
VSI OpenVMS

VSI Reliable Transaction Router
C Application Programmer’s
Reference
Manual

Document Number: DO-RTRREF-01A

Publication Date: April 2024

Operating System and Version: VSI OpenVMS IA-64 Version 8.4-1H1 or higher
VSI OpenVMS Alpha Version 8.4-2L1 or higher

Software Version: VSI Reliable Transaction Router Version 5.1

VMS Software, Inc. (VSI)
Boston, Massachusetts, USA

VSI Reliable Transaction Router C Application Programmer’s Reference
Manual

Copyright © 2024 VMS Software, Inc. (VSI), Boston, Massachusetts, USA

Legal Notice

Confidential computer software. Valid license from VSI required for possession, use or copying. Consistent with FAR 12.211 and 12.212,
Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

The information contained herein is subject to change without notice. The only warranties for VSI products and services are set forth in the
express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional
warranty. VSI shall not be liable for technical or editorial errors or omissions contained herein.

ii

VSI Reliable Transaction Router C Application Programmer’s Reference Manual

Preface ... v
1. About VSI .. v
2. Intended Audience ... v
3. Document Structure ... v
4. Related Documents .. v
5. VSI Encourages Your Comments ... vi
6. OpenVMS Documentation .. vi
7. Conventions ... vi
8. Reading Path .. viii

Chapter 1. Introduction ... 1
1.1. RTR Application Programming Interface .. 1
1.2. C Programming and RTR APIs ... 1

1.2.1. Compatibility Between RTR Versions .. 1
1.2.2. Reasons for a C Programming API .. 1
1.2.3. Benefits of the C Programming API .. 2
1.2.4. Comparison of OpenVMS and C Programming API Calls 2

Chapter 2. Overview of the C Programming API ... 5
2.1. Transactional Messages ... 5
2.2. RTR Channels .. 5
2.3. Broadcast Messages and Events ... 5
2.4. C Programming API Calls ... 6
2.5. Programming Examples ... 7

2.5.1. Simple Client ... 7
2.5.2. Simple Server .. 7

2.6. Using the C Programming API .. 8
2.7. Concurrency ... 9
2.8. Exit Handlers in Applications ... 9
2.9. Using the RTR Set Wakeup Routine ... 9

2.9.1. Restrictions on the RTR Wakeup Handler ... 10
2.10. API Optimizations ... 11

2.10.1. Client Optimization .. 11
2.10.2. Voting Optimization and Server Flags .. 11

2.10.2.1. The RTR_F_OPE_EXPLICIT_PREPARE Flag 12
2.10.2.2. The RTR_F_OPE_EXPLICIT_ACCEPT Flag .. 12

2.11. RTR Messages .. 13
2.12. RTR Events .. 16

2.12.1. RTR Event Names and Numbers ... 17
2.12.2. Developing Applications to Use Events ... 18
2.12.3. Event Management by RTR .. 23
2.12.4. Event Troubleshooting .. 25

2.13. Use of XA Support ... 25
2.14. RTR Applications in a Multiplatform Environment ... 25

2.14.1. Defining a Message Format ... 26
2.14.1.1. Data Types .. 26
2.14.1.2. Alignment ... 27

2.15. Application Design and Tuning Issues ... 27
2.15.1. Transactions That Can Cause Server Failure ... 27
2.15.2. Transaction Grouping and Database Applications .. 27
2.15.3. Transaction Sequence and Shadow Servers ... 28
2.15.4. Transaction Independence ... 28

Chapter 3. RTR Call Reference .. 31

iii

VSI Reliable Transaction Router C Application Programmer’s Reference Manual

3.1. RTR Environmental Limits .. 31
3.2. RTR Maximum Field Lengths .. 31
3.3. RTR C API Calls ... 32

Chapter 4. Compiling and Linking Your Application ... 95
4.1. Compilers ... 95
4.2. Linking Libraries .. 96

Appendix A. RTR C API Sample Applications ... 99
A.1. Overview ... 99
A.2. Client Application .. 99
A.3. Server Application .. 104
A.4. Shared Code .. 107
A.5. Header Code .. 110

Appendix B. RTR Application Development Tutorial ... 113

iv

Preface
This manual explains how to design and code applications for VSI Reliable Transaction Router (RTR)
using the C programming language. It contains full descriptions of the RTR C application programming
interface (API) calls, and includes a short tutorial.

1. About VSI
VMS Software, Inc. (VSI) is an independent software company licensed by Hewlett Packard Enterprise
to develop and support the OpenVMS operating system.

2. Intended Audience
This manual is the reference source for persons writing application programs using Reliable Transaction
Router (RTR) in the C programming language. It completely describes the RTR C application
programming interface (API).

3. Document Structure
This manual contains four chapters and two appendices:

• Chapter 1 introduces the RTR C programming interface.

• Chapter 2 provides a guide to writing RTR applications.

• Chapter 3 describes the RTR C Application Programming Interface (API) showing the syntax and
data structures for each RTR call.

• Chapter 4 describes how to compile and link your application.

• Appendix A provides two short RTR C API sample applications and their shared and header files.

• Appendix B provides a short tutorial for the application programmer.

4. Related Documents
The table below describes RTR documents and groups them by audience.

Table 1. RTR Documents

Document Content

For all users:

VSI Reliable Transaction Router Release Notes Describes new features, corrections, restrictions,
and known problems for RTR.

VSI Reliable Transaction Router Getting Started Provides an overview of RTR technology and
solutions, and includes the glossary that defines all
RTR terms.

v

Preface

Document Content

VSI Reliable Transaction Router Software Product
Description

Describes product features.

For the system manager:

VSI Reliable Transaction Router Installation Guide Describes how to install RTR on all supported
platforms.

VSI Reliable Transaction Router System Manager’s
Manual

Describes how to configure, manage, and monitor
RTR.

For the application programmer:

VSI Reliable Transaction Router Application Design
Guide

Describes how to design application programs for
use with RTR, with both C++ and C interfaces.

JRTR Getting Started Provides an overview of the object-oriented
JRTR Toolkit including installation, configuration
and Java programming concepts, with links to
additional online documentation.

VSI Reliable Transaction Router C++ Foundation
Classes

Describes the object-oriented C++ interface that
can be used to implement RTR object-oriented
applications.

VSI Reliable Transaction Router C Application
Programmer’s Reference Manual

Explains how to design and code RTR applications
using the C programming language and the RTR
C API. Contains full descriptions of the basic RTR
API calls.

5. VSI Encourages Your Comments
You may send comments or suggestions regarding this manual or any VSI document by sending
electronic mail to the following Internet address: <docinfo@vmssoftware.com>. Users who have
VSI OpenVMS support contracts through VSI can contact <support@vmssoftware.com> for
help with this product.

6. OpenVMS Documentation
The full VSI OpenVMS documentation set can be found on the VMS Software Documentation webpage
at https://docs.vmssoftware.com.

7. Conventions
VMScluster systems are now referred to as OpenVMS Cluster systems. Unless otherwise specified,
references to OpenVMS Cluster systems or clusters in this document are synonymous with VMScluster
systems.

The contents of the display examples for some utility commands described in this manual may differ
slightly from the actual output provided by these commands on your system. However, when the
behavior of a command differs significantly between OpenVMS Alpha and Integrity servers, that
behavior is described in text and rendered, as appropriate, in separate examples.

In this manual, every use of DECwindows and DECwindows Motif refers to DECwindows Motif for
OpenVMS software.

vi

https://docs.vmssoftware.com

Preface

The following conventions are also used in this manual:

Convention Meaning

Ctrl/ x A sequence such as Ctrl/ x indicates that you must hold down the key labeled Ctrl
while you press another key or a pointing device button.

PF1 x A sequence such as PF1 x indicates that you must first press and release the key
labeled PF1 and then press and release another key or a pointing device button.

Return In examples, a key name enclosed in a box indicates that you press a key on the
keyboard. (In text, a key name is not enclosed in a box.)

… A horizontal ellipsis in examples indicates one of the following possibilities:

• Additional optional arguments in a statement have been omitted.

• The preceding item or items can be repeated one or more times.

• Additional parameters, values, or other information can be entered.
.

.

.

A vertical ellipsis indicates the omission of items from a code example or
command format; the items are omitted because they are not important to the
topic being discussed.

() In command format descriptions, parentheses indicate that you must enclose the
options in parentheses if you choose more than one.

[] In command format descriptions, brackets indicate optional choices. You can
choose one or more items or no items. Do not type the brackets on the command
line. However, you must include the brackets in the syntax for OpenVMS directory
specifications and for a substring specification in an assignment statement.

[|] In command format descriptions, vertical bars separate choices within brackets or
braces. Within brackets, the choices are options; within braces, at least one choice
is required. Do not type the vertical bars on the command line.

{ } In command format descriptions, braces indicate required choices; you must
choose at least one of the items listed. Do not type the braces on the command
line.

bold text This typeface represents the introduction of a new term. It also represents the
name of an argument, an attribute, or a reason.

italic text Italic text indicates important information, complete titles of manuals, or variables.
Variables include information that varies in system output (Internal error number),
in command lines (/PRODUCER= name), and in command parameters in text
(where dd represents the predefined code for the device type).

UPPERCASE
TEXT

Uppercase text indicates a command, the name of a routine, the name of a file, or
the abbreviation for a system privilege.

Monospace
type

Monospace type indicates code examples and interactive screen displays.

In the C programming language, monospace type in text identifies the following
elements: keywords, the names of independently compiled external functions and
files, syntax summaries, and references to variables or identifiers introduced in an
example.

- A hyphen at the end of a command format description, command line, or code line
indicates that the command or statement continues on the following line.

vii

Preface

Convention Meaning

numbers All numbers in text are assumed to be decimal unless otherwise noted. Nondecimal
radixes—binary, octal, or hexadecimal—are explicitly indicated.

8. Reading Path
The reading path to follow when using the Reliable Transaction Router information set is shown in the
image below.

Figure 1. RTR Reading Path

viii

Chapter 1. Introduction
This chapter introduces the Reliable Transaction Router C programming interface. This interface was
formerly called the Portable API. RTR concepts and terms are fully defined in VSI Reliable Transaction
Router Getting Started.

1.1. RTR Application Programming Interface
The RTR C application programming interface (API) that is provided with Reliable Transaction Router
is identical on all hardware and operating system platforms that support RTR. This API is described in
the following chapter.

In addition, a web browser and a command line interface (CLI) to the C API are available. The CLI
enables you to write simple RTR applications for testing. The RTR CLI is illustrated in VSI Reliable
Transaction Router Getting Started and fully described in the VSI Reliable Transaction Router System
Manager’s Manual.

1.2. C Programming and RTR APIs
The C-programming RTR API was made available in Reliable Transaction Router Version 3. It
superseded the OpenVMS API used in Reliable Transaction Router Version 2 for new applications. The
RTR C API is available on all platforms on which RTR is supported.

1.2.1. Compatibility Between RTR Versions
Reliable Transaction Router Version 5 interoperates with RTR Version 4 in a DECnet environment using
DECnet Phase IV naming. (The same version of RTR must be installed on all routers and backends. See
the section on Network Transports in the VSI Reliable Transaction Router System Manager’s Manual to
find out how to configure your Version 4 nodes.)

Note that the size of an RTR transaction ID was changed in Reliable Transaction Router Version 3 to 28
bytes. (The change ensures that the transaction ID contains a unique node specification.) This remains
true for later versions of RTR.

1.2.2. Reasons for a C Programming API
RTR was first developed for use within an OpenVMS environment. Reliable Transaction Router Version
3 extended the applicability of RTR to allow users to create fault-tolerant distributed applications running
on networks of heterogeneous machines and platforms.

The OpenVMS API presented some incompatibilities when used on non-OpenVMS platforms as
follows:

1. The "$" character contained in all RTR identifiers is not permitted in identifiers in some languages.

2. There was no provision for reformatting user messages passed between machines to account for
differing machine representations of particular data types.

3. RTR permits applications to be written to perform multiple concurrent operations, a feature
that can be critical for good performance in high-volume transaction processing systems. The
notification mechanisms used to indicate completion of such asynchronous operations (event-flag,
txsb, completion-AST) were OpenVMS-specific.

1

Chapter 1. Introduction

1.2.3. Benefits of the C Programming API
The benefits of using the C programming API are:

• Portability over a wide range of language and machine environments

• Simplified handling of concurrency, independent of the type of operating system

• Support for communication between machines with different hardware representations of common
data types (little-endian and big-endian, and so forth)

• Interoperability with existing applications using the OpenVMS API

• Features extended above those provided by the OpenVMS API

• Improved performance for commonly-used transaction types

• Support for use within a threaded environment

The C programming API has been designed to:

• Avoid the problem of applications dropping threads.

• Simplify the API.

• Schedule concurrent application operations in the same FIFO manner as is used with AST-driven
processing on OpenVMS. This avoids the synchronization worries faced by the application writer
when working with ASTs.

• Make it impossible for an application to stall by waiting for one operation to complete and hence
being unable to respond to some other event.

• Permit a more efficient implementation. RTR does not have to maintain multiple internal queues.

1.2.4. Comparison of OpenVMS and C Programming
API Calls
Table 1.1 compares the OpenVMS and C Programming API calls.

Table 1.1. OpenVMS API (V2) and C Programming API (V3) Compared

OpenVMS API C Programming API

$dcl_tx_prc() rtr_open_channel()
$start_tx() rtr_start_tx() [optional]
$commit_tx() rtr_accept_tx()
$abort_tx() rtr_reject_tx()
$vote_tx() rtr_accept_tx()/rtr_reject_tx()
$deq_tx() rtr_receive_message()
$enq_tx() rtr_send_to_server()/ rtr_reply_to_client()/

rtr_broadcast_event()
$dcl_tx_prc() (SHUT) rtr_close_channel()

2

Chapter 1. Introduction

OpenVMS API C Programming API

$get_txi() rtr_request_info()
$set_txi() rtr_set_info()
ASTPRM (on asynch calls) rtr_set_user_handle()
– rtr_error_text()
– rtr_get_tid()
– rtr_set_wakeup()

3

Chapter 1. Introduction

4

Chapter 2. Overview of the C
Programming API
The term C programming API is used to describe the RTR application programming interface (API)
adopted in Reliable Transaction Router Version 3. This API is available on all platforms on which
Reliable Transaction Router is supported. This API was formerly called the Portable API, when first
made available on several operating systems.

2.1. Transactional Messages
RTR allows the client and server applications to communicate by entering into a dialogue consisting of
an exchange of messages between a client application (the dialogue initiator) and one or more server
applications.

Note

In the context of RTR, client and server are always applications.

Each dialogue forms a transaction in which all participants have the opportunity to either accept
or reject the whole transaction. When the transaction is complete, all participants are informed of
the transaction's completion status: success (rtr_mt_accepted) if all participants accepted it,
failure (rtr_mt_rejected) if any participant rejected it. (For more information on messages, see
Section 2.11, RTR Messages.)

2.2. RTR Channels
With RTR, applications can be engaged in several transactions at a time.

To support many in-progress transactions at the same time, RTR lets applications open multiple channels.
An application opens one or more channels to RTR, and any transaction is associated with only one
channel. The transaction is said to be active on that channel. For example, a client application opens a
channel and then sends the first message of a transaction on that channel. All messages sent and received
for that transaction are now associated with that channel.

While waiting for a response from the server, the client application can open a second channel and start
a new transaction on it. When the transaction on the first channel has completed, the client application
may start the next transaction on it, or simply issue the rtr_accept_tx call.

Similarly, a server application may open several channels and, when the first message of a new
transaction arrives, RTR delivers it on the first available channel. That channel remains associated with
the transaction until it completes.

An application opens a channel before it can send or receive messages; the RTR API call is used to do
this. The RTR call specifies whether the channel is a client channel or a server channel; it cannot be
both. (This restriction helps to simplify application structure, and to deal with the special properties of
each channel type.) A single application can, however, open client channels and server channels.

2.3. Broadcast Messages and Events
In addition to transactional messages, client or server programs may broadcast event messages. These
are delivered to some subset of the distributed applications, as specified by the event-number and event-

5

Chapter 2. Overview of the C Programming API

name parameters. In contrast to transactional dialogues, no completion status is subsequently returned to
the initiator. A message can be from 0 to 64K bytes long.

Both client and server channels receive messages from RTR. A client channel receives event messages
only from servers, and a server channel receives event messages only from clients. To enable a client
application to receive event/broadcast messages from another client application, the application must be
both a client and a server application (open a channel with both CLIENT and SERVER flags), and must
be in a facility on a node that is both a frontend and a backend. A broadcast event can be sent as long as
the server channel is open. Events are more fully described in Section 2.12: RTR Events.

2.4. C Programming API Calls
The C Programming API calls are shown in Table 2.1: C Programming API Calls. Each call is shown
with a brief description and whether it can be used on client channels or server channels or both. Calls
are listed in alphabetical order.

Table 2.1. C Programming API Calls

RTR Call Description Channel Use

rtr_accept_tx Accepts a transaction Client and server
rtr_broadcast_event Broadcasts (sends) an event

message
Client and server

rtr_close_channel Closes a previously opened
channel

Client and server

rtr_error_text Gets the text for an RTR status
number

Client and server

rtr_ext_broadcast_event Broadcasts (sends) an event
message with a timeout

Client and server

rtr_get_tid Gets the current transaction ID Client and server
rtr_get_user_context Gets the user-defined context

associated with a channel
Client and server

rtr_open_channel Opens a channel for sending and
receiving messages

Client and server

rtr_receive_message Receives the next message
(transaction message, event or
completion status)

Client and server

rtr_reject_tx Rejects a transaction Client and server
rtr_reply_to_client Sends a response from a server to

a client
Server only

rtr_request_info Requests information from RTR Client and server
rtr_send_to_server Sends a message from a client to

the server(s)
Client only

rtr_set_info Sets an RTR parameter Client and server
rtr_set_user_context Sets the value of the user-defined

context for a channel
Client and server

rtr_set_user_handle Associates a user value with a
transaction

Client and server

6

Chapter 2. Overview of the C Programming API

RTR Call Description Channel Use

rtr_set_wakeup Sets a function to be called on
message arrival

Client and server

rtr_start_tx Explicitly starts a transaction Client only

2.5. Programming Examples
The following pseudocode examples of a client and a server application illustrate the use of the C
programming API. Details have been omitted to keep the basic structure clear.

2.5.1. Simple Client
This simple client program issues transactions and receives event messages. It simply issues one
transaction, waits for it to be processed, and in the meantime handles any events that arrive. It then issues
the next transaction. It does not need to wait until one transaction finishes before starting the next.

The following two examples are single-threaded. They can be made multithreaded by opening more
channels. The structure of the main receive loop does not need to be changed to implement this.
Note that rtr_receive_message receives the next message in the process input queue for
any of the channels opened by the program (unless preferred channels have been requested in the
rtr_receive_message).

Example 2.1. Example Client

 rtr_open_channel() ! Open a channel to the required facility
 rtr_receive_message() ! Get the completion status of the open call
 ! success returns rtr_mt_opened
send_loop:
 rtr_send_to_server(...RTR_F_SEN_ACCEPT....)
 ! Send a tx-message and
 ! implicitly start a new tx rcv_loop:
 rtr_receive_message() ! Find out what RTR wants to tell us next
 switch (message_received_type)
 {
 case rtr_mt_reply: Process_Reply_from_Server; break;
 case rtr_mt_rtr_event: Process_RTR_Event; break;
 case rtr_mt_user_event: Process_User_Event; break;
 case rtr_mt_accepted: Tell_User_It_Worked; break;
 case rtr_mt_rejected: Tell_User_About_Failure; break;
 }
 IF (message_received_type = rtr_mt_accepted)
 OR (message_received_type = rtr_mt_rejected)
 THEN
 GOTO send_loop ! Last transaction done, issue the next one
 ELSE
 GOTO rcv_loop ! Get the next incoming message

In Example 2.1, note that the switch statement tests on message type. All messages that are received
from RTR have a message type; for further information, see Section 2.11.

2.5.2. Simple Server
Example 2.2 is a simple server that receives transactions and events.

7

Chapter 2. Overview of the C Programming API

Example 2.2. Example Server

 rtr_open_channel() ! open a channel to the desired facility
 rtr_receive_message() ! get the completion status of the open call
 ! success returns rtr_mt_opened
rcv_loop:
 rtr_receive_message() ! Find out what RTR wants to tell us next

 CASE message_received_type
 OF
 rtr_mt_msg1: Do_Some_SQL_And_Maybe_Send_A_Reply;
 rtr_mt_msgn: Do_Some_More_SQL_And_Maybe_Send_A_Reply;
 rtr_mt_prepare: Accept_or_Reject_Tx ;
 rtr_mt_rtr_event: Process_RTR_Event;
 rtr_mt_user_event: Process_User_Event;
 rtr_mt_accepted: Commit_DB ;
 rtr_mt_rejected: Rollback_DB ;
 END_CASE;
 GOTO rcv_loop

2.6. Using the C Programming API
As can be seen from the examples in the previous section, an application first opens one or more
channels by calling rtr_open_channel.

The application can then process transactions and events on the channels it has opened. When a channel
is no longer needed, the application closes it by calling rtr_close_channel.

A transaction becomes associated with a channel in one of the following circumstances:

1. When a client issues the first rtr_send_to_server call on a previously idle channel

2. When a server receives from a client the first message belonging to a transaction by calling
rtr_receive_message.

3. When a client issues a rtr_start_tx call on a previously idle channel.

From this point on the channel remains associated with the transaction until one of the following occurs:

a. The application rejects the transaction using rtr_reject_tx.

• The transaction is over, no more messages will be received on behalf of this transaction.

• The channel becomes idle, ready for initiation/reception of another transaction.

b. The application accepts the transaction using rtr_accept_tx.

• After calling rtr_accept_tx the application may continue receiving messages belonging
to the transaction. However, it cannot subsequently either reverse its decision to accept by
calling rtr_reject_tx, or (in the case of a client application) make additional calls to
rtr_send_to_server.

• The final message received for a transaction will always be a transaction completion status; either
rtr_mt_rejected or rtr_mt_accepted.

• The channel becomes idle, ready for initiation or reception of another transaction.

8

Chapter 2. Overview of the C Programming API

c. The application receives, by a call to rtr_receive_message, a completion status indicating
that the transaction has been rejected by some other participant.

• The transaction is over. No more messages will be received, and no more calls may be made on
behalf of this transaction.

• The channel becomes idle, ready for initiation or reception of another transaction.

Note that RTR considers a transaction to have been committed to the database (so that it does not need
to replay it in case of failure) when the server indicates willingness to receive a new transaction by
calling rtr_receive_message on the channel, after having received the transaction completion
status.

Calling rtr_close_channel also indicates to RTR that the last transaction has been committed.

2.7. Concurrency
The routine rtr_receive_message is used by an application to receive all incoming messages,
responses and events. This provides a single consistent method of information delivery.

All RTR routines other than rtr_receive_message complete immediately, and any responses are
queued for later reception by rtr_receive_message.

The application calling rtr_receive_message may choose whether (and how long) it should wait
for an incoming message to arrive (if there is no message available for immediate reception).

In addition, the application may optionally specify a “wakeup routine” to be called by RTR when a
message becomes available for reception.

2.8. Exit Handlers in Applications
Making RTR calls from within an application exit handler does not work, because the channel is usually
closed by the time the application exits. If an exit handler contains a call to RTR, then the exit handler
must be declared after the first call to RTR. If an exit handler is declared before the first call to RTR,
then any call to RTR made within the exit handler will return an error.

The error status returned is RTR_STS_INV_CHANNEL.

2.9. Using the RTR Set Wakeup Routine
An application program may typically wish to respond to input from more than one source. An example
of this is an application program that prompts for user input in a window and at the same time displays
information received asynchronously via broadcast events.

To avoid the application polling its various input sources, RTR provides the rtr_set_wakeup
routine. This allows the application to specify a routine to be called when there is data to be received
from RTR. The application program can then be coded as shown in the example provided with the
rtr_set_wakeup routine.

The processing context of the application wakeup handler depends upon the platform and RTR library
variant employed.

Core RTR functionality and the C API are delivered in a single sharable library. This library is named
rtrdll on Windows, and librtr on other platforms. The latter is supplied in two variants:

9

Chapter 2. Overview of the C Programming API

librtr_r which is targeted at developers of threaded applications, and librtr which provides a
platform-specific wakeup handler implementation.

Wakeup handlers under rtrdll and librtr_r are called in a dedicated thread created by RTR for
this purpose.

Wakeup handlers under librtr on UNIX are called from a signal handler established by RTR to
handle SIGIO. If the application also wishes to use this signal, it should establish its handler prior to the
first call to the RTR API. In this case the signal handler should be aware that the SIGIO signal may have
been generated by RTR, not necessarily by the event for which the signal handler was written.

Wakeup handlers under librtr on OpenVMS are called from an AST handler. In the presence of
multiple competing ASTs, calling rtr_set_wakeup() from the wakeup handler can be used to
limit RTR processing and serialize the execution of RTR events with other asynchronous activity in the
program.

Rtrdll and librtr_r provide thread synchronization and are safe to use in a multithreaded
environment. Librtr offers no such protection.

It is not anticipated that applications on OpenVMS will want to use both threads and ASTs. For this
reason the RTR V2 API is functional in librtr on OpenVMS only.

Summarizing:

Sharable Name Thread-safe Wakeup Mechanism V2 API
rtrdll Yes RTR thread No
librtr_r Yes RTR thread No
librtr

/UNIX

No signal handler No

librtr

/OpenVMS

No AST Yes

2.9.1. Restrictions on the RTR Wakeup Handler
The wakeup handler itself cannot call any function that might have to wait such as
rtr_reply_to_client, rtr_send_to_server or rtr_broadcast_event; the only
RTR call allowed in the wakeup handler is rtr_receive_message called with a zero timeout.
Other RTR calls may block or halt processing when they need transaction IDs or flow control, which
will cause unexpected behavior. This restriction applies to both threaded and unthreaded applications.

A threaded application does not need to use a wakeup handler; its functionality can be provided by a
dedicated thread that receives and dispatches RTR messages.

Functions permitted in an rtr_set_wakeup() handler:

• While wakeups are unnecessary in threaded application, they may be used in common code in
applications that run on OpenVMS. Because mainline code continues to run while the wakeup is
executing, extra synchronization may be required. If the wakeup does block then it does not generally
hang the whole application.

• For an RTR wakeup handler in a signal handler within an unthreaded UNIX application, no RTR
API functions and only the very few asynch-safe system and library functions may be called, because

10

Chapter 2. Overview of the C Programming API

the wakeup is performed in a signal handler context. An application can write to a pipe or access
a volatile sig_atomic_t variable, but using malloc() and printf(), for example, will
cause unexpected failures. Alternatively, on most UNIX platforms, you can compile and link the
application as a threaded application with the reentrant RTR shared library -lrtr_r.

• For maximum portability, the wakeup handler should do the minimum necessary to wake up the
mainline event loop. You should assume that mainline code and other threads might continue to run
in parallel with the wakeup, especially on machines with more than one CPU.

• The rtr_set_wakeup() call may return the errors ACPNOTVIA and NOACP if the
RTRACP process is not running. However, these errors will only be returned once before
an application succeeds in opening a channel. Subsequent calls will succeed and install the
specified handler. Applications wishing to poll for the availability of the ACP should use the
rtr_open_channel() call.

2.10. API Optimizations
Reliable Transaction Router provides client and server optimizations for greater performance and
programming ease.

2.10.1. Client Optimization
Reliable Transaction Router introduces greater flexibility and efficiency in how transactions are
packaged at the client.

The total sequence of events that a client application has to execute are as follows:

1. Start a transaction.

2. Send one or more transaction messages, optionally receive one or more transaction messages.

3. Either accept or reject the transaction.

4. Wait for the transaction accept or reject message and process accordingly.

5. Return to Step 1.

In Reliable Transaction Router, all these steps can be followed if required, but optimizations allow some
of the steps to be handled implicitly.

• The call to rtr_start_tx (Step 1) may be omitted if, for example, no timeout is required for
the transaction. A call to rtr_send_to_server on a channel that does not have an active
transaction automatically implies a call to rtr_start_tx.

• Step 3 may be handled implicitly if the client wishes to accept the transaction. This is done by
setting the RTR_F_SEN_ACCEPT flag on the last (or only) call to rtr_send_to_server.

2.10.2. Voting Optimization and Server Flags
Reliable Transaction Router introduces greater flexibility and efficiency in how transaction voting
(acceptance by servers) is handled; RTR allows implicit voting.

In detail, the sequence of events that a server executes is as follows:

11

Chapter 2. Overview of the C Programming API

1. Get one or more transaction messages from RTR and process them.

2. Get the vote request message from RTR.

3. Issue the accept (commit).

4. Get the final transaction state.

5. Return to Step 1.

This scheme is not efficient in some cases. For example, a callout (authentication) server may only need
to receive the first message of a multiple message transaction, whereupon it can vote immediately.

In Reliable Transaction Router, all these steps can be enforced if required, but optimizations allow some
of the steps to be handled implicitly.

An implicit accept allows Step 3 to be omitted; the transaction is accepted by the server when it does the
next call to rtr_receive_message.

These optimizations are controlled by flags (RTR_F_OPE_EXPLICIT_PREPARE and
RTR_F_OPE_EXPLICIT_ACCEPT) on the call used to open a server channel.

2.10.2.1. The RTR_F_OPE_EXPLICIT_PREPARE Flag

A server channel may be opened with the RTR_F_OPE_EXPLICIT_PREPARE flag; this specifies
that it will receive prepare messages (messages of type rtr_mt_prepare). The server is then
expected to accept or reject a transaction on receipt of this message (or earlier). The server may accept
the transaction before the prepare message is sent: in this case, the prepare message is not delivered to
the server.

The default behaviour of RTR (for example, when this flag is not set in the call to
rtr_open_channel) is to not send prepare messages to the server application. In this case, RTR
expects the server to accept or reject transactions without RTR triggering it into voting activity by
sending prepare messages.

2.10.2.2. The RTR_F_OPE_EXPLICIT_ACCEPT Flag

A server channel may be opened with the RTR_F_OPE_EXPLICIT_ACCEPT flag; this specifies that
it will accept transactions only by making an explicit call to rtr_accept_tx.

The default behaviour of RTR (that is, when this flag is not set) is to treat a server's call to
rtr_receive_message (after the last transaction message has been received) as an implicit
acceptance of the transaction.

If a transaction has been accepted before the last message has been received, the setting of the
RTR_F_OPE_EXPLICIT_ACCEPT is irrelevant.

However, if a transaction has not been prematurely accepted, when the server's vote is required by RTR,
the setting of the flags have the following effects:

1. When both RTR_F_OPE_EXPLICIT_PREPARE and RTR_F_OPE_EXPLICIT_ACCEPT are
set, the rtr_mt_prepare message is returned to the server, and the server must accept or
reject the transaction.

12

Chapter 2. Overview of the C Programming API

2. When RTR_F_OPE_EXPLICIT_PREPARE is set but RTR_F_OPE_EXPLICIT_ACCEPT is
not set, the rtr_mt_prepare message is also returned to the server, but if the server does not
perform an explicit accept or reject, then a subsequent call to rtr_receive_message implies
an accept of the transaction.

3. When RTR_F_OPE_EXPLICIT_PREPARE is not set but RTR_F_OPE_EXPLICIT_ACCEPT
is set, no rtr_mt_prepare message is returned to the server, and no implicit accept of the
transaction will be performed: It is assumed that some other event will trigger the application into
voting.

4. With neither RTR_F_OPE_EXPLICIT_PREPARE nor RTR_F_OPE_EXPLICIT_ACCEPT
set, no rtr_mt_prepare message is returned to the server. An implicit transaction accept is
performed.

2.11. RTR Messages
All RTR calls return a completion status immediately except rtr_receive_message. If the
immediate status is successful, many calls will also result in a further message or messages being
delivered on the channel.

All RTR received messages are of a defined message type. The message type is given in the message
status block. (See pmsgsb on rtr_receive_message in Chapter 3).

The message type allows your application to handle the message appropriately; the message type
indicates whether this message contains information that is part of a transaction, or a broadcast, or RTR
informational, and so on.

The use of rtr_receive_message for both RTR status messages and application data messages
requires the application designer to consider how to respond to the different message types. Message
types for server and client applications are listed in Table 2.2 and Table 2.3.

All received messages cause the message status block (pmsgsb on rtr_receive_message) to be
filled; most message types also put data into the user buffer (pmsg on rtr_receive_message).
Only the rtr_mt_prepare message type does not fill the user buffer.

Table 2.4 provides information put in the user buffer for each message type. Table 2.2 and Table 2.3 list
all the message types that server channels or client channels can receive, together with a description of
their meaning and the recommended application behavior. Order is alphabetical.

Table 2.2. RTR Received Message Types for Server Applications

Message Type Description Recommended Action

rtr_mt_accepted The specified transaction has
been accepted by all participants.

Commit the transaction in the
database and release database
locks.

rtr_mt_closed Channel has been closed.
Sent by RTR if an
rtr_open_channel fails
(that is, no such facility) or as a
result of an operator command
such as DELETE FACILITY,
or the last message from a

Examine reason status. Roll
back database for any active
transaction.

13

Chapter 2. Overview of the C Programming API

Message Type Description Recommended Action
rtr_request_info or
rtr_set_info call.

rtr_mt_msg1 This is the first application
message of a transaction, sent by
a client.

Process the message.

rtr_mt_msg1_uncertain This is the first application
message of a replayed transaction,
that is, a previous incarnation of
the server failed during the voting
phase.

Check in database to see if the
transaction has been processed.
If not processed, redo the
transaction; else forget the
transaction.

rtr_mt_msgn This is the nth application
message (that is, not the first) of
a transaction, sent by a client.

Process the message.

rtr_mt_opened Channel has been opened. Use the channel.
rtr_mt_prepare The specified transaction is

complete (that is, all messages
from the client have been
received). This message
type is only received by a
server that specified that it
requires a prepare. (Servers
specify this by using the
RTR_F_OPE_EXPLICIT_

_PREPARE flag on the
rtr_open_channel call.)

Call either rtr_reject_tx
to reject the transaction, or
have all required database
records locked before calling
rtr_accept_tx to accept the
transaction.

rtr_mt_rejected The specified transaction has
been rejected by a participant.

Roll back the transaction.

rtr_mt_request_info Message from a previous call to
rtr_request_info.

Use information as required.

rtr_mt_rtr_event An RTR event with an associated
message.

evtnum describes which RTR
event occurred. See Table 2.5.

rtr_mt_set_info Message from a previous call to
rtr_set_info.

Use information as required.

rtr_mt_user_event A user event with an associated
message.

evtnum has an application-
specific meaning.

Table 2.3. RTR Received Message Types for Client Applications

Message Type Description Recommended Action

rtr_mt_accepted The specified transaction has
been accepted by all participants.

Inform user of successful
completion.

rtr_mt_closed Channel has been closed.
Sent by RTR if an
rtr_open_channel fails
(for example, no such facility)
or as a result of an operator
command such as DELETE

Examine reason status.

14

Chapter 2. Overview of the C Programming API

Message Type Description Recommended Action
FACILITY, or the last message
from an rtr_request_info
or rtr_set_info call.

rtr_mt_opened Channel has been opened. Use the channel.
rtr_mt_rejected The specified transaction has

been rejected by a participant.
Inform user of reason for failure.

rtr_mt_reply This is an application reply
message sent by a server.

Process message.

rtr_mt_request_info Message from a previous call to
rtr_request_info.

Use information as required.

rtr_mt_rettosend This message (which
had been sent with the
RTR_F_SEN_RETURN_TO_

_SENDER flag) could not be
delivered and has been returned.

Take appropriate action for the
transaction as required by your
application.

rtr_mt_rtr_event An RTR event with an associated
message.

evtnum describes which RTR
event occurred. See Table 2.5.

rtr_mt_set_info Message from a previous call to
rtr_set_info.

Use information as required.

rtr_mt_user_event A user event with an associated
message.

evtnum has an application-
specific meaning.

Table 2.4. Contents of the User Buffer for Different Message Types

Message Type Buffer Contents

rtr_mt_accepted rtr_status_data_t, see Example 2.3.
rtr_mt_closed rtr_status_data_t, see Example 2.3.
rtr_mt_msg1 The first application message of a transaction, sent

by a client.
rtr_mt_msg1_uncertain The first application message of a replayed

transaction.
rtr_mt_msgn The nth application message (that is, not the first)

of a transaction, sent by a client.
rtr_mt_opened rtr_status_data_t, see Example 2.3.
rtr_mt_prepare None.
rtr_mt_rejected rtr_status_data_t, see Example 2.3.
rtr_mt_reply An application reply message sent by a server.
rtr_mt_request_info Requested information from

rtr_request_info.
rtr_mt_rettosend Returned message.
rtr_mt_rtr_event RTR event message.
rtr_mt_set_info Set information from rtr_set_info.
rtr_mt_user_event The user broadcast message.

15

Chapter 2. Overview of the C Programming API

Example 2.3 shows the data type that is returned in the user buffer with message types
rtr_mt_accepted, rtr_mt_rejected, rtr_mt_opened and rtr_mt_closed. You can
find the meaning of rtr_status_t using the call rtr_error_text.

Example 2.3. Type rtr_status_data_t

 /* Type returned with rtr_mt_rejected,*/
typedef struct /* rtr_mt_accepted, rtr_mt_opened */
{ /* and rtr_mt_closed messages. */
 rtr_status_t status; /* RTR status */
 rtr_reason_t reason; /* User-supplied reason */
} rtr_status_data_t;

2.12. RTR Events
What are events?
An event in RTR is a trigger that causes a notification (also called a “broadcast”) to be sent to the
application that subscribed to the event. RTR Events are created only by RTR and are used internally by
RTR to help manage activities such as site failover. Application developers may subscribe to RTR Events
to activate certain processing in their application. User Events are also available to enable application
developers to send event notification or broadcast messages to other RTR applications. RTR provides the
call rtr_broadcast_event to enable an application developer to trigger a User Event.

Events have special characteristics and restrictions:

• Event notification is delivered on a subscription basis using information supplied on the
rtr_open_channel call.

• Events are not transactional and should not be used to transmit information that is, or will be, part of
an RTR transaction.

• A user application can turn on or off the reception of any events, both RTR and user events.

• Events can only be transmitted within the RTR facility in which they are defined. Events cannot be
sent between facilities or outside RTR.

• Event notification may include an optional message, which has a size limit of 64K.

• User Events can only be transmitted from frontend-to-backend or from backend-to-frontend. User
Events cannot be used for peer-to-peer communication such as from frontend-to-frontend or from
backend-to-backend.

• RTR Events are transmitted from RTR-to-frontend or RTR-to-backend.

The list below shows the RTR Events that are available for subscription. These events can be grouped in
four basic categories:

• Shadow node activity (failover, failback, recovery complete)

• Standby node activity (become active, become standby, recovery complete)

• Changes in facility state and participants (clients/routers/servers entering or exiting the facility)

16

Chapter 2. Overview of the C Programming API

• Changes in configuration of partition key ranges (server available, server not available)

2.12.1. RTR Event Names and Numbers
RTR sends events to the server either inside or outside a transactional boundary. A transaction is
considered to start on receipt of an rtr_mt_msg1 or rtr_mt_msg1_uncertain message,
and to end when the transaction is accepted or rejected (receipt of an rtr_mt_accepted or
rtr_mt_rejected message). Events containing information about primary, secondary, or standby
servers could arrive outside a transactional boundary. Gain and loss events arrive inside transactional
boundaries.

Table 2.5 lists the RTR events that can be received on a channel (associated with the
rtr_mt_rtr_event message type). Events are listed in order of event number. See the description
for rtr_open_channel in Chapter 3: RTR Call Reference, for further information.

Table 2.5. RTR Event Names and Numbers

Event Name Event
Number

Description

RTR_EVTNUM_FACREADY 96 The facility has become
operational.

RTR_EVTNUM_FACDEAD 97 The facility is no longer
operational.

RTR_EVTNUM_FERTRGAIN 98 Frontend link to current
router established.

RTR_EVTNUM_FERTRLOSS 99 Frontend link to current
router lost.

RTR_EVTNUM_RTRBEGAIN 100 Current router established
link to a backend.

RTR_EVTNUM_RTRBELOSS 101 Current router lost link to a
backend.

RTR_EVTNUM_KEYRANGEGAIN 102 Server(s) for new routing
key range are now available.

RTR_EVTNUM_KEYRANGELOSS 103 No more servers remain
for a particular routing key
range.

RTR_EVTNUM_BERTRGAIN 104 Backend established link to
a router.

RTR_EVTNUM_BERTRLOSS 105 Backend lost link to a router.
RTR_EVTNUM_RTRFEGAIN 106 Router established link to a

frontend.
RTR_EVTNUM_RTRFELOSS 107 Router lost link to a

frontend.
RTR_EVTNUM_SRPRIMARY 108 Server has become primary.

1

RTR_EVTNUM_SRSTANDBY 109 Server has become standby.
RTR_EVTNUM_SRSECONDARY 110 Server in a shadow pair has

become secondary. 1

17

Chapter 2. Overview of the C Programming API

Event Name Event
Number

Description

RTR_EVTNUM_SRSHADOWLOST 111 Server in a shadow pair lost
its shadow partner. 2

RTR_EVTNUM_SRSHADOWGAIN 112 Server in a shadow pair
acquired a shadow partner.

RTR_EVTNUM_SRRECOVERCMPL 113 Server completed recovery
processing.

1RTR will generate this event between transactional boundaries. This event can be useful to signal the application to begin activities that should
only be performed by the primary system, such as processing credit card debits.
2This event signals that this system is entering remember mode for future catchup of the shadow partner.

2.12.2. Developing Applications to Use Events
Subscribing to Events
RTR Events can be used for triggering special application processing based on a change in RTR system
status, or for sending notification to the system operator after certain application or RTR conditions that
require intervention.

User Events can be used for actions such as broadcasting stock prices to update a price table, or
triggering special application processing such as handling a failed transaction. User events can be used to
send a message in a one-to-one or a one-to-many method.

Event subscription is established when the rtr_open_channel call is executed. See the RTR
rtr_open_channel call description for details on this call. The rtr_open_channel call is as
follows:

 rtr_open_channel (channel,
 flags,
 facnam,
 rcpnam,
 pevtnum,
 access,
 numseg,
 pkeyseg)

Two parameters on the call are used to establish event subscription: rcpnam and pevtnum.

rcpnam is a pointer to an optional channel name for receiving event messages. If a User Event is sent
to a particular channel name, only those subscribers that match both name AND event number are
notified. For example, a client channel named “New York” and a client channel named “Hong Kong”
could both subscribe to receive User Event number 999. If event 999 was triggered by the server using
the channel named “Hong Kong,” the event would be received only by the “Hong Kong” client. Specify
RTR_NO_RCPNAM for this parameter if a name is not used. This parameter is case sensitive.

pevtnum is a pointer to lists of RTR and User event numbers to which the channel wants to subscribe.
These lists use the numeric values of the events shown in Table 2.5. Use the special symbols in Table 2.6
to construct the event list.

Table 2.6. Symbols for Event Lists

Symbol Description

RTR_NO_PEVTNUM No events selected.

18

Chapter 2. Overview of the C Programming API

Symbol Description

RTR_EVTNUM_USERDEF Begin User Event list.
RTR_EVTNUM_RTRDEF Begin RTR Event list.
RTR_EVTNUM_ENDLIST End of entire list.
RTR_EVTNUM_UP_TO Specifies an event range in the form x

RTR_EVTNUM_UP_TO y.
RTR_EVTNUM_USERBASE Smallest User Event number (0).
RTR_EVTNUM_USERMAX Largest User Event number (250).
RTR_EVTNUM_RTRBASE Smallest RTR Event number.
RTR_EVTNUM_RTRMAX Largest RTR Event number.

Example 2.4 illustrates how to set up a list of all User Event numbers for the rtr_open_channel
call.

Example 2.4. User Event Example

 rtr_evtnum_t all_user_events[]={
 RTR_EVTNUM_USERDEF,
 RTR_EVTNUM_USERBASE,
 RTR_EVTNUM_UP_TO,
 RTR_EVTNUM_USERMAX,
 RTR_EVTNUM_ENDLIST
 } ;

Example 2.5 illustrates how to set up a list of all RTR and User Event numbers for the
rtr_open_channel call.

Example 2.5. RTR and User Event Example

 rtr_evtnum_t all_events[]={
 RTR_EVTNUM_USERDEF,
 RTR_EVTNUM_USERBASE,
 RTR_EVTNUM_UP_TO,
 RTR_EVTNUM_USERMAX,
 RTR_EVTNUM_RTRDEF,
 RTR_EVTNUM_RTRBASE,
 RTR_EVTNUM_UP_TO,
 RTR_EVTNUM_RTRMAX,
 RTR_EVTNUM_ENDLIST
 } ;

Sending Events

A broadcast event is triggered when the rtr_broadcast_event call is executed. See the
rtr_broadcast_event call description for details on this call. The rtr_broadcast_event
call syntax is as follows:

 rtr_broadcast_event (channel,
 flags,
 pmsg,
 msglen,
 evtnum,

19

Chapter 2. Overview of the C Programming API

 rcpspc,
 msgfmt)

The significant parameters on this call are:

channel is the channel identifier returned from the rtr_open_channel call.
pmsg is a pointer to the message to be broadcast.
msglen is the length in bytes of the message.
evtnum is the User Event number that the application developer has assigned to this event.
rcpspc is the optional recipient channel name that can be specified with the rcpnam parameter on the
rtr_open_channel call.

Example 2.6 shows an example of an rtr_broadcast_event call.

Example 2.6. Broadcast Event Example

if (bServerShutdown)
{ sts = rtr_broadcast_event (
 /* channel */ BY_CHAN_CLIENT(cCurrentChannel,client)->chan,
 /* flags */ RTR_NO_FLAGS,
 /* pmsg */ &msgbuf,
 /* msglen */ cbTotalSize,
 /* evtnum */ USER_EVT_SHUTDOWN,
 /* rcpnam */ "*",
 /* msgfmt */ szMsgFmt);
exit_if_error ("rtr_broadcast_event", sts);
}

Receiving Events

Any RTR transaction, RTR Event, or User Event can be received when the application executes the
rtr_receive_message call. See the RTR rtr_receive_message call description for details
on this call. The rtr_receive_message call syntax is as follows:

 rtr_receive_message (channel,
 flags,
 prcvchan,
 pmsg,
 maxlen,
 timoutms,
 pmsgsb)

The significant parameters on this call are:

channel is the channel on which the message is received.
pmsg is a pointer to an application buffer where the message is written.
maxlen is the maximum length of the application buffer in bytes.
pmsgsb is a pointer to a message status block describing the received message.

Notification of Events

If the application has subscribed to events, any call to rtr_receive_message can return an event
notification, either an RTR Event notification or a User Event notification. The results are described in
Table 2.7.

20

Chapter 2. Overview of the C Programming API

Table 2.7. Event Notifications

If this notification is delivered: the

rtr_receive_message

call returns a message of type:

and the user/application buffer
contains the associated:

RTR Event rtr_mt_rtr_event event message
User Event rtr_mt_user_event user broadcast message

When RTR receives a role-gain or role-loss event, it provides both the facility name and the nodename
of the node (FE, TR, or BE) that sent the event notification. Only events for roles (FE, TR, BE) provide
this additional information. For a definition of roles in RTR, see the VSI Reliable Transaction Router
Getting Started manual and the RTR Glossary. In RTR, only facilities have roles. Example 2.7 shows the
results of a frontend gain event (FEGAIN, event 106) and a frontend loss event (FELOSS, event 107).

Example 2.7. Frontend Gain and Loss Examples

 RTR> call rece
 %RTR-S-OK, normal successful completion
 channel name: RTR$DEFAULT_CHANNEL
 msgsb
 msgtype: rtr_mt_rtr_event
 msglen: 34
 evtnum: 106 (RTR_EVTNUM_RTRFEGAIN)
 message
 facility: RTR$DEFAULT_FACILITY
 link: nodename
 RTR> call rece
 %RTR-S-OK, normal successful completion
 channel name: RTR$DEFAULT_CHANNEL
 msgsb
 msgtype: rtr_mt_rtr_event
 msglen: 34
 evtnum: 107 (RTR_EVTNUM_RTRFELOSS)
 message
 facility: RTR$DEFAULT_FACILITY
 link: nodename

Returned Event Data
Two RTR Events return key range data to the application:

Table 2.8. Events that Return Key Range Data

Event Name Event Number

RTR_EVTNUM_KEYRANGEGAIN 102
RTR_EVTNUM_KEYRANGELOSS 103

The key range data are received in the message returned to the application, with the length of the
message specified in the message status block (msgsb). For example, the following illustrates
rtr_receive_message usage.

 rtr_status_t
 rtr_receive_message (
 rtr_channel_t *pchannel,

21

Chapter 2. Overview of the C Programming API

 rtr_rcv_flag_t flags,
 rtr_channel_t *p_rcvchan,
 rtr_msgbuf_t pmsg,
 rtr_msglen_t maxlen,
 rtr_timout_t timoutms,
 rtr_msgsb_t *p_msgsb
)

The message status block pointed to by *p_msgsb has the following structure:

 typedef struct {
 rtr_msg_type_t msgtype;
 rtr_usrhdl_t usrhdl;
 rtr_msglen_t msglen;
 rtr_tid_t tid;
 rtr_evtnum_t evtnum;
 }rtr_msgsb_t;

When an event number is 102 or 103, RTR returns key range data (the low and high bounds) in the
message, padded as required for data marshalling and interoperability. The key range data can be
examined by the application. For more detail on data marshalling and formatting, see Section 2.14.

Bounds data are treated as if defined as a structure. For example, if there are two key segments defined
as rtr_uns_8_t and rtr_uns_32_t, then the bounds data are copied to outbuf as if they were
contained in the structure; that is, the 32-bit ints are correctly aligned in the structure and the structure
size is a multiple of four. For example,

 struct{
 rtr_uns_8_t low_bound_1;
 rtr_uns_32_t low_bound_2;
 rtr_uns_8_t hi_bound_1;
 rtr_uns_32_t hi_bound_2;
 }

The “four-byte-alignment-fits-all” requirement is enforced for interoperability; no padding is allowed.

Example 2.8, which can be run manually from the RTR CLI, illustrates the return of key range data with
the RTR Event RTR_EVTNUM_KEYRANGELOSS. The RTR CLI interprets the format of this message
as appropriate. In Example 2.8, the format is string or ASCII data, the default.

Example 2.8. Returned Event Key Range Data Example

 RTR> crea fac jws/all=sucre
 %RTR-S-FACCREATED, facility jws created
 RTR> crea part ab/fac=jws/noshadow/nostandby-
 /key1=(type=string,length=2,offset=0,low="AB",high="CD")
 %RTR-I-PRTCREATE, partition created
 RTR> rtr_open/chan=s/server/noshadow/nostandby/part=ab/fac=jws
 %RTR-S-OK, normal successful completion
 RTR> rtr_rec/chan=s/time=10
 %RTR-S-OK, normal successful completion
 channel name: S
 msgsb
 msgtype: rtr_mt_opened
 msglen: 8
 message
 status: normal successful completion
 reason: 0x00000000

22

Chapter 2. Overview of the C Programming API

 RTR> rtr_open/chan=c/client/event=(102,103)/fac=jws
 %RTR-S-OK, normal successful completion
 RTR> rtr_rec/chan=c/time=10
 %RTR-S-OK, normal successful completion
 channel name: C
 msgsb
 msgtype: rtr_mt_opened
 msglen: 8
 message
 status: normal successful completion
 reason: 0x00000000
 RTR> rtr_close/chan=s
 %RTR-S-OK, normal successful completion
 RTR> rtr_rec/chan=c/time=10
 %RTR-S-OK, normal successful completion
 channel name: C
 msgsb
 msgtype: rtr_mt_rtr_event
 msglen: 4
 evtnum: 103 (RTR_EVTNUM_KEYRANGELOSS)
 message
 ks_lo_bound: AB
 ks_hi_bound: CD
 RTR> reca
 RTR> rtr_rec/chan=c/time=10
 %RTR-E-TIMOUT, call to rtr_receive_message timed out

Design consideration: When an RTR application executes an rtr_receive_message call, the
programmer could incorrectly anticipate that a particular message type may be received and only
write instructions to respond to the expected message. However, an RTR or User Event could be
received on any instance of the rtr_receive_message call (as could other unanticipated RTR
messages). Therefore, as a general application design guideline, the application developer should always
program the application so that it can properly handle any type of message that could be received by the
rtr_receive_message call.

Events are delivered in the order in which they are broadcast; therefore event serialization will be
preserved for a particular user. However, RTR does not enforce any particular serialization across
different subscribers, so different subscribers could receive event notifications in any order.

Example 2.9 shows an rtr_receive_message call in use.

Example 2.9. Receive Message Example

 status = rtr_receive_message(&channel,
 RTR_NO_FLAGS,
 RTR_ANYCHAN,
 &receive_msg,
 RTR_ANYCHAN,
 &receive_msg,
 sizeof(receive_msg),
 receive_time_out,
 &msgsb);
 check_status("rtr_receive_message", status);

2.12.3. Event Management by RTR
RTR manages both event routing and event delivery.

23

Chapter 2. Overview of the C Programming API

Event Routing

When an event subscription is created with the rtr_open_channel call, the event details are
stored in a subscriber database on all routers. When an event is triggered, notification is delivered to all
routers connected to that system in that facility. The routers then check their subscriber database for any
systems that have subscribed to that event. If one or more subscribers are located, and the subscribers
are currently attached to this router, then the router broadcasts the message to the subscribers. If no
subscriber is located, then the message is discarded.

Event Delivery

RTR reliably delivers RTR transactions and RTR events. The delivery of User Events on a properly
configured system is reliable, but RTR Flow Control manages delivery of User Events if the subscriber
cannot process events as quickly as they are delivered. Flow Control is RTR's message traffic governor
that helps affected systems to manage spikes in message traffic. For more detail on RTR Flow Control,
refer to the VSI Reliable Transaction Router System Manager’s Manual.

When a User Event is triggered, a broadcast that includes message data is routed to the subscriber
system. User Events, along with RTR Events and transactions, are placed into an incoming message
queue on the destination system until the subscriber application executes an rtr_receive_message
call to receive the message into the application. If too many messages are sent to the destination system,
then the RTR Flow Control feature will be activated.

Flow Control may then force the sending application to wait awhile in the next RTR call that sends data,
or it may discard broadcasts from the message queue, until the message queue length reduces and Flow
Control allows new broadcasts to be sent to the destination system. Because User Event broadcasts are
usually used for streaming information such as the periodic update of a price table, RTR does not store
event messages that are impacted by Flow Control for later processing. This technique would cause the
application to spend time viewing stale data. Instead, RTR Flow Control may discard the message to
help relieve the messaging backlog, and will rely on a future message delivery to supply the updated
information.

Design issue: Because of the possibility that a User Event message could become delayed or discarded
due to Flow Control, User Events should not be used for delivering information that is of a business
critical nature, including information that previously was, or later will be, used in a transaction. To
compensate for the possibility of a discarded message, the application developer may consider adding a
sequence number to the event message and providing a read-only transaction in the application to detect
and request retransmission of any discarded broadcast data from the sender.

Overhead of Using Events

Delivery of User Events is based upon the registration databases that are kept on the routers. The event
is delivered from the sender to all connected routers, which means each event triggers a message traffic
load of 1 (for a FE sender) or the number of routers (for a BE sender). The event is then propagated by
the routers to all subscribers, creating message traffic of 0 or the number of systems with subscribers to
the event.

Design Issue: Processing event messages does consume some system resources and could impact overall
performance. If system resources become constrained, RTR Flow Control may become active, thus
reducing the RTR throughput on the affected systems. Care should be exercised to provide enough
system resources to handle the message load.

24

Chapter 2. Overview of the C Programming API

2.12.4. Event Troubleshooting
Several RTR MONITOR screens can be helpful in troubleshooting events, as described below. Sample
screens are available in the VSI Reliable Transaction Router System Manager’s Manual.

Monitoring Events
User Event traffic (broadcasts) may be monitored specifically for each node using the MONITOR
BROADCAST screen in RTR. This screen shows the total event throughput, along with a count of any
discarded broadcasts.

The MONITOR FACILITY screen in RTR provides a combined summary of all RTR Events and User
Events processed for each facility.

The SHOW CLIENT/FULL and SHOW SERVER/FULL commands in RTR are helpful for viewing the
current event subscription list for a particular client or server, along with any channel name specified in
the rcpnam parameter on the rtr_open_channel call.

Execution of rtr_broadcast_event calls and event message traffic in RTR can be
monitored using the MONITOR CALLS screen in RTR. This screen shows the frequency of
use of the rtr_broadcast_event call, and the number of RTR Events and User Events
processed. If an event is in pending (“pend”) status, it indicates that the event is waiting for an
rtr_receive_message call to be performed.

The MONITOR ROUTING screen shows the transaction and broadcast throughput on the system. This
display shows the number of events and also the rate over time during the monitoring interval.

The MONITOR STALLS screen is helpful to determine if RTR Flow Control is affecting a particular
system. Flow Control stalls that have occurred are categorized by duration. Any stall that lasts more
than 60 seconds results in a Link Drop entry. A Stall (“stll”) entry in the far-right column indicates
that a Flow Control stall is currently in progress on the link indicated. For the purposes of User Event
broadcast delivery, any stall could indicate that a broadcast message could have been discarded.

It is possible to monitor additional details of RTR Flow Control by using the MONITOR CONGEST,
MONITOR FLOW, and MONITOR TRAFFIC monitor screens in RTR.

2.13. Use of XA Support
Users need to register a resource manager first, to invoke RTR XA support when creating a facility.
Please see the VSI Reliable Transaction Router System Manager’s Manual for more details about how to
register and unregister resource managers.

In the server application, specify the flag RTR_F_OPE_XA_MANAGED and the underlying resource
manager information when issuing the rtr_open_channel call. Once this flag is specified for a
given RTR partition, all transactions running in that RTR partition are committed using the XA interface
between RTR and the resource manager. When the partition is deleted or the resource manager is
unregistered, RTR commits transactions running in this partition in a conventional manner.

2.14. RTR Applications in a Multiplatform
Environment
Applications using RTR in a multiplatform (that is, mixed endian) environment with nonstring
application data have to tell RTR how to marshall the data for the destination architecture. The sender

25

Chapter 2. Overview of the C Programming API

of a message must supply both a description of the application data being sent and the application
data itself. This description is supplied as the msgfmt argument to rtr_send_to_server,
rtr_reply_to_client, and rtr_broadcast_event.

The default (that is, when no msgfmt is supplied) is to assume the application message is string data.

2.14.1. Defining a Message Format
The msgfmt string is a null-terminated ASCII string consisting of a number of field-format specifiers:

[field-format-specifier...]
The field-format specifier is defined as:

%[dimension]field-type
where:

Field Description Meaning

% indicates a new field description
is starting

dimension is an optional integer denoting
array cardinality (default 1)

field-type is one of the following:
Code Meaning

UB 8 bit unsigned byte
SB 8 bit signed byte
UW 16 bit unsigned
SW 16 bit signed
UL 32 bit unsigned
SL 32 bit signed
C 8 bit signed char
UC 8 bit unsigned char
B boolean

For example, consider the following data structure:

 typedef struct {
 rtr_uns_32_t first ;
 rtr_sgn_32_t second ;
 char str[12] ;
 } example_t ;

The msgfmt for this structure could be “%UL%SL%12C”.

The transparent data type conversion of RTR does not support certain conversions (for example, floating
point).

2.14.1.1. Data Types
Data types supported by RTR are:

26

Chapter 2. Overview of the C Programming API

• Unsigned

• Signed

• Char

• Boolean

2.14.1.2. Alignment
Alignment of data on byte boundaries depends on several factors, including the compiler used in creating
an application. RTR's data marshalling software manages these alignments.

2.15. Application Design and Tuning Issues
This section addresses some considerations for design and tuning, including:

• Transactions that can cause server failure

• Transaction grouping and database applications

• Transaction sequence and shadow servers

• Transaction independence

2.15.1. Transactions That Can Cause Server Failure
It is possible for a “rogue” client transaction, due to a user application bug, to “kill” the server process.
If RTR were to reapply this transaction indefinitely, all available servers would be destroyed. To avoid a
transaction killing all server processes, the following mechanism is implemented:

• A transaction for which no rtr_accept_tx has been called by a server is aborted after it has
caused the death of three concurrent servers to which it has been presented. The transaction abort
status reported to the client is RTR_STS_SRVDIED. Retry count for transactions that have not been
voted on is three; for transactions that have been voted on, retry count can be limited with the RTR
command SET PARTITION/RECOVERY_RETRY_COUNT (default: unlimited).

• An RTR error log message with the same status is also written on the backend where the server
deaths occurred.

The limitation of this feature to transactions that have not yet been accepted prevents possible transaction
inconsistencies that could otherwise arise between client and server(s), and on shadow secondary sites.
Thus a server application should complete any necessary validation of client transaction messages before
accepting the transaction, to take advantage of this feature.

2.15.2. Transaction Grouping and Database
Applications
RTR generates commit sequence numbers (CSN) for each transaction committed on the primary site.
Concurrent servers can have several transactions assigned to a single CSN value. Transactions with the
same CSN are understood by RTR to be independent, and hence their relative commit ordering to the
database does not violate the serializability requirements of transactions.

27

Chapter 2. Overview of the C Programming API

For purposes of throughput, RTR attempts to group as many transactions as possible into a single
CSN during a given vote cycle. (Grouped transactions are only those that explicitly vote (that is, call
rtr_accept_tx on the server.)

The vote cycle completes as soon as RTR is ready to ask a server to commit the next transaction. For
this mechanism to work correctly with the application, RTR places the following restriction on the server
design:

A server must obtain an exclusive lock on any resource that another concurrent server may be accessing
for a different transaction before it issues the call to rtr_accept_tx.

Database applications, in general, comply with this requirement. If the database management software
allows “dirty reads,” the application should apply this rule explicitly, so that RTR can correctly
serialize transactions during shadowing or other recovery. Failure to comply with this rule can cause
unsynchronised copies of shadow databases.

2.15.3. Transaction Sequence and Shadow Servers
When using a facility having a shadow site and two or more partitions, the transaction sequence is
the same at both shadow sites within a single partition only. Sequences across partitions are not
preserved. For example, suppose the following transactions are executed on half of a shadow site in the
following chronological order:

tx1_for_partition1
tx2_for_partition1
tx3_for_partition1
tx1_for_partition2
tx4_for_partition1

When replayed on the secondary, the order could be:

tx1_for_partition1
tx2_for_partition1
tx3_for_partition1
tx4_for_partition1
tx1_for_partition2

Do not write your application to expect preservation of transaction serialization across partitions.

2.15.4. Transaction Independence
RTR normally assumes that each transaction processed by a given server depends on the transactions
that particular server has previously accepted.

To keep the shadowed database identical to that on the primary, RTR controls the order in which the
secondary executes transactions. The secondary is constrained to execute transactions in the same order
as the primary. Under some circumstances, this can lead to the secondary sitting idle, waiting to be given
a transaction to execute.

RTR provides a performance enhancement that may help some applications decrease idle time on the
secondary, reducing the corresponding backlog. If the application knows that particular transactions are
independent of the transactions previously received, then the application can set one of two flags listed in
Table 2.9.

28

Chapter 2. Overview of the C Programming API

Table 2.9. Independent Transaction Flags

Flag Meaning

RTR_F_ACC_INDEPENDENT Set on an rtr_accept_tx call to indicate this
transaction is independent.

RTR_F_REP_INDEPENDENT Set on an rtr_reply_to_client call along
with RTR_F_REP_ACCEPT to indicate this
transaction is independent.

A transaction accepted with one of these flags can be started on the secondary while other transactions
are still running. All transactions flagged with one of these flags must truly be independent of the
transactions that have previously executed. They will execute in an arbitrary sequence on the
secondary site.

If the server channel has been opened with RTR_F_OPE_EXPLICIT (explicit accept), then the
RTR_F_REP_INDEPENDENT flag can only be used together with RTR_F_REP_ACCEPT. If the
server channel has been opened with implicit accept, then using RTR_F_REP_INDEPENDENT implies
using RTR_F_REP_ACCEPT.

An application can be written to create CSN boundaries to ensure independence. A transaction
always receives a CSN, and the INDEPENDENT flag could be used to prevent the CSN from being
incremented, so an application could be coded to force dependence between sets of transactions.
This could be important in certain cases where transactions coming in at a particular time of day are
independent of each other, but other transactions executed, say, at the end of the day, need to ensure that
the day's transactions have been processed, and the following day's transactions need to ensure that the
previous end-of-day processing has completed. For more details on user of independent transactions,
refer to the discussion of CSNs in the VSI Reliable Transaction Router Application Design Guide.

29

Chapter 2. Overview of the C Programming API

30

Chapter 3. RTR Call Reference
This chapter contains the environmental limits, field length maxima, and syntax definitions for all RTR
C programming API calls.

3.1. RTR Environmental Limits
RTR deals with several environmental entities that have architectural limits as shown in Table 3.1. Actual
limits in a specific configuration are determined by performance.

Table 3.1. Environmental Limits

Component Limit

BE or TR nodes 512
Bytes per message 64000
Channels per application process 1024
Facilities 100 to 1000, depending on operating system
FE nodes 1000
Journal files 16
Memory per process OpenVMS: 4GB; UNIX: unlimited; NT: 2GB
Messages per transaction - server to client unlimited
Messages per transaction - client to server 65534
Partitions 65536 (dynamic; default:500)
Processes per node 1000
Size of journal file 256MB
Threads per application process (where supported
by operating system)

4096

3.2. RTR Maximum Field Lengths
Table 3.2 contains definitions of RTR field length maxima. The file rtr.h contains values for these
field lengths.

Table 3.2. RTR Maximum Field-Length Definitions

Field Name Description

RTR_MAX_ACCESS_LEN Maximum length of access string.
RTR_MAX_BLOB_LEN Maximum length of data that can be passed in a

prepare call.
RTR_MAX_FACNAM_LEN Maximum length of facility name.
RTR_MAX_FE_NAM_LEN Maximum length of frontend name.
RTR_MAX_MSGFMT_LEN Maximum length of message format.
RTR_MAX_MSGLEN Maximum length of an RTR message.
RTR_MAX_NUMSEG Maximum number of segments in key.

31

Chapter 3. RTR Call Reference

Field Name Description

RTR_MAX_PARNAM_LEN Maximum length of partition name.
RTR_MAX_RCPNAM_LEN Maximum length of broadcast recipient name.
RTR_MAX_RCPSPC_LEN Maximum length for broadcast recipient

specification.
RTR_MAX_SELVAL_LEN Maximum length for selector value.

3.3. RTR C API Calls
The calls are presented in alphabetical order.

rtr_accept_tx
rtr_accept_tx — Accept the transaction currently active on the specified channel.

Format
status = rtr_accept_tx (channel, flags, reason)

Argument Data Type Access

status rtr_status_t write
channel rtr_channel_t read
flags rtr_acc_flag_t read
reason rtr_reason_t read

C Binding
rtr_status_t rtr_accept_tx (
 rtr_channel_t channel ,
 rtr_acc_flag_t flags ,
 rtr_reason_t reason
)

Arguments
channel

The channel identifier (returned earlier by rtr_open_channel()).

flags

Flags that specify options for the call.

Table 3.3 shows the flags that are defined.

Table 3.3. Accept Transaction Flags

Flag name Description

RTR_F_ACC_FORGET Set to prevent receipt of any more messages (or
completion status) associated with the transaction.

32

Chapter 3. RTR Call Reference

Flag name Description
Any such messages are discarded. This flag is valid
only on server channels; it has no effect on client
channels.

RTR_F_ACC_INDEPENDENT Set to indicate this transaction is independent. (See
Section 2.15.4 for further information.)

If you do not require any flags, specify RTR_NO_FLAGS for this parameter.

reason

Optional reason for accepting the transaction. This reason is ORed together with the reasons of the
other participants in the transaction and returned in the reason field of the rtr_status_data_t
structure returned with the rtr_mt_accepted message to all participants of the transaction. Specify
RTR_NO_REASON if no reason is required.

Description
The rtr_accept_tx() call accepts the transaction currently active on the specified channel.
After rtr_accept_tx() has been called, the caller may no longer actively participate in the
fate of the transaction; that is, messages and the final completion status can still be received, but no
further messages may be sent for the transaction. An attempt to send a further message yields an
RTR_STS_TXALRACC return status.

Note

RTR_STS_PRTSTACHGTXRES – When the RTR environment has changed, such as backend lost
quorum (for example, router not available), or a concurrent server is crashed etc., a transaction currently
being processed would be aborted. The server would receive a rtr_mt_rejected message with this
status. RTR would reschedule the tx to get processed in a different server, if available. This error message
is passed back to the application and is returned in the RTR$L_TXSB_STATUS field of the TXSB
when an RTR system service call completes.

Return Value
A value indicating the status of the routine. Possible status values are:

RTR_STS_AMBROUNAM Ambiguous API routine name for call - supply
more characters

RTR_STS_CHANOTOPE Channel not opened
RTR_STS_INVCHANNEL Invalid channel argument
RTR_STS_INVFLAGS Invalid flags argument
RTR_STS_OK Normal successful completion
RTR_STS_TXALRACC Transaction already accepted
RTR_STS_TXNOTACT No transaction currently active on this channel

Example
 /*
 * Client is done with the txn; if the server accepts the

33

Chapter 3. RTR Call Reference

 * transaction, there is no reason for us to reject it.
 * Accept it, then go on to a new transaction.
 */
 if (msgsb.msgtype == rtr_mt_accepted)
 {
 status = rtr_accept_tx(
 channel,
 RTR_NO_FLAGS,
 RTR_NO_REASON);
 check_status(status);
 }
 else
 .
 . Issue the error message returned by the
 . server, and recover from there.
 .

See Also
rtr_open_channel()

rtr_reject_tx()

rtr_reply_to_client()

rtr_broadcast_event
rtr_broadcast_event — Broadcast (send) a user event message.

Format
status = rtr_broadcast_event (channel, flags, pmsg, msglen, evtnum, rcpspc, msgfmt)

Argument Data Type Access

status rtr_status_t write
channel rtr_channel_t read
flags rtr_bro_flag_t read
pmsg rtr_msgbuf_t read
msglen rtr_msglen_t read
evtnum rtr_evtnum_t read
rcpspc rtr_rcpspc_t read
msgfmt rtr_msgfmt_t read

C Binding
rtr_status_t rtr_broadcast_event (
 rtr_channel_t channel ,
 rtr_bro_flag_t flags ,
 rtr_msgbuf_t pmsg ,
 rtr_msglen_t msglen ,
 rtr_evtnum_t evtnum ,
 rtr_rcpspc_t rcpspc ,

34

Chapter 3. RTR Call Reference

 rtr_msgfmt_t msgfmt
)

Arguments
channel

The channel identifier (returned earlier by rtr_open_channel()).

flags

No flags are currently defined. Specify RTR_NO_FLAGS for this parameter.

pmsg

Pointer to the message to broadcast.

msglen

Length in bytes of the message broadcast.

evtnum

User event number associated with this broadcast. (Recipients must specify this to receive it.) For more
information on user event numbers, see Section 2.12.

rcpspc

Name of the recipient(s). This null-terminated character string contains the name of the recipient(s),
specified with the rcpnam parameter on the call to rtr_open_channel().

Wildcards ("*" for any sequence of characters, and "%" for any one character) can be used in this string
to address more than one recipient. rcpspc is an optional parameter. Specify RTR_NO_RCPSPC for this
parameter if no rcpspc is required.

Note

Named Events.

• To receive named events, the correct event number must also be specified. The event number
(evtnum) must be specified by both the sender (rcpspc) and the recipient (rcpnam).

• Both rcpnam and rcpspc are case sensitive.

• Both rcpnam and rcpspc default to the case-insensitive channel name if no explicit rcpnam or rcpspc
is provided.

msgfmt

Message format description. This null-terminated character string contains the format description of the
message. RTR uses this description to convert the contents of the message appropriately when processing
the message on different hardware platforms. See Section 2.14 for information on defining a message
format description.

This parameter is optional. Specify RTR_NO_MSGFMT if message content is platform independent, or
there is no intent to use other hardware platforms.

35

Chapter 3. RTR Call Reference

Description
The rtr_broadcast_event() call broadcasts a user event message. The caller must first open a
channel (using rtr_open_channel()), before it can send user event messages.

A client channel can be used to send user event messages to servers.

A server channel can be used to send user event messages to clients.

Return Value
RTR_STS_CHANOTOPE Channel not opened
RTR_STS_INSVIRMEM Insufficient virtual memory
RTR_STS_INVCHANNEL Invalid channel argument
RTR_STS_INVEVTNUM Invalid evtnum argument
RTR_STS_INVFLAGS Invalid flags argument
RTR_STS_INVMSGFMT Invalid msgfmt argument
RTR_STS_INVMSGLEN Invalid msglen argument
RTR_STS_INVRCPSPC Invalid rcpspc argument
RTR_STS_NOACP No RTRACP process available
RTR_STS_OK Normal successful completion
RTR_STS_WOULDBLOCK Operation would block. Try again later.

Example
#define reunion_announcement 678 // In user .h file.

rtr_msg_buf_t reunion_msg = "Jones family reunion today!";
rtr_rcpspc_t recipients = "*Jones";
/*
 * If today is the date of the Jones family reunion, tell
 * any client whose last name is Jones that they need to
 * be there!
 */
 if (strcmp(today, reunion_date) == 0)
 {
 status = rtr_broadcast_event(
 &channel,
 RTR_NO_FLAGS,
 reunion_msg,
 strlen(reunion_msg),
 reunion_announcement,
 recipients,
 RTR_NO_MSGFMT);
 check_status(status);
}

See Also
rtr_receive_message()

rtr_open_channel()

36

Chapter 3. RTR Call Reference

rtr_close_channel
rtr_close_channel — Close a previously opened channel.

Format
status = rtr_close_channel (channel, flags)

Argument Data Type Access

status rtr_status_t write
channel rtr_channel_t read
flags rtr_clo_flag_t read

C Binding
rtr_status_t rtr_close_channel (
 rtr_channel_t channel ,
 rtr_clo_flag_t flags
)

Arguments
channel

The channel identifier (returned earlier by rtr_open_channel(), or rtr_request_info()
or rtr_set_info()).

flags

Flags that specify options for the call.

The flag RTR_F_CLO_IMMEDIATE is defined for this call.

Normally rtr_close_channel() processes a pending transaction that was in a commit state by
forgetting the transaction (removing it from the journal). To close the channel but leave transactions in
the journal, use the flag RTR_F_ CLO_IMMEDIATE to rtr_close_channel().

In some situations, an accepted transaction cannot be completed and replay is required. For example, a
transaction may be accepted but the database becomes unavailable before the transaction is committed
to the database. To deal with such a situation, an application can use the close-immediate flag
RTR_F_CLO_IMMEDIATE. This closes the channel but leaves the transactions in the journal for use
on replay when database access is restored. If you do not need any flags, specify RTR_NO_FLAGS for
this argument.

Description
The rtr_close_channel() call closes a previously opened channel. A channel may be closed at
any time after it has been opened via rtr_open_channel() or rtr_request_info(). If
the channel is a server channel, an implicit acknowledgment is sent, if you have a current transaction.

If you call the CLOSE_CHANNEL API from the CLI, after receiving the rtr_ mt_accepted message,
then it leaves the transaction in the journal, however if you call it from the program after receiving ther
rtr_mt_accepted message, then it is cleared from the journal, irrespective of the flag RTR_F_CLO_
IMMEDIATE being used or not.

37

Chapter 3. RTR Call Reference

Return Value
A value indicating the status of the routine. Possible status values are:

RTR_STS_ACPNOTVIA RTR ACP no longer a viable entity, restart RTR or
application

RTR_STS_BYTLMNSUFF Insufficient process quota bytlm, required 100000
RTR_STS_INVCHANNEL Invalid channel argument
RTR_STS_NOACP No RTRACP process available
RTR_STS_OK Normal successful completion

Example
/* If the status returned by the previous call is not success,
 * close now, and exit the program.
 */
if (status != RTR_STS_OK)
 {
 printf(fpLog, "Unexpected error, must close immediately!");
 status = rtr_close_channel(channel, RTR_CLO_IMMEDIATE);
 exit(status);
}
/*
 * Normal processing complete, close the channel.
 */
 printf(fpLog, "Closing channel");
status = rtr_close_channel (channel, RTR_NO_FLAGS);

See Also
rtr_open_channel()

rtr_error_text
rtr_error_text — Return the text associated with an RTR status value.

Format
retval = rtr_error_text (sts)

Argument Data Type Access

retval char* write
sts rtr_status_t read

C Binding
char *rtr_error_text (
 rtr_status_t sts
)

Arguments
sts

38

Chapter 3. RTR Call Reference

The RTR error number for which the text is required.

Description
The rtr_error_text() call returns a pointer to the text associated with an RTR error number.

The text string is a constant. If an invalid value for sts is supplied, a pointer is also returned to an error
text, indicating an invalid value.

Example
/* If the status returned by the previous call is not success,
 * print the message text to the error log, and exit.
 */
if (status != RTR_STS_OK)
{
 printf(errLog, rtr_error_text(status));
 exit(status);
 }

rtr_ext_broadcast_event
rtr_ext_broadcast_event — Broadcast (send) a user event message or an RTR_STS_TIMOUT status if
RTR is unable to issue to broadcast message within the specified timeout period. The call is the same as
rtr_broadcast_event with the addition of the timeout period, given in milliseconds.

Format
status = rtr_ext_broadcast_event (channel, flags, pmsg, msglen, evtnum, rcpspc, msgfmt, timoutms)

Argument Data Type Access

status rtr_status_t write
channel rtr_channel_t read
flags rtr_bro_flag_t read
pmsg rtr_msgbuf_t read
msglen rtr_msglen_t read
evtnum rtr_evtnum_t read
rcpspc rtr_rcpspc_t read
msgfmt rtr_msgfmt_t read
timoutms rtr_timout_t read

C Binding
rtr_status_t rtr_ext_broadcast_event (
 rtr_channel_t channel ,
 rtr_bro_flag_t flags ,
 rtr_msgbuf_t pmsg ,
 rtr_msglen_t msglen ,
 rtr_evtnum_t evtnum ,
 rtr_rcpspc_t rcpspc ,
 rtr_msgfmt_t msgfmt ,
 rtr_timout_t timoutms

39

Chapter 3. RTR Call Reference

)

Arguments
channel

The channel identifier (returned earlier by rtr_open_channel()).

flags

No flags are currently defined. Specify RTR_NO_FLAGS for this parameter.

pmsg

Pointer to the message to broadcast.

msglen

Length in bytes of the message to be broadcast.

evtnum

User event number associated with this broadcast. (Recipients must specify this to receive it.) For more
information on user event numbers, see Section 2.12.

rcpspc

Name of the recipient(s). This null-terminated character string contains the name of the recipient(s),
specified with the rcpnam parameter on the call to rtr_open_channel().

Wildcards ("*" for any sequence of characters, and "%" for any one character) can be used in this string
to address more than one recipient. rcpspc is an optional parameter. Specify RTR_NO_RCPSPC for this
parameter if no rcpspc is required.

Note

Named Events

• To receive named events, the correct event number must also be specified. The event number
(evtnum) must be specified by both the sender (rcpspc) and the recipient (rcpnam).

• Both rcpnam and rcpspc are case sensitive.

• Both rcpnam and rcpspc default to the case-insensitive channel name if no explicit rcpnam or rcpspc
is provided.

msgfmt

Message format description. This null-terminated character string contains the format description of the
message. RTR uses this description to convert the contents of the message appropriately when processing
the message on different hardware platforms. See Section 2.14 for information on defining a message
format description.

This parameter is optional. Specify RTR_NO_MSGFMT if message content is platform independent, or
there is no intent to use other hardware platforms.

timoutms

40

Chapter 3. RTR Call Reference

Timeout value in milliseconds that the call will wait before timing out. Returns status
RTR_STS_TIMOUT if RTR is unable to process the call. If no timeout is needed, specify
RTR_NO_TIMOUTMS.

Description
The rtr_ext_broadcast_event() call broadcasts a user event message. The caller must first
open a channel (using rtr_open_channel()), before it can send user event messages.

A client channel can be used to send user event messages to servers.

A server channel can be used to send user event messages to clients.

In some circumstances, a broadcast event can wait a long time if RTR runs out of channel credits; it
may seem that the application is hanging. To eliminate such a wait, the application can specify a timeout
value from which the call returns an RTR_STS_TIMOUT status if RTR is unable to issue the broadcast
message within the specified timeout period.

Return Value
A value indicating the status of the routine. Possible status values are:

RTR_STS_CHANOTOPE Channel not opened
RTR_STS_INSVIRMEM Insufficient virtual memory
RTR_STS_INVCHANNEL Invalid channel argument
RTR_STS_INVEVTNUM Invalid evtnum argument
RTR_STS_INVFLAGS Invalid flags argument
RTR_STS_INVMSGFMT Invalid msgfmt argument
RTR_STS_INVMSGLEN Invalid msglen argument
RTR_STS_INVRCPSPC Invalid rcpspc argument
RTR_STS_NOACP No RTRACP process available
RTR_STS_WOULDBLOCK Operation would block. Try again later
RTR_STS_OK Normal successful completion

Example
#define reunion_announcement 10 /* In user .h file. */

rtr_msg_buf_t reunion_msg = "Jones family reunion today!";
rtr_rcpspc_t recipients = "*Jones";
rtr_timout_t = 1000 /* 1 second to time out */
/*
 * If today is the date of the Jones family reunion, tell
 * any client whose last name is Jones that they need to
 * be there!
 */
 if (strcmp(today, reunion_date) == 0)
 {
 status = rtr_ext_broadcast_event(
 &channel,
 RTR_NO_FLAGS,
 reunion_msg,

41

Chapter 3. RTR Call Reference

 strlen(reunion_msg),
 reunion_announcement,
 recipients,
 RTR_NO_MSGFMT,
 timoutms);

 check_status(status);
}

See Also
rtr_broadcast_event()

rtr_receive_message()

rtr_open_channel()

rtr_get_tid
rtr_get_tid — Return the transaction ID for the current transaction.

Format
status = rtr_get_tid (channel, flags, ptid)

Argument Data Type Access

status rtr_status_t write
channel rtr_channel_t read
flags rtr_tid_flag_t read
ptid void* write

C Binding
rtr_status_t rtr_get_tid (
 rtr_channel_t channel ,
 rtr_tid_flag_t flags ,
 void *ptid
)

Arguments
channel

The channel identifier (returned previously by rtr_open_channel()).

flags

Flags that specify options for the call.

Table 3.4 shows the flags that are defined.

Table 3.4. Get TID Flags

Flag Pointer Data Types Returns

RTR_NO_FLAGS rtr_tid_t RTR transaction ID

42

Chapter 3. RTR Call Reference

Flag Pointer Data Types Returns

RTR_F_TID_RTR rtr_tid_t RTR transaction ID
RTR_F_TID_XA rtr_xid_t XA transaction ID
RTR_F_TID_DDTM rtr_ddtmid_t DECdtm transaction ID

If you do not require any flags, specify RTR_NO_FLAGS for this argument. Specifying
RTR_NO_FLAGS is equivalent to specifying RTR_F_TID_RTR; this capability is maintained for
compatibility with RTR versions earlier than RTR Version 3.2.

The structure rtr_xid_t is based on the X/Open XA specification and is defined as follows:

typedef struct rtr_xid_t {
 long formatID; /* format identifier */
 long gtrid_length; /* value from 1 through 64 */
 long bqual_length; /* value from 1 through 64 */
 char data[RTR_XIDDATASIZE];
} rtr_xid_t;

The XID structure contains a format identifier, two length fields and a data field. The data field
comprises at most two contiguous components: a global transaction ID (gtrid) and a branch qualifier
(bqual).

The gtrid_length field specifies the number of bytes (1-64) that constitute gtrid, starting at the first byte
in data (that is, data[0]). The bqual_length field specifies the number of bytes (1-64) that constitute
bqual, starting at the first byte after gtrid (that is, data[gtrid_length]). Neither component in data is null
terminated. Any unused bytes in data are undefined.

The contents of data depend on the format of the transaction ID (TX ID), which is specified by the
format identification field. Some valid format ID values are shown in Table 3.5.

Table 3.5. Format Identification and Data Content

Format Identification Data Content

RTR_XID_FORMATID_NONE Null XID. No XID has been returned. This will
be the value if the call to rtr_get_xid /
rtr_get_tid returns an error, for example.

RTR_XID_FORMATID_OSI_CCR The XID is specified using the naming rules
specified for OSI CCR atomic action identifiers.
RTR does not use this convention directly, but such
a transaction ID format can be returned if some
other associated transaction or resource manager
uses this convention.

If OSI CCR (ISO standard) naming is used, then
the XID’s formatID element should be set to 0
(zero); if another format is used, then the formatID
element should be greater than 0. A value of -1 in
formatID means that the XID is null.

RTR_XID_FORMATID_RTR Identifies an RTR transaction ID. In this case,
the gtrid_length is 28 and bqual_length is zero.
The contents of data can be interpreted using the
format defined by rtr_tid_t. Note that one
should still use the rtr_get_tid call to get the

43

Chapter 3. RTR Call Reference

Format Identification Data Content
RTR transaction ID for a transaction active on a
channel. The rtr_get_xid call could be used,
for example, if a nested transaction is started where
the foreign transaction manager is also RTR.

RTR_XID_FORMATID_DDTM Identifies a transaction ID for a transaction
that uses a resource managed by DECdtm. The
gtrid_length field is 16, and bqual_length is 0.

RTR_XID_FORMATID_RTR_XA Identifies a transaction ID for a transaction started
using an XA resource manager.

ptid

A pointer to where the unique transaction ID for the current transaction is returned. Data type depends
on any flag that has been set; see Table 3.4.

Description
rtr_get_tid() returns the RTR transaction ID for the current transaction.

The RTR transaction ID is a unique number generated by RTR for each transaction in the RTR virtual
network.

In addition, rtr_get_tid() is capable of returning transaction identifiers associated with XA and
DECdtm managed transactions when RTR is operating with either of these transaction managers.

Return Value
A value indicating the status of the routine. Possible status values are:

RTR_STS_CHANOTOPE Channel not opened
RTR_STS_DTXNOSUCHXID No distributed transaction ID found for this

channel
RTR_STS_INVARGPTR Invalid parameter address specified on last call
RTR_STS_INVCHANNEL Invalid channel argument
RTR_STS_INVFLAGS Invalid flags argument
RTR_STS_NOXACHAN No XA channel available
RTR_STS_OK Normal successful completion
RTR_STS_TXNOTACT No transaction currently active on this channel

Example
 rtr_xid_tid xa_tid;
 char global_id_buff[64];
 char branch_qual_buff[64];
 int i, j;

/* The server executed an rtr_receive_message. In the
 * rtr_msgsb_t structure, the msgtype field equals
 * rtr_mt_msg1_uncertain. This indicates that a recovery
 * is in process, and RTR did not get a confirmation
 * that the current transaction had been

44

Chapter 3. RTR Call Reference

 * completed. RTR is now ‘replaying’ the transaction,
 * and this is the first message in that transaction.
 *
 * Get the transaction id.
 */
status = rtr_get_tid(
 &channel,
 RTR_F_TID_XA,
 &xa_tid);

check_status(status);

/*
 * Isolate the information in the xa_tid structure.
 */
 if (xa_tid.formatID != RTR_XID_FORMATID_RTR_XA)
{
 printf(errLog, "This channel only for X/Open transactions");
 exit(BAD_TXTYPE_CHAN);
)
for (i = 0; i < xa_tid.gtrid_length; i++)
 global_id_buff[i] = xa_tid.data[i];
global_id_buff[i] = 0;
for
(j = i; j < (xa_tid.gtrid_length + xa_tid.bqual_length); j++)
 branch_qual_buff[j - i] = xa_tid.data[j];
branch_qual_buff[j] = 0;

/* Query the database to see if the transaction whose global_id
 * and branch qualifier match these had been committed. If so,
 * ignore; otherwise, continue as though this were the first
 * time the message was received.
 */

rtr_get_user_context
rtr_get_user_context — Retrieve the optional user-defined context associated with the specified RTR
channel.

Format
user_context = rtr_get_user_context (channel)

Argument Data Type Access

user_context rtr_usrctx_t write
channel rtr_channel_t read

C Binding
rtr_usrctx_t rtr_get_user_context (
 rtr_channel_t channel
)

Arguments
channel

45

Chapter 3. RTR Call Reference

The channel whose context is to be returned.

Usage example:

struct { rtr_channel_t chan; int state, ... } context[10]; *ctx;
rtr_channel_t chan;
rtr_open_channel(&ctx[4].chan, ...);
rtr_receive_message(&chan, ...);
ctx = rtr_get_user_context(chan);
if (ctx->state) { ... }

Description
The rtr_get_user_context() call retrieves the user context for a channel. The default value of
the user context is the value of the pchannel argument passed to RTR at the time the channel was opened
using one of the following calls or routines:

rtr_open_channel()

rtr_request_info()

rtr_set_info()

The context value may optionally be changed at any later time using rtr_set_user_context(),
provided the channel is still open.

The routine returns the user context of the specified channel.

Return Value
A value indicating the status of the routine. Possible status values are:

RTR_NO_USER_CONTEXT The specified channel was not declared or has
closed

rtr_open_channel
rtr_open_channel — Open a channel to allow for communication with other applications.

Format
status = rtr_open_channel (pchannel, flags, facnam, rcpnam, pevtnum, access, numseg, pkeyseg)

Argument Data Type Access

status rtr_status_t write
pchannel rtr_channel_t write
flags rtr_ope_flag_t read
facnam rtr_facnam_t read
rcpnam rtr_rcpnam_t read
pevtnum rtr_evtnum_t read
access rtr_access_t read

46

Chapter 3. RTR Call Reference

Argument Data Type Access

numseg rtr_numseg_t read
pkeyseg rtr_keyseg_t read

C Binding
rtr_status_t rtr_open_channel (
 rtr_channel_t *pchannel ,
 rtr_ope_flag_t flags ,
 rtr_facnam_t facnam ,
 rtr_rcpnam_t rcpnam ,
 rtr_evtnum_t *pevtnum ,
 rtr_access_t access ,
 rtr_numseg_t numseg ,
 rtr_keyseg_t *pkeyseg
)

Arguments
Flags that specify options for the call.

Defined flags are shown in Table 3.6, Table 3.7, and Table 3.8.

Table 3.6. Open Channel Flags (One Required)

Flag Description

RTR_F_OPE_CLIENT Indicates that the channel will be used as a client.
RTR_F_OPE_CREATE_ PARTITION Requests that a partition be created. Specify

partition key segments and name with the
pkeyseg argument. The name is passed using an
rtr_keyseg_t descriptor where ks_type =
rtr_keyseg_partition and ks_lo_bound point to
the name string. On a successful call, a channel
is opened on which the completion status can
be read from the ensuing message of type
rtr_mt_closed. The completion status is
found in the status field of the message data of
rtr_status_data_t.

RTR_F_OPE_DELETE_ PARTITION Requests that a partition be deleted. Specify
partition or name key segments with the
pkeyseg argument. The name is passed using an
rtr_keyseg_t descriptor where ks_type =
rtr_keyseg_partition and ks_lo_bound points to
the name string. On a successful call, a channel
is opened on which the completion status can
be read from the ensuing message of type
rtr_mt_closed. The completion status is
found in the status field of the message data of
rtr_status_data_t.

RTR_F_OPE_SERVER Indicates that the channel will be used as a server.
numseg and pkeyseg must be specified for all
servers except call-out servers.

47

Chapter 3. RTR Call Reference

Table 3.7. Open Channel Client Flags

Flags Description

RTR_F_OPE_EXPLICIT_START Valid for client channels only. Use of this flag
requires that an explicit rtr_start_tx()
be called on this channel. The procedure
is in effect until the channel is closed. The
EXPLICIT_START flag ensures that the
rtr_send_to_server() will not generate
new transactions should the rtr_start_tx()
time out.

If the user calls rtr_send_to_server()
without first calling rtr_start_tx(), the
error message RTR-F-INVIMPLCTSTRT is
returned informing the caller that they must call
rtr_start_tx() first on this channel.

RTR_F_OPE_FOREIGN_TM Valid for client channels only. This indicates that
the global coordinating transaction manager is a
foreign transaction manager (non-RTR), and that
all transactions on this channel will be coordinated
by the foreign transaction manager. If this flag is
set, then calls to rtr_start_tx on this channel
must supply a value for the jointxid parameter,
which is the ID of the parent transaction.

Note

Calling rtr_open_channel() with the RTR_F_OPE_FOREIGN_TM flag set causes a local RTR
journal scan to occur, if a journal has not already been opened on that node.

The flags in Table 3.8 apply only if RTR_F_OPE_SERVER is set.

Note

Server attributes such as key range definition, shadow and standby flags, can be defined and modified
outside the application program by the system manager. A server should preferably use specific flags.

Table 3.8. Open Channel Server Flags

Flag Description

RTR_F_OPE_BE_CALL_OUT The server is a backend callout server. By default a
server is not a backend callout server.

RTR_F_OPE_DECDTM_MANAGED Indicates that DECdtm manages the channel. Valid
only for server channels.

RTR_F_OPE_EXPLICIT_ACCEPT A call to rtr_receive_message()
is not to be interpreted as an implicit call of
rtr_accept_tx().

RTR_F_OPE_EXPLICIT_PREPARE The server needs to receive an explicit prepare
message from RTR when each transaction has

48

Chapter 3. RTR Call Reference

Flag Description
been completely received. By default, no prepare
message is generated.

RTR_F_OPE_NOCONCURRENT The server may not be concurrent with other
servers. By default a server may have other
concurrent servers.

RTR_F_OPE_NORECOVERY Valid for a server channel, this flag specifies
partition operation without the services of the RTR
recovery journal. This option may be useful for
applications whose focus is on the timely delivery
of messages with limited lifetimes, where the
recovery of possibly stale data is not of interest.
Since no IO operations to the RTR journal are
performed, resource consumption per transaction
will be lower, particularly for applications where
the number of concurrently active servers is small.

Partitions operating in this mode will perform
the usual recovery operations, but no recovery
transactions will be found. Further, shadowed
partitions in remember mode using this option
are also not using the journal, so shadow
recovery of such partitions will find no shadow
recovery transactions. Since consistency between
shadowed sites can thus no longer be maintained,
server channels attached to such partitions will
automatically be closed should such a non-
journalled partition transition from an active to an
inactive state.

RTR_F_OPE_NOSTANDBY The server may not be (or have) standby(s). By
default, servers may have standby(s).

RTR_F_OPE_RECEIVE_REPLIES The server, a backend callout server, can receive
server-to-client messages.

RTR_F_OPE_SHADOW The server is part of a shadow pair. By default a
server is not part of a shadow pair.

RTR_F_OPE _STRICT_SHAD_ ORDER See the Usage Restriction below.
RTR_F_OPE_TR_CALL_OUT The server is a router callout server. By default a

server is not a router callout server.
RTR_F_OPE_XA_MANAGED Associates the channel with the XA protocol.

Usage Restriction

Ordinarily RTR determines groups of independently voting concurrent transactions on the primary site
from server behavior. Transactions within a group can then be presented on the secondary in any order.
The Shadow Order flag modifies this behavior so that transactions are presented on the secondary site
strictly in the order in which they are accepted by the application on the primary.

Allowed Settings

For consistent operation, the shadow order flag depends on the journal-less flag. That is, only certain
combinations are allowed:

49

Chapter 3. RTR Call Reference

This Shadow Order Flag
Setting

With this No_ Recovery Flag
Setting

Is:

STRICT_SHD_ ORDER NO_RECOVERY
0 0 Allowed
0 1 Allowed
1 1 Allowed
1 0 Not allowed

facnam

A null-terminated string containing the facility name. A facility name is required.

rcpnam

An optional null-terminated string containing the name of the recipient. This name is used to receive
named event messages. Specify RTR_NO_RCPNAM when named event recipients are not used.

These names are additional qualifiers on the event delivery, are matched to the sender name, and are
ANDed to the event number for delivery. For example, a client "New York" and a client "Hong Kong"
could be set up to both receive event number 100. If the event 100 was generated by the server with the
name "Hong Kong," the event would not be received by the "New York" client.

Named Events

• To receive named events, the correct event number must also be specified. The event number
(evtnum) must be specified by both the sender (rcpspc) and the recipient (rcpnam).

• Both rcpnam and rcpspc are case sensitive.

• Both rcpnam and rcpspc default to the case-insensitive channel name if no explicit rcpnam or rcpspc
is provided.

pevtnum

Optional pointer to a list of event numbers to which the channel wishes to subscribe. There are two types
of event: user events and RTR events. This parameter is used to specify all user and RTR events that the
channel is to receive.

Start the list of user event numbers with RTR_EVTNUM_USERDEF, and the list of RTR event numbers
with RTR_EVTNUM_RTRDEF. End the entire list with RTR_EVTNUM_ENDLIST. Specify a range
of event numbers using the constant RTR_EVTNUM_UP_TO between the lower and upper (inclusive)
bounds. For example, to specify the list of all user event numbers, use:

rtr_evtnum_t all_user_events[]={
 RTR_EVTNUM_USERDEF,
 RTR_EVTNUM_USERBASE,
 RTR_EVTNUM_UP_TO,
 RTR_EVTNUM_USERMAX,
 RTR_EVTNUM_ENDLIST
 } ;

For example, to specify the list of all event numbers, use:

rtr_evtnum_t all_events[]={
 RTR_EVTNUM_USERDEF,
 RTR_EVTNUM_USERBASE,

50

Chapter 3. RTR Call Reference

 RTR_EVTNUM_UP_TO,
 RTR_EVTNUM_USERMAX,
 RTR_EVTNUM_RTRDEF,
 RTR_EVTNUM_RTRBASE,
 RTR_EVTNUM_UP_TO,
 RTR_EVTNUM_RTRMAX,
 RTR_EVTNUM_ENDLIST
 } ;

Specify RTR_NO_PEVTNUM when the channel is to receive no events. Event names and numbers are
listed in Table 2–5, RTR Event Names and Numbers.

access

An optional null-terminated string containing the access parameter. The access parameter is a security
key used to authorize access to a facility by clients and servers. Specify RTR_NO_ACCESS when there
is no access string.

numseg

The number of key segments defined. The numseg parameter is not required for client channels or
callout server channels. (Callout servers always receive all messages.) Specify RTR_NO_NUMSEG when
defining client channels.

A key can consist of up to RTR_MAX_NUMSEG segments.

pkeyseg

Pointer to the first block of key segment information. Only the first numseg elements are used. The
structure of rtr_keyseg_t is:

typedef struct /* RTR Key Segment Type */
{
 rtr_keyseg_type_t ks_type ; /* Key segment data type */
 rtr_uns_32_t ks_length ; /* Key segment length (bytes) */
 rtr_uns_32_t ks_offset ; /* Key segment offset (bytes) */
 void *ks_lo_bound ; /* Ptr to key segment low bound */
 void *ks_hi_bound ; /* Ptr to key segment high bound */
} rtr_keyseg_t ;

The data type of a key segment can be one of the following:

Table 3.9. Key Segment Data Type

Data Type Description

rtr_keyseg_foreign_tm_id Foreign transaction manager identifier.
rtr_keyseg_partition Partition name, the name of the partition assigned.
rtr_keyseg_rmname Resource manager name, the name of the foreign

resource manager.
rtr_keyseg_signed Signed
rtr_keyseg_string ASCII string
rtr_keyseg_unsigned Unsigned

The pkeyseg parameter is not required for client channels or callout server channels. (Callout servers
always receive all messages.) Specify RTR_NO_PKEYSEG when defining client channels. The ks_type

51

Chapter 3. RTR Call Reference

field can be one of the data types shown in Table 3–9. The value of the offset ks_offset must be different
for different key segments or key ranges.

If an rtr_keyseg_t of rtr_keyseg_string is specified, then it is up to the application programmer to
ensure that the key value is valid for the complete range of the key length.

For example, if the key length is 4, and server code includes a statement like:

strcpy(keyvalue, "k");

with keyvalue passed as one of the bounds values, then potentially the bound value can differ from one
open channel call to the next, because the two bytes following the ‘‘k’’ will contain uninitialized values
but still form part of the key-bound definition. (In this case, one should clear the keyvalue buffer before
copying the bounds values.)

A call to rtr_open_channel() may be used to create a named partition or to open a server
channel associated with an existing named partition. To do this, supply a partition name when opening a
server channel. The pkeyseg argument specifies an additional item of type rtr_keyseg_t, assigning
the following values:

• ks_type = rtr_keyseg_partition, indicating that a partition name is being passed

• ks_lo_bound should point to the null-terminated string to use for the partition name

Note

When using the RTR CLI, if a key-bound value length is less than the key length, the key bound is
automatically null-padded to the required length. For example,

RTR> call rtr_open_channel/server/type=string/low=1/high=2

Because no key length is specified, the length defaults to four. The low and high bound values are
automatically null-padded to four bytes by RTR.

The key segment array may not contain more than RTR_MAX_NUMSEG elements.

XA Usage

Specify RTR_F_OPE_XA_MANAGED only for a server channel. With this flag, use ks_type =
rtr_keyseg_rmname to indicate that the server application provides resource manager information
when a channel is open. ks_lo_bound should point to the null-terminated string to use for the resource
manager (RM) name, which cannot contain more than 31 letters. ks_hi_bound should point to the null-
terminated string to use for the RM-specific open string used to connect to the underlying RM. The open
string cannot contain more than 255 letters. Neither ks_length nor ks_offset apply when using the flag
RTR_F_OPE_XA_MANAGED.

Description
The rtr_open_channel() call opens a channel for communication with other applications on a
particular facility.

The caller of rtr_open_channel() specifies the role (client or server) for which the channel is
used.

For use with XA:

52

Chapter 3. RTR Call Reference

1. Change the rtr_open_channel() call as described in the call description.

2. Remove unnecessary SQL calls from server code such as commit or rollback in a two-phase
commit environment. If these calls remain in your application code, they may cause vendor-specific
warnings.

3. RTR allows only one RM instance to be registered for each RTR partition.

4. Only one transaction is processed on an RTR channel at any given time. This implies that a server
process or a thread of control can only open one channel to handle a single XA request.

5. Using a multithreaded server application is strongly recommended for better throughput.

Return Value
A value indicating the status of the routine. Possible status values are:

RTR_STS_ACPNOTVIA RTR ACP no longer a viable entity, restart RTR or
application

RTR_STS_ALLSRVSTRCT All partition instances must agree on the setting of
STRCT_SHD_ORDER

RTR_STS_BYTLMNSUFF Insufficient process quota bytlm, required 100000
RTR_STS_DTXOPENFAIL Distributed transaction request to open a session to

the RM has failed
RTR_STS_DUPLRMNAME Duplicate RM partition name
RTR_STS_ERROPEJOU Error opening journal file
RTR_STS_INSVIRMEM Insufficient virtual memory
RTR_STS_INVACCESS Invalid access argument
RTR_STS_INVCHANNEL Invalid channel argument
RTR_STS_INVEVTNUM Invalid evtnum argument
RTR_STS_INVFACNAM Invalid facnam argument
RTR_STS_INVFLAGS Invalid flags argument
RTR_STS_INVIMPLCTSTRT Implicit start transaction disallowed by channel

properties
RTR_STS_INVKSLENGTH Invalid ks_length argument
RTR_STS_INVKSTYPE Invalid ks_type argument
RTR_STS_INVNUMSEG Invalid numseg argument
RTR_STS_INVPKEYSEG Invalid pkeyseg argument
RTR_STS_INVRCPNAM Invalid rcpnam argument
RTR_STS_INVRMNAME Invalid resource manager name
RTR_STS_INVSVRCLIFLG Either both /Client and /Server flags were supplied

or they were missing
RTR_STS_JOUACCDEN No access to journal for attempted operation:

permission denied
RTR_STS_JOUNOTFOU Journal not found
RTR_STS_NOACP No RTRACP process available

53

Chapter 3. RTR Call Reference

RTR_STS_NONRECPAR Non-recoverable partition is no longer active -
channel closed automatically

RTR_STS_OK Normal successful completion
RTR_STS_RMSTRINGLONG Resource manager open or close string too long
RTR_STS_TOOMANCHA Too many channels already opened
RTR_STS_MISSINGREQFLG A required flag is missing

Example
Examples show the following:

• A simple client application

• A simple server application

• An application using XA

• An application using partition names

Example 3.1. Client Application

 rtr_channel_t channel;
 rtr_status_t status;
 rtr_string_t user_name;
/* Get the user’s name through login or other user interface
 */
 user_name = <input data>

/* Open client application’s channel to the router;
 * use the facility named ‘CCardPurchases’, and the user’s
 * name to identify this client.
 *
 * This client will receive messages only, no events,
 * and is going to use a foreign transaction manager
 * that implements the X/Open standard transaction
 * formats.
 */
status = rtr_open_channel(
 &channel,
 RTR_F_OPE_CLIENT | RTR_F_OPE_FOREIGN_TM,
 "CCardPurchases",
 user_name,
 RTR_NO_PEVTNUM,
 RTR_NO_ACCESS,
 RTR_NO_NUMSEG ,
 RTR_NO_PKEYSEG);

check_status(status);

Example 3.2. Server Application

/* Open a channel in a server application. This server will
 * handle only records where the last name begins with A.
 * It also wants an explicit message sent when it is time
 * to prepare the transaction, and one when it is time to

54

Chapter 3. RTR Call Reference

 * vote whether to accept or reject the transaction.
 */
rtr_channel_t channel;
rtr_status_t status;
rtr_keyseg_t p_keyseg[1];
rtr_string_t last = "A";

/*
 * Use this rtr_keyseg_t structure to define this server as
 * handling only those records whose last name begins
 * with ‘A’.
 */

p_keyseg[0].ks_type = rtr_keyseg_string;
p_keyseg[0].ks_length = 1;
p_keyseg[0].ks_offset = 0;
p_keyseg[0].ks_lo_bound = last;
p_keyseg[0].ks_hi_bound = last;

/* Open the channel as a server that wants explicit ACCEPT and
 * PREPARE messages. It is a member of the CcardPurchases
 * facility, accepts no events (only messages) and we are
 * sending 1 rtr_keyseg_t structure that defines those
 * messages to be handled by this server.
 *
 * Note also that we are specifying that this channel
 * will be ‘XA managed’; that is, the transaction manager
 * will be one that implements the X/Open standard.
 */
status = rtr_open_channel(
 &channel,
 RTR_F_OPE_SERVER | RTR_F_OPE_EXPLICIT_ACCEPT |
 RTR_F_OPE_EXPLICIT_PREPARE | RTR_OPE_XA_MANAGED,
 "CCardPurchases",
 NULL,
 RTR_NO_PEVTNUM,
 RTR_NO_ACCESS,
 1,
 p_keyseg);
check_status(status);

Using RTR with XA

The snippets from the sample server applications show use of the RM information, the XA flag, and
commenting out RM commits and rollbacks.

New XA example, for V4.1 and later

Starting with RTR Version 4.1, when a server application opens a new channel it does not have to
specify the RTR_F_OPE_XA_MANAGED flag and RM name along with the RM’s attributes such as
open_string in order to invoke RTR XA service. The server application just has to specify the name
of a partition that is associated with a specific RM, provided that the user specifies an RM name when
creating the partition. All transactions processed through this channel will be managed by the RTR XA
service.

Impact on Server Application

Using an RTR XA service has some impact on existing server applications, as follows:

55

Chapter 3. RTR Call Reference

• RTR will not present messages of type mt_uncertain to server applications. The server
application does not have to replay transactions during the recovery. All transactions will be
recovered by RTR when the facility is created.

• The server application does not need to explicitly commit or roll back the transactions with the
underlying resource manager because transactions are managed directly by RTR using the XA
protocol.

Example 3.3 shows how to open a new channel using RTR V4.1:

Example 3.3. Sample XA Server Application, Version 4.1 and Later

srv_key[0].ks_type = rtr_keyseg_partition;
 srv_key[0].ks_length = 0; /* N/A */
 srv_key[0].ks_offset = 0; /* N/A */
 srv_key[0].ks_lo_bound = &partition_name[0]; /* null terminated */

 flag = RTR_F_OPE_SERVER |
 RTR_F_OPE_EXPLICIT_PREPARE |
 RTR_F_OPE_EXPLICIT_ACCEPT;

status = rtr_open_channel(&s_chan,
 flag,
 reply_msg.fac_name,
 NULL, /* rcpnam */
 &pevtnum,
 RTR_NO_ACCESS,
 num_seg, /* numseg */
 srv_key); /* key range */

However, if the server application is running a version of RTR prior to RTR V4.0, the server application
must specify the RTR_F_OPE_XA_MANAGED flag, the RM’s name, and other RM attributes such
as open_string. You must overload the rtr_keyset_t data structure with the RM-specific
information and then pass it when creating an RTR channel, as shown in Example 3.4.

Example 3.4. Sample XA Server Application Prior to Version 4.1

 srv_key[0].ks_type = rtr_keyseg_unsigned;
 srv_key[0].ks_length = sizeof(rtr_uns_8_t);
 srv_key[0].ks_offset = 0;
 srv_key[0].ks_lo_bound = &low;
 srv_key[0].ks_hi_bound = &high;
 srv_key[1].ks_type = rtr_keyseg_rmname;
 srv_key[1].ks_length = 0; /* N/A */
 srv_key[1].ks_offset = 0; /* N/A */
 srv_key[1].ks_lo_bound = &rm_name[0]; /* null terminated */
 srv_key[1].ks_hi_bound = &xa_open_string[0]; /* null terminated */
flag = RTR_F_OPE_SERVER |
 RTR_F_OPE_EXPLICIT_PREPARE |
 RTR_F_OPE_EXPLICIT_ACCEPT |
 RTR_F_OPE_XA_MANAGED;

 status = rtr_open_channel(&s_chan,
 flag,
 reply_msg.fac_name,
 NULL, /* rcpnam */
 &pevtnum,
 RTR_NO_ACCESS,

56

Chapter 3. RTR Call Reference

 num_seg, /* numseg */
 srv_key); * key range */
/* Demonstrate use of partition names */
/* */
/* */

#include "rtr.h"
#include <stdio.h>

main()
{

/* This program will open a server channel. Servers
 * need to identify the partition they will be operating
 * on by passing information coded in the pkeyseg argument.
 * If the partition already exists and its name is known,
 * it suffices to specify the partition name. If this is
 * not the case, then the partition must be specified by
 * describing the key segments. In the latter case, name
 * information is optional. If present, the new partition
 * will receive the specified name, otherwise a default
 * name will be generated. */
/* */
 * This program assumes the presence of a partition named
 * par_test in the facility fac_test and opens a server
 * channel to it. Create the partition prior to running
 * the program, e.g., */
/* */
/* RTR> create partition par_test/facility=fac_test */
/* */
rtr_channel_t AChannel;
const char *pszFacilityName = "fac_test";
const char *pszPartitionName = "par_test";
rtr_status_t status;
rtr_ope_flag_t flags = RTR_F_OPE_SERVER;
rtr_keyseg_t partition_info;

partition_info.ks_type = rtr_keyseg_partition;
partition_info.ks_lo_bound = (rtr_pointer_t)pszPartitionName;
partition_info.ks_hi_bound = NULL;
 /* Must be NULL */

status = rtr_open_channel(
 &AChannel,
 flags,
 pszFacilityName,
 RTR_NO_RCPNAM,
 RTR_NO_PEVTNUM,
 RTR_NO_ACCESS,
 1,
 &partition_info);

/* Call rtr_receive_message() to receive completion status */
}

See Also
rtr_close_channel()

57

Chapter 3. RTR Call Reference

rtr_receive_message
rtr_receive_message — Receive a message from RTR or the application.

Format
status = rtr_receive_message (pchannel, flags, prcvchan, pmsg, maxlen, timoutms, pmsgsb)

Argument Data Type Access

status rtr_status_t write
pchannel rtr_channel_t write
flags rtr_rcv_flag_t read
prcvchan rtr_channel_t read
pmsg rtr_msgbuf_t write
maxlen rtr_msglen_t read
timoutms rtr_timout_t read
pmsgsb rtr_msgsb_t write

C Binding
rtr_status_t rtr_receive_message (
 rtr_channel_t *pchannel ,
 rtr_rcv_flag_t flags ,
 rtr_channel_t *prcvchan ,
 rtr_msgbuf_t pmsg ,
 rtr_msglen_t maxlen ,
 rtr_timout_t timoutms ,
 rtr_msgsb_t *pmsgsb
)

Arguments
pchannel

The channel identifier on which the message was received.

flags

No flags are currently defined. Specify RTR_NO_FLAGS for this parameter.

prcvchan

A pointer to a list of channels on which a receive is required. This parameter can be used to select a
subset of channels on which messages can be received. Terminate the list with RTR_CHAN_ENDLIST.

If no selection is required, that is, a receive from any open channel is acceptable, specify
RTR_ANYCHAN for this parameter.

Note

See the restriction on using RTR_ANYCHAN with RTR V2 applications in the VSI Reliable Transaction
Router System Manager’s Manual

58

Chapter 3. RTR Call Reference

pmsg

Required pointer to the user buffer where the received message is written.

maxlen

Size allocated in the user buffer for received messages, in bytes.

timeoutms

Receive timeout specified in milliseconds. If the timeout expires, the call completes with status
RTR_STS_TIMOUT.

If no timeout is required, specify RTR_NO_TIMOUTMS.

pmsgsb

Pointer to a message status block describing the received message. The message status block is shown in
Example 3.5.

Example 3.5. RTR Message Status Block

typedef struct /* RTR message status block */
{
 rtr_msg_type_t msgtype;
 rtr_usrhdl_t usrhdl;
 rtr_msglen_t msglen;
 rtr_tid_t tid;
 rtr_evtnum_t evtnum;
} rtr_msgsb_t ;

The msgtype field can assume one of the values listed in Table 2.2, RTR Received Message Types for
Server Applications and Table 2.3, RTR Received Message Types for Client Applications.

The usrhdl field contains the value supplied with a call to rtr_set_user_handle().

The msglen field contains the length of the data stored in the user buffer after the call has been executed.

The tid field contains the RTR unique ID for the transaction to which this received message belongs.

The evtnum field contains the event number if the msgtype field is rtr_mt_rtr_event or
rtr_mt_user_event.

Description
The rtr_receive_message() call is used to receive a message.

The caller must have previously opened at least one channel (via rtr_open_channel() or
rtr_request_info()).

By default, this function waits for a message to become available if no message is currently ready to be
received.

Upon successful return (RTR_STS_OK), the message status block pointed to by pmsgsb contains the
description of the message received.

59

Chapter 3. RTR Call Reference

When a client application calls rtr_send_to_server, RTR sends the message from frontend
to router. It is the router’s job to find out which key range the message belongs to (by looking at the
key field in the application message), and then to forward the message to the backend node where the
server application for this key range is running. If the router does not know of a backend that has a
server running for this key range, then the router aborts the transaction. In this case, the client application
receives an rtr_mt_rejected message for this transaction with status RTR_STS_NODSTFND.

If a client application receives an RTR_STS_NODSTFND error, then the client can try to resend the
transaction, as the cause may have been only temporary. Note that the reasons the router cannot find a
backend node with an appropriate server include:

1. The application server for this key range has not been started.

2. The link between the router and backend has gone down.

3. In unusual circumstances, a transaction can be rejected with RTR_STS_ NODSTFND status after
the client calls rtr_accept_tx. This can occur for transactions with multiple participants
and no timeout specified where the link between the router (which is quorate) and one of the
backend participants has gone down for a period greater than the router’s transaction replay
timeout period. (This can occur even if the messages in the transaction had all been sent with the
RTR_F_SEN_EXPENDABLE flag set.)

Return Value
A value indicating the status of the routine. Possible status values are:

RTR_STS_ACPNOTVIA RTR ACP no longer a viable entity, restart RTR or
application

RTR_STS_BYTLMNSUFF Insufficient process quota bytlm, required 100000
RTR_STS_INVCHANNEL Invalid channel argument
RTR_STS_INVFLAGS Invalid flags argument
RTR_STS_INVMSG Invalid pmsg argument
RTR_STS_INVRMNAME Invalid resource manager name
RTR_STS_NOACP No RTRACP process available
RTR_STS_NOXACHAN No XA channel available
RTR_STS_OK Normal successful completion
RTR_STS_SRVDCLSBY Successful server declaration, but as standby
RTR_STS_TIMOUT Call to rtr_receive_message timed out
RTR_STS_TRUNCATED Buffer too short for msg. Message has been

truncated

Example

status = rtr_receive_message(
 &channel,
 RTR_NO_FLAGS,
 RTR_ANYCHAN,
 &receive_msg,
 sizeof(receive_msg),

60

Chapter 3. RTR Call Reference

 receive_time_out,
 &msgsb);
 check_status("rtr_receive_message", status);

/* The rtr_msgsb_t tells us what type of
 * message we are receiving. This server has asked to
 * be notified when it is time to prepare the transaction.
 * It should also handle other message types, as well.
 */
 if (msgsb.msgtype == rtr_mt_prepare)
 {
 // Do the work necessary to prepare the transaction
 // before committing.

See Also
rtr_broadcast_event()

rtr_accept_tx()

rtr_open_channel()

rtr_reject_tx()

rtr_send_to_server()

rtr_reject_tx
rtr_reject_tx — Reject the transaction currently active on a channel.

Format
status = rtr_reject_tx (channel, flags, reason)

Argument Data Type Access

status rtr_status_t write
channel rtr_channel_t read
flags rtr_rej_flag_t read
reason rtr_reason_t read

C Binding
rtr_status_t rtr_reject_tx (
 rtr_channel_t channel ,
 rtr_rej_flag_t flags ,
 rtr_reason_t reason
)

Arguments
channel

The channel identifier (returned earlier by rtr_open_channel()).

61

Chapter 3. RTR Call Reference

flags

No flags are currently defined. Specify RTR_NO_FLAGS for this parameter.

reason

The reason for the rejection. This rejection reason is returned to the other participants in the
transaction. It is returned in the reason field of the structure rtr_status_data_t with the
rtr_mt_rejected message. Specify RTR_NO_REASON if no reason is to be supplied.

Description
The rtr_reject_tx() call rejects the transaction that is active on the specified channel.

When rtr_reject_tx() returns, the channel is no longer associated with the transaction.

Once an rtr_accept() has been called by the server application, the rtr_reject_tx()
call is not allowed until the first message of the next transaction is received. An attempt to call
rtr_reject_tx() yields an RTR_STS_TXALRACC return status.

Return Value
A value indicating the status of the routine. Possible status values are:

RTR_STS_CHANOTOPE Channel not opened
RTR_STS_DLKTXRES Deadlock detected, transaction rescheduled. This

status is returned to a client in the status field
of a message of type rtr_mt_rejected
if a transaction currently being processed has
been aborted because of a deadlock with other
transactions using the same servers. RTR replays
the transaction after the deadlock has been cleared.
This condition can be caused by either a classic
database deadlock or a potential deadlock that
RTR tries to avoid in cases such as concurrent
server death or server role change. For more
details, see the section in the VSI Reliable
Transaction Router Application Design Guide,
Handling Error Conditions.

RTR_STS_INVCHANNEL Invalid channel argument
RTR_STS_INVFLAGS Invalid flags argument
RTR_STS_OK Normal successful completion
RTR_STS_TXALRACC Transaction already accepted
RTR_STS_TXNOTACT No transaction currently active on this channel

Example
rtr_uns_32_t MT_LAST_NAME = 678;
 /* Defined in user’s .h file. */
if (last_name == null)
{
/* Missing last name! Not everything is ready for

62

Chapter 3. RTR Call Reference

 * committing the current transaction (e.g., through
 * validations), and so wishes to reject it, rather than
 * to commit it.
 */
 status = rtr_reject_tx(
 channel,
 // Same channel it came in on.
 RTR_F_REJ_RETRY,
 // Retry from msg1 of txn.
 MT_LAST_NAME);
 // User-defined error code.
 check_status(status);
 return;
 }

See Also
rtr_open_channel()

rtr_accept_tx()

rtr_reply_to_client
rtr_reply_to_client — Send a server’s reply to a client’s transactional message.

Format
status = rtr_reply_to_client (channel, flags, pmsg, msglen, msgfmt)

Argument Data Type Access

status rtr_status_t write
channel rtr_channel_t read
flags rtr_rep_flag_t read
pmsg rtr_msgbuf_t read
msglen rtr_msglen_t read
msgfmt rtr_msgfmt_t read

C Binding
rtr_status_t rtr_reply_to_client (
 rtr_channel_t channel ,
 rtr_rep_flag_t flags ,
 rtr_msgbuf_t pmsg ,
 rtr_msglen_t msglen ,
 rtr_msgfmt_t msgfmt
)

Arguments
channel

The channel identifier (returned earlier by rtr_open_channel()).

63

Chapter 3. RTR Call Reference

flags

Table 3.10 shows the flags defined for this call

Table 3.10. Reply To Client Flag

Flag Description

RTR_F_REP_ACCEPT The transaction is accepted by this server. This
is equivalent to sending a reply to the server
and immediately following it with a call to
rtr_accept_tx(). This is useful in those
cases where the sender knows that the transaction
is definitely acceptable.

RTR_F_REP_FORGET Set to prevent receipt of any more messages or
completion status associated with the transaction
after it has been accepted. Using this flag requires
that the RTR_F_ACC_ FORGET flag be set in
the rtr_accept_tx call, indicating that the
transaction is to be accepted.

RTR_F_REP_INDEPENDENT Set to indicate that this transaction is independent;
can only be used with RTR_F_REP_ACCEPT.
(See Section 2.15.4, Transaction Independence, for
further information.)

Specify RTR_NO_FLAGS for this parameter if no flags are required.

pmsg

Pointer to the reply message to be sent.

msglen

Length of the message to be sent, in bytes.

msgfmt

Message format description. msgfmt is a null-terminated character string containing the format
description of the message. RTR uses this description to convert the contents of the message
appropriately when processing the message on different hardware platforms. See Section 2.14, RTR
Applications in a Multiplatform Environment, for information on defining a message format description.

This parameter is optional. Specify RTR_NO_MSGFMT if the message content is platform independent,
or other hardware platforms will not be used.

Description
The rtr_reply_to_client() call sends a transactional message back to the client that started
the transaction.

The caller must first obtain a server channel (using the rtr_open_channel() call) and must have
received a message from a client using the rtr_receive_message() call.

Once an rtr_accept_tx() has been called by the server application, the
rtr_reply_to_client() call is not allowed until the first message of the next transaction is

64

Chapter 3. RTR Call Reference

received. An attempt to call rtr_reply_to_client() yields an RTR_STS_TXALRACC return
status.

Return Value
A value indicating the status of the routine. Possible status values are:

RTR_STS_CHANOTOPE Channel not opened
RTR_STS_INSVIRMEM Insufficient virtual memory
RTR_STS_INVCHANNEL Invalid channel argument
RTR_STS_INVFLAGS Invalid flags argument
RTR_STS_INVMSGFMT Invalid msgfmt argument
RTR_STS_INVMSGLEN Invalid msglen argument
RTR_STS_NOACP No RTRACP process available
RTR_STS_OK Normal successful completion
RTR_STS_TXALRACC Transaction already accepted
RTR_STS_TXNOTACT No transaction currently active on this channel

Example
/* The purchase_msg structure is defined in the user’s
 * application header file.
 */
typedef struct {
 rtr_uns_8_t my_msg_type;
 string31 last_name;
 rtr_uns_32_t order_total;
 rtr_uns_32_t shipping_amt;
 string7 user_id;
} purchase_msg;

purchase_msg purch_msg;
/* The client has made a request on the server; the server
 * has fulfilled this request, and now needs to let the
 * client know the result.
 *
 * In this case, the client has asked the server to total
 * the purchases in the user’s shopping cart. The server
 * is accepting the transaction at this time as well, without
 * being explicitly asked to.
 */
purch_msg.my_msg_type = MY_TOTAL_PURCHASES;
purch_msg.last_name = cust_last_name;
.
. Fill the struct based on database query or calculations.
.
status = rtr_reply_to_client (
 channel,
 RTR_F_REP_ACCEPT,
 &purch_msg,
 sizeof(purch_msg),
 RTR_NO_MSGFMT);
 check_status(status);

65

Chapter 3. RTR Call Reference

See Also
rtr_receive_message()

rtr_open_channel()

rtr_accept_tx()

rtr_request_info
rtr_request_info — Request information about the RTR environment.

Format
status = rtr_request_info (pchannel, flags, infcla, selitm, selval, getitms)

Argument Data Type Access

status rtr_status_t write
pchannel rtr_channel_t write
flags rtr_req_flag_t read
infcla rtr_infoclass_t read
selitm rtr_itemcode_t read
selval rtr_selval_t read
getitms rtr_itemcode_t read

C Binding
rtr_status_t rtr_request_info (
 rtr_channel_t *pchannel ,
 rtr_req_flag_t flags ,
 rtr_infoclass_t infcla ,
 rtr_itemcode_t selitm ,
 rtr_selval_t selval ,
 rtr_itemcode_t getitms
)

Arguments
pchannel

Pointer to the channel opened by a successful call to rtr_request_info().

flags

No flags are defined for this call. Use RTR_NO_FLAGS for this parameter.

infcla

A null-terminated text string that specifies the type of information for which data are requested. The
table below lists information types and their specifying information class strings. Within an information
class, you retrieve a specific datum with selitm, selval, and getitms parameters specified as strings. Data

66

Chapter 3. RTR Call Reference

returned by rtr_request_info are valid only under certain conditions as listed in the table below.
For example, to obtain information about a node, use the ‘‘rtr’’ string; RTRACP must be running for data
to be valid.

When the gcs information class is used with rtr_request_info(), the first message returned is
unique; it includes attributes of the requested information, and overhead information present because the
backend requests information from many routers.

The first message returned with the gcs information class contains at least three fields separated by the
null character (ASCII 0).

• The first field indicates if the gcs data is complete or incomplete. If the backend gathering the
information cannot gather all the information from the routers, then the data may be incomplete;
otherwise, the data is complete. The first field thus contains one of two literal strings: either
‘‘complete data’’ or ‘‘incomplete data.’’

• The second field indicates how many seconds remain until the backend’s cache is updated. Since the
backend must request information from all routers, it caches the information to avoid extra overhead
for every request. (See the SET NODE /INFO_CACHE_LIFETIME qualifier for more information
on the cache.) The field has the form ‘‘n seconds until update,’’ where n can be a value from 0 to
UINT_MAX. Note that the word ‘‘seconds’’ remains plural for all cases of n.

• The third field indicates the age, in seconds, of the backend’s cache. The age is the number of
seconds since the cache was refreshed with current information. The field has the form: ‘‘n seconds
old,’’ where n may take a value between 0 to UINT_MAX. Note that the word ‘‘seconds’’ remains
plural for all cases of n.

• The fourth and following fields may be present to explain why information is incomplete. If the
information is complete, these fields are not present. If the information is incomplete, one or more
of these fields may contain strings meant to be read by humans. These strings can, for example, be
logged in a log file.

Applications using the gcs information class may choose to parse the first message to store the
information’s attributes, or ignore the first message and acquire the information found in the second
and subsequent messages. The application must not assume that the first message contains the
requested information. For an example, see the last example for this C API call.

Table 3.11. Information Classes

For this type of
information:

Use this
Information
Class string:

To obtain valid data: For available items and
strings, see:

Application process prc An application process
must have been started
(rtr_open_channel
called).

Table 3.12

Client process cli A client channel must have
been opened.

Table 3.13

Facility fac A facility must be defined. Table 3.14
Global Configuration
and Status

gcs The gcs information class
can only be accessed from a
backend and VSI recommends
that the backend be connected

Table 3.15

67

Chapter 3. RTR Call Reference

For this type of
information:

Use this
Information
Class string:

To obtain valid data: For available items and
strings, see:

to all routers. If the backend
is disconnected from one or
more routers, gcs information
will still be available but may
be incomplete. This incomplete
status is indicated in the
first message returned by
rtr_request_info. For
additional information, see the
description earlier on the gcs
information class and the gcs
example.

Key segment ksg A server channel must have
been opened.

Table 3.16

Link to a node lnk A facility must be defined. Table 3.17
Node or RTRACP rtr RTRACP must be running. Table 3.18
Partition on a
backend

bpt A server channel must have
been opened.

Table 3.19

Partition on a router rpt A server channel must have
been opened.

Table 3.20

Partition history hpt A server channel must have
been opened.

Table 3.21

Server process srv A server channel must have
been opened.

Table 3.22

Transaction on a
backend

btx A transaction must be in
progress on the backend.

Table 3.23

Transaction on a
frontend

ftx A client application must have
a transaction in progress.

Table 3.24

Transaction on a
router

rtx A transaction must be in
progress on the router.

Table 3.25

selitm

Null-terminated text string giving the strings used to select information such as facility name or
transaction ID. Use this argument to reduce the amount of information returned. If you specify a null
string (""), all available information for the class is returned. A string containing multiple items should be
a comma-separated list. Some SHOW commands display the same data. For example, to obtain the RTR
version number (displayed by SHOW RTR/VERSION), use the string rtr_version_string from
the "rtr" information class.

The tables are in alphabetical order by Information Class, and grouped by function within each table.

Table 3.12. Application Process ("prc") Strings

For this selitm: Use this string:

Process-id process_id

68

Chapter 3. RTR Call Reference

For this selitm: Use this string:

Process Name process_name

Table 3.13. Client Process ("cli") Strings

For this selitm: Use this string:

Process-id dpb_pid
Facility fdb_f_name
Channel dpb_chan
Flags dpb_dclflg
State dpb_req_sts
rcpnam dpb_evtnam
User Events dpb_user_evtnum
RTR Events dpb_rtr_evtnum

Table 3.14. Facility ("fac") Strings

For this selitm: Use this string:

Facility fdb_f_name
Frontend fdb_attr.fdb_attr_bits.is_fe
Router fdb_attr.fdb_attr_bits.is_rtr
Backend fdb_attr.fdb_attr_bits.is_be
Reply Checksum fdb_attr.fdb_attr_bits.reply_enabled
Router call-out fdb_attr.fdb_attr_bits.tr_call_out
Backend call-out fdb_attr.fdb_attr_bits.be_call_out
Load balance fdb_attr.fdb_attr_bits.feshare
Quorum-check off fdb_attr.fdb_attr_bits.qrt_chk
FE -> TR fdb_trsrch
Router quorate fdb_state.fdb_state_bits.tr_qrt
Backend quorate fdb_state.fdb_state_bits.be_qrt
Quorum threshold fdb_iqt_cnt
Min bcst rate fdb_cn_fct_min_brd_out_rate
Frontends connected fdb_fecnt
Frontends allowed fdb_fecdt
Load coordinator fdb_status.fdb_status_bits.qm_be
Quorate routers fdb_trtot
Total Frontends fdb_fetot
Current Credit fdb_curcdt
FE -> TR fdb_trsrch
Link to fac_ndb
Frontend fac_fe.rol_bits.rol_cfg
Router fac_tr.rol_bits.rol_cfg

69

Chapter 3. RTR Call Reference

For this selitm: Use this string:

Backend fac_be.rol_bits.rol_cfg
Router -> Frontend fac_reasons.fac_reason_bits.trfelnk
Frontend -> Router fac_reasons.fac_reason_bits.fetrlnk
Backend -> Router fac_reasons.fac_reason_bits.betrlnk
Router -> Backend fac_reasons.fac_reason_bits.trbelnk
Router quorate fac_tr.rol_bits.rol_quorum
Backend -> Router fac_reasons.fac_reason_bits.betrlnk
Router -> Backend fac_reasons.fac_reason_bits.trbelnk
Router quorate fac_tr.rol_bits.rol_quorum
Backend quorate fac_be.rol_bits.rol_quorum
Router current fac_tr.rol_bits.rol_cur
Backend coordinator fac_be.rol_bits.rol_qmaster

Table 3.15. Global Configuration and Status ("gcs") Strings

For this selitm: Use this string:

Node name gsc_node
Facility Name gsc_fac
Role gsc_role
Cluster gsc_clust
Operating System gsc_os
RTR version gsc_version
Connection State gsc_connected
Detected Problem Name gsc_name
Detected Problem Message gsc_mesg
Detected Problem Severity severity
Partition Name gpt_ptn
Partition State gpt_state

Table 3.16. Key Segment ("ksg") Strings

For this selitm: Use this string:

Facility fdb_f_name
Data Type ksd_dtyp
Length ksd_length
Offset ksd_offset

Table 3.17. Node Links ("lnk") Strings

For this selitm: Use this string:

To Node ndb_name
Address ndb_idp

70

Chapter 3. RTR Call Reference

For this selitm: Use this string:

Outgoing message sequence nr ndb_xcnt
Incoming message sequence nr ndb_rcnt
Current receive buffer size ndb_credit
Current transmit buffer size ndb_cdt_out
Current number of link users ndb_reasons
Write buffer timed out ndb_status.wbuftmo
Write buffer full, may be sent ndb_status.wbufrdy
Write buffer allocated ndb_status.wbufalc
I/O error detected in write ndb_status.wrerror
I/O error detected in read ndb_status.rderror
Pipe temporarily blocked ndb_status.blocked
Connection broken ndb_status.aborted
Write issued, not completed ndb_status.writing
Read is pending ndb_status.reading
Node initiated the connection ndb_status.initiator
Connection established ndb_status.connected
Connection in progress ndb_status.connecting
Node is configured ndb_status.configured
Autoisolation enabled ndb_attr.attr_bits.isol_ebld
Link disabled ndb_attr.attr_bits.disabled
Link isolated ndb_attr.attr_bits.isolated
In facility fac_ifn
Frontend fac_fe.rol_bits.rol_cfg
Router fac_tr.rol_bits.rol_cfg
Backend fac_be.rol_bits.rol_cfg
Router -> Frontend fac_reasons.fac_reason_bits.trfelnk
Frontend -> Router fac_reasons.fac_reason_bits.fetrlnk
Backend -> Router fac_reasons.fac_reason_bits.betrlnk
Router -> Backend fac_reasons.fac_reason_bits.trbelnk
Router quorate fac_tr.rol_bits.rol_quorum
Backend quorate fac_be.rol_bits.rol_quorum
Router current fac_tr.rol_bits.rol_cur
Backend coordinator fac_be.rol_bits.rol_qmaster

Table 3.18. Node and ACP ("rtr") Strings

For this selitm: Use this string:

Network state ncf_isolated
Auto isolation ncf_isol_ebld

71

Chapter 3. RTR Call Reference

For this selitm: Use this string:

Inactivity timer/s ncf_lw_inact
RTR Version Number rtr_version_string

Table 3.19. Partition on a Backend ("bpt") Strings

For this selitm: Use this string:

Partition name $name
Facility ppb_fdbptr
State ppb_pst.prt_ps
Low Bound ppb_krd.krd_low_bound
High Bound ppb_krd.krd_high_bound
Active Servers srb_active_q.#crm_server_block
Free Servers srb_free_q.#crm_server_block
Transaction presentation tx_presentation_state
Last Rcvy BE last_lcl_rec_be
Txns Active tkb_q.#crm_tx_kr_block
Txns Rcvrd rec_be_txs
Failover policy ppb_failover_policy
Key range ID ppb_krid

Table 3.20. Partition on a Router ("rpt") Strings

For this selitm: Use this string:

Facility fdb_f_name
State krb_sts
Low Bound krb_low_bound
High Bound krb_high_bound
Failover policy krb_failover_policy
Backends bpsb_ndbptr
States bpsb_pst.prt_ps
Primary Main krb_pri_act_bpsbptr.bpsb_ndbptr
Shadow Main krb_sec_act_bpsbptr.bpsb_ndbptr

Table 3.21. Partition History ("hpt") Strings

For this selitm: Use this string:

Partition name $name
Facility phr_fdb
Low Bound phr_krd.krd_low_bound
High Bound phr_krd.krd_high_bound
Creation time phr_creation_time

72

Chapter 3. RTR Call Reference

Table 3.22. Server Process ("srv") Strings

For this selitm: Use this string:

Process-id dpb_pid
Facility fdb_f_name
Channel dpb_chan
Flags dpb_dclflg
State ppb_pst.prt_ps
Low Bound ppb_krd.krd_low_bound
High Bound ppb_krd.krd_high_bound
rcpnam dpb_evtnam
User Events dpb_user_evtnum
RTR Events dpb_rtr_evtnum
Partition-Id dpb_krid

Table 3.23. Transaction on a Backend ("btx") Strings

For this selitm: Use this string:

Tid tb_txdx.tx_id
Facility fac_id
FE-User tb_txdx.fe_user
State state
Start time tb_txdx.tx_start_time
Router tr_ndbptr
Invocation invocation
Active-Key-Ranges #crm_tx_kr_block
Recovering-Key-Ranges #crm_tr_block
Total-Tx-Enqs nr_tx_enqs
Key-Range-Id kr_id
Server-Pid pid
Server-State sr_state
Journal-Node jnl_node_id
Journal-State jnl_state
First-Enq first_enq_nr
Nr-Enqs nr_enqs
Nr-Replies nr_replys

Table 3.24. Transaction on a Frontend ("ftx") Strings

For this selitm: Use this string:

Tid tb_txdx.tx_id
Facility fac_id
FE-User tb_txdx.fe_user

73

Chapter 3. RTR Call Reference

For this selitm: Use this string:

State state
Start time tb_txdx.tx_start_time
Router tr_ndbptr
Nr-Enqs enqs_from_rq
Nr-Replies replys_rcvd

Table 3.25. Transaction on a Router ("rtx") Strings

For this selitm: Use this string:

Tid tb_txdx.tx_id
Facility fac_id
FE-User tb_txdx.fe_user
State state
Start time tb_txdx.tx_start_time
FE-Connected fe_ndbptr
Total-Tx-Enqs nr_tx_enqs
First-Enq first_enq_nr
Nr-Enqs nr_enqs
Backend be_ndbptr
Key-Range-State kr_state
Key-Range-Id kr_id
Journal-State be_state

selval

Null-terminated text string; contains a value for the item named in selitm. For example, if selitm specifies
fac_id indicating that a facility name is used for the selection, and selval contains the string "TESTFAC",
then only information for facility TESTFAC is returned. Wildcards can be used in this specification.

getitms

Null-terminated text string containing a comma-separated list of items whose values are returned.
For each instance that matches the selection criterion, the values of the items specified by getitms are
returned in a message of type rtr_mt_request_info.

Description
An application program can use the rtr_request_info() call to interrogate the RTR environment
and retrieve information about facilities, transactions, key ranges, and so on. The call accesses data
maintained by RTR on behalf of application programs, and data maintained by the RTR ACP itself.

The way to obtain data is to specify the requirement as parameters to rtr_request_info().
RTR then opens a channel on which the requested information can be received by calling
rtr_receive_message() on the channel. The channel is automatically closed when the requested
data (if any) has been completely delivered (that is, an rtr_mt_closed message is received
on the channel.) You may close the channel earlier, if no more information is needed, by calling
rtr_close_channel().

74

Chapter 3. RTR Call Reference

The selection criteria specify an information class, a select item and a value. This is like doing a table
lookup, where the class represents the specific table, and the select item and value represent the row and
column in the table. For example, the following statement: rtr_request_info/channel=I/
infcla=rtr/selitm="", selval="*" getitms=rtr_version_string requests
information from the RTR (rtr) information class.

The rtr_request_info() call accesses the RTR tables in memory as follows:

1. The infcla parameter selects the class to be accessed, for example "rtr".

2. The selitm parameter names the row of the RTR table in memory to be accessed. This can be a null
string, for example selitms="" to retrieve all data for the class.

3. The selval parameter defines what to search for in the row. For example, in a table containing
information about backend transactions, if selitm specifies fac_id indicating that a facility name is the
selection criterion, and if selval contains the value "TESTFAC", RTR selects only transactions for the
facility TESTFAC.

4. The getitms parameter specifies the items to be returned from the selected row(s). In the example
of a table containing information about backend transactions, rtr_request_info can specify
transaction ID and transaction start time. The data for these items are returned for all transactions
matching the selection criteria.

The results of the selection are returned as none, one, or more messages of type
rtr_mt_request_info, one message being returned for each selected row in the table (in a btx
example, one message for each backend transaction).

The contents of these messages are defined by the getitms parameter. For example, if three item names
specified for getitms are "item_1,item_2,item_3", then the corresponding rtr_mt_request_info
message or messages contain three concatenated and null-terminated strings that are the values of those
fields, "value1\0value2\0value3\0".

Casing of Text when Using the GCS Infoclass

• Backend and router node names will be in the case as entered on the backend where the
rtr_request_info() call was issued

• Facility names will be in the case as entered on the backend where the rtr_request_info() call was
issued

• If the frontend node names are all entered in the same case on all the routers, then their names will
be in that case

• If the frontend node names are entered in different cases on different routers, then the frontend node
names can have the case as entered on any of the routers. There is no guarantee of which router(s)
the case will come from.

• Status problem names and messages will be in the case as they came from the node reporting the
problem

• Generated keywords including role (frontend,router,backend) and connection status (ncf_conn,
ncf_disconn) will be in lowercase

Return Value
A value indicating the status of the routine. Possible status values are:

RTR_STS_CLASSREQ At least one data-class definition required

75

Chapter 3. RTR Call Reference

RTR_STS_INVCHANNEL Invalid pchannel argument
RTR_STS_INVFLAGS Invalid flags argument
RTR_STS_INVGETITMS Invalid getitms argument
RTR_STS_INVINFCLA Invalid information class
RTR_STS_INVSELITM Invalid selitm argument
RTR_STS_INVSELVAL Invalid selval argument
RTR_STS_NOACP No RTRACP process available
RTR_STS_OK Normal successful completion
RTR_STS_TOOMANCHA Too many channels already opened

Example
Programming Example:

/*
 This routine retrieves the facility names of all facilities
 that have been defined.
*/

#include <string.h>
#include <stdio.h>
#include "rtr.h"

void GetFacilityName()
{
 char* itemlist[10]; /* Set the elements in this array to point to
 each item in getitembuf for later output. */
 char* cp = 0;
 char getitembuf[1024];
 rtr_status_t status;
 rtr_channel_t channel;
 char msg[1024]; /* Receive message buffer. */

 unsigned int getitemcnt = 0;
 char infcla_buf[4] = "fac"; /* Set info class to Facility class.*/
 rtr_msgsb_t txsb;

getitembuf[0] = ’\0’;
/* Set up the request’s get-item buffer for
 requesting the facility name. */
 itemlist[getitemcnt] = &getitembuf[strlen(getitembuf)];
 strcat(getitembuf, "fdb_f_name");
/* Increment counters. */
 getitemcnt++;
 /* Add second item FE -> TR. ** Code commented out ** */
 /* (Demonstrates multi-item request. Uncomment code to use.)
 strcat(getitembuf, ","); //Add comma separator.
 itemlist[getitemcnt] = &getitembuf[strlen(getitembuf)];
 strcat(getitembuf, "fdb_trsrch");
 getitemcnt++;
 */

 /* Call rtr_request_info. */
 status = rtr_request_info (

76

Chapter 3. RTR Call Reference

 /* *pchannel */ &channel,
 /* flags */ RTR_NO_FLAGS,
 /* infcla */ infcla_buf,
 /* selitm */ "",
 /* selval */ "*",
 /* getitms */ getitembuf);
if (status != RTR_STS_OK) return;

/* Do a receive message to get the information that RTR returns
 * in response to this request.
 */
do
{
 status = rtr_receive_message(
 /* See ’rtr_receive_message’. */
 &channel,
 RTR_NO_FLAGS,
 RTR_ANYCHAN,
 msg,
 sizeof(msg),
 RTR_NO_TIMOUTMS,

 &txsb);
/* Check for bad return status from rtr_receive_message(). */
 if (status != RTR_STS_OK) return;

/* Caller expects either an rtr_mt_closed
 or an rtr_mt_request_info message. */
 if (txsb.msgtype == rtr_mt_closed) break;
 /* End of data, exit loop.
 Channel closed by RTR. */
 if (txsb.msgtype != rtr_mt_request_info)
 {
 printf("Unexpected msgtype returned. \n");
 break;
 }
 else
 {
 /* Receive the requested information.
 Scan through item list, output item and value.
 */
 unsigned int i;
 for (i=0, cp = msg; i < getitemcnt; i++, cp += strlen(cp)+1)
 {
 (itemlist[i+1]-1) = ’\0’; / Overwrite comma. */
 printf("%-8s:%40s\t= ’%^s’\n",
 infcla_buf,
 itemlist[i],
 cp);
 }
 }
} while (1 == 1);
return;

Command Line Example:

RTR> call rtr_request_info/infcla=rtr/selitm=""
 /selval="*"/getitms=rtr_version_string/chann=D

77

Chapter 3. RTR Call Reference

%RTR-S-OK, normal successful completion

RTR> call rtr_receive_message/chann=D/tim
%RTR-S-OK, normal successful completion
 channel name: D
 msgsb
 msgtype: rtr_mt_request_info
 msglen: 18
 message
 offset bytes text
000000 52 54 52 20 56 33 2E 32 28 32 33 30 29 20 46 54 RTR V3.2(230) FT
000010 33 00 3.

First Message Example:

The following example illustrates the contents of a first message. In this example, the information is
incomplete, 20 seconds remain until the cache is updated, the cache is 0 seconds old, and an explanation
is given regarding why the information is incomplete. The example illustrates how the fields are formed.

%RTR-S-OK, normal successful completion
 channel name: RTR$DEFAULT_CHANNEL
 msgsb
 msgtype: rtr_mt_request_info
 msglen: 197
message
 offset bytes text
 000000 69 6E 63 6F 6D 70 6C 65 74 65 20 64 61 74 61 00 incomplete data.
 000010 32 30 20 73 65 63 6F 6E 64 73 20 75 6E 74 69 6C 20 seconds until
 000020 20 75 70 64 61 74 65 00 30 20 73 65 63 6F 6E 64 update.0 second
 000030 73 20 6F 6C 64 00 54 68 65 20 72 65 71 75 65 73 s old.The reques
 000040 74 69 6E 67 20 6E 6F 64 65 20 66 6F 78 20 68 61 ting node wlm ha
 000050 73 20 61 20 64 69 73 63 6F 6E 6E 65 63 74 65 64 s a disconnected
 000060 20 6C 69 6E 6B 20 77 69 74 68 20 20 72 6F 75 74 link with rout
 000070 65 72 20 68 65 78 2E 20 48 65 6E 63 65 20 74 68 er hex. Hence th
 000080 65 20 72 65 71 75 65 73 74 69 6E 67 20 6E 6F 64 e requesting nod
 000090 65 20 63 6F 75 6C 64 20 6E 6F 74 20 67 61 74 68 e could not gath
 0000A0 65 72 20 61 6C 6C 20 6F 66 20 74 68 65 20 72 65 er all of the re
 0000B0 71 75 65 73 74 65 64 20 69 6E 66 6F 72 6D 61 74 quested informat
 0000C0 69 6F 6E 2E 00 ion..

See Also
rtr_close_channel()

rtr_receive_message()

rtr_send_to_server
rtr_send_to_server — Send a transactional message to a server.

Format
status = rtr_send_to_server (channel, flags, pmsg, msglen, msgfmt)

Argument Data Type Access

status rtr_status_t write

78

Chapter 3. RTR Call Reference

Argument Data Type Access

channel rtr_channel_t read
flags rtr_sen_flag_t read
pmsg rtr_msgbuf_t read
msglen rtr_msglen_t read
msgfmt rtr_msgfmt_t read

C Binding
rtr_status_t rtr_send_to_server (
 rtr_channel_t channel ,
 rtr_sen_flag_t flags ,
 rtr_msgbuf_t pmsg ,
 rtr_msglen_t msglen ,
 rtr_msgfmt_t msgfmt ,
)

Arguments
channel

The channel identifier (returned earlier by rtr_open_channel()).

flags

Table below shows the flags that specify options for the call.

Table 3.26. Send to Server Flags

Flag name Description

RTR_F_SEN_ACCEPT This is the last message of the transaction, and the
tx is accepted. This optimization avoids the need
for a separate call to rtr_accept_tx() in
those cases where the sender knows this is the last
(or only) message in the transaction.

RTR_F_SEN_READONLY Specifies a read-only server operation. Hence no
shadowing or journalling is required. (The message
is still written to the journal but is not played to
a shadow and is purged after the transaction is
completed on the primary. The message is still
needed in the journal to allow recovery of in-flight
transactions.)

RTR_F_SEN_RETURN_TO_SENDER The message is to be returned to the sender if
undeliverable.

RTR_F_SEN_EXPENDABLE The whole transaction is not aborted if this send
fails.

Specify RTR_NO_FLAGS for this parameter if no flags are required.

pmsg

Pointer to the message to be sent.

79

Chapter 3. RTR Call Reference

msglen

Length in bytes of the message to be sent, up to RTR_MAX_MSGLEN bytes. The value of
RTR_MAX_MSGLEN is defined in rtr.h.

msgfmt

Message format description. msgfmt is a null-terminated character string containing the format
description of the message. RTR uses this description to convert the contents of the message
appropriately when processing the message on different hardware platforms. See Section 2.14, RTR
Applications in a Multiplatform Environment, for information on defining a message format description.

This parameter is optional. Specify RTR_NO_MSGFMT if the message content is platform independent,
or it is not intended to be used on other hardware platforms.

Description
The rtr_send_to_server() call sends a client’s transactional message to a server.

The caller must first open a client channel (using the rtr_open_channel() call), before it can
send transactional messages.

If no transaction is currently active on the channel, a new transaction is started.

Return Value
A value indicating the status of the routine. Possible status values are:

RTR_STS_CHANOTOPE Channel not opened
RTR_STS_INSVIRMEM Insufficient virtual memory
RTR_STS_INVCHANNEL Invalid channel argument
RTR_STS_INVFLAGS Invalid flags argument
RTR_STS_INVJOINTXID Invalid join transaction argument
RTR_STS_INVMSGFMT Invalid msgfmt argument
RTR_STS_INVMSGLEN Invalid msglen argument
RTR_STS_NOACP No RTRACP process available
RTR_STS_NOXACHAN No XA channel available
RTR_STS_OK Normal successful completion
RTR_STS_REPLYDIFF Reply from new server did not match earlier reply

Example
/* The my_msg structure is defined in the user’s
 * application header file.
 */
typedef struct {
 rtr_uns_8_t routing_key;
 rtr_uns_32_t sequence_number;
 rtr_uns_8_t my_msg_type;
 string31 last_name;
 rtr_uns_32_t order_total;

80

Chapter 3. RTR Call Reference

 rtr_uns_32_t shipping_amt;
 string16 cc_number;
 string7 cc_expire;
 } my_msg;
 my_msg send_msg;
 .
 . Load purchase data into send_msg.
 .
/*
 * Tell the server to validate the credit card for the
 * amount of this order.
 */
my_msg.my_msg_type = VALIDATE_CC;
status = rtr_send_to_server(
 channel,
 RTR_NO_FLAGS ,
 &send_msg,
 sizeof(send_msg),
 RTR_NO_MSGFMT);

See Also
rtr_receive_message()

rtr_open_channel()

rtr_set_info
rtr_set_info — Sets or changes a managed object in the RTR environment.

Format
status = rtr_set_info (*pchannel, flags, verb, object, *select_qualifiers, *set_qualifiers)

Argument Data Type Access

status rtr_status_t write
*pchannel rtr_channel_t write
flags rtr_set_flag_t read
verb rtr_verb_t read
object rtr_managed_object_t read
*select_qualifiers rtr_qualifier_value_t read
*set_qualifiers rtr_qualifier_value_t read

C Binding
rtr_status_t rtr_set_info (
 rtr_channel_t *pchannel ,
 rtr_set_flag_t flags ,
 rtr_verb_t verb ,
 rtr_managed_object_t object ,
 const rtr_qualifier_value_t *select_qualifiers ,
 const rtr_qualifier_value_t *set_qualifiers

81

Chapter 3. RTR Call Reference

)

Arguments
pchannel

Pointer to the channel opened by a successful call to rtr_set_info().

flags

No flags are currently defined. Specify RTR_NO_FLAGS for this argument.

verb

Always rtr_verb_set.

object

Establishes the type of object to which the call is directed. Values are:

• rtr_partition_object: the target object is a partition

• rtr_transaction_object: the target object is a transaction

select_qualifiers

Pointer to array containing selection qualifiers. Values depend on object type:

For: See the values in:

Set Partition Table 3.27
Set Transaction Table 3.28

For example:

typedef struct rtr_qualifier_value_t {
 rtr_qualifier_t qv_qualifier ; /* Which qualifier this is */
 void *qv_value ; /* What value it has */
 } rtr_qualifier_value_t ;

The last value in the array must be rtr_qualifiers_end (see the example). Specify sufficient
descriptors to identify the target object.

Table 3.27. Select Qualifiers for the Set Partition Object

Qualifier Value Type Description Example

rtr_facility_name const char* Facility name string "facility_name"
rtr_partition_name const char* Partition name string "partition_name"

Table 3.28. Select Qualifiers for the Set Transaction Object

Qualifier Value Type Description Example

rtr_facility_name facname Facility name string "facility_name"
rtr_partition_name partname Partition name string "partition_name"

82

Chapter 3. RTR Call Reference

Qualifier Value Type Description Example

rtr_txn_state rtr_txn_jnl_commit Current transaction state See Table 3.29 for valid
changes from one state
to another.

rtr_txn_tid tid Transaction ID 63b01d10,0,0,0,0,2e59,
43ea2002

When using the Set Transaction Object, the qualifier rtr_txn_state is required. In addition,
when using rtr_txn_state without rtr_facility_name or rtr_partition_name,
rtr_txn_tid is required. The qualifiers rtr_facility_name and rtr_partition_name
must be used together. You must always provide the current state when making a state change.

Table 3.29. Valid Set Transaction State Changes

To (new state):From
(current
state):

COMMIT ABORT EXCEPTION DEFER PRI_DONE DONE

SENDING YES
VOTED YES YES
COMMIT YES YES
EXCEPTION YES YES
PRI_DONE YES YES
DEFER YES

set_qualifiers

Pointer to an array containing values of type rtr_qualifier_value_t (see Select Qualifiers
above) that describe the desired change to be effected. Table 3.30 and Table 3.31 list qualifiers and value
types for the managed object types.

Table 3.30. Qualifiers for Set Partition

Qualifier Value Type Value Desired Action

rtr_partition_state rtr_partition_state_t rtr_partition_state_

_suspend

Suspend transaction
presentation.

rtr_partition_state rtr_partition_state_t rtr_partition_state_

_resume

Resume transaction
presentation.

rtr_partition_state rtr_partition_state_t rtr_partition_state_

_recover

(Re)start partition
recovery.

rtr_partition_state rtr_partition_state_t rtr_partition_state_

_exitwait

Exit partition recovery
wait/fail state.

rtr_partition_state rtr_partition_state_t rtr_partition_state_

_shadow

Enable shadowing.

rtr_partition_state rtr_partition_state_t rtr_partition_state_ Disable shadowing.

83

Chapter 3. RTR Call Reference

Qualifier Value Type Value Desired Action
_noshadow

rtr_partition_cmd_

_timeout_secs

rtr_uns_32_t unsigned int Optional partition
suspend timeout period
(in seconds).

rtr_partition_rcvy_

_retry_count

rtr_uns_32_t unsigned int Limit number of
recovery replays for a
transaction.

rtr_partition_failover_

_policy

rtr_partition_failover_

_policy_t

rtr_partition_fail_to_

_standby

Set failover policy to
standby.

rtr_partition_failover_

_policy

rtr_partition_failover_

_policy_t

rtr_partition_fail_to_

_shadow

Set failover policy to
shadow.

rtr_partition_failover_

_policy

rtr_partition_failover_

_policy_t

rtr_partition_pre32_

_compatible

Set failover policy as
pre-V3.2 compatible.

For both managed object types, a message of type rtr_mt_closed is returned. See Table 3.31 for
the value that can be set for the transaction type.

Completion status is read from message data, which is of type rtr_status_data_t. In addition,
a number (type integer) indicating the number of transactions processed is returned. This number can
be read from the message following the rtr_status_data_t data item. The last value in the array
must be rtr_qualifiers_end.

Table 3.31. Qualifiers for Set Transaction

Set Qualifier Set Qualifier Value Value Description

rtr_txn_state rtr_transaction_state_t rtr_tx_jnl_commit Set a transaction's state
to COMMIT to commit
the transaction.

rtr_txn_state rtr_transaction_state_t rtr_tx_jnl_abort Set a transaction state
to ABORT to abort the
transaction.

rtr_txn_state rtr_transaction_state_t rtr_tx_jnl_exception Mark this as an
exception transaction.

rtr_txn_state rtr_transaction_state_t rtr_tx_jnl_done Remove this transaction
from the RTR journal;
that is, forget this
transaction completely.

Description
The rtr_set_info() call requests a change in a characteristic of the RTR environment. If the call
is successful, a channel is opened for asynchronous completion notification. Applications should use the
rtr_receive_message() call to retrieve informational messages on the opened channel.

The rtr_set_info() call can manipulate two managed object types:

• Partition type

84

Chapter 3. RTR Call Reference

• Transaction type

See Table 3.30 for values that can be set for the partition object and Table 3.31 for values that can
be set for the transaction object. Completion status is read from message data, which is of type
rtr_status_data_t.

Return Value
A value indicating the status of the routine, normally returned as function completion status. Possible
status values are:

RTR_STS_ALRDYINSTATE DAG Partition is already in the desired state
RTR_STS_BADPRTSTATE DAG Disallowed attempt to make an illegal or undefined

partition state transition
RTR_STS_FACNAMLON DAG Facility name facility_name is larger than 30

characters
RTR_STS_FENAMELONG Frontend name string length greater than permitted

maximum
RTR_STS_INSUFPRIV Insufficient privileges to run RTR
RTR_STS_INSVIRMEM Insufficient virtual memory
RTR_STS_INVCHANNEL Invalid channel argument
RTR_STS_INVFACNAM Invalid FACNAM argument
RTR_STS_INVFLAGS Invalid flags argument
RTR_STS_INVOBJCT Specified object type invalid for managed object

request
RTR_STS_INVSTATCHANGE Invalid to change from the current state to the

specified state
RTR_STS_IVQUAL Unrecognized qualifier - check validity, spelling,

and placement
RTR_STS_IVVERB Unrecognized command verb - check validity and

spelling
RTR_STS_NOACTION No object management action specified - check

argument set qualifier
RTR_STS_NODNOTBAC DAG Node not defined as a backend
RTR_STS_NOSUCHPRTN DAG No such partition in the system
RTR_STS_OK Normal successful completion
RTR_STS_PARTNAMELONG Partition name too long
RTR_STS_PRTBADCMD DAG Partition command invalid or not implemented in

this version of RTR
RTR_STS_PRTBADFPOL DAG Unrecognized partition failover policy code
RTR_STS_PRTLCLRECEXT DAG Partition local recovery terminated by operator
RTR_STS_PRTMODRMBR DAG Partition must be in remember mode on the active

member
RTR_STS_PRTNOSRVRS DAG Partition has no servers – please start servers and

retry

85

Chapter 3. RTR Call Reference

RTR_STS_PRTNOTBACKEND DAG Partition command must be entered on a backend
node

RTR_STS_PRTNOTSUSP DAG Unable to resume partition that is not suspended
RTR_STS_PRTNOTWAIT DAG Partition not in a wait state – no action taken
RTR_STS_PRTRECSTATE DAG Partition must be in remember or active (non-

recovery) state
RTR_STS_PRTRESUMED DAG Partition partition_name resumed by operator

operator
RTR_STS_PRTRUNDOWN DAG Partition is in a rundown prior to deletion – no

action taken
RTR_STS_PRTSHDRECEXT DAG Partition shadow recovery terminated by operator
RTR_STS_SETTRANDONE DAG n transaction(s) updated in partition

partition_name of facility facility_name
RTR_STS_SETTRANROUTER DAG Cannot process this command, coordinator router

is still available
RTR_STS_TOOMANCHA Too many channels already opened
RTR_STS_TRNOTALL032 DAG Not all routers are at the minimum required

version of V3.2
RTR_STS_VALREQ Missing qualifier or keyword value – supply all

required values
RTR_STS_WTTR Not in contact with sufficient router nodes – please

retry later
DAGReturned in status field of rtr_status_data_t data returned with the rtr_mt_closed message. Indicates outcome of request.

Example
/*
 * This might follow a call to commit the transaction to the database.
 * If the SQL commit returns an error that is beyond the control of
 * this application: for example, database disk full, network to
 * database not responding, or timeout exceeded, it executes.
 *
 * Declarations:
 */

rtr_tid_t tid;
rtr_uns_32_t select_idx;
rtr_uns_32_t set_idx;
rtr_qualifier_value_t select_qualifiers[8];
rtr_qualifier_value_t set_qualifiers[3];

/* Everyone has voted to accept the transaction, and RTR has told the
 * server to commit it. The client has moved on to performing the next
 * transaction. This transaction will be changed from ‘commit’ status
 * to ‘exception’ status for a later attempt at committing.
 *
 * Get the transaction id. The channel has previously been
 * declared in an rtr_open_channel call.
 */

rtr_get_tid(channel, RTR_F_TID_RTR, &tid);

86

Chapter 3. RTR Call Reference

/* Load the rtr_qualifier_value_t structures that contain the
 * selection criteria for the transaction: ‘the transaction whose tid
 * is pointed at by ‘tid’, whose facility name is in ‘facname’, whose
 * partition name is in ‘partname’, and whose transaction state is
 * ‘rtr_txn_jnl_commit’ (logged to the journal as committed).
 */

select_idx = 0;
select_qualifiers[select_idx].qv_qualifier = rtr_txn_tid;
select_qualifiers[select_idx].qv_value = &tid;
select_idx++;

/* Facility name
 */

select_qualifiers[select_idx].qv_qualifier =
rtr_facility_name;
select_qualifiers[select_idx].qv_value = facname;
select_idx++;

/* Partition name
 */

select_qualifiers[select_idx].qv_qualifier = rtr_partition_name;
select_qualifiers[select_idx].qv_value = partname;
select_idx++;

/* Transaction state in journal
 */

select_qualifiers[select_idx].qv_qualifier = rtr_txn_state;
select_qualifiers[select_idx].qv_value = &rtr_txn_jnl_commit;
select_idx++;

/* Last one on array must be ‘rtr_qualifiers_end’
 */

select_qualifiers[select_idx].qv_qualifier =
 rtr_qualifiers_end,
select_qualifiers[select_idx].qv_value = NULL;
select_idx++;

/* Load the
 * rtr_qualifier_t structs that we will use to set the
 * new property for the transaction: in this case, only the
 * state of the transaction. We will change it to
 * rtr_txn_jnl_exception, or ‘exception’.
 */

set_idx = 0;
set_qualifiers[set_idx].qv_qualifier = rtr_txn_state;
set_qualifiers[set_idx].qv_value = &rtr_txn_jnl_exception;
set_idx++;

/* Terminate the array with an rtr_qualifiers_end.
 */
set_qualifiers[set_idx].qv_qualifier =

87

Chapter 3. RTR Call Reference

 rtr_qualifiers_end;
set_qualifiers[set_idx].qv_value = NULL;
set_idx++;

/* Tell RTR to change the transaction’s state.
 */
status = rtr_set_info(&pchannel,
 RTR_NO_FLAGS,
 rtr_verb_set,
 rtr_transaction_object,
 select_qualifiers,
 set_qualifiers);

check_status(status);

/* The server should now look for an
 * RTR_STS_SETTRADONE message
 * from RTR, which confirms that it has changed the status.
 */

See Also
rtr_close_channel()

rtr_receive_message()

rtr_request_info()

rtr_set_user_context
rtr_set_user_context — Sets the current value of the optional user-defined context associated with the
specified RTR channel.

Format
status = rtr_set_user_context (channel, usrctx)

Argument Data Type Access

status rtr_status_t write
channel rtr_channel_t read
usrctx rtr_usrctx_t read

C Binding
rtr_status_t rtr_set_user_context (
 rtr_channel_t channel ,
 rtr_usrctx_t usrctx
)

Arguments
channel

The channel whose context is to be set.

88

Chapter 3. RTR Call Reference

usrctx

User-supplied context value.

Description
Sets the current value of the optional user-defined context associated with the specified RTR channel.
The user context value may be subsequently retrieved using rtr_get_user_context(). The context value
RTR_NO_USER_CONTEXT is reserved.

Return Value
A value indicating the status of the routine. Possible values are:

RTR_STS_INVCHANNEL Invalid channel argument
RTR_STS_OK Normal successful completion

See Also
rtr_get_user_context()

rtr_set_user_handle
rtr_set_user_handle — Associate a user-defined value (handle) with a transaction.

Format
status = rtr_set_user_handle (channel, usrhdl)

Argument Data Type Access

status rtr_status_t write
channel rtr_channel_t read
usrhdl rtr_usrhdl_t read

C Binding
rtr_status_t rtr_set_user_handle (
 rtr_channel_t channel ,
 rtr_usrhdl_t usrhdl
)

Arguments
channel

The channel identifier, returned earlier by the rtr_open_channel() call.

usrhdl

Value to associate with the channel. This value is returned in the usrhdl field of the msgsb message status
block when subsequent calls to rtr_receive_message() return messages associated with this
channel.

The usrhdl argument can be used to hold a pointer.

89

Chapter 3. RTR Call Reference

Description
The rtr_set_user_handle() call associates a user-defined value (handle) with a channel. An
application can either use a handle, or client and servers can act independently.

The current value of a handle is associated with a channel; the current handle value is associated
with each operation on the channel. The message status block supplied with a message delivered on
the channel contains the user handle value that was current at the time of the associated operation.
For example, an rtr_mt_accepted message has the user handle that was current when the
corresponding call to rtr_accept_tx() was made, and the rtr_mt_rettosend message has
the user handle that was current when the corresponding call to rtr_send_to_server() was
made.

Note that the value of a handle is process local, and a different handle would be associated for the same
transaction by the client and server. The scope for the user handle is within the process in which the user
handle is set.

Return Value
A value indicating the status of the routine. Possible values are:

RTR_STS_CHANOTOPE Channel not opened
RTR_STS_INVCHANNEL Invalid channel argument
RTR_STS_OK Normal successful completion
RTR_STS_TXACTIVE Transaction is active

Example
/* This client does not use nested transactions, and it does
 * not wait for the mt_accepted message before sending
 * the next transaction. Instead, it matches each ‘accepted’
 * message it receives with a transaction.
 */
 typedef struct {
 rtr_uns_32_t txn_number;
 rtr_uns_32_t message_id_sent;
 char my_record[255];
} txn_handle;

/* Allocate and load the txn_handle data structure that
 * you create.
 */
txn_handle txn_ident = (txn_handle*)calloc(1, sizeof(txn));
txn_ident->txn_number = ++count;
txn_ident->message_id_sent = my_message_id;
strcpy(txn_ident->record, my_record);

/* Attach this struct to the channel on which we’re sending the
 * transaction.
 */
 status = rtr_set_user_handle(channel, txn_ident);

See Also
rtr_receive_message()

90

Chapter 3. RTR Call Reference

rtr_set_wakeup
rtr_set_wakeup — Register a function to be called when a message arrives.

Format
status = rtr_set_wakeup (void (*wu_rou)(void))

Argument Data Type Access

status rtr_status_t write
wu_rou procedure read

C Binding
rtr_status_t rtr_set_wakeup (
 procedure void (*wu_rou) (void)
)

Arguments
void (*wu_rou) (void)

The routine to be called by RTR when a message is waiting to be delivered.

Description
The rtr_set_wakeup() call sets the address of a function to be called when a message is waiting
to be delivered. To cancel wakeups, call the routine with an argument of NULL.

Execution of the specified wakeup indicates that you may have messages.

At the time of the execution of the wakeup there may be 0, 1 or more messages available. Each incoming
application message does not generate a separate wakeup callback, so following a wakeup callback a
program should call rtr_receive_message(..., timoutms=0, ...) in a loop at some
point to ensure that no message is left uncollected.

See CALL rtr_receive_message in the VSI Reliable Transaction Router System Manager’s
Manual for restrictions on using V2 and later RTR version calls in the same application.

If a wakeup routine has been set using this call, subsequent calls to rtr_set_wakeup() should
either disable the wakeup feature (with an argument of NULL), or replace the current wakeup routine
with another.

For details and restrictions on using the RTR wakeup handler rtr_set_wakeup, see the discussion in
Section 2.9.

Return Value
A value indicating the status of the routine. Possible values are:

RTR_STS_ACPNOTVIA RTR ACP no longer a viable entity, restart RTR or
application

RTR_STS_BYTLMNSUFF Insufficient process quota bytlm, required 100000

91

Chapter 3. RTR Call Reference

RTR_STS_INVCHANNEL Invalid channel argument
RTR_STS_NOACP No RTRACP process available
RTR_STS_OK Normal successful completion

Example
#include <stdlib.h>

void app_wakeup_routine (void)
{

 /* NB This is called from an AST, ALRM or IO signal handler,
 * or another thread depending on the platform.
 * Although RTR blocks signals, ASTs and the wakeup thread
 * until it is safe and convenient,
 * you may prefer to just set a flag or generate an event and
 * perform the receive_message in your main thread instead.
 */
 /* Get all outstanding rtr messages */
 do
 {
 sts = rtr_receive_message(..., /* timoutms */ 0) ;
 check (sts) ;
 process_message () ;
 } while (sts != RTR_STS_TIMOUT) ;
}

static void app_cancel_wakeup (void)
{
 rtr_set_wakeup(NULL);
}

main ()
{
 sts = rtr_set_wakeup(app_wakeup_routine);
 atexit(app_cancel_wakeup);
 .
 .
}

If RTR data is available when rtr_set_wakeup is called, the application’s wakeup routine is called
immediately.

See Also
rtr_receive_message()

rtr_start_tx
rtr_start_tx — Explicitly start a transaction on the specified channel.

Format
status = rtr_start_tx (channel, flags, timoutms, pjointxid)

92

Chapter 3. RTR Call Reference

Argument Data Type Access

status rtr_status_t write
channel rtr_channel_t read
flags rtr_sta_flag_t read
timoutms rtr_timout_t read
pjointxid rtr_pointer_t read

C Binding
rtr_status_t rtr_start_tx (
 rtr_channel_t channel ,
 rtr_sta_flag_t flags ,
 rtr_timout_t timoutms ,
 rtr_pointer_t pjointxid
)

Arguments
channel

The channel identifier returned earlier by the rtr_open_channel() call.

flags

Flags that specify options for the call. Normally specify RTR_NO_FLAGS for this parameter.

timoutms

Transaction timeout specified in milliseconds. If the transaction is not accepted by all participants within
the specified timeout period, RTR aborts the transaction and reports a status of RTR_STS_TIMOUT.

The granularity of the underlying timer is 1 second. Fractional values of the timoutms argument are
rounded up to the next whole second. A value of 0 causes an immediate transaction abort. If no timeout
is required, specify RTR_NO_TIMOUTMS.

pjointxid

Pointer to the transaction identifier of the parent transaction.

Description
The rtr_start_tx() call is used to start a transaction explicitly.

An explicit transaction start is only necessary if one of the following conditions exists:

• a join to an existing transaction is to be done

• a transaction timeout is to be specified

Transactions are implicitly started when a message is sent on a currently inactive channel. Implicitly
started transactions have no timeout and are not joined to other RTR transactions.

Return Value
A value indicating the status of the routine. Possible status values are:

93

Chapter 3. RTR Call Reference

RTR_STS_ACPNOTVIA RTR is no longer a viable entity, restart RTR or
application

RTR_STS_INVCHANNEL Invalid channel argument
RTR_STS_INVFLAGS Invalid flags argument
RTR_STS_INVJOINTXID Invalid join transaction argument. The flag

RTR_F_OPE_FOREIGN_TM was defined in
the call to rtr_open_channel(), but
pjointxid is equal to RTR_NO_JOINTXID,
or the formatID field of an XA transaction
in the pjointxid parameter is equal to
RTR_XID_FORMATID_NONE.

RTR_STS_INVOP4SRV Invalid operation for server channel
RTR_STS_INVTIMOUTMS Invalid timoutms argument
RTR_STS_NOACP No RTRACP process available
RTR_STS_NOXACHAN No XA channel available
RTR_STS_OK Normal successful completion
RTR_STS_TRAALRSTA Transaction already started
RTR_STS_VERMISMAT RTR version mismatch. The RTR router is running

an older version of RTR that does not support
nested transactions.

Example
rtr_xid_t xa_txn;

/* This client/server pair handles transactions that contain
 * multiple messages within each one. Transactions are explicitly
 * started and prepared, as directed by this client.
 *
 * Fill in the information in the XA transaction id struct.
 * The information will be sent to the server to tag the transaction.
 */
 xa_txn.formatID = RTR_XID_FORMATID_RTR_XA;
 xa_txn.gtrid_length = 4;
 xa_txn.bqual_length = 4;
 strcpy(xa_txn.data, "6789.0003");
/* Start the transaction; specify a timeout so we don’t get
 * stuck waiting forever. May not complete immediately.
 */
 status = rtr_start_tx(
 channel,
 RTR_F_STA_TID_XA,
 1000,
 &xa_txn);

check_status(status); /* May be RTR_STS_TIMEOUT. */

See Also
rtr_open_channel()

rtr_send_to_server()

94

Chapter 4. Compiling and Linking
Your Application
All client and application programs must be written using C, C++, or a language that can use RTR API
calls. Include the RTR data types and error messages file rtr.h in your compilation so that it will be
appropriately referenced by your application. For each client and server application, your compilation/
link process is as follows:

1. Write your application code using RTR calls.

2. Use RTR data and status types for cross-platform interoperability.

3. Compile your application code calling in rtr.h using ANSI C include rules. For example, if rtr.h is in
the same directory as your C code, compile with the following statement: #include "rtr.h".

4. Link your object code with the RTR library to produce your application executable.

This process is illustrated in Figure 4.1. In this figure, Library represents the RTR C API shareable
images (OpenVMS), DLLs (Win32), and shared libraries (UNIX).

Figure 4.1. Compile Sequence

4.1. Compilers
Compilers commonly used in developing RTR applications include those in Table 4.1. For additional
information, see the Reliable Transaction Router Software Product Description.

Table 4.1. Minimum Compiler Versions for Developing RTR Applications

Operating System Compiler Compiler Version

Microsoft Windows Microsoft Visual C++ (Microsoft
Visual Studio 6.0)

Version 6.0 SP6

95

Chapter 4. Compiling and Linking Your Application

Operating System Compiler Compiler Version

OpenVMS Alpha Compaq C Version 6.2-006
OpenVMS VAX Compaq C Version 6.2-003
Sun Forte Compilers Version 6.0
Tru64 UNIX Compaq C Version 6.3-126

4.2. Linking Libraries
To compile and link a C RTR application, use command lines as shown below. Separate examples are
shown for use of RTR with threaded or unthreaded libraries. You may need to specify library directories
explicitly if the RTR header files and libraries are not installed in the same directory or in system
directories.

Windows
 > cl /c /MT yourapp.c
 > link yourapp.obj /out:yourapp.exe rtrdll.lib

Linux I32 (Frontend)
Single-threaded:

 # cc -o yourapp -lrtr yourapp.c

Multi-threaded:

 # cc -o yourapp -pthread -lrtr_r yourapp.c

Linux I64
Single-threaded:

 # cc -o yourapp -lrtr yourapp.c

Multi-threaded:

 # cc -o yourapp -pthread -lrtr_r yourapp.c

OpenVMS Alpha
Single-threaded:

 $ cc yourapp.c
 $ link yourapp,sys$input/opt
 SYS$SHARE:librtr/share
 ^Z

Multi-threaded:

 $ cc yourapp.c

96

Chapter 4. Compiling and Linking Your Application

 $ link yourapp,sys$input/opt
 SYS$SHARE:librtr_r/share
 ^Z

OpenVMS I64
Single-threaded:

 $ cc yourapp.c
 $ link yourapp,sys$input/opt
 SYS$SHARE:librtr/share
 ^Z

Multi-threaded:

 $ cc yourapp.c
 $ link yourapp,sys$input/opt
 SYS$SHARE:librtr_r/share
 ^Z

HP-UX I64
Single-threaded:

cc -o yourapp +DD64 +DSitanium2 -lrtr yourapp.c

Multi-threaded:

cc -o yourapp +DD64 +DSitanium2 -lpthread -lrtr_r yourapp.c

97

Chapter 4. Compiling and Linking Your Application

98

Appendix A. RTR C API Sample
Applications
A.1. Overview
The software kit contains a short sample application that is unsupported and not part of the RTR
product. Code for the sample application is in the [EXAMPLES] directory on the software kit. This
sample application contains four components:

adg_client.c
adg_server.c
adg_shared.c
adg_header.h

The code is shown on the next few pages. Note the following:

• Return value checking after fprintf() fclose() and so on, is omitted for clarity.

• time() and ctime() are used instead of higher resolution reentrant alternatives that are less
portable.

A.2. Client Application
/* Client Application */

/**
* Copyright Compaq Computer Corporation 1998. All rights reserved.
* Restricted Rights: Use, duplication, or disclosure by the U.S.
* Government is subject to restrictions as set forth in subparagraph (c)
* (1) (ii) of DFARS 252.227-7013, or in FAR 52.227-19, or in FAR 52.227-14
* Alt. III, as applicable.
* This software is proprietary to and embodies the confidential technology
* of Compaq Computer Corporation. Possession, use, of copying of this
* software and media is authorized only pursuant to a valid written
* license from Compaq, Digital or an authorized sublicensor.
**/
/

* APPLICATION: RTR Sample Client Application
* MODULE NAME: adg_client.c
* AUTHOR: Compaq Computer Corporation
* DESCRIPTION: This client application initiates transactions and requests
* transaction status asynchronously. It is to be used with
 adg_server.c, adg_header.h, and adg_shared.c.
* DATE : Oct 22, 1998
**/
/*
 adg_client.c

 Goes with adg_server.c

 To build on Unix:
 cc -o adg_client adg_client.c adg_shared.c -lrtr
*/

99

Appendix A. RTR C API Sample Applications

#include "adg_header.h"

void declare_client (rtr_channel_t *pchannel);
FILE *fpLog;

int main (int argc, char *argv[])
{
 /*
 * This program expects 3 parameters :
 * 1: client number (1 or 2)
 * 2: partition range
 * 3: messages to send
 */

 rtr_status_t status;
 rtr_channel_t channel ;
 time_t time_val = { 0 };

 message_data_t send_msg = {0};
 receive_msg_t receive_msg = {0};
 int txn_cnt;
 rtr_timout_t receive_time_out = RTR_NO_TIMOUTMS;
 rtr_msgsb_t msgsb;
 char CliLog[80];

 send_msg.sequence_number = 1 ;
 strcpy(send_msg.text , "from Client");

 get_client_parameters(argc , argv, &send_msg, &txn_cnt);

 sprintf(CliLog, "CLIENT_%c_%d.LOG", send_msg.routing_key,
 send_msg.client_number);
 fpLog = fopen(CliLog, "w");

 if (fpLog == NULL)
 {
 perror("adg_client: fopen failed");
 fprintf(stderr, " Error opening client log %s\n", CliLog);
 exit(EXIT_FAILURE);
 }

 printf("\n Client log = %s\n", CliLog);

 fprintf(fpLog, " txn count = %d\n", txn_cnt);
 fprintf(fpLog, " client number = %d\n", send_msg.client_number);
 fprintf(fpLog, " routing key = %c\n\n", send_msg.routing_key);

 declare_client (&channel);

 /* Send the requested number of txns */

 for (; txn_cnt > 0; txn_cnt--, send_msg.sequence_number++)
 {
 status = rtr_send_to_server(
 channel,
 RTR_NO_FLAGS ,
 &send_msg,

100

Appendix A. RTR C API Sample Applications

 sizeof(send_msg),
 msgfmt);

 check_status("rtr_send_to_server", status);

 fprintf(fpLog, "\n ********** sequence %10d **********\n",
 send_msg.sequence_number);
 time(&time_val);
 fprintf(fpLog, " send_to_server at: %s",
 ctime(&time_val));
 fflush(fpLog);

 /*
 * Get the server's reply OR
 * an rtr_mt_rejected
 */

 status = rtr_receive_message(
 &channel,
 RTR_NO_FLAGS,
 RTR_ANYCHAN,
 &receive_msg,
 sizeof(receive_msg),
 receive_time_out,
 &msgsb);

 check_status("rtr_receive_message", status);

 time(&time_val);
 switch (msgsb.msgtype)
 {
 case rtr_mt_reply:
 fprintf(fpLog, " reply from server at: %s",
 ctime(&time_val));
 fprintf(fpLog, " sequence %10d from server %d\n",
 receive_msg.receive_data_msg.sequence_number,
 receive_msg.receive_data_msg.server_number);
 fflush(fpLog);
 break;

 case rtr_mt_rejected:
 fprintf(fpLog, " txn rejected at: %s",
 ctime(&time_val));
 fprint_tid(fpLog, &msgsb.tid);
 fprintf(fpLog, " status is : %d\n", status);
 fprintf(fpLog, " %s\n", rtr_error_text(status));
 fflush(fpLog);

 /* Resend same sequence_number after reject */
 send_msg.sequence_number--;
 txn_cnt++;
 break;

 default:
 fprintf(fpLog,
 " unexpected msg at: %s", ctime(&time_val));
 fprint_tid(fpLog, &msgsb.tid);
 fflush(fpLog);

101

Appendix A. RTR C API Sample Applications

 exit(EXIT_FAILURE);
 }

 if (msgsb.msgtype == rtr_mt_reply)
 {
 status = rtr_accept_tx(
 channel,
 RTR_NO_FLAGS,
 RTR_NO_REASON);

 check_status("rtr_accept_tx", status);

 status = rtr_receive_message(
 &channel,
 RTR_NO_FLAGS,
 RTR_ANYCHAN,
 &receive_msg,
 sizeof(receive_msg),
 receive_time_out,
 &msgsb);

 check_status("rtr_receive_message", status);

 time(&time_val);

 switch (msgsb.msgtype)
 {
 case rtr_mt_accepted:
 fprintf(fpLog, " txn accepted at :
 %s", ctime(&time_val));
 fprint_tid(fpLog, &msgsb.tid);
 fflush(fpLog);
 break;

 case rtr_mt_rejected:
 fprintf(fpLog, " txn rejected at :
 %s", ctime(&time_val));
 fprint_tid(fpLog, &msgsb.tid);
 fprintf(fpLog, " status is : %d\n",
 receive_msg.receive_status_msg.status);
 fprintf(fpLog, " %s\n",

 rtr_error_text(receive_msg.receive_status_msg.status));
 fflush(fpLog);

 /* Resend same sequence_number after reject */

 send_msg.sequence_number--;
 txn_cnt++;
 break;

 default:
 fprintf(fpLog,
 " unexpected status on rtr_mt_accepted message\n");
 fprint_tid(fpLog, &msgsb.tid);
 fprintf(fpLog, " status is : %d\n",
 receive_msg.receive_status_msg.status);

102

Appendix A. RTR C API Sample Applications

 fprintf(fpLog,
 " %s\n",
 rtr_error_text(receive_msg.receive_status_msg.status));
 fflush(fpLog);
 break;
 }
 }

 }

 close_channel (channel);
}

void
declare_client (rtr_channel_t *pchannel)
{
 rtr_status_t status;
 receive_msg_t receive_msg;
 rtr_timout_t receive_time_out = RTR_NO_TIMOUTMS; /* forever */
 rtr_msgsb_t msgsb; /* Structure into which receive puts msgtype */

 status = rtr_open_channel(
 pchannel,
 RTR_F_OPE_CLIENT ,
 FACILITY_NAME,
 NULL, /* rpcnam */
 RTR_NO_PEVTNUM,
 RTR_NO_ACCESS /* access */
 RTR_NO_NUMSEG ,
 RTR_NO_PKEYSEG);

 check_status("rtr_open_channel", status);

 status = rtr_receive_message(
 pchannel,
 RTR_NO_FLAGS,
 RTR_ANYCHAN,
 &receive_msg,
 sizeof(receive_msg),
 receive_time_out,
 &msgsb);

 check_status("rtr_receive_message", status);

 if (msgsb.msgtype != rtr_mt_opened)
 {
 fprintf(fpLog, " Error opening rtr channel %s : \n", FACILITY_NAME);

 fprintf(fpLog, "%s\n",
 rtr_error_text(receive_msg.receive_status_msg.status));
 exit(EXIT_FAILURE);
 }

 fprintf(fpLog, " Client channel successfully opened\n");
 return;
}

103

Appendix A. RTR C API Sample Applications

A.3. Server Application
/* Server Application */

/

* Copyright Compaq Computer Corporation 1998. All rights reserved.
* Restricted Rights: Use, duplication, or disclosure by the U.S.
* Government is subject to restrictions as set forth in subparagraph (c)
* (1) (ii) of DFARS 252.227-7013, or in FAR 52.227-19, or in FAR 52.227-14
* Alt. III, as applicable.
* This software is proprietary to and embodies the confidential technology
* of Compaq Computer Corporation. Possession, use, of copying of this
* software and media is authorized only pursuant to a valid written
* license from Compaq, Digital or an authorized sublicensor.
**/
/

* APPLICATION: RTR Sample Server Application
* MODULE NAME: adg_server.c
* AUTHOR : Compaq Computer Corporation
* DESCRIPTION: This server application receives transactions and receives
* transaction status. It is to be used with adg_client.c,
* adg_header.h, and adg_shared.c.
* DATE : Oct 22, 1998
**/
/*
 adg_server.c
 Goes with adg_client.c

 To build on Unix:
 cc -o adg_server adg_server.c adg_shared.c -lrtr
*/

#include "adg_header.h"

void declare_server (rtr_channel_t *channel, const message_data_t *outmsg);

FILE *fpLog;

int main(int argc, char *argv[])
{
 /*
 * This program expects 2 parameters :
 * 1: server number (1 or 2)
 * 2: partition range
 */

 rtr_msgsb_t msgsb;
 receive_msg_t receive_msg;
 message_data_t reply_msg;
 rtr_timout_t receive_time_out = RTR_NO_TIMOUTMS;
 char SvrLog[80];
 time_t time_val = { 0 };

 rtr_channel_t channel;

104

Appendix A. RTR C API Sample Applications

 rtr_status_t status = (rtr_status_t)0;
 rtr_bool_t replay;

 strcpy(reply_msg.text , "from Server");

 get_server_parameters (argc, argv, &reply_msg);

 sprintf(SvrLog, "SERVER_%c_%d.LOG", reply_msg.routing_key,
 reply_msg.server_number);
 fpLog = fopen(SvrLog, "w");

 if (fpLog == NULL)
 {
 perror("adg_server: fopen() failed");
 printf(" Error opening server log %s\n", SvrLog);
 exit(EXIT_FAILURE);
 }

 printf(" Server log = %s\n", SvrLog);

 fprintf(fpLog, " server number = %d\n", reply_msg.server_number);
 fprintf(fpLog, " routing key = %c\n", reply_msg.routing_key);

 declare_server(&channel, &reply_msg);

 while (RTR_TRUE)
 {
 status = rtr_receive_message(
 &channel,
 RTR_NO_FLAGS,
 RTR_ANYCHAN,
 &receive_msg,
 sizeof(receive_msg),
 receive_time_out,
 &msgsb);
 check_status("rtr_receive_message", status);

 time(&time_val);

 switch (msgsb.msgtype)
 {
 case rtr_mt_msg1_uncertain:
 case rtr_mt_msg1:
 if (msgsb.msgtype == rtr_mt_msg1_uncertain)
 replay = RTR_TRUE;
 else
 replay = RTR_FALSE;

 fprintf(fpLog, "\n ********** sequence %10d **********\n",
 receive_msg.receive_data_msg.sequence_number);

 if (replay == RTR_TRUE)
 fprintf(fpLog, " uncertain txn started at :%s",
 ctime(&time_val));
 else
 fprintf(fpLog, " normal txn started at :%s",
 ctime(&time_val));

105

Appendix A. RTR C API Sample Applications

 fprintf(fpLog, " sequence %10d from client %d\n",
 receive_msg.receive_data_msg.sequence_number,
 receive_msg.receive_data_msg.client_number);
 fflush(fpLog);

 reply_msg.sequence_number =
 receive_msg.receive_data_msg.sequence_number;

 status = rtr_reply_to_client (
 channel,
 RTR_NO_FLAGS,
 &reply_msg,
 sizeof(reply_msg),
 msgfmt);

 check_status("rtr_reply_to_client", status);
 break;

 case rtr_mt_prepare:
 fprintf(fpLog, " txn prepared at : %s",
 ctime(&time_val));
 fflush(fpLog);

 status = rtr_accept_tx (
 channel,
 RTR_NO_FLAGS,
 RTR_NO_REASON);
 check_status("rtr_accept_tx", status);
 break;

 case rtr_mt_rejected:
 fprintf(fpLog, " txn rejected at : %s",
 ctime(&time_val));
 fprint_tid(fpLog, &msgsb.tid);
 fprintf(fpLog, " status is : %d\n", status);
 fprintf(fpLog, " %s\n", rtr_error_text(status));
 fflush(fpLog);
 break;

 case rtr_mt_accepted:
 fprintf(fpLog, " txn accepted at : %s",
 ctime(&time_val));
 fprint_tid(fpLog, &msgsb.tid);
 fflush(fpLog);
 break;

 } /* End of switch */
 } /* While loop */
}

void
declare_server (rtr_channel_t *channel, const message_data_t *outmsg)
{
 rtr_status_t status;
 rtr_uns_32_t numseg = 1;
 rtr_keyseg_t p_keyseg[1];
 receive_msg_t receive_msg;
 rtr_timout_t receive_time_out = RTR_NO_TIMOUTMS; /* forever */

106

Appendix A. RTR C API Sample Applications

 rtr_msgsb_t msgsb; /* Structure into which receive puts msgtype */
 const char *facility = FACILITY_NAME;

 p_keyseg[0].ks_type = rtr_keyseg_string;
 p_keyseg[0].ks_length = 1;
 p_keyseg[0].ks_offset = 0;
 p_keyseg[0].ks_lo_bound =
 /* const_cast */ (rtr_uns_8_t *)(&outmsg->routing_key);
 p_keyseg[0].ks_hi_bound =
 /* const_cast */ (rtr_uns_8_t *)(&outmsg->routing_key);

 status = rtr_open_channel(
 &channel,
 RTR_F_OPE_SERVER,/* | RTR_F_OPE_EXPLICIT_ACCEPT | */
 /* RTR_F_OPE_EXPLICIT_PREPARE, */
 facility,
 NULL, /* rpcnam */
 RTR_NO_PEVTNUM,
 RTR_NO_ACCESS, /* access */
 numseg,
 p_keyseg);

 check_status("rtr_open_channel", status);

 status = rtr_receive_message(
 &channel,
 RTR_NO_FLAGS,
 RTR_ANYCHAN,
 &receive_msg,
 sizeof(receive_msg),
 receive_time_out,
 &msgsb);

 check_status("rtr_receive_message", status);

 if (msgsb.msgtype != rtr_mt_opened)
 {
 fprintf(fpLog, " Error opening rtr channel %s: \n", facility);

 fprintf(fpLog, "%s\n",
 rtr_error_text(receive_msg.receive_status_msg.status));
 fclose (fpLog);
 exit(EXIT_FAILURE);
 }

 fprintf(fpLog, " Server channel successfully opened \n");
 return;
}

A.4. Shared Code
/* Shared Code */

/

* Copyright Compaq Computer Corporation 1998. All rights reserved.
* Restricted Rights: Use, duplication, or disclosure by the U.S.

107

Appendix A. RTR C API Sample Applications

* Government is subject to restrictions as set forth in subparagraph (c)
* (1) (ii) of DFARS 252.227-7013, or in FAR 52.227-19, or in FAR 52.227-14
* Alt. III, as applicable.
* This software is proprietary to and embodies the confidential technology
* of Compaq Computer Corporation. Possession, use, of copying of this
* software and media is authorized only pursuant to a valid written license
* from Compaq, Digital or an authorized sublicensor.
***/
/
**
* APPLICATION: RTR Sample Client Application
* MODULE NAME: adg_shared.c
* AUTHOR : Compaq Computer Corporation
* DESCRIPTION: This shared code is to be used with adg_server.c,
* adg_header.h, and adg_client.c.
* DATE : Oct 22, 1998
***/

#include "adg_header.h"

void
check_status(char *call, rtr_status_t status)
{
 time_t time_val = { 0 };
 if (status != RTR_STS_OK)
 {
 time(&time_val);
 fprintf(fpLog, " Call to %s failed at %s:\n",
 call, ctime(&time_val));
 fprintf(fpLog, "\n Call status = %s\n",
 rtr_error_text(status));
 fflush(fpLog);
 exit(status);
 }
}

void
get_server_parameters (rtr_sgn_32_t argc, char *argv[], message_data_t
*o_msg)
{
 String31 buffer;
 if (argc < 2)
 {
 printf (" Server number : ");
 gets(buffer);
 o_msg->server_number = atoi(buffer);

 printf(" routing key : ");
 gets (buffer);
 o_msg->routing_key = buffer[0];
 }
 else
 {
 sscanf(argv[1], "%1d", &(o_msg->server_number));
 o_msg->routing_key = *(argv[2]);
 }
} /* End of get_server_parameters */

108

Appendix A. RTR C API Sample Applications

void
get_client_parameters (rtr_sgn_32_t argc, char *argv[], message_data_t
*o_msg, int *txn_cnt)
{
 String31 buffer;

 if (argc < 3)
 {
 printf (" Client number : ");
 gets(buffer);
 o_msg->client_number = atoi(buffer);

 printf(" routing key : ");
 gets (buffer);
 o_msg->routing_key = buffer[0];

 printf(" Message Count : ");
 gets (buffer);
 *txn_cnt = atoi(buffer);
 }
 else
 {
 sscanf(argv[1], "%1d", &(o_msg->client_number));
 sscanf(argv[2], "%s", buffer);

 }
} /* End of get_client_parameters */

/
***/

void fprint_tid (FILE *fp , rtr_tid_t *tid)
{
 fprintf (fp , " tid: %x,%x,%x,%x,%x,%x,%x\n", tid->tid32[0],
tid->tid32[1],
 tid->tid32[2], tid->tid32[3], tid->tid32[4], tid->tid32[5],
 tid->tid32[6]);
}

void
close_channel (rtr_channel_t channel)
{
 rtr_status_t status;

 printf (" Closing Channel.\n");

 status = rtr_close_channel (
 channel ,
 RTR_NO_FLAGS);

 check_status("rtr_close_channel", status);

 return;

}

109

Appendix A. RTR C API Sample Applications

A.5. Header Code
/* Header Code */

/

* Copyright Compaq Computer Corporation 1998. All rights reserved.
* Restricted Rights: Use, duplication, or disclosure by the U.S.
* Government is subject to restrictions as set forth in subparagraph (c)
* (1) (ii) of DFARS 252.227-7013, or in FAR 52.227-19, or in FAR 52.227-14
* Alt. III, as applicable.
* This software is proprietary to and embodies the confidential technology
* of Compaq Computer Corporation. Possession, use, of copying of this
* software and media is authorized only pursuant to a valid written
* license from Compaq, Digital or an authorized sublicensor.
***/
/

* APPLICATION: RTR Sample Application
* MODULE NAME: adg_header.h
* AUTHOR : Compaq Computer Corporation
* DESCRIPTION: This header file is to be used with adg_server.c,
* adg_client.c, and adg_shared.c.
* DATE : Oct 22, 1998
***/
/*
 Header file for adg_client.c and adg_server.c

*/

#include "rtr.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <math.h>
#include <signal.h>
#include <ctype.h>
#include <fcntl.h>
#include <sys/stat.h>
/* #include <sys/types.h> */

#define PERMS 0666 /* File permissions */
#define FACILITY_NAME "DESIGN"

typedef char String31[31];
typedef char String200[200];

typedef struct {
 rtr_uns_8_t routing_key;
 rtr_uns_32_t server_number;
 rtr_uns_32_t client_number;
 rtr_uns_32_t sequence_number;
 String31 text;
 } message_data_t;

typedef union {

110

Appendix A. RTR C API Sample Applications

 message_data_t receive_data_msg;
 rtr_status_data_t receive_status_msg;
 } receive_msg_t;

typedef struct {
 rtr_uns_32_t low;
 rtr_uns_32_t high;
 rtr_uns_32_t expected ;
 rtr_tid_t prior_txn;
 rtr_uns_32_t prior_seqno;
 }boundaries_t;

/* Function prototype section */

void
check_status(char *call, rtr_status_t status);

void get_client_parameters (rtr_sgn_32_t argc,
 char *argv[],
 message_data_t *o_msg,
 int *txn_cnt);
void get_server_parameters (rtr_sgn_32_t argc,
 char *argv[],
 message_data_t *o_msg);

rtr_status_t send_reply (
 message_data_t *o_msg,
 rtr_channel_t channel);

void close_channel (rtr_channel_t channel);

void fprint_tid (FILE *fpLog, rtr_tid_t *tid);

/* External section */

extern String200 Errormsg;

extern time_t time_val;
extern boundaries_t txn_range[10];
extern char TxnLog[];
extern char SvrLog[];
extern rtr_uns_32_t msg_cnt;
extern int errno;
extern FILE* fpLog;

111

Appendix A. RTR C API Sample Applications

112

Appendix B. RTR Application
Development Tutorial
Start here!

Purpose:
This tutorial goes through all of the steps needed to set up a simple RTR-based application for a new
user. The intent is to provide a starting point for learning about RTR, and to simplify the main concepts
of RTR; you will be able to cruise through this at a more rapid pace than you normally would with the
RTR reference information.

At the end of this tutorial, you'll find brief descriptions of some of the more complex features RTR
provides, and pointers to the documentation where you can study them in detail. This tutorial uses the
implicit start, prepare, and accept transaction capabilities of RTR that are described in the VSI Reliable
Transaction Router Application Design Guide, a prerequisite for using this manual.

Summary:
This tutorial walks you through designing, coding and setting up a basic RTR-based client/server
application. To do this, you'll use RTR to perform two important services for you:

• to act as the communication mechanism between the client and the server applications

• to insure that the server application is always available to its clients

In the system that you are about to develop, the client application interacts with the user to read and
display data. The server application handles requests from the client, and sends replies back to it.
When we refer to client and server, we will be referring to the applications. When we refer to the
computer nodes on which the client or server is executing, we will call them frontend and backend
nodes, respectively.

In most applications, the server would probably talk to a database to retrieve or save data according to
what a user had entered in the user-interface. In the interest of simplifying this tutorial, however, this
server is only going to tell you whether it received your client's request.

What's different in this system from a non-RTR system is that there will be two servers: one of the
servers, also known as the primary server, almost always talks with the client. In a perfect world,
nothing would ever happen to this server; clients would always get the information they asked for, and
all changes would be made to the database when the user updated information. Every time anyone
attempted to access this server, it would always be there, ready and waiting to serve, and users could feel
secure in the knowledge that the data in the database was changed exactly as they had requested.

But we're all well aware that this is not always the case, and when servers do go down, it's usually at the
most inopportune time. So you are going to use RTR to designate a second server as a “standby” server.
In this way, if a user is attempting to get some real work done, and the primary server is down, the user
will never notice. The standby server will spring into action, and replace the original server by handling
the user's requests in just the same way as the primary server had been doing. And, this will be done
from the same point at which the primary server had crashed!

113

Appendix B. RTR Application Development Tutorial

Materials List:
To fully develop this system, you will need a client application and frontend node, a server application
and two backend nodes, and a router. What are these things?

Frontend:
The frontend node is the system on which your client application is executing. As in any client/server
system, the client application interacts with the user, then conveys the user's requests to the server. When
developing an RTR-based client/server system, your client will have the following characteristics:

• Display an interface to the user, allow the user to make a request, then communicate with the server
to get or set data according to what actions the user has taken.

• Execute on a Solaris, Tru64 UNIX, Windows or OpenVMS system node, which has RTR installed
on it.

• Be attached to a TCP/IP or DECnet network and able to “see” the server machines; this means that
if you use the ping utility to find a computer node by name, the computer will respond back to the
node you are on.

Example code for the client application and the server application can be found in the examples
subdirectory of your RTR installation directory.

BackEnd1:
Your first backend node will be running the primary server application. It, too, can be on any of the
above operating systems, except the Windows system must be supported as a server. It also must have
RTR installed on it, and will contain your server application. Your server application will use RTR to
listen for requests from the client, receive and handle those requests, and confirm the result to the client.

BackEnd2:
This machine will run the standby server application. It will probably also be doing any one of a number
of other things that have nothing to do with this tutorial, or even with RTR. It most probably will be
sitting on one of your coworkers' desks, helping him or her to earn their salary and support their family.
Hopefully, you get along with this coworker well enough that they will install RTR on their machine, so
that you may complete this tutorial.

Router:
Your router is simply RTR software which keeps track of everything that is going on for you when your
application is running. The router can execute on a separate machine, on a frontend machine, or on a
backend machine. In this tutorial, we will keep our router on the same machine as the client.

Install RTR:
Your first step, once you have determined the three computers you are going to use for this tutorial, is
to be sure RTR is installed and configured on each machine. The RTR installation is well documented

114

Appendix B. RTR Application Development Tutorial

and straightforward, although slightly different for each operating system on which the installation is
being run. Refer to the section in the VSI Reliable Transaction Router Installation Guide for the system on
which you are installing RTR.

For the purpose of documenting examples, the machine you have decided to use for the client application
will be referred to as FE (frontend), primary server as BE1 (backend 1), secondary server as BE2
(backend 2). Remember that the router will be on the FE machine. The journal must be accessible to
both backend servers.

Start RTR:
You will need to start RTR on each of the machines on which you have installed it. You may do this
from one machine. To be able to issue commands to RTR on a remote node, however, you must have
an account on that node with the necessary access privileges. The operating system's documentation,
or your system manager, will have information on how to set up privileges to enable users to run
applications over the network.

Use the command interface on your system to interact with RTR. At the command prompt, type in RTR,
and press the Return or Enter key. You will then be at the RTR> prompt, and can start RTR on all of the
nodes. For example, on a UNIX system, it will look like this:

 % rtr RTR> start rtr/node=(FE,BE1,BE2) RTR> exit

This command starts services or daemons on each of the nodes in the list. These are processes that
listen for messages being sent by other RTR services or daemons over the network. After executing the
command, a ps show process or Task Manager review of processes executing on your system should now
show at least one process named rtr, rtr.exe, or RTRACP. on each of the machines. This process is the
one that manages the communications between the nodes in the RTR-based application, and handles all
transactions and recoveries.

Create a Recovery Journal:
This step holds the key to letting the second server pick up on the work at exactly the right time; no
work is lost, and the hot swap to the standby server is “automagic.” RTR keeps track of the work being
done by writing data to this journal. If a failure occurs, all incomplete transactions are being kept track
of here, and can be replayed by the standby server when it comes to the rescue. When transactions have
been completed, they are removed from this journal.

For this example, only your backend nodes need a recovery journal, and you must create the journal
before creating your facility; you'll learn more about facilities in the next section.

You'll now need to go to each of the backend nodes that you'll be using and create a journal there. Log
into each machine and, using the command prompt interface, run RTR and create the journal. When you
specify the location of the journal, it should be the disk name or share name where the journal will be
located. The journal must be accessible by both of the backend servers.

This is an example of what the command would look like on a VMS system.

 $ RTR RTR> create journal
user2 RTR> exit

Be sure to do this on both machines or you can use the /NODE qualifier to do it on each machine from
one node.

115

Appendix B. RTR Application Development Tutorial

To allow both servers to access the journal, you have a number of options:

• Use a disk in the disk farm on your cluster, if you use clusters.

• Use a disk served via NFS with UNIX systems.

• Use a share when using Windows systems.

In any case, you should be sure the disk is not on your primary server, because this is the machine that
we are protecting, in case of a crash. If the machine goes down, the standby server would not be able to
access the disk. The primary server and the standby server must be physically separate machines.

The Database:
While we are having this discussion on sharing resources, we should also mention how a database fits
into this system, as well.

This tutorial and the example code provided with it does not do database transactions. However, there
are likely places in the code where you would probably want to access the database in most applications.
Because the standby server steps into place when the primary server crashes, each must have access to
your database.

This configuration can be supplied using a number of options:

• Use a database server, such as SQL Server or Oracle's database server.

• Use machines in a cluster to run the database as well as the servers.

• Use a database API that implements RPC stubs to move data across the network.

Create a Facility:
There can be numerous RTR applications running on any of your computers in your network. The
systems or nodes that service one RTR application and the role of each must be clearly defined. This
makes the RTR daemons and processes aware of who is talking with whom, and why. The description of
a configuration of a group of nodes into frontends, backends and routers is called a facility.

To create a facility, use your command prompt utility again and type RTR; at the RTR> prompt, create
the facility for this example with the following command on a Windows system in the command prompt
window:

C:\> rtr
RTR> create facility RTRTutor/node=(FE,BE1,BE2) -
_RTR> /frontend=FE/router=FE/backend=(BE1,BE2)
RTR> exit

With this command, you have now:

• Created a Facility named RTRTutor on all three nodes.

• Defined the role of each node in that facility to show who participates as the client, the primary
server, the secondary server and the router.

116

Appendix B. RTR Application Development Tutorial

Take a Break:
At this point you have accomplished a lot; you've configured RTR to protect a multitiered application by
providing failover capability, and to handle communications between your client and your server. Next,
you will write the application: your client will talk to RTR, and your server will talk to RTR. RTR will
deliver the messages between them and, if the server crashes, bring in the standby server to handle your
client's requests. The client will never know that the server has been switched, and no data or requests to
retrieve or modify data will be lost!

Application:
The C modules and header files for this application are located in the examples subdirectory of the
directory into which you installed RTR. They consist of the following files:

adg_client.c The client application
adg_server.c The server application
adg_shared.c C code common to both the client and server

applications
adg_header.h Header file containing definitions specific to both

sample applications

Although you won't have much typing to do, this tutorial will explain what the code in each module is
doing. Copy all four of these files into a working directory of your own. For convenience, you may also
wish to copy rtr.h from the RTR installation directory into your working directory as well.

The example code you'll run must reference the facility you created earlier, so edit the example file
adg_header.h and change the FACILITY value to “RTRTutor”.

The application example code supplied with RTR has a lot going on inside of it, but can be broken down
into a few general and very simple concepts that will give you an idea of the power of RTR, and how
to make it work for you. As you see, you have code for the client application and the server application.
Each will talk only to RTR, who will move the messages and data between them. And you are free not to
worry about:

RPC Stubs
Time zones
Endianism
Network protocols and packets

Aren't you relieved? Maybe you should take another break to celebrate!

Client Application:
The files shipped with the RTR kit used in the client application for this tutorial are adg_client.c,
adg_shared.c and adg_header.h.

All applications that wish to talk to RTR through its API need to include rtr.h as a header file. This file
lives in the directory into which RTR was installed, and contains the definitions for RTR structures and

117

Appendix B. RTR Application Development Tutorial

values that you'll need to reference in your application. Please do not modify this file. Always create
your own application header file to include, as we did in the sample (adg_header.h), whenever you need
additional definitions for your application.

#include "adg_header.h"
#include "rtr.h"

The client application design follows this outline:

1. Initialize RTR

2. Send a message to the server

3. Get a response from the server

4. Decide what to do with the response

Pretty straightforward, don't you think? Let's look at how it's done.

Initialize RTR:
This is the first thing that every RTR client application needs to do: tell RTR that it wants to get a facility
up and running, and to talk with the server. You will find this happening in the declare_client function in
adg_client.c, and somewhat more simplified here.

You remember from the Start RTR step in this tutorial that there are RTR daemons or processes
executing on the nodes in a facility, listening for communications from other RTR components and
applications. Your client application is going to request that all processes associated with the RTRTutor
facility “listen up.” To do this, you'll open a channel that enables communication between the client and
the RTR router. Remember that the RTR router has been described as “keeping track of everything” that
goes on in an RTR application.

Declare the items needed for the open channel call:

rtr_status_t status; /* will be returned by RTR */
rtr_channel_t channel; /* a channel */

Open the channel:

status = rtr_open_channel(
 &channel, /* channel of communication */
 RTR_F_OPE_CLIENT , /* I am a client */
 "RTRTutor", /* the facility we created */
 NULL, /* recipient name */
 RTR_NO_PEVTNUM, /* don’t send events, just messages */
 RTR_NO_ACCESS /* access key */
 RTR_NO_NUMSEG , /* number of key segments */
 RTR_NO_PKEYSEG); /* first key segment */

Let's examine what this open channel call does. First, the channel parameter we sent to it is only a
pointer to a block of memory; we've done nothing to set any values in it. RTR will use this block
of memory to store the information it needs to assign and keep track of this channel. The channel
represents the means of communication from the client to the rest of the components in this system.
There is a lot going on here to make the communication work, but it's all being done by RTR so you
won't have to worry about all of the problems inherent in communicating over a network.

118

Appendix B. RTR Application Development Tutorial

The second parameter tells RTR that this application is acting as a client. So now RTR knows that if the
server goes down, it certainly doesn't want to force this application to come to the rescue as the standby
server! And there will be other things that RTR will be handling that are appropriate only to clients or
only to servers. This information helps it to keep track of all the players.

And now [trumpets are heard in the distance!] the third parameter tells RTR the name of the facility
we created earlier. Suddenly, RTR has a whole lot more information about your application: where to
find the server, the standby server, and the router. You will see later in this tutorial that the server also
declares itself and supplies the same facility name.

At this point, RTR has all of the information it needs to put the pieces together into one system; youre
ready to start sending messages to the server, and to get messages back from it.

A Word About RTR's API Parameters:
You may have noticed that although we've looked at only three of the parameters in the open channel
call, there are a number more. It's a quirk of RTR that you'll often need to tell it to default. Rather than
defaulting on its own when you do not provide a parameter (or provide a null parameter), it needs the
“default” parameter. So you'll see things like RTR_NO_PEVTNUM to tell it “I don't want to be notified
of any events” which is actually a default, and RTR_NO_NUMSEG to tell it “I have defined no key
segments” which is also a default. Whenever we skip the discussion on non-null parameters, you'll know
they are default parameters.

The parameter RTR_NO_FLAGS tells RTR that there are no flags.

A Word About RTR's Return Status:
Your facility may have more than just one client talking to your server. In fact, your neighbor who so
generously allowed you to run your standby server on his or her machine might want to get in on this
RTR thing, too. That's all right: just add a machine to the RTRTutor facility definition that will also run
a copy of the client. But not yet; we're only telling you this to illustrate the point that there can be more
than one client in an RTR-based application.

Because of this, after the RTR router hands off your client's request to your server, it must then be able
to do the same for other clients.

Servers can also decide they want to talk to your client, and the RTR router may need to handle their
requests at any time, as well. If RTR were to wait for the server to do its processing and then return the
answer each time, there would be an awful bottleneck.

But RTR doesn't wait. This means that the status that you get back from each call means only, “I passed
your message on to the server,” not that the server successfully handled it and here is the result. So how
does your client actually get the result of the request it made on the server? It will need to explicitly
“receive” a message, as you'll see later in this tutorial.

Checking RTR Status:
Throughout this code example, you'll see a line of code that looks like this (with a different string in the
first parameter each time):

 check_status("rtr_open_channel", status);

119

Appendix B. RTR Application Development Tutorial

This is good because, as you know from your Programming 101 course, you should always check your
return status. But it's also good that your program knows when something has gone wrong and can tell
the user, or behave accordingly. The check_status function is not part of RTR, but is something you will
probably want to do in your application.

To check RTR's return status, compare it to RTR_STS_OK. If it's the same, everything is fine, and you
can go on to the next call. But if it is something else, you'll probably want to print a message to the user.
To get the text string that goes with this status, call rtr_error_text which returns a null terminated ASCII
string containing the message in human readable format.

 if (status != RTR_STS_OK)
 {
 printf(" Call failed: %s", rtr_error_text(status));
 }

Receiving Messages:
As explained earlier, RTR doesn't hold your client up while it processes your request, or even a request
from another client. And because nothing can continue until the system has been set up, you now need
to wait for the open channel call to let you know that everything is started up and ready to go. This is
what the rest of the code in the “declare_client” function does. These statements declare the memory for
a “receive” message and a message status block:

 receive_msg_t receive_msg = {0}; /* message received */
 rtr_msgsb_t msg_status; /* message status block */

And now the rtr_receive_message waits to receive a message from RTR.

 status = rtr_receive_message(
 &channel, /* channel on which message received */
 RTR_NO_FLAGS, /* sending no flags (default) */
 RTR_ANYCHAN, /* default channel */
 &receive_msg, /* location to place return info */
 sizeof(receive_msg),/* size of last */
 RTR_NO_TIMEOUTMS, /* do not timeout */
 &msg_status); /* location to return status */

The channel parameter and the RTR_NO_FLAGS parameter should now be familiar to you; we
discussed them in the sections of this document on Initialize and Parameters. RTR_ANYCHAN and
RTR_NO_TIMEOUTMS are defaults for this API.

Remember Programming 101 — check your status every time!

Information about whether RTR or your server has successfully handled your client's request is returned
in an rtr_msgsb_t message status block structure. It is received from RTR as the last parameter in the
rtr_receive_message call. For rtr_open_channel, we are looking for the “rtr_mt_opened” message type
in the status block to confirm that the channel has been opened, and that we are now prepared to do all
of the rest of the messaging on it for our application. If we don't have the “opened” message, then we can
expect there to be an error status in the receive message block.

 if (msg_status.msgtype != rtr_mt_opened)
 {
 printf(" Error opening rtr channel : ");
 printf(rtr_error_text(receive_msg.receive_status_msg.status));

120

Appendix B. RTR Application Development Tutorial

 }

The rtr.h header file provided with the RTR installation kit describes the rtr_msgsb_t structure in detail.

Send Messages:
The rest of the client application is simply a send/receive message loop. It continues to send messages to
the server, then listens for the server's response.

It is important to remember that, although the client is sending these messages to the server, it is doing
so through the RTR router. Because of this, the client can receive, asynchronously, different types of
messages:

• A notice from the server of failure to process the sent message

• An answer to the sent message from the server

• An “out of band” message from the server regarding server status

In addition, RTR may send the client messages under certain conditions. So the client application must
be prepared to accept any of these messages, and not necessarily in a particular sequence.

That's certainly a tall order! How should you handle this? Well, there are a number of ways, but in this
tutorial we will explain how to run a “message loop” that both sends and receives messages.

A Word About RTR Data Types:
You may have noticed that your client, server and router can be on any one of many different operating
systems. And you've probably written code for more than one operating system and noticed that each has
a number of data types that the other doesn't have. If you send data between a Solaris UNIX machine
and a VMS or Windows NT machine, you'll also have to worry about the order different operating
system stores bytes in their data types (called “endian” order). And what happens to the data when you
send it from a 16-bit Intel 486 Windows machine to a 64-bit Alpha Tru64 machine?

Thanks to RTR, you don't need to worry about it. RTR will handle everything for you. Just write
standard C code that will compile on the machines you choose, and the run-time problems won't
complicate your design. When you do this, you need to use RTR data types to describe your data.
RTR converts the data to the native data types on the operating system with which it happens to be
communicating at the time.

Think of RTR as your very own “Babel fish,” if you've read the “Hitchhiker's Guide to the Galaxy”
series. It will translate everything necessary when your data gets to a new machine. The little fish you
put in your ear is actually made up of the RTR application programming interface and the RTR data
types.

To illustrate this, the example code evaluates your input parameters and places them into a
message_data_t structure called send_msg. Message_data_t is not an RTR structure, but created by the
programmer who wrote this client. The message_data_t structure is defined in adg_header.h.

typedef struct {
 rtr_uns_8_t routing_key;
 rtr_uns_32_t server_number;
 rtr_uns_32_t client_number;

121

Appendix B. RTR Application Development Tutorial

 rtr_uns_32_t sequence_number;
 String31 text;
 } message_data_t;

You'll notice that the data types that make up message_data_t aren't your standard data types — they
are RTR data types. And they are generic enough to be able to be used on any operating system: 8 bit
unsigned, 32 bit unsigned, and a string.

Earlier, we looked at the receive message code when the client opened a channel. The structure it used
to obtain information, receive_message_t, is also one created by the programmer, and not a standard
RTR structure. If you look at its definition in the adg_header.h file, you'll see that it's the same as the
message_data_t structure, plus it contains a location for RTR status. There will be more on this in the
next section.

Send/Receive Message Loop:
As mentioned earlier, the sample code for the RTR client application contains a message loop that sends
messages to the server via the RTR router, and handles messages that come from the server via the
router, or from RTR itself.

The following discussion will reference a simplified version of that loop; code in the sample to add time
stamps and print to a log file has been removed here for clarity.

When you run the sample client, the client expects three parameters: a client number, a partition range,
and the number of messages to send, in that order. We will talk more about partition ranges later when
we look at the server application, but for now it is enough to know that we'll use one character, the letter
h.

The input command parameters are evaluated and placed in the message_data_t structure named
send_msg. The number of messages parameter which you'll input on the command line is placed in the
txn_cnt variable. The for loop which sends and receives messages will execute this number of times.

The message_data_t structure also holds a sequence number value that is incremented each time the loop
is executed; so now our loop begins:

for (; txn_cnt > 0; txn_cnt--, send_msg.sequence_number++)
{
 status = rtr_send_to_server(
 channel,
 RTR_NO_FLAGS ,
 &send_msg,
 sizeof(send_msg),
 RTR_NO_MSGFMT);

 check_status("rtr_send_to_server", status);

Note

The check_status function is not part of RTR; you must define it in the application.

The first message has been sent to the server in the third parameter of the rtr_send_to_server call. As
you will see, this is part of the flexibility and power of RTR. This third parameter is no more than a
pointer to a block of memory containing your data. RTR doesn't know what it's a pointer to — but it

122

Appendix B. RTR Application Development Tutorial

doesn't need to know this. You, as the programmer, are the only one who cares what it is. It's your own
data structure that carries any and all of the information your server will need to do your bidding. We'll
see this in detail when we look at the server code.

In the fourth parameter, you must tell RTR how big the piece of memory being pointed to by the third
parameter is. RTR needs to know how many bytes to move from your client machine to your server
machine, so that your server application has access to the data being sent by the client.

The rest of the parameters bear some looking at, as well: there's the channel again. You'll see the
channel parameter in almost every RTR call. You may be becoming suspicious about the channel, and
think that it's really more than just a line for communicating. And you'd be right. RTR uses the channel
much like you use that third parameter in this call. The RTR developers are the only ones who know
what's in it, and it contains much of the information they need to make RTR work.

You'll recognize two more default parameters, RTR_NO_FLAGS and RTR_NO_MSGFMT.

And now, the client waits for a response from the server.

/*
 * Get the server's reply OR an rtr_mt_rejected
 */
 status = rtr_receive_message(
 &channel,
 RTR_NO_FLAGS,
 RTR_ANYCHAN,
 &receive_msg,
 sizeof(receive_msg),
 RTR_NO_TIMOUTMS,
 &msgsb);

 check_status("rtr_receive_message", status);

Again you see the channel and the default flags; the receive_msg parameter is a pointer to another data
structure created by you as the programmer, and can carry any information you need your server to be
able to communicate back to your client. In your own application, you would actually create this data
structure in your application's header file. You can see what the example receive message looks like by
checking out the receive_msg_t in the adg_header.h file. RTR picks it up from your server and writes it
here for your client to read.

The msgsb parameter is an RTR data structure: you saw this message status block earlier when we
looked at the open channel code. Its msgtype field contains a code that tells you what kind of a message
you are now receiving. If msgsb.msgtype contains the value rtr_mt_reply, then you are receiving a
reply to a message you already sent, and your receive message data structure has been written to with
information from your server.

switch (msgsb.msgtype)
{
case rtr_mt_reply:
 fprintf(fpLog, " sequence %10d from server %d\n ",
 receive_msg.receive_data_msg.sequence_number,
 receive_msg.receive_data_msg.server_number);
 break;

If msgsb.msgtype contains the value rtr_mt_rejected, then something has happened that caused your
transaction to fail after you sent it to the router. You can find out what that something is by looking at
the status returned by the rtr_receive_message call. You will recall that making the rtr_error_text call

123

Appendix B. RTR Application Development Tutorial

and passing the status value will return a human readable null terminated ASCII string containing the
error message.

case rtr_mt_rejected:
 fprintf(fpLog, " txn rejected at: %s",
 ctime(&time_val));
 fprint_tid(fpLog, &msgsb.tid);

This is where you'll need to make a decision about what to do with this transaction. You can abort and
exit the application, issue an error message and go onto the next message, or resend the message to the
server. This code resends a rejected transaction to the server.

 /* Resend message with same sequence_number after reject */
 send_msg.sequence_number--;
 txn_cnt++;
 break;

default:
 fprintf(fpLog, " unexpected msg”);
 fprint_tid(fpLog, &msgsb.tid);
 fflush(fpLog);
 exit((int)-1);
}

When your client application receives an rtr_mt_reply message, your message has come full circle. The
client has made a request of the server on behalf of the user; the server has responded to this request. If
you're satisfied that the transaction has completed successfully, you must notify RTR so that it can do its
own housekeeping. To this point, this transaction has been considered “in progress”, and its status kept
track of at all times. If all parties interested in this transaction (this includes the client AND the server)
notify RTR that the transaction has been completed, RTR will stop tracking it, and confirm to all parties
that it has been completed. This is called voting.

 if (msgsb.msgtype == rtr_mt_reply)
 {
 status = rtr_accept_tx(
 channel,
 RTR_NO_FLAGS,
 RTR_NO_REASON);

 check_status("rtr_accept_tx", status);

And now the client waits to find out the result of the voting.

 status = rtr_receive_message(
 &channel,
 RTR_NO_FLAGS,
 RTR_ANYCHAN,
 &receive_msg,
 sizeof(receive_msg),
 receive_time_out,
 &msgsb);

 check_status("rtr_receive_message", status);
 time(&time_val);

If everyone voted to accept the transaction, the client can move on to the next one. But if one of the
voters rejected the transaction, then another decision must be made regarding what to do about this
transaction. This code attempts to send the transaction to the server again.

124

Appendix B. RTR Application Development Tutorial

 switch (msgsb.msgtype)
 {
 case rtr_mt_accepted:
 fprintf(fpLog, " txn accepted at : %s",
 ctime(&time_val));
 break;

 case rtr_mt_rejected:
 fprintf(fpLog, " txn rejected at : %s",
 ctime(&time_val));

 /* Resend same sequence_number after reject */
 send_msg.sequence_number--;
 txn_cnt++;
 break;

 default:
 fprintf(fpLog,
 " unexpected status on rtr_mt_accepted message\n");

 fprintf(fpLog,
 " %s\n",

 rtr_error_text(receive_msg.receive_status_msg.status);

 break;
 }
 }
 } /* end of for loop */

All of the requested messages, or transactions, have been sent to the server, and responded to. The only
RTR cleanup we need to do before we exit the client is to close the channel. This is similar to signing off,
and RTR releases all of the resources it was holding for the client application.

 close_channel (channel);

Now, that wasn't so bad, was it? Of course not. And what has happened so far? The client application
has sent a message to the server application. The server has responded. RTR has acted as the messenger
by carrying the client's message and the server's response between them.

Next, let's see how the server gets these messages, and sends a response back to the client.

Server Application:
The files shipped with the RTR kit used in the server application for this tutorial are adg_server.c,
adg_shared.c and adg_header.h. You'll notice that adg_shared.c and adg_header.h are used in both client
and the server applications. This is for a number of reasons, but most importantly that both the client and
the server will use the same definition for the data structures they pass back and forth as messages.

With the exception of only two items, there will be nothing in this server that you haven't already seen
in the client. It's doing much the same things as the client application is doing. It opens a channel to the
router, telling the router that it is a server application; waits to hear that the open channel request has
been successfully executed; runs a loop that receives messages from the client; carries out the client's
orders; sends the response back to the client. And the server gets to vote, too, on whether each message/
response loop is completed.

125

Appendix B. RTR Application Development Tutorial

One of the differences is the types of messages a server can receive from RTR; we'll go through some of
them in this section of the tutorial about the server application.

The other difference is the declaration of a partition that is sent to RTR in the open channel call. We
mentioned partitions while discussing the client application, but said we'd discuss them later. Well, it's
later...

Initialize RTR:
Just like the client, the server opens a channel to the router, causing RTR to initialize a number of
resources for use by the server, as well as to gather information about the server. In the declare_server
function in the server example application, adg_server.c, you'll find the example server calling
rtr_open_channel.

Immediately, you see that the code initializes an RTR data structure called rtr_keyseg_t. In the example
server code, the variable name of the structure is p_keyseg. This structure is a required parameter in the
server open channel call to implement data partitioning.

Data Partitions:
What is data partitioning, and why would you wish to take advantage of it?

It is possible to run a server application on each of multiple backend machines, and to run multiple server
applications on any backend machine. When a server opens a channel to begin communicating with the
RTR router, it uses the rtr_keyseg_t information in its last two parameters to tell RTR that it is available
to handle certain key segments. A key segment can be “all last names that start with A to K” and “all
last names that start with L to Z”, or “all user identification numbers from zero to 1000” and “all user
identification numbers from 1001 to 2000”.

Each key segment describes a data partition. Data partitions allow you to use multiple servers to handle
the transactions all of your clients are attempting to perform; in this way, they don't all have to wait in
line to use the same server. They can get more done in less time.

VSI Reliable Transaction Router Application Design Guide and API reference manual go into much more
detail about data partitioning.

This is how the example server application defines the key segment that it will handle:

 p_keyseg[0].ks_type = rtr_keyseg_string;
 p_keyseg[0].ks_length = 1;
 p_keyseg[0].ks_offset = 0;
 p_keyseg[0].ks_lo_bound = &outmsg->routing_key;
 p_keyseg[0].ks_hi_bound = &outmsg->routing_key;

It tells RTR that this server is interested only in records containing a string of 1 byte at the beginning of
the record; this actually makes it a single character. The value of that character is from and including the
value of the character in the routing_key field of outmsg, to and including the value of the character in
the routing_key field of outmsg. As you can see, this too describes only one character.

The structure outmsg is actually a msg_data_t structure, which is the structure you saw the client
application using to pass data to the server application. The value of this character is input when you start
the server. Because we decided to use the letter h when we start the client, it would be really nice if the

126

Appendix B. RTR Application Development Tutorial

server we start identifies itself as one that can handle the client's request. So we'll start the server using
h as well; in this way, the h gets into outmsg->routing_key. The complete server command line for both
the client and the server is documented later in this tutorial.

status = rtr_open_channel(
 &channel,
 RTR_F_OPE_SERVER,
 "RTRTutor",
 NULL,
 RTR_NO_PEVTNUM,
 RTR_NO_ACCESS,
 1,
 p_keyseg);

check_status("rtr_open_channel", status);

Note

The check_status function is not part of RTR; you must define it in the application.

The server has requested a channel on which to communicate with RTR, and advertised itself as
handling all requests from clients in the RTRTutor facility that have a key segment value of h. The
remaining parameters contain defaults.

Now the server waits for a message confirming that RTR opened the channel successfully. If it did, the
server can then begin receiving requests from the client, via RTR.

 status = rtr_receive_message(
 &channel,
 RTR_NO_FLAGS,
 RTR_ANYCHAN,
 &receive_msg,
 sizeof(receive_msg),
 receive_time_out,
 &msgsb);

 check_status("rtr_receive_message", status);

Again, we use the RTR rtr_msgsb_t structure that RTR will place information in, and the user-defined
receive_msg_t data structure (see adg_header.h) that the client's data will be copied into. But at this
point, the server is talking with RTR only, not the client, so it is expecting an answer from RTR in
msgsb; all the server really wants to know is that the channel has been opened successfully. If it hasn't,
the server application will write out an error message and exit with a failure status.

if (msgsb.msgtype != rtr_mt_opened)
{
 fprintf(fpLog, " Error opening rtr channel : \n");
 fprintf(fpLog,
 "%s",
 rtr_error_text(receive_msg.receive_status_msg.status);
fclose (fpLog);
 exit(-1)
}

fprintf(fpLog, " Server channel successfully opened \n");
return;

127

Appendix B. RTR Application Development Tutorial

And now that the channel has been established, the server waits to receive messages from the client
application and the RTR router.

Receive/Reply Message Loop:
The server sits in a message loop receiving messages from the router, or from the client application via
the router. Like the client, it must be prepared to receive various types of messages in any order and then
handle and reply to each appropriately. But the list of possible messages the server can receive is different
than that of the client. This example includes some of those.

First, the server waits to receive a message from RTR.

while (RTR_TRUE) /* always, or until we exit */
{
 status = rtr_receive_message(
 &channel,
 RTR_NO_FLAGS,
 RTR_ANYCHAN,
 &receive_msg,
 sizeof(receive_msg),
 receive_time_out,
 &msgsb);

 check_status("rtr_receive_message", status);

Like the client, upon receiving the message the server checks the rtr_msgsb_t structure's msgtype field
to see what kind of message it is. Some are messages directly from RTR and others are from the client.
When the message is from the client, your application will read the data structure you constructed to pass
between your client and server and, based on what it contains, do the work it was written to do. In many
cases, this will involve storing and retrieving information using your favorite database.

But when the message is from RTR, how should you respond? Let's look at some of the types of
messages a server gets from RTR, and what should be done about them.

switch (msgsb.msgtype)
{
 case rtr_mt_msg1_uncertain:
 case rtr_mt_msg1:

The first message this server application prepares to handle is the rtr_mt_msg1_uncertain message. This
is combined with the handler for the rtr_mt_msg1 message.

The msg1 messages identify the beginning of a new transaction. Rtr_mt_msg1 says that this is a message
from the client, and it's the first in a transaction. When you receive this message type, you will find the
client data in the structure pointed to by the fourth parameter of this call. The client and server have
agreed on a common data structure that the client will send to the server whenever it makes a request:
this is the message_data_t we looked at in the client section of this document. RTR has copied the data
from the client's data structure into the one whose memory has been supplied by the server. The server's
responsibility when receiving this message is to process it.

Recovered Transactions:
The rtr_mt_msg1_uncertain message type tells the server that this is the first message in a recovered
transaction. The original server the application was communicating with failed, possibly leaving some of

128

Appendix B. RTR Application Development Tutorial

its work incomplete, and now the client is talking to the standby server. What happens to that incomplete
work left by the original server?

Looking back at the client you will recall that everyone got to vote as to whether the transaction was
accepted or rejected, and then the client waited to see what the outcome of the vote was. While the client
was waiting for the results of this vote, the original server failed, and the standby server took over. RTR
uses the information it kept storing to the recovery journal, which you also created earlier, to replay to
the standby server so that it can recover the incomplete work of the original server.

When a server receives the uncertain message, it knows that it is stepping in for a defunct server
that had, to this point, been processing client requests. But it doesn't know how much of the current
transaction has been processed by that server, and how much has not, even though it receives the
replayed transactions from RTR. The standby server will need to check in the database or files to see
if the work represented by this transaction is there and, if not, then process it. If it has already been
done, the server can forget about it. In the examples, rtr_msgsb_t must be declared as a variable, as
rtr_msgsb_t msgsb;.

 if (msgsb.msgtype == rtr_mt_msg1_uncertain)
 replay = RTR_TRUE;
 else
 replay = RTR_FALSE;

 if (replay == TRUE)
 /* The server should use this opportunity to
 * clean up the original attempt, and prepare
 * to process this request again.
 */
 else
 /*
 * Process the request.
 */

The server then replies to the client indicating that it has received this message and handled it.

 reply_msg.sequence_number =
 receive_msg.receive_data_msg.sequence_number;

 status = rtr_reply_to_client (
 channel,
 RTR_NO_FLAGS,
 &reply_msg,
 sizeof(reply_msg),
 RTR_NO_MSGFMT);

The rtr_reply_to_client call is one you haven't seen before. Obviously, it is responding to a client's
request. This call may not be used on a channel in an application that has declared itself a client.

The server is using the rtr_reply_to_client call to answer the request the client has made. In some cases,
this may mean that data needs to be returned. This will be done in the reply_msg structure which, like
the send_msg structure, has been agreed upon by both the client and the server. RTR will copy sizeof
bytes from the server's copy of the reply_msg into the client's copy.

 check_status("rtr_reply_to_client", status);
 break;

case rtr_mt_prepare:

129

Appendix B. RTR Application Development Tutorial

Prepare Transaction:
The rtr_mt_prepare message tells the server to prepare to commit the transaction. All messages from
the client that make up this transaction have been received, and it is now almost time to commit the
transaction in the database.

This message type will never be sent to a server that has not requested an explicit prepare. To make this
request, the server must use the RTR_F_OPE_EXPLICIT_PREPARE flag in the flags parameter when
opening the channel.

After determining whether it is possible to complete the transaction based on what has occurred to this
point, the server can either call rtr_reject_tx to reject the transaction, or set all of the required locks on
the database before calling rtr_accept_tx to accept the transaction.

Because this example code is not dealing with a database, nor is it bundling multiple messages into a
transaction, the code here immediately votes to accept the transaction.

 status = rtr_accept_tx (
 channel,
 RTR_NO_FLAGS,
 RTR_NO_REASON);

 check_status("rtr_accept_tx", status);

 break;

 case rtr_mt_rejected:

Transaction Rejected:
The rtr_mt_rejected message is from RTR, telling the server application that a participant in the
transaction voted to reject it. If one participant rejects the transaction, it fails for all. The transaction will
only be successful if all participants vote to accept it.

When it receives this message, the server application should take this opportunity to roll back the current
transaction if it is processing database transactions.

 break;

 case rtr_mt_accepted:

Transaction Accepted:
RTR is telling the server that all participants in this transaction have voted to accept it. If database
transactions are being done by the server, this is the place at which the server will want to commit the
transaction to the database, and release any locks it may have taken on the database.

 break;

 } /* end of switch */
 } /* end of while loop */

Note that there is no close_channel call in the server. This is because the RTR router closes the channel
and stops the server when it sees fit. RTR makes this decision.

130

Appendix B. RTR Application Development Tutorial

That's it. You now know how to write a client and server application using RTR as your network
communications, availability and reliability infrastructure. Congratulations!

Build and Run the Servers:
Compile the adg_server.c and adg_shared.c module on the operating system that will run your server
applications. If you are using two different operating systems, then compile it on each of them.

To build on UNIX, issue the command:

 cc -o server adg_server.c adg_shared.c /usr/shlib/librtr.so -
DUNIX

You should start the servers before you start your clients. They will register with the RTR router so that
the router will know where to send client requests. Start your primary server with the appropriate run
command for its operating system along with the two parameters 1 and h. To run on UNIX:

 % server 1 h

Start your standby server with the parameters 2 and h.

 % server 2 h

Build and Run the Client:
Compile the adg_client.c and adg_shared.c module on the operating system that will run your client
application.

To build on UNIX:

% cc -o client adg_client.c adg_shared.c /usr/shlib/librtr.so -DUNIX

Run the client with the following command:

% client 1 h 10

or

C:\RtrTutor\> client.exe 1 h 10

But Wait! There's More!
This tutorial has only scratched the surface of RTR. There is a great deal more that RTR gives you to
make your distributed application reliable, available, and perform better.

The following sections of this document highlight some of the capabilities you have at your service.
For more details on each item, and information on what additional features will help you to enhance
your application, look first through the VSI Reliable Transaction Router Application Design Guide. Then,
earlier sections of this manual will tell you in detail how to implement each capability.

Training Services offers training classes for RTR. If you'd like to attend any of them, contact your local
representative.

131

Appendix B. RTR Application Development Tutorial

Callout Server:
RTR supports the concept of a “callout server” for authentication. You may designate an additional
application on your server machines or your router machine as a callout server when it opens its channel
to the router. Callout servers are asked to check all requests in a facility, and are asked to vote on every
transaction.

Events:
In addition to messages, RTR can be used to dispatch asynchronous events on servers and clients.
A callback function in the user's server and client applications can be designated for RTR to call
asynchronously to dispatch events to your application.

Shadowing:
This tutorial only discussed failover to a standby server. But RTR also supports shadowing: while your
server is making changes to your database, another “shadow” server can be making changes to an exact
copy of your database in real time. If your primary server fails, your shadow server will take over, and
record all of the transactions occurring while your primary server is down. Your primary server will be
given the opportunity to update the original database and catch up to the correct state when it comes
back up. So as you can see, if your database and transactions are important enough to you, you have the
opportunity to double protect them with an RTR configuration that includes some of the following:

• A standby software server on a primary hardware backend system

• A shadow backend system replicating all transactions on a duplicate database

• Failover backend systems for each of your primary backends

• Failover routers

• Concurrent servers

Transactions:
One of RTR's greatest strengths is in supporting transactions. The VSI Reliable Transaction Router
Application Design Guide goes into more detail regarding transactions and processing of transactions.

RTR Utility:
You've seen how to use the RTR utility (or CLI) to start RTR and to create a facility. But the RTR utility
contains many more features than this, and in fact can be used to prototype an application. Refer to the
VSI Reliable Transaction Router System Manager’s Manual for details.

132

	VSI Reliable Transaction Router C Application Programmer’s Reference Manual
	Table of Contents
	Preface
	1. About VSI
	2. Intended Audience
	3. Document Structure
	4. Related Documents
	5. VSI Encourages Your Comments
	6. OpenVMS Documentation
	7. Conventions
	8. Reading Path

	Chapter 1. Introduction
	1.1. RTR Application Programming Interface
	1.2. C Programming and RTR APIs
	1.2.1. Compatibility Between RTR Versions
	1.2.2. Reasons for a C Programming API
	1.2.3. Benefits of the C Programming API
	1.2.4. Comparison of OpenVMS and C Programming API Calls

	Chapter 2. Overview of the C Programming API
	2.1. Transactional Messages
	2.2. RTR Channels
	2.3. Broadcast Messages and Events
	2.4. C Programming API Calls
	2.5. Programming Examples
	2.5.1. Simple Client
	2.5.2. Simple Server

	2.6. Using the C Programming API
	2.7. Concurrency
	2.8. Exit Handlers in Applications
	2.9. Using the RTR Set Wakeup Routine
	2.9.1. Restrictions on the RTR Wakeup Handler

	2.10. API Optimizations
	2.10.1. Client Optimization
	2.10.2. Voting Optimization and Server Flags
	2.10.2.1. The RTR_F_OPE_EXPLICIT_PREPARE Flag
	2.10.2.2. The RTR_F_OPE_EXPLICIT_ACCEPT Flag

	2.11. RTR Messages
	2.12. RTR Events
	2.12.1. RTR Event Names and Numbers
	2.12.2. Developing Applications to Use Events
	2.12.3. Event Management by RTR
	2.12.4. Event Troubleshooting

	2.13. Use of XA Support
	2.14. RTR Applications in a Multiplatform Environment
	2.14.1. Defining a Message Format
	2.14.1.1. Data Types
	2.14.1.2. Alignment

	2.15. Application Design and Tuning Issues
	2.15.1. Transactions That Can Cause Server Failure
	2.15.2. Transaction Grouping and Database Applications
	2.15.3. Transaction Sequence and Shadow Servers
	2.15.4. Transaction Independence

	Chapter 3. RTR Call Reference
	3.1. RTR Environmental Limits
	3.2. RTR Maximum Field Lengths
	3.3. RTR C API Calls
	rtr_accept_tx
	rtr_broadcast_event
	rtr_close_channel
	rtr_error_text
	rtr_ext_broadcast_event
	rtr_get_tid
	rtr_get_user_context
	rtr_open_channel
	rtr_receive_message
	rtr_reject_tx
	rtr_reply_to_client
	rtr_request_info
	rtr_send_to_server
	rtr_set_info
	rtr_set_user_context
	rtr_set_user_handle
	rtr_set_wakeup
	rtr_start_tx

	Chapter 4. Compiling and Linking Your Application
	4.1. Compilers
	4.2. Linking Libraries

	Appendix A. RTR C API Sample Applications
	A.1. Overview
	A.2. Client Application
	A.3. Server Application
	A.4. Shared Code
	A.5. Header Code

	Appendix B. RTR Application Development Tutorial

