value of',Z1,'**',Z2,' is',Z3
 END

This Fortran example uses OTS$POWCC to raise an F-floating complex base to an F-floating
complex exponent.

The output generated by this program is as follows:

 The value of (2.000000,3.000000)** (1.000000,2.000000) is
(-0.4639565,-0.1995301)

2. C+
C This Fortran example raises a complex base to a complex
C power using OTS$POWCGCG_R3.
C
C Declare Z1, Z2, and Z3 as complex values. OTS$POWCGCG_R3
C returns the complex result of Z1**Z2: Z3 = Z1**Z2.
C-

56

Chapter 2. General-Purpose (OTS$) Routines

 COMPLEX*16 Z1,Z2,Z3
C+
C Generate a complex base.
C-
 Z1 = (2.0,3.0)
C+
C Generate a complex power.
C-
 Z2 = (1.0,2.0)
C+
C Compute the complex value of Z1**Z2.
C-
 Z3 = Z1**Z2
 TYPE 1,Z1,Z2,Z3
 1 FORMAT(' The value of (',F11.8,',',F11.8,')**(',F11.8,
 + ',',F11.8,') is (',F11.8,',',F11.8,').')
 END

This Fortran example program shows how to use OTS$POWCGCG_R3. Notice the high precision in
the output generated by this program:

The value of (2.00000000, 3.00000000)**(1.00000000, 2.00000000) is
(-0.46395650,-0.46395650).

OTS$POWCxJ
OTS$POWCxJ — The Raise a Complex Base to a Signed Longword Integer Exponent routines return
the complex result of raising a complex base to an integer exponent.

Format
OTS$POWCJ complex-base ,longword-integer-exponent

OTS$POWCDJ_R3 complex-base ,longword-integer-exponent (VAX only)

OTS$POWCGJ_R3 complex-base ,longword-integer-exponent (VAX only)

OTS$POWCSJ complex-base ,longword-integer-exponent

OTS$POWCTJ_R3 complex-base ,longword-integer-exponent

Each of these formats corresponds to one of the floating-point complex types.

Returns
OpenVMS usage: complex_number

type: F_floating complex, D_floating complex, G_floating complex, IEEE
S_floating complex, IEEE T_floating complex

access: write only

mechanism: by value

Complex result of raising a complex base to an integer exponent. OTS$POWCJ returns an F-floating
complex number. OTS$POWCDJ_R3 returns a D-floating complex number. OTS$POWCGJ_R3
returns a G-floating complex number. OTS$POWCGS_R3 returns an IEEE S-floating complex number.

57

Chapter 2. General-Purpose (OTS$) Routines

OTS$POWCGT_R3 returns an IEEE T-floating complex number. In each format, the result and base are
of the same data type.

Arguments
complex-base

OpenVMS usage: complex_number

type: F_floating complex, D_floating complex, G_floating complex, S_floating
complex, T_floating complex,

access: read only

mechanism: by value

Complex base. The complex-base argument contains the complex base. For OTS$POWCJ, complex-
base is an F-floating complex number. For OTS$POWCDJ_R3, complex-base is a D-floating complex
number. For OTS$POWCGJ_R3, complex-base is a G-floating complex number. For OTS$POWCSJ,
complex-base is an IEEE S-floating complex number. For OTS$POWCTJ_R3,complex-base is an IEEE
T-floating complex number.

longword-integer-exponent

OpenVMS usage: longword_signed

type: longword (signed)

access: read only

mechanism: by value

Exponent. The longword-integer-exponent argument is a signed longword containing the exponent.

Description
The OTS$POWCxJ routines return the complex result of raising a complex base to an integer exponent.
The complex result is as follows:

Base Exponent Result

Any > 0 The product of (base**2 i), where i is each nonzero bit in longword-integer-
exponent.

(0.,0.) <= 0 Undefined exponentiation.
Not
(0.,0.)

< 0 The product of (base**2 i), where i is each nonzero bit in longword-integer-
exponent.

Not
(0.,0.)

0 (1.0,0.0)

On Alpha and I64 systems, some restrictions apply when linking OTS$POWCJ, OTS$POWCSJ, and
OTS$POWCTJ_R3. See Chapter 1 for more information about these restrictions.

Condition Values Signaled
SS$_FLTDIV Floating-point division by zero.
SS$_FLTOVF Floating-point overflow.

58

Chapter 2. General-Purpose (OTS$) Routines

MTH$_UNDEXP Undefined exponentiation.

Example
+
C This Fortran example raises a complex base to
C a NONNEGATIVE integer power using OTS$POWCJ.
C
C Declare Z1, Z2, Z3, and OTS$POWCJ as complex values.
C Then OTS$POWCJ returns the complex result of
C Z1**Z2: Z3 = OTS$POWCJ(Z1,Z2),
C where Z1 and Z2 are passed by value.
C-
 COMPLEX Z1,Z3,OTS$POWCJ
 INTEGER Z2
C+
C Generate a complex base.
C-
 Z1 = (2.0,3.0)
C+
C Generate an integer power.
C-
 Z2 = 2

C+
C Compute the complex value of Z1**Z2.
C-
 Z3 = OTS$POWCJ(%VAL(REAL(Z1)), %VAL(AIMAG(Z1)), %VAL(Z2))
 TYPE 1,Z1,Z2,Z3
 1 FORMAT(' The value of (',F10.8,',',F11.8,')**',I1,' is
 + (',F11.8,',',F12.8,').')
 END

The output generated by this Fortran program is as follows:

The value of (2.00000000, 3.00000000)**2 is
(-5.00000000, 12.00000000).

OTS$POWDD
OTS$POWDD — The Raise a D-Floating Base to a D-Floating Exponent routine raises a D-floating
base to a D-floating exponent.

Format
OTS$POWDD D-floating-point-base ,D-floating-point-exponent

Returns
OpenVMS usage: floating_point

type: D_floating

access: write only

mechanism: by value

59

Chapter 2. General-Purpose (OTS$) Routines

Result of raising a D-floating base to a D-floating exponent.

Arguments
D-floating-point-base

OpenVMS usage: floating_point

type: D_floating

access: read only

mechanism: by value

Base. The D-floating-point-base argument is a D-floating number containing the base.

D-floating-point-exponent

OpenVMS usage: floating_point

type: D_floating

access: read only

mechanism: by value

Exponent. The D-floating-point-exponent argument is a D-floating number that contains the exponent.

Description
OTS$POWDD raises a D-floating base to a D-floating exponent.

The internal calculations and the floating-point result have the same precision as the base value.

The D-floating result for OTS$POWDD is given by the following:

Base Exponent Result

= 0 > 0 0.0
= 0 = 0 Undefined exponentiation
= 0 < 0 Undefined exponentiation
< 0 Any Undefined exponentiation
> 0 > 0 2 [exponent*log2(base)]

> 0 = 0 1.0
> 0 < 0 2 [exponent*log2(base)]

Floating-point overflow can occur.

Undefined exponentiation occurs if the base is zero and the exponent is zero or negative, or if the base is
negative.

Condition Values Signaled
MTH$_FLOOVEMAT Floating-point overflow in math library.
MTH$_FLOUNDMAT Floating-point underflow in math library.

60

Chapter 2. General-Purpose (OTS$) Routines

MTH$_UNDEXP Undefined exponentiation. This error is signaled if D-floating-point-
base is zero and D-floating-point-exponent is zero or negative, or if
the D-floating-point-base is negative.

OTS$POWDJ
OTS$POWDJ — The Raise a D-Floating Base to a Longword Exponent routine raises a D-floating base
to a longword exponent.

Format
OTS$POWDJ D-floating-point-base ,longword-integer-exponent

Returns
OpenVMS usage: floating_point

type: D_floating

access: write only

mechanism: by value

Result of raising a D-floating base to a longword exponent.

Arguments
D-floating-point-base

OpenVMS usage: floating_point

type: D_floating

access: read only

mechanism: by value

Base. The D-floating-point-base argument is a D-floating number containing the base.

longword-integer-exponent

OpenVMS usage: longword_signed

type: longword (signed)

access: read only

mechanism: by value

Exponent. The longword-integer-exponent argument is a signed longword that contains the signed
longword integer exponent.

Description
OTS$POWDJ raises a D-floating base to a longword exponent.

The internal calculations and the floating-point result have the same precision as the base value.

The floating-point result is as follows:

61

Chapter 2. General-Purpose (OTS$) Routines

Base Exponent Result

Any > 0 Product of (base**2 i), where i is each nonzero bit position in longword-
integer-exponent.

> 0 = 0 1.0
= 0 = 0 Undefined exponentiation.
< 0 = 0 1.0
> 0 < 0 1.0/(base**2 i), where i is each nonzero bit position in longword-integer-

exponent.
= 0 < 0 Undefined exponentiation.
< 0 < 0 1.0/(base**2 i), where i is each nonzero bit position in longword-integer-

exponent.

Floating-point overflow can occur.

Undefined exponentiation occurs if the base is zero and the exponent is zero or negative.

Condition Values Signaled
SS$_FLTOVF Arithmetic trap. This error is signaled by the hardware if a floating-

point overflow occurs.
MTH$_FLOOVEMAT Floating-point overflow in math library.
MTH$_FLOUNDMAT Floating-point underflow in math library.
MTH$_UNDEXP Undefined exponentiation. This error is signaled if D-floating-point-

base is zero and longword-integer-exponent is zero or negative, or if
the D-floating-point-base is negative.

OTS$POWDR
OTS$POWDR — The Raise a D-Floating Base to an F-Floating Exponent routine raises a D-floating
base to an F-floating exponent.

Format
OTS$POWDR D-floating-point-base ,F-floating-point-exponent

Returns
OpenVMS usage: floating_point

type: D_floating

access: write only

mechanism: by value

Result of raising a D-floating base to an F-floating exponent.

Arguments
D-floating-point-base

62

Chapter 2. General-Purpose (OTS$) Routines

OpenVMS usage: floating_point

type: D_floating

access: read only

mechanism: by value

Base. The D-floating-point-base argument is a D-floating number containing the base.

F-floating-point-exponent

OpenVMS usage: floating_point

type: F_floating

access: read only

mechanism: by value

Exponent. The F-floating-point-exponent argument is an F-floating number that contains the exponent.

Description
OTS$POWDR raises a D-floating base to an F-floating exponent.

The internal calculations and the floating-point result have the same precision as the base value.

OTS$POWDR converts the F-floating exponent to a D-floating number. The D-floating result for
OTS$POWDR is given by the following:

Base Exponent Result

= 0 > 0 0.0
= 0 = 0 Undefined exponentiation
= 0 < 0 Undefined exponentiation
< 0 Any Undefined exponentiation
> 0 > 0 2 [exponent*log2 (base)]

> 0 = 0 1.0
> 0 < 0 2 [exponent*log2 (base)]

Floating-point overflow can occur.

Undefined exponentiation occurs if the base is zero and the exponent is zero or negative, or if the base is
negative.

Condition Values Signaled
SS$_FLTOVF Arithmetic trap. This error is signaled by the hardware if a floating-

point overflow occurs.
MTH$_FLOOVEMAT Floating-point overflow in math library.
MTH$_FLOUNDMAT Floating-point underflow in math library.
MTH$_UNDEXP Undefined exponentiation. This error is signaled if D-floating-point-

base is zero and F-floating-point-exponent is zero or negative, or if the
D-floating-point-base is negative.

63

Chapter 2. General-Purpose (OTS$) Routines

OTS$POWGG
OTS$POWGG — The Raise a G-Floating Base to a G-Floating Exponent routine raises a G-floating
base to a G-floating exponent.

Format
OTS$POWGG G-floating-point-base ,G-floating-point-exponent

Returns
OpenVMS usage: floating_point

type: G_floating

access: write only

mechanism: by value

Result of raising a G-floating base to a G-floating exponent.

Arguments
G-floating-point-base

OpenVMS usage: floating_point

type: G_floating

access: read only

mechanism: by value

Base that OTS$POWGG raises to a G-floating exponent. The G-floating-point-base argument is a G-
floating number containing the base.

G-floating-point-exponent

OpenVMS usage: floating_point

type: G_floating

access: read only

mechanism: by value

Exponent to which OTS$POWGG raises the base. The G-floating-point-exponent argument is a G-
floating number containing the exponent.

Description
OTS$POWGG raises a G-floating base to a G-floating exponent.

The internal calculations and the floating-point result have the same precision as the base value.

The G-floating result for OTS$POWGG is as follows:

Base Exponent Result

= 0 > 0 0.0

64

Chapter 2. General-Purpose (OTS$) Routines

Base Exponent Result

= 0 = 0 Undefined exponentiation
= 0 < 0 Undefined exponentiation
< 0 Any Undefined exponentiation
> 0 > 0 2 [exponent*log2(base)]

> 0 = 0 1.0
> 0 < 0 2 [exponent*log2(base)]

Floating-point overflow can occur.

Undefined exponentiation occurs if the base is zero and the exponent is zero or negative, or if the base is
negative.

On Alpha and I64 systems, some restrictions apply when linking OTS$POWGG. See Chapter 1 for more
information about these restrictions.

Condition Values Signaled
SS$_FLTOVF Arithmetic trap. This error is signaled by the hardware if a floating-

point overflow occurs.
MTH$_FLOOVEMAT Floating-point overflow in math library.
MTH$_FLOUNDMAT Floating-point underflow in math library.
MTH$_UNDEXP Undefined exponent. This error is signaled if G-floating-point-base

is zero and G-floating-point-exponent is zero or negative, or if G-
floating-point-base is negative.

Example
C+
C This example demonstrates the use of OTS$POWGG,
C which raises a G-floating point base
C to a G-floating point power.
C-
 REAL*8 X,Y,RESULT,OTS$POWGG
C+
C The arguments of OTS$POWGG are passed by value. Fortran can
C only pass INTEGER and REAL*4 expressions as VALUE. Since
C INTEGER and REAL*4 values are one longword long, while REAL*8
C values are two longwords long, equate the base (and power) to
C two-dimensional INTEGER vectors. These vectors will be passed
C by VALUE.
C-
 INTEGER N(2),M(2)
 EQUIVALENCE (N(1),X), (M(1),Y)
 X = 8.0
 Y = 2.0
C+
C To pass X by value, pass N(1) and N(2) by value. Similarly for Y.
C-
 RESULT = OTS$POWGG(%VAL(N(1)),%VAL(N(2)),%VAL(M(1)),%VAL(M(2)))
 TYPE *,' 8.0**2.0 IS ',RESULT

65

Chapter 2. General-Purpose (OTS$) Routines

 X = 9.0
 Y = -0.5
C+
C In Fortran, OTS$POWWGG is indirectly called by simply using the
C exponentiation operator.
C-
 RESULT = X**Y
 TYPE *,' 9.0**-0.5 IS ',RESULT
 END

This Fortran example uses OTS$POWGG to raise a G-floating base to a G-floating exponent.

The output generated by this example is as follows:

8.0**2.0 IS 64.0000000000000
9.0**-0.5 IS 0.333333333333333

OTS$POWGJ
OTS$POWGJ — The Raise a G-Floating Base to a Longword Exponent routine raises a G-floating base
to a longword exponent.

Format
OTS$POWGJ G-floating-point-base ,longword-integer-exponent

Returns
OpenVMS usage: floating_point

type: G_floating

access: write only

mechanism: by value

Result of raising a G-floating base to a longword exponent.

Arguments
G-floating-point-base

OpenVMS usage: floating_point

type: G_floating

access: read only

mechanism: by value

Base that OTS$POWGJ raises to a longword exponent. The G-floating-point-base argument is a G-
floating number containing the base.

longword-integer-exponent

OpenVMS usage: longword_signed

type: longword (signed)

66

Chapter 2. General-Purpose (OTS$) Routines

access: read only

mechanism: by value

Exponent to which OTS$POWGJ raises the base. The longword-integer-exponent argument is a signed
longword containing the exponent.

Description
OTS$POWGJ raises a G-floating base to a longword exponent.

The internal calculations and the floating-point result have the same precision as the base value.

The floating-point result is as follows:

Base Exponent Result

Any > 0 Product of (base**2 i), where i is each nonzero bit position in longword-
integer-exponent.

> 0 = 0 1.0
= 0 = 0 Undefined exponentiation.
< 0 = 0 1.0
> 0 < 0 1.0/(base**2 i), where i is each nonzero bit position in longword-integer-

exponent.
= 0 < 0 Undefined exponentiation.
< 0 < 0 1.0/(base**2 i), where i is each nonzero bit position in longword-integer-

exponent.

Floating-point overflow can occur.

Undefined exponentiation occurs if the base is zero and the exponent is zero or negative.

On Alpha and I64 systems, some restrictions apply when linking OTS$POWGJ. See Chapter 1 for more
information about these restrictions.

Condition Values Signaled
SS$_FLTOVF Arithmetic trap. This error is signaled by the hardware if a floating-

point overflow occurs.
MTH$_FLOOVEMAT Floating-point overflow in math library.
MTH$_FLOUNDMAT Floating-point underflow in math library.
MTH$_UNDEXP Undefined exponent. This error is signaled if G-floating-point-base

is zero and longword-integer-exponent is zero or negative, or if G-
floating-point-base is negative.

OTS$POWHH_R3 (VAX Only)
OTS$POWHH_R3 (VAX Only) — On VAX systems, the Raise an H-Floating Base to an H-Floating
Exponent routine raises an H-floating base to an H-floating exponent.

67

Chapter 2. General-Purpose (OTS$) Routines

Format
OTS$POWHH_R3 H-floating-point-base ,H-floating-point-exponent

Returns
OpenVMS usage: floating_point

type: H_floating

access: write only

mechanism: by value

Result of raising an H-floating base to an H-floating exponent.

Arguments
H-floating-point-base

OpenVMS usage: floating_point

type: H_floating

access: read only

mechanism: by value

Base. The H-floating-point-base argument is an H-floating number containing the base.

H-floating-point-exponent

OpenVMS usage: floating_point

type: H_floating

access: read only

mechanism: by value

Exponent. The H-floating-point-exponent argument is an H-floating number that contains the H-
floating exponent.

Description
OTS$POWHH_R3 raises an H-floating base to an H-floating exponent.

The internal calculations and the floating-point result have the same precision as the base value.

The H-floating result for OTS$POWHH_R3 is as follows:

Base Exponent Result

= 0 > 0 0.0
= 0 = 0 Undefined exponentiation
= 0 < 0 Undefined exponentiation
< 0 Any Undefined exponentiation

68

Chapter 2. General-Purpose (OTS$) Routines

Base Exponent Result

> 0 > 0 2 [exponent*log2(base)]

> 0 = 0 1.0
> 0 < 0 2 [exponent*log2(base)]

Floating-point overflow can occur.

Undefined exponentiation occurs if the base is zero and the exponent is zero or negative, or if the base is
negative.

Condition Values Signaled
SS$_FLTOVF Arithmetic trap. This error is signaled by the hardware if a floating-

point overflow occurs.
MTH$_FLOOVEMAT Floating-point overflow in math library.
MTH$_FLOUNDMAT Floating-point underflow in math library.
MTH$_UNDEXP Undefined exponentiation. This error is signaled if H-floating-point-

base is zero and H-floating-point-exponent is zero or negative, or if
the H-floating-point-base is negative.

Example
C+
C Example of OTS$POWHH, which raises an H_floating
C point base to an H_floating point power. In Fortran,
C it is not directly called.
C-
 REAL*16 X,Y,RESULT
 X = 9877356535.0
 Y = -0.5837653
C+
C In Fortran, OTS$POWWHH is indirectly called by simply using the
C exponentiation operator.
C-
 RESULT = X**Y
 TYPE *,' 9877356535.0**-0.5837653 IS ',RESULT
 END

This Fortran example demonstrates how to call OTS$POWHH_R3 to raise an H-floating base to an H-
floating power.

The output generated by this program is as follows:

9877356535.0**-0.5837653 IS 1.463779145994628357482343598205427E-0006

OTS$POWHJ_R3 (VAX Only)
OTS$POWHJ_R3 (VAX Only) — On VAX systems, the Raise an H-Floating Base to a Longword
Exponent routine raises an H-floating base to a longword exponent.

69

Chapter 2. General-Purpose (OTS$) Routines

Format
OTS$POWHJ_R3 H-floating-point-base ,longword-integer-exponent

Returns
OpenVMS usage: floating_point

type: H_floating

access: write only

mechanism: by value

Result of raising an H-floating base to a longword exponent.

Arguments
H-floating-point-base

OpenVMS usage: floating_point

type: H_floating

access: read only

mechanism: by value

Base. The H-floating-point-base argument is an H-floating number containing the base.

longword-integer-exponent

OpenVMS usage: longword_signed

type: longword (signed)

access: read only

mechanism: by value

Exponent. The longword-integer-exponent argument is a signed longword that contains the signed
longword exponent.

Description
OTS$POWHJ_R3 raises an H-floating base to a longword exponent.

The internal calculations and the floating-point result have the same precision as the base value.

The floating-point result is as follows:

Base Exponent Result

Any > 0 Product of (base**2 i), where i is each nonzero bit position in longword-
integer-exponent.

> 0 = 0 1.0
= 0 = 0 Undefined exponentiation.

70

Chapter 2. General-Purpose (OTS$) Routines

Base Exponent Result

< 0 = 0 1.0
> 0 < 0 1.0/(base**2 i), where i is each nonzero bit position in longword-integer-

exponent.
= 0 < 0 Undefined exponentiation.
< 0 < 0 1.0/(base**2 i), where i is each nonzero bit position in longword-integer-

exponent.

Floating-point overflow can occur.

Undefined exponentiation occurs if the base is zero and the exponent is zero or negative.

Condition Values Signaled
SS$_FLTOVF Arithmetic trap. This error is signaled by the hardware if a floating-

point overflow occurs.
MTH$_FLOOVEMAT Floating-point overflow in math library.
MTH$_FLOUNDMAT Floating-point underflow in math library.
MTH$_UNDEXP Undefined exponentiation. This error is signaled if H-floating-point-

base is zero and longword-integer-exponent is zero or negative, or if
the H-floating-point-base is negative.

OTS$POWII
OTS$POWII — The Raise a Word Base to a Word Exponent routine raises a word base to a word
exponent.

Format
OTS$POWII word-integer-base ,word-integer-exponent

Returns
OpenVMS usage: word_signed

type: word (signed)

access: write only

mechanism: by value

Result of raising a word base to a word exponent.

Arguments
word-integer-base

OpenVMS usage: word_signed

type: word (signed)

71

Chapter 2. General-Purpose (OTS$) Routines

access: read only

mechanism: by value

Base. The word-integer-base argument is a signed word containing the base.

word-integer-exponent

OpenVMS usage: word_signed

type: word (signed)

access: read only

mechanism: by value

Exponent. The word-integer-exponent argument is a signed word containing the exponent.

Description
The OTS$POWII routine raises a word base to a word exponent.

On Alpha and I64 systems, some restrictions apply when linking OTS$POWII. See Chapter 1 for more
information about these restrictions.

Condition Values Signaled
SS$_FLTDIV Arithmetic trap. This error is signaled by the hardware if a floating-

point division by zero occurs.
SS$_FLTOVF Arithmetic trap. This error is signaled by the hardware if a floating-

point overflow occurs.
MTH$_UNDEXP Undefined exponentiation. This error is signaled if word-integer-base

is zero and word-integer-exponent is zero or negative, or if word-
integer-base is negative.

OTS$POWJJ
OTS$POWJJ — The Raise a Longword Base to a Longword Exponent routine raises a signed longword
base to a signed longword exponent.

Format
OTS$POWJJ longword-integer-base ,longword-integer-exponent

Returns
OpenVMS usage: longword_signed

type: longword (signed)

access: write only

mechanism: by value

Result of raising a signed longword base to a signed longword exponent.

72

Chapter 2. General-Purpose (OTS$) Routines

Arguments
longword-integer-base

OpenVMS usage: longword_signed

type: longword (signed)

access: read only

mechanism: by value

Base. The longword-integer-base argument is a signed longword containing the base.

longword-integer-exponent

OpenVMS usage: longword_signed

type: longword (signed)

access: read only

mechanism: by value

Exponent. The longword-integer-exponent argument is a signed longword containing the exponent.

Description
The OTS$POWJJ routine raises a signed longword base to a signed longword exponent.

On Alpha and I64 systems, some restrictions apply when linking OTS$POWJJ. See Chapter 1 for more
information about these restrictions.

Condition Values Signaled
SS$_FLTDIV Arithmetic trap. This error is signaled by the hardware if a floating-

point division by zero occurs.
SS$_FLTOVF Arithmetic trap. This error is signaled by the hardware if a floating-

point overflow occurs.
MTH$_UNDEXP Undefined exponentiation. This error is signaled if longword-integer-

base is zero and longword-integer-exponent is zero or negative, or if
longword-integer-base is negative.

OTS$POWLULU
OTS$POWLULU — The Raise an Unsigned Longword Base to an Unsigned Longword Exponent
routine raises an unsigned longword integer base to an unsigned longword integer exponent.

Format
OTS$POWLULU unsigned-lword-int-base, unsigned-lword-int-exponent

Returns
OpenVMS usage: longword_unsigned

73

Chapter 2. General-Purpose (OTS$) Routines

type: longword (unsigned)

access: write only

mechanism: by value

Result of raising an unsigned longword integer base to an unsigned longword integer exponent.

Arguments
unsigned-lword-int-base

OpenVMS usage: longword_unsigned

type: longword (unsigned)

access: read only

mechanism: by value

Unsigned longword integer base. The unsigned-lword-int-base argument contains the value of the
integer base.

unsigned-lword-int-exponent

OpenVMS usage: longword_unsigned

type: longword (unsigned)

access: read only

mechanism: by value

Unsigned longword integer exponent. The unsigned-lword-int-exponent argument contains the value of
the integer exponent.

Description
OTS$POWLULU returns the unsigned longword integer result of raising an unsigned longword integer
base to an unsigned longword integer exponent. Note that overflow cannot occur in this routine. If the
result or intermediate result is greater than 32 bits, the low-order 32 bits are used.

On Alpha and I64 systems, some restrictions apply when linking OTS$POWLULU. See Chapter 1 for
more information about these restrictions.

Condition Values Signaled
MTH$_UNDEXP Both the base and exponent values are zero.

OTS$POWRD
OTS$POWRD — The Raise an F-Floating Base to a D-Floating Exponent routine raises an F-floating
base to a D-floating exponent.

Format
OTS$POWRD F-floating-point-base ,D-floating-point-exponent

74

Chapter 2. General-Purpose (OTS$) Routines

Returns
OpenVMS usage: floating_point

type: D_floating

access: write only

mechanism: by value

Result of raising an F-floating base to a D-floating exponent.

Arguments
F-floating-point-base

OpenVMS usage: floating_point

type: F_floating

access: read only

mechanism: by value

Base. The F-floating-point-base argument is an F-floating number containing the base.

D-floating-point-exponent

OpenVMS usage: floating_point

type: D_floating

access: read only

mechanism: by value

Exponent. The D-floating-point-exponent argument is a D-floating number that contains the exponent.

Description
OTS$POWRD raises an F-floating base to a D-floating exponent.

The internal calculations and the floating-point result have the same precision as the base value.

OTS$POWRD first converts the F-floating base to D-floating. The D-floating result for OTS$POWRD
is as follows:

Base Exponent Result

= 0 > 0 0.0
= 0 = 0 Undefined exponentiation
= 0 < 0 Undefined exponentiation
< 0 Any Undefined exponentiation
> 0 > 0 2 [exponent*LOG2(base)]

> 0 = 0 1.0
> 0 < 0 2 [exponent*LOG2(base)]

Floating-point overflow can occur.

75

Chapter 2. General-Purpose (OTS$) Routines

Undefined exponentiation occurs if the base is zero and the exponent is zero or negative, or if the base is
negative.

Condition Values Signaled
SS$_FLTOVF Arithmetic trap. This error is signaled by the hardware if a floating-

point overflow occurs.
MTH$_FLOOVEMAT Floating-point overflow in math library.
MTH$_FLOUNDMAT Floating-point underflow in math library.
MTH$_UNDEXP Undefined exponentiation. This error is signaled if F-floating-point-

baseis zero and D-floating-point-exponent is zero or negative, or if F-
floating-point-base is negative.

Example
C+
C This Fortran example uses OTS$POWRD, to raise an F-floating point
C base to a D-floating point exponent. The result is a D-floating value.
C-
 REAL*4 X
 REAL*8 Y,RESULT,OTS$POWRD
 INTEGER M(2)
 EQUIVALENCE (M(1),Y)
 X = 9768.0
 Y = 9.0
C+
C The arguments of OTS$POWRD are passed by value.
C-
 RESULT = OTS$POWRD(%VAL(X),%VAL(M(1)),%VAL(M(2)))
 TYPE *,' 9768.0**9.0 IS ',RESULT
 X = 7689.0
 Y = -0.587436654545
C+
C In Fortran, OTS$POWRD is indirectly called by the exponentiation
C operator.
C-
 RESULT = X**Y
 TYPE *,' 7689.0**-0.587436654545 IS ',RESULT
 END

This Fortran example uses OTS$POWRD to raise an F-floating base to a D-floating exponent. Notice
the difference in the precision of the result produced by this routine in comparison to the result produced
by OTS$POWRR. The output generated by this program is as follows:

9768.0**9.0 IS 8.0956338648832908E+35
7689.0**-0.587436654545 IS 5.2155199252836588E-03

OTS$POWRJ
OTS$POWRJ — The Raise an F-Floating Base to a Longword Exponent routine raises an F-floating
base to a longword exponent.

76

Chapter 2. General-Purpose (OTS$) Routines

Format
OTS$POWRJ F-floating-point-base ,longword-integer-exponent

Returns
OpenVMS usage: floating_point

type: F_floating

access: write only

mechanism: by value

Result of raising an F-floating base to a longword exponent.

Arguments
F-floating-point-base

OpenVMS usage: floating_point

type: F_floating

access: read only

mechanism: by value

Base. The F-floating-point-base argument is an F-floating number containing the base.

longword-integer-exponent

OpenVMS usage: longword_signed

type: longword (signed)

access: read only

mechanism: by value

Exponent. The longword-integer-exponent argument is a signed longword that contains the longword
exponent.

Description
OTS$POWRJ raises an F-floating base to a longword exponent.

The internal calculations and the floating-point result have the same precision as the base value.

The floating-point result is as follows:

Base Exponent Result

Any > 0 Product of (base**2 i), where i is each nonzero bit position in longword-
integer-exponent.

> 0 = 0 1.0
= 0 = 0 Undefined exponentiation.
< 0 = 0 1.0

77

Chapter 2. General-Purpose (OTS$) Routines

Base Exponent Result

> 0 < 0 1.0/(base**2 i), where i is each nonzero bit position in longword-integer-
exponent.

= 0 < 0 Undefined exponentiation.
< 0 < 0 1.0/(base**2 i), where i is each nonzero bit position in longword-integer-

exponent.

Floating-point overflow can occur.

Undefined exponentiation occurs if the base is zero and the exponent is zero or negative.

On Alpha and I64 systems, some restrictions apply when linking OTS$POWRJ. See Chapter 1 for more
information about these restrictions.

Condition Values Signaled
SS$_FLTOVF Arithmetic trap. This error is signaled by the hardware if a floating-

point overflow occurs.
MTH$_FLOOVEMAT Floating-point overflow in math library.
MTH$_FLOUNDMAT Floating-point underflow in math library.
MTH$_UNDEXP Undefined exponentiation. This error is signaled if F-floating-point-

baseis zero and longword-integer-exponent is zero or negative, or if F-
floating-point-base is negative.

OTS$POWRR
OTS$POWRR — The Raise an F-Floating Base to an F-Floating Exponent routine raises an F-floating
base to an F-floating exponent.

Format
OTS$POWRR F-floating-point-base ,F-floating-point-exponent

Returns
OpenVMS usage: floating_point

type: F_floating

access: write only

mechanism: by value

Result of raising an F-floating base to an F-floating exponent.

Arguments
F-floating-point-base

OpenVMS usage: floating_point

type: F_floating

78

Chapter 2. General-Purpose (OTS$) Routines

access: read only

mechanism: by value

Base. The F-floating-point-base argument is an F-floating number containing the base.

F-floating-point-exponent

OpenVMS usage: floating_point

type: F_floating

access: read only

mechanism: by value

Exponent. The F-floating-point-exponent argument is an F-floating number that contains the exponent.

Description
OTS$POWRR raises an F-floating base to an F-floating exponent.

The internal calculations and the floating-point result have the same precision as the base value.

The F-floating result for OTS$POWRR is as follows:

Base Exponent Result

= 0 > 0 0.0
= 0 = 0 Undefined exponentiation
= 0 < 0 Undefined exponentiation
< 0 Any Undefined exponentiation
> 0 > 0 2 [exponent*log2(base)]

> 0 = 0 1.0
> 0 < 0 2 [exponent*log2(base)]

Floating-point overflow can occur.

Undefined exponentiation occurs if the base is zero and the exponent is zero or negative, or if the base is
negative.

On Alpha and i64 systems, some restrictions apply when linking OTS$POWRR. See Chapter 1 for more
information about these restrictions.

Condition Values Signaled
SS$_FLTOVF Arithmetic trap. This error is signaled by the hardware if a floating-

point overflow occurs.
MTH$_FLOOVEMAT Floating-point overflow in math library.
MTH$_FLOUNDMAT Floating-point underflow in math library.
MTH$_UNDEXP Undefined exponentiation. This error is signaled if F-floating-point-

baseis zero and F-floating-point-exponent is zero or negative, or if F-
floating-point-base is negative.

79

Chapter 2. General-Purpose (OTS$) Routines

Example
C+
C This Fortran example demonstrates the use
C of OTS$POWRR, which raises an F-floating
C point base to an F-floating point power.
C-

 REAL*4 X,Y,RESULT,OTS$POWRR
 X = 8.0
 Y = 2.0

C+
C The arguments of OTS$POWRR are passed by value.
C-

 RESULT = OTS$POWRR(%VAL(X),%VAL(Y))
 TYPE *,' 8.0**2.0 IS ',RESULT
 X = 9.0
 Y = -0.5

C+
C In Fortran, OTS$POWRR is indirectly called by simply
C using the exponentiation operator.
C-

 RESULT = X**Y
 TYPE *,' 9.0**-0.5 IS ',RESULT
 END

This Fortran example uses OTS$POWRR to raise an F-floating point base to an F-floating point
exponent. The output generated by this program is as follows:

8.0**2.0 IS 64.00000
9.0**-0.5 IS 0.3333333

OTS$POWSJ
OTS$POWSJ — The Raise an IEEE S-Floating Base to a Longword Exponent routine raises an IEEE S-
floating base to a longword exponent.

Format
OTS$POWSJ S-floating-point-base ,longword-integer-exponent

Returns

OpenVMS usage: floating_point

type: S_floating

access: write only

80

Chapter 2. General-Purpose (OTS$) Routines

mechanism: by value

Result of raising an IEEE S-floating base to a longword exponent.

Arguments
S-floating-point-base

OpenVMS usage: floating_point

type: S_floating

access: read only

mechanism: by value

Base. The S-floating-point-base argument is an IEEE S-floating number containing the base.

longword-integer-exponent

OpenVMS usage: longword_signed

type: longword (signed)

access: read only

mechanism: by value

Exponent. The longword-integer-exponent argument is a signed longword that contains the longword
exponent.

Description
OTS$POWSJ raises an IEEE S-floating base to a longword exponent.

The internal calculations and the floating-point result have the same precision as the base value.

The floating-point result is as follows:

Base Exponent Result

Any > 0 Product of (base**2 i), where i is each nonzero bit position in longword-
integer-exponent.

> 0 = 0 1.0
= 0 = 0 Undefined exponentiation.
< 0 = 0 1.0
> 0 < 0 1.0/(base**2 i), where i is each nonzero bit position in longword-integer-

exponent.
= 0 < 0 Undefined exponentiation.
< 0 < 0 1.0/(base**2 i), where i is each nonzero bit position in longword-integer-

exponent.

Floating-point overflow can occur.

Undefined exponentiation occurs if the base is zero and the exponent is zero or negative.

81

Chapter 2. General-Purpose (OTS$) Routines

On Alpha and I64 systems, some restrictions apply when linking OTS$POWSJ. See Chapter 1 for more
information about these restrictions.

Condition Values Signaled
SS$_FLTOVF Arithmetic trap. This error is signaled by the hardware if a floating-

point overflow occurs.
MTH$_FLOOVEMAT Floating-point overflow in math library.
MTH$_FLOUNDMAT Floating-point underflow in math library.
MTH$_UNDEXP Undefined exponentiation. This error is signaled if S-floating-point-

baseis zero and longword-integer-exponent is zero or negative, or if S-
floating-point-base is negative.

OTS$POWSS
OTS$POWSS — The Raise an IEEE S-Floating Base to an IEEE S-Floating Exponent routine raises a
IEEE S-floating base to an IEEE S-floating exponent.

Format
OTS$POWSS S-floating-point-base ,S-floating-point-exponent

Returns
OpenVMS usage: floating_point

type: IEEE S_floating

access: write only

mechanism: by value

Result of raising an IEEE S-floating base to an IEEE S-floating exponent.

Arguments
S-floating-point-base

OpenVMS usage: floating_point

type: IEEE S_floating

access: read only

mechanism: by value

Base that OTS$POWSS raises to an IEEE S-floating exponent. The S-floating-point-base argument is
an IEEE S-floating number containing the base.

S-floating-point-exponent

OpenVMS usage: floating_point

type: IEEE S_floating

access: read only

82

Chapter 2. General-Purpose (OTS$) Routines

mechanism: by value

Exponent to which OTS$POWSS raises the base. The S-floating-point-exponent argument is an IEEE
S-floating number containing the exponent.

Description
OTS$POWSS raises an IEEE S-floating base to an IEEE S-floating exponent.

The internal calculations and the floating-point result have the same precision as the base value.

The S-floating result for OTS$POWSS is as follows:

Base Exponent Result

= 0 > 0 0.0
= 0 = 0 Undefined exponentiation
= 0 < 0 Undefined exponentiation
< 0 Any Undefined exponentiation
> 0 > 0 2 [exponent*log2(base)]

> 0 = 0 1.0
> 0 < 0 2 [exponent*log2(base)]

Floating-point overflow can occur.

Undefined exponentiation occurs if the base is zero and the exponent is zero or negative, or if the base is
negative.

On Alpha and I64 systems, some restrictions apply when linking OTS$POWSS. See Chapter 1 for more
information about these restrictions.

Condition Values Signaled
SS$_FLTOVF Arithmetic trap. This error is signaled by the hardware if a floating-

point overflow occurs.
MTH$_FLOOVEMAT Floating-point overflow in math library.
MTH$_FLOUNDMAT Floating-point underflow in math library.
MTH$_UNDEXP Undefined exponent. This error is signaled if S-floating-point-base

is zero and S-floating-point-exponent is zero or negative, or if S-
floating-point-base is negative.

Example
The following example demonstrates the use of OTS$POWSS.

C+
C This Fortran example demonstrates the use of
C OTS$POWSS, which raises an IEEE S-floating
C point base to an IEEE S-floating point power.
C-

83

Chapter 2. General-Purpose (OTS$) Routines

 OPTIONS /FLOAT=IEEE_FLOAT

 REAL*4 X,Y,RESULT,OTS$POWSS
 X = 10.0
 Y = 3.0

C+
C The arguments of OTS$POWSS are passed by value.
C-

 RESULT = OTS$POWSS(%VAL(X),%VAL(Y))
 TYPE *,' 10.0**3.0 IS ',RESULT
 X = 9.0
 Y = -0.5

C+
C In Fortran, OTS$POWSS is indirectly called by
C simply using the exponentiation operator.
C-

 RESULT = X**Y
 TYPE *,' 9.0**-0.5 IS ',RESULT
 END

This Fortran example uses OTS$POWSS to raise an IEEE S-floating point base to an IEEE S-floating
point exponent. The output generated by this program is as follows:

 10.0**3.0 IS 1000.000
 9.0**-0.5 IS 0.3333333

OTS$POWTJ
OTS$POWTJ — The Raise a T-Floating base to a Longword Exponent routine raises an IEEE T-
floating base to a longword exponent.

Format
OTS$POWTJ T-floating-point-base ,longword-integer-exponent

Returns
OpenVMS usage: floating_point

type: IEEE T_floating

access: write only

mechanism: by value

Result of raising an IEEE T-floating base to a longword exponent.

Arguments
T-floating-point-base

OpenVMS usage: floating_point

84

Chapter 2. General-Purpose (OTS$) Routines

type: IEEE T_floating

access: read only

mechanism: by value

Base. The T-floating-point-base argument is an IEEE T-floating number containing the base.

longword-integer-exponent

OpenVMS usage: longword_signed

type: longword (signed)

access: read only

mechanism: by value

Exponent. The longword-integer-exponent argument is a signed longword that contains the longword
exponent.

Description
OTS$POWTJ raises an IEEE T-floating base to a longword exponent.

The internal calculations and the floating-point result have the same precision as the base value.

The floating-point result is as follows:

Base Exponent Result

Any > 0 Product of (base**2 i), where i is each nonzero bit position in longword-
integer-exponent.

> 0 = 0 1.0
= 0 = 0 Undefined exponentiation.
< 0 = 0 1.0
> 0 < 0 1.0/(base**2 i), where i is each nonzero bit position in longword-integer-

exponent.
= 0 < 0 Undefined exponentiation.
< 0 < 0 1.0/(base**2 i), where i is each nonzero bit position in longword-integer-

exponent.

Floating-point overflow can occur.

Undefined exponentiation occurs if the base is zero and the exponent is zero or negative.

On Alpha and I64 systems, some restrictions apply when linking OTS$POWTJ. See Chapter 1 for more
information about these restrictions.

Condition Values Signaled
SS$_FLTOVF Arithmetic trap. This error is signaled by the hardware if a floating-

point overflow occurs.
MTH$_FLOOVEMAT Floating-point overflow in math library.

85

Chapter 2. General-Purpose (OTS$) Routines

MTH$_FLOUNDMAT Floating-point underflow in math library.
MTH$_UNDEXP Undefined exponentiation. This error is signaled if T-floating-point-

base is zero and longword-integer-exponent is zero or negative, or if
T-floating-point-base is negative.

OTS$POWTT
OTS$POWTT — The Raise an IEEE T-Floating Base to an IEEE T-Floating Exponent routine raises an
IEEE T-floating base to an IEEE T-floating exponent.

Format
OTS$POWTT T-floating-point-base ,T-floating-point-exponent

Returns
OpenVMS usage: floating_point

type: IEEE T_floating

access: write only

mechanism: by value

Result of raising an IEEE T-floating base to an IEEE T-floating exponent.

Arguments
T-floating-point-base

OpenVMS usage: floating_point

type: IEEE T_floating

access: read only

mechanism: by value

Base that OTS$POWTT raises to an IEEE T-floating exponent. The T-floating-point-base argument is
an IEEE T-floating number containing the base.

T-floating-point-exponent

OpenVMS usage: floating_point

type: IEEE T_floating

access: read only

mechanism: by value

Exponent to which OTS$POWTT raises the base. The T-floating-point-exponent argument is an IEEE
T-floating number containing the exponent.

Description
OTS$POWTT raises an IEEE T-floating base to an IEEE T-floating exponent.

86

Chapter 2. General-Purpose (OTS$) Routines

The internal calculations and the floating-point result have the same precision as the base value.

The T-floating result for OTS$POWTT is as follows:

Base Exponent Result

= 0 > 0 0.0
= 0 = 0 Undefined exponentiation
= 0 < 0 Undefined exponentiation
< 0 Any Undefined exponentiation
> 0 > 0 2 [exponent*log2(base)]

> 0 = 0 1.0
> 0 < 0 2 [exponent*log2(base)]

Floating-point overflow can occur.

Undefined exponentiation occurs if the base is zero and the exponent is zero or negative, or if the base is
negative.

On Alpha and I64 systems, some restrictions apply when linking OTS$POWTT. See Chapter 1 for more
information about these restrictions.

Condition Values Signaled
SS$_FLTOVF Arithmetic trap. This error is signaled by the hardware if a floating-

point overflow occurs.
MTH$_FLOOVEMAT Floating-point overflow in math library.
MTH$_FLOUNDMAT Floating-point underflow in math library.
MTH$_UNDEXP Undefined exponent. This error is signaled if T-floating-point-base

is zero and T-floating-point-exponent is zero or negative, or if T-
floating-point-base is negative.

Example
The following example demonstrates the use of OTS$POWTT.

C+
C This Fortran example demonstrates the use of
C OTS$POWTT, which raises an IEEE T-floating
C point base to an IEEE T-floating point power.
C-

 OPTIONS /FLOAT=IEEE_FLOAT

 REAL*8 X,Y,RESULT,OTS$POWTT
 X = 10.0
 Y = 3.0

C+
C The arguments of OTS$POWTT are passed by value.
C-

87

Chapter 2. General-Purpose (OTS$) Routines

 RESULT = OTS$POWTT(%VAL(X),%VAL(Y))
 TYPE *,' 10.0**3.0 IS ',RESULT
 X = 9.0
 Y = -0.5

C+
C In Fortran, OTS$POWTT is indirectly called by
C simply using the exponentiation operator.
C-

 RESULT = X**Y
 TYPE *,' 9.0**-0.5 IS ',RESULT
 END

This Fortran example uses OTS$POWTT to raise an IEEE T-floating point base to an IEEE T-floating
point exponent. The output generated by this program is as follows:

 10.0**3.0 IS 1000.00000000000
 9.0**-0.5 IS 0.333333333333333

OTS$POWxLU
OTS$POWxLU — The Raise a Floating-Point Base to an Unsigned Longword Integer Exponent
routines raise a floating-point base to an unsigned longword integer exponent.

Format
OTS$POWRLU floating-point-base ,unsigned-lword-int-exponent

OTS$POWDLU floating-point-base ,unsigned-lword-int-exponent

OTS$POWGLU floating-point-base ,unsigned-lword-int-exponent

OTS$POWSLU floating-point-base ,unsigned-lword-int-exponent

OTS$POWTLU floating-point-base ,unsigned-lword-int-exponent

OTS$POWHLU_R3 floating-point-base ,unsigned-lword-int-exponent (VAX only)

Returns
OpenVMS usage: floating_point

type: F_floating, D_floating, G_floating, H_floating, IEEE S_floating, IEEE
T_floating

access: write only

mechanism: by value

Result of raising a floating-point base to an unsigned longword integer exponent. OTS$POWRLU
returns an F-floating number. OTS$POWDLU returns a D-floating number. OTS$POWGLU returns
a G-floating number. OTS$POWSLU returns an IEEE S-floating number. OTS$POWTLU returns an
IEEE T-floating number.

On VAX systems, OTS$POWHLU_R3 returns an H-floating number.

88

Chapter 2. General-Purpose (OTS$) Routines

Arguments
floating-point-base

OpenVMS usage: floating_point

type: F_floating, D_floating, G_floating, H_floating, IEEE S_floating, IEEE
T_floating

access: read only

mechanism: by value

Floating-point base. The floating-point-base argument contains the value of the base. For
OTS$POWRLU, floating-point-base is an F-floating number. For OTS$POWDLU, floating-point-
base is a D-floating number. For OTS$POWGLU, floating-point-base is a G-floating number. For
OTS$POWHLU_R3, floating-point-base is an H-floating number. For OTS$POWSLU, floating-
point-base is an IEE S-floating number. For OTS$POWTLU, floating-point-base is an IEEE T-floating
number.

unsigned-lword-int-exponent

OpenVMS usage: longword_unsigned

type: longword (unsigned)

access: read only

mechanism: by value

Integer exponent. The unsigned-lword-int-exponent argument contains the value of the unsigned
longword integer exponent.

Description
The OTS$POWxLU routines return the result of raising a floating-point base to an unsigned longword
integer exponent. The floating-point result is as follows:

Base Exponent Result

Any > 0 Product of (base*2 i), where i is each nonzero bit position in longword-
integer-exponent.

> 0 = 0 1.0
= 0 = 0 Undefined exponentiation.
< 0 = 0 1.0

On Alpha and I64 systems, some restrictions apply when linking OTS$POWRLU, OTS$POWGLU,
OTS$POWSLU, and OTS$POWTLU. See Chapter 1 for more information about these restrictions.

Condition Values Signaled
MTH$_FLOOVEMAT Floating-point overflow in math library.
MTH$_FLOUNDMAT Floating-point underflow in math library. This can only occur if the

caller has floating-point underflow enabled.

89

Chapter 2. General-Purpose (OTS$) Routines

MTH$_UNDEXP Undefined exponentiation. This occurs if both the floating-point-base
andunsigned-longword-integer-exponent arguments are zero.

OTS$SCOPY_DXDX
OTS$SCOPY_DXDX — The Copy a Source String Passed by Descriptor to a Destination String
routine copies a source string to a destination string. Both strings are passed by descriptor.

Format
OTS$SCOPY_DXDX source-string ,destination-string

Corresponding JSB Entry Point
OTS$SCOPY_DXDX6

Returns
OpenVMS usage: word_unsigned

type: word (unsigned)

access: write only

mechanism: by value

Number of bytes not moved to the destination string if the length of source-string is greater than the
length of destination-string. The value is 0 (zero) otherwise.

Arguments
source-string

OpenVMS usage: char_string

type: character string

access: read only

mechanism: by descriptor

Source string. The source-string argument is the address of a descriptor pointing to the source string.
The descriptor class can be unspecified, fixed length, dynamic, scalar decimal, array, noncontiguous
array, or varying.

destination-string

OpenVMS usage: char_string

type: character string

access: write only

mechanism: by descriptor

Destination string. The destination-string argument is the address of a descriptor pointing to the
destination string. The class field determines the appropriate action.

See the Description section for further information.

90

Chapter 2. General-Purpose (OTS$) Routines

Description
OTS$SCOPY_DXDX copies a source string to a destination string. It passes the source string
by descriptor. If the length of the source string is greater than the length of the destination string,
OTS$SCOPY_DXDX returns the number of bytes not moved to the destination string. If the length of
the source string is less than or equal to the length of the destination string, it returns 0 (zero). All error
conditions except truncation are signaled; truncation is ignored.

An equivalent JSB entry point is provided, with R0 being the first argument (the descriptor of the source
string), and R1 the second (the descriptor of the destination string). On return, R0 through R5 and the
PSL are as they would be after a VAX MOVC5 instruction. R0 through R5 contain the following:

R0 Number of bytes of source string not moved to destination string
R1 Address one byte beyond the last copied byte in the source string
R2 0
R3 Address one byte beyond the destination string
R4 0
R5 0

For further information, see the VAX Architecture Reference Manual.

The actions taken by OTS$SCOPY_DXDX depend on the descriptor class of the destination string. The
following table describes these actions for each descriptor class:

Descriptor
Class

Action

S, Z, SD, A,
NCA

Copy the source string. If needed, space fill or truncate on the right.

D If the area specified by the destination descriptor is large enough to contain the source
string, copy the source string and set the new length in the destination descriptor.

If the area specified is not large enough, return the previous space allocation if any, and
then dynamically allocate the amount of space needed. Copy the source string and set
the new length and address in the destination descriptor.

VS Copy source string to destination string up to the limit of the destination descriptor's
MAXSTRLEN field with no padding. Adjust the string's current length field
(CURLEN) to the actual number of bytes copied.

Condition Values Signaled
OTS$_FATINTERR Fatal internal error.
OTS$_INVSTRDES Invalid string descriptor.
OTS$_INSVIRMEM Insufficient virtual memory.

OTS$SCOPY_R_DX
OTS$SCOPY_R_DX — The Copy a Source String Passed by Reference to a Destination String routine
copies a source string passed by reference to a destination string.

91

Chapter 2. General-Purpose (OTS$) Routines

Format
OTS$SCOPY_R_DX
 word-int-source-length-val ,source-string-address ,destination-string

Corresponding JSB Entry Point
OTS$SCOPY_R_DX6

Returns
OpenVMS usage: word_unsigned

type: word (unsigned)

access: write only

mechanism: by value

Number of bytes not moved to the destination string if the length of the source string pointed to by
source-string-address is greater than the length of destination-string. Otherwise, the value is 0 (zero).

Arguments
word-int-source-length-val

OpenVMS usage: word_unsigned

type: word (unsigned)

access: read only

mechanism: by value

Length of the source string. The word-int-source-length-val argument is an unsigned word integer
containing the length of the source string.

source-string-address

OpenVMS usage: char_string

type: character string

access: read only

mechanism: by reference

Source string. The source-string-address argument is the address of the source string.

destination-string

OpenVMS usage: char_string

type: character string

access: write only

mechanism: by descriptor

Destination string. The destination-string argument is the address of a descriptor pointing to the
destination string. OTS$SCOPY_R_DX determines the appropriate action based on the descriptor's

92

Chapter 2. General-Purpose (OTS$) Routines

CLASS field. The descriptor's LENGTH field alone or both the POINTER and LENGTH fields can be
modified if the string is dynamic. For varying strings, the string's current length (CURLEN) is rewritten.

Description
OTS$SCOPY_R_DX copies a source string to a destination string. It passes the source string by
reference preceded by a length argument. The length argument, word-int-source-length-val, is passed
by value.

If the length of the source string is greater than the length of the destination string, OTS$SCOPY_R_DX
returns the number of bytes not moved to the destination string. If the length of the source string is less
than or equal to the length of the destination string, it returns 0 (zero). All conditions except truncation
are signaled; truncation is ignored.

An equivalent JSB entry point is provided, with R0 being the first argument, R1 the second, and R2
the third, if any. The length argument is passed in bits 15:0 of the appropriate register. On return, R0
through R5 and the PSL are as they would be after a VAX MOVC5 instruction. R0 through R5 contain
the following:

R0 Number of bytes of source string not moved to destination string
R1 Address one byte beyond the last copied byte in the source string
R2 0
R3 Address one byte beyond the destination string
R4 0
R5 0

For additional information, see the VAX Architecture Reference Manual.

The actions taken by OTS$SCOPY_R_DX depend on the descriptor class of the destination string. The
following table describes these actions for each descriptor class:

Descriptor
Class

Action

S, Z, SD, A,
NCA

Copy the source string. If needed, space fill or truncate on the right.

D If the area specified by the destination descriptor is large enough to contain the source
string, copy the source string and set the new length in the destination descriptor.

If the area specified is not large enough, return the previous space allocation (if any)
and then dynamically allocate the amount of space needed. Copy the source string and
set the new length and address in the destination descriptor.

VS Copy source string to destination string up to the limit of the descriptor's
MAXSTRLEN field with no padding. Adjust the string's current length (CURLEN)
field to the actual number of bytes copied.

Condition Values Signaled
OTS$_FATINTERR Fatal internal error.
OTS$_INVSTRDES Invalid string descriptor.
OTS$_INSVIRMEM Insufficient virtual memory.

93

Chapter 2. General-Purpose (OTS$) Routines

Example
A Fortran example that demonstrates the manipulation of dynamic strings appears at the
end of OTS$SGET1_DD. This example uses OTS$SCOPY_R_DX, OTS$SGET1_DD, and
OTS$SFREE1_DD.

OTS$SFREE1_DD
OTS$SFREE1_DD — The Strings, Free One Dynamic routine returns one dynamic string area to free
storage.

Format
OTS$SFREE1_DD dynamic-descriptor

Corresponding JSB Entry Point
OTS$SFREE1_DD6

Returns
None.

Arguments
dynamic-descriptor

OpenVMS usage: quadword_unsigned

type: quadword (unsigned)

access: modify

mechanism: by reference

Dynamic string descriptor. The dynamic-descriptor argument is the address of the dynamic string
descriptor. The descriptor is assumed to be dynamic and its class field is not checked.

Description
OTS$SFREE1_DD deallocates the described string space and flags the descriptor as describing no string
at all. The descriptor's POINTER and LENGTH fields contain 0.

Condition Values Signaled
OTS$_FATINTERR Fatal internal error.

Example
A Fortran example that demonstrates the manipulation of dynamic strings appears at the
end of OTS$SGET1_DD. This example uses OTS$SFREE1_DD, OTS$SGET1_DD, and
OTS$SCOPY_R_DX.

94

Chapter 2. General-Purpose (OTS$) Routines

OTS$SFREEN_DD
OTS$SFREEN_DD — The Free n Dynamic Strings routine takes as input a vector of one or more
dynamic string areas and returns them to free storage.

Format
OTS$SFREEN_DD descriptor-count-value ,first-descriptor

Corresponding JSB Entry Point
OTS$SFREEN_DD6

Returns
None.

Arguments
descriptor-count-value

OpenVMS usage: longword_unsigned

type: longword (unsigned)

access: read only

mechanism: by value

Number of adjacent descriptors to be flagged as having no allocated area (the descriptor's POINTER
and LENGTH fields contain 0) and to have their allocated areas returned to free storage by
OTS$SFREEN_DD. The descriptor-count-value argument is an unsigned longword containing this
number.

first-descriptor

OpenVMS usage: quadword_unsigned

type: quadword (unsigned)

access: modify

mechanism: by reference

First string descriptor of an array of string descriptors. The first-descriptor argument is the address
of the first string descriptor. The descriptors are assumed to be dynamic, and their class fields are not
checked.

Description
OTS$SFREEN_DD6 deallocates the described string space and flags each descriptor as describing no
string at all. The descriptor's POINTER and LENGTH fields contain 0.

Condition Values Signaled
OTS$_FATINTERR Fatal internal error.

95

Chapter 2. General-Purpose (OTS$) Routines

OTS$SGET1_DD
OTS$SGET1_DD — The Get One Dynamic String routine allocates a specified number of bytes of
dynamic virtual memory to a specified string descriptor.

Format
OTS$SGET1_DD word-integer-length-value ,dynamic-descriptor

Corresponding JSB Entry Point
OTS$SGET1_DD_R6

Returns
None.

Arguments
word-integer-length-value

OpenVMS usage: word_unsigned

type: word (unsigned)

access: read only

mechanism: by value

Number of bytes to be allocated. The word-integer-length-value argument contains the number of
bytes. The amount of storage allocated is automatically rounded up. If the number of bytes is zero, a
small number of bytes is allocated.

dynamic-descriptor

OpenVMS usage: quadword_unsigned

type: quadword (unsigned)

access: modify

mechanism: by reference

Dynamic string descriptor to which the area is to be allocated. The dyn-str argument is the address of
the dynamic string descriptor. The CLASS field is not checked but it is set to dynamic (CLASS = 2).
The LENGTH field is set to word-integer-length-value and the POINTER field is set to the string area
allocated (first byte beyond the header).

Description
OTS$SGET1_DD allocates a specified number of bytes of dynamic virtual memory to a specified string
descriptor. This routine is identical to OTS$SCOPY_DXDX except that no source string is copied. You
can write anything you want in the allocated area.

If the specified string descriptor already has dynamic memory allocated to it, but the amount allocated
is either greater than or less than word-integer-length-value, that space is deallocated before
OTS$SGET1_DD allocates new space.

96

Chapter 2. General-Purpose (OTS$) Routines

Condition Values Signaled
OTS$_FATINTERR Fatal internal error.
OTS$_INSVIRMEM Insufficient virtual memory.

Example
 PROGRAM STRING_TEST

C+
C This program demonstrates the use of some dynamic string
C manipulation routines.
C-

C+
C DECLARATIONS
C-

 IMPLICIT NONE
 CHARACTER*80 DATA_LINE
 INTEGER*4 DATA_LEN, DSC(2), CRLF_DSC(2), TEMP_DSC(2)
 CHARACTER*2 CRLF

C+
C Initialize the output descriptor. It should be empty.
C-

 CALL OTS$SGET1_DD(%VAL(0), DSC)

C+
C Initialize a descriptor to the string CRLF and copy the
C character CRLF to it.
C-

 CALL OTS$SGET1_DD(%VAL(2), CRLF_DSC)
 CRLF = CHAR(13)//CHAR(10)
 CALL OTS$SCOPY_R_DX(%VAL(2), %REF(CRLF(1:1)), CRLF_DSC)

C+
C Initialize a temporary descriptor.
C-

 CALL OTS$SGET1_DD(%VAL(0), TEMP_DSC)

C+
C Prompt the user.
C-

 WRITE(6, 999)
999 FORMAT(1X, 'Enter your message, end with Ctrl/Z.')

C+
C Read lines of text from the terminal until end-of-file.
C Concatenate each line to the previous input. Include a
C CRLF between each line.
C-

97

Chapter 2. General-Purpose (OTS$) Routines

 DO WHILE (.TRUE.)
 READ(5, 998, ERR = 10) DATA_LEN, DATA_LINE
998 FORMAT(Q,A)
 CALL OTS$SCOPY_R_DX(%VAL(DATA_LEN),
 1 %REF(DATA_LINE(1:1)),
 2 TEMP_DSC)
 CALL STR$CONCAT(DSC, DSC, TEMP_DSC, CRLF_DSC)
 END DO

C+
C The user has typed Ctrl/Z. Output the data we read.
C-

10 CALL LIB$PUT_OUTPUT(DSC)
C+
C Free the storage allocated to the dynamic strings.
C-

 CALL OTS$SFREE1_DD(DSC)
 CALL OTS$SFREE1_DD(CRLF_DSC)
 CALL OTS$SFREE1_DD(TEMP_DSC)

C+
C End of program.
C-

 STOP
 END

This Fortran example program demonstrates the manipulation of dynamic strings using
OTS$SGET1_DD, OTS$SFREE1_DD, and OTS$SCOPY_R_DX.

98

	VSI OpenVMS RTL General Purpose (OTS$) Manual
	Table of Contents
	Preface
	1. About VSI
	2. Intended Audience
	3. Document Structure
	4. Related Documents
	5. VSI Encourages Your Comments
	6. OpenVMS Documentation
	7. Typographical Conventions

	Chapter 1. Run-Time Library General Purpose (OTS$) Facility
	1.1. 1.1 Overview
	1.2. Linking OTS$ Routines on Alpha and I64 Systems
	1.2.1. 64-Bit Addressing Support (Alpha and I64 Only)

	Chapter 2. General-Purpose (OTS$) Routines
	OTS$CALL_PROC (Alpha and I64 Only)
	OTS$CNVOUT
	OTS$CVT_L_TB
	OTS$CVT_L_TI
	OTS$CVT_L_TL
	OTS$CVT_L_TO
	OTS$CVT_L_TU
	OTS$CVT_L_TZ
	OTS$CVT_T_x
	OTS$CVT_TB_L
	OTS$CVT_TI_L
	OTS$CVT_TL_L
	OTS$CVT_TO_L
	OTS$CVT_TU_L
	OTS$CVT_TZ_L
	OTS$DIVCx
	OTS$DIV_PK_LONG
	OTS$DIV_PK_SHORT
	OTS$JUMP_TO_BPV (I64 Only)
	OTS$MOVE3
	OTS$MOVE5
	OTS$MULCx
	OTS$POWCxCx
	OTS$POWCxJ
	OTS$POWDD
	OTS$POWDJ
	OTS$POWDR
	OTS$POWGG
	OTS$POWGJ
	OTS$POWHH_R3 (VAX Only)
	OTS$POWHJ_R3 (VAX Only)
	OTS$POWII
	OTS$POWJJ
	OTS$POWLULU
	OTS$POWRD
	OTS$POWRJ
	OTS$POWRR
	OTS$POWSJ
	OTS$POWSS
	OTS$POWTJ
	OTS$POWTT
	OTS$POWxLU
	OTS$SCOPY_DXDX
	OTS$SCOPY_R_DX
	OTS$SFREE1_DD
	OTS$SFREEN_DD
	OTS$SGET1_DD

