uma Software

VSI OpenVMS

VSI TCP/IP Programmer's Reference

Document Number: DO-DVTPRG-00A

Publication Date: August 2018

This manual documents the programmer's interface to VSI TCP/IP and is intended to
guide the programmer in developing applications that use network services.

Revision Update Information: This is a new manual.

Operating System and Version: VS| OpenVMS Version 8.4-2L1 or higher
Software Version: VSI TCP/IP for OpenVMS Version 10.5

VMS Software, Inc., (VSI)
Bolton, Massachusetts, USA

VSI TCP/IP Programmer's Reference:

nma Software

Copyright © 2018 VMS Software, Inc., (VSI), Bolton Massachusetts, USA

Legal Notice

Confidential computer software. Valid license from VSl required for possession, use or copying. Consistent with FAR 12.211 and 12.212,
Commercial Computer Software, Computer Software Documentation, and Technical Datafor Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

Theinformation contained herein is subject to change without notice. The only warranties for VS| products and services are set forth in the
express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional
warranty. VSl shall not be liable for technical or editorial errors or omissions contained herein.

HPE, HPE Integrity, HPE Alpha, and HPE Proliant are trademarks or registered trademarks of Hewlett Packard Enterprise.

Intel, Itanium and | A64 are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other
countries.

Java, the coffee cup logo, and all Java based marks are trademarks or registered trademarks of Oracle Corporation in the United States or
other countries.

Kerberosis atrademark of the Massachusetts Institute of Technology.

Microsoft, Windows, Windows-NT and Microsoft XP are U.S. registered trademarks of Microsoft Corporation. Microsoft Vistais either a
registered trademark or trademark of Microsoft Corporation in the United States and/or other countries.

Motif is aregistered trademark of The Open Group

UNIX isaregistered trademark of The Open Group.

The VS| OpenVMS documentation set is available on DVD.

VSI TCP/IP Programmer's Reference

PrEface couceneennecnsiennennnnnsnennnensnnssnessnssssssssnssssesssnssssssssssssssssasssssssssssssssssassssssssassssssssassssssssns vi
N oo 0 YA) PP vi

B 13 11S T (a1 1S) 1 Lo PPN vi

3. Typographical CONVENTIONSccoiiiuuiiiiiiiieeiiiiiiiitee ettt e e e e et eee e e s eiiieeeeees vi

4. VST TCP/IP SUPPOTLE ..eeetititeeeetieii ettt ettt e e e e ettt e e e e e e siibtaeeeeeeeas vii

5. VSI Encourages Your COMMENTScceeviiiiiiiiiiiiiiiiiiiiiiiiiiieiiiiieieieteieteeeeeteeeeeeeeeeeeeeeeeeees viii

6. How to Order Additional Documentationceceeiiiiiiiiiiiiieieeeiniiiieeeee e viii
Chapter 1. VSI TCP/IP Programming Tutorial 1
0 B 1 o) PR 1

120 TICP CHENE ittt ettt e ettt e e e ettt e e et e e e et eee e e 3

L.30 TICP SEIVET iiiiiiiiiiiiiiiiiiiii 3

| S U D) PSP RPPPPRUPPPPPN 3

1.5. BSD-SPECITIC TIPS uuvvvvveeeeeeeiiiiiiiieteee ettt e e ettt e e e e sttt e e e e e e aeibbeaeeeeeeeens 4
1.5.1. BSD Sockets Porting NOEcueeiiiiiiiiiiiiiiiiiee et 4

1.5.2. BSD 4.4 TCP/IP Future Compatibility Considerationsccccceeeerrnnivereeeeenn. 4

1.5.3. TCP/IP Services (UCX) Compatibilitycccoommiiiiiiiiiiiiiiiiiiiiiiieeeiiiieeeeee, 6

Chapter 2. Socket Library FUNCHONSccouienveenreninneninnisnnnsenssnnssncsssesssssssssssssessssssassssasens 7
2.1. Debugging and TraCingcoeviiiiiiiiiiiiiiiiee e 7

2.2, AST REENIIANCY ..oeeeeeeieieiiieeieeeeeee e 7

2.3. Domain Name Resolver ROULINEScovvviiiiiiiiiiiiiiiiiiieeeeeeeeeeeee 15

24 SCTP ettt ettt ettt e et e e e 86
Chapter 3. Using the $SQIO SyStem ServiCeccoeererrensrecsuessensaecsaesesssecsasssesssecssessesssees 93
3.1. $SQIO System Service Variationsceeerouereeerriireeeriiiiieeeaniieeeesiieeeeseineeeesnieeeessnnes 93

3.2, SQIO FOIMAL .eeeeiiiiiiiiiieeee ettt e e e e e ettt e e e e e e ettt eeeeeeeeessnnnsbaaaeaeeseeannsnssaneeeaeens 93
3.2.1. Symbol Definition Filescccceiiiiiiiiiiiiiiiiiieeiiie e 93

3.3, SQIO FUNCHONS ..eiiiiiiiiiiiiiiiiieeee e ettt e e e e e ettt et e eeeeeesenarbaeeeeeeessesnssssaeeeeeeesannsnsnnes 94

3.4, SQIO ATUIMENLS ..eeiiiiiiieiiiiiiee ettt e ettt e e e ettt e e ettt e e s ettt e e e et e e e eabaeeesebaneeenans 95
3.4.1. $QIO Function-Independent ArgUMENLSccueeeeeririeeerniiiieeeiiiieeeeiiieee e 95

3.4.2. T/O Status BLOCK ...coooiiiiiiiiiiiiiiieii e 95

3.4.3. $QIO Function-Dependent ATgUMENLSeeeeriveeeeiniiieeeiniiieeeniiieeessiieeeeenns 96

3.5. Passing Arguments by DESCIIPLOTcceeeeeieieeeieieeeeee e 97
3.5.1. Specifying an Input Parameter Listccccuuiiiiiiiiiiiiiiiiiieiieeeceee e 98

3.5.2. Specifying an Output Parameter Listoooeoiiiiiiiiiiiiiiiieiiieeeee, 100

3.5.3. Specifying a Socket Namecc.euvviiiiiiiiiiiiiiiiieeeeeee e 101

3.5.4. Specifying a Buffer LiStuuiiiiiiiiiiiiici e 102

Chapter 4. SQIO INtErfaceccovevvueereriinsuissensensuissensesssnssensssssnssessssssssssssssssssssssssssssssss 105
TOS _ACCEPT ...ttt e e e ettt e e e e e e e eeeeas 106

TOS _ACCEPT _WALIT ..ottt e e ee e 107

TOS BIND ..ottt e et e ettt e e et e e e et e e e eatteee e 107

TOS _CONNECT ..ot e e e ettt e e e e e eeeeees 108
TOS_GETPEERNAMEooooiiiiiiiiiiiiiiiiiii ettt e e e e e 109
TOS_GETSOCKNAMEcooiiiiiiiiiiiii et e e e 110
TOS_GETSOCKOPT ..ottt e e e e 111

TOS _TOCTL ..o ettt e e ettt e e ettt e e e e e e s enbaeeeeans 112
TOS_LISTEN ..ottt ettt e ettt e e e e e e et e e e eanes 113
I0$_RECEIVE (JO$_READVBLK) ...ttt 114
TOS_SELECT ..ottt ettt ettt e et e e e st e e e s itaeeeeanes 115

TOS _SEND oottt ettt e e e e ettt e e e e e e e 116
TOS_SENSEMODEooiiiiiiiiiiiii et e st e e 118
IO$_SENSEMODE | IOSM_CTRLccooiiiiiiiiiiiiiiiiiiiieee ettt 120

iii

VSI TCP/IP Programmer's Reference

TOS _SETCHAR ...ttt e e ettt e e e e e e sttt e e e e e e e e nnntaeeeeaeens 129
10$_SETMODE[TOSM_ATTNAST ..ottt e e e e 130
TOS _SETSOCKOPT ...ttt e e e ettt e e e e e e e st eeeaaeeeeeannneees 131
TOS_SHUTDOWN ettt e e e e e ettt e e e e e e e nttaeeeeaaeeeannseneeeas 132
TOS _SOCKET ...ttt e e e e ettt e e e e e e et e eeaaee s e nneseneeaaaeens 133
SYSSCANCEL ...ttt e ettt e e e e e e e ettt e e e e e e e e aannneeeaeaaaeens 134
SYSSDASSGN .ottt ettt e e e e e e ettt e e e e e e et ta e e e e e e e annnnas 134
Chapter 5. SNMP Extensible Agent API RoUtinesccovverevcercssnrcssnicssnnscssnnessnsesnns 136
5.1, REQUITEITIENES ...eiivviiiiiiieeeeetiiiiiiiiieeeeeeeetettteeeeeeeeeeeatataneeeeesseasssnnnnaeeaesessssssnnnaaeaeeeesses 136
5.2. Linking the Extension Agent IMageuuueeiiiiiiiiiiiiiiiiiie e 136
5.3. Installing the Extension Agent IMageccoeeviiiiiiieeeeiiiiiiiiiie e e e ee e eeeeeeeeaeees 137
5.4, Debugging Codeoovvuuuiiiiiieiiiiiiiiie e e e e e et e e e e e e ea e e e e e aeaaar s 137
5.5. Subrouting REfErenCeuueiiiiiiiiiiiiiiiie e e e e eaaaaee 137
Chapter 6. RPC Fundamentalscoeievvveicivincisnicssnnicssencssssnessssnsssssssssssssssssssssssssssasss 143
LT B 13 (04 18 15 o) 4 T UUPPPUUURR 143
6.2. What Are RPC SEIVICES? ...cciiiiiiiiiiiiiie e ettt e e e e e e et e e e e e e e e eaasaaa e e e e 143
6.2.1. VSI TCP/IP ImpPlementationccuvuueuieeeeererriiiiiiieeeeeereeerreenneaeeeseeeerseennnnnns 143
6.2.2. Distributed APPIICATIONSuvvuueeeeiiiiiiiiiiieee e e e et eeeeeeerie e e e e e e eeeraaenes 143

6.3. Components 0f RPC SEIVICESiiiiiiiiiiiiiiiiiieeeei it ee e e e e eeevtiis e e e e e eeevrr e e eeeeaeaens 143
6.3.1. Run-Time Libraries (RTLS)ceieiiiiiiiiiiiiiiieeeeeeeeiiiicie e e e e e e eeeaaeeenns 144
6.3.2. RPCGEN COMPIIET ..eevvviiiiiieeeiiiiiiiiiiiie e et e e e e e et e e e e e e e eeevaaa e e eeaaaans 144
LT TG TR ooy ALY 21 o) o1 S OO UPPPPPTRNE 144
6.3.4. RPC INFOIMAtION ...uuuneiiiiiiiiiiiiiee e e e e et e e e ettt e e e e e e e eeaaee e e e e e e aeesssennnes 144

6.4. Client-Server RelationShipooeeeiiiiiiiiiiiiie e e e e e eeens 144
6.5. External Data Representation (XDR)ouuueiiiiiiiiiiiiiiiiiiieeeecceeecin e 145
6.6. RPC Processing FIOWcouuiiiiiiiiiiiiiiiiieee et e e e e e e e e e e aeeees 145
6.7. Local Calls versus Remote Callsuueiiiiiiiiiiiiiiiiiii e e 146
6.7.1. Handling System Crashescccccoiiiiiiiiiiiieeiiiiiiiiieiee e e 146
6.7.2. HandliNg EITOTScceiiiiiiiiiiiiiee et e e e et e e e e e e e easaa e e e 146
6.7.3. Call SEMANLICS ..uuuniieeeiiiiiiiiiiiieeeeeeeeetieee e e e e e e eeear e e e e eeeeeeasbreaeeeeeaeeessrnnnaaens 146

6.8. Programming INtETTACEouuuiiiiiiiiiiiiiiies e e e eeeaaees 146
6.8.1. High-Level ROULINESuuuiiiiiiiiiiiiiiiii et e e e e e e e e e 146
6.8.2. Mid-Level ROULINESuuuuiiieiiiiiiiiiiiieeeeeeeeeeiiee e e e ettt e e e e e e eevavaa e e e eeaaeeans 147
6.8.3. LOW-Level ROULINESuvuiiiiiiiiiiiiiiiiie e ettt e e e e e e v e e e e eaaaes 147

6.9. Transport ProtOCOIScovviuiiiieiiiiiiiiiceie e e e e e e e e e bbb e e e e e e eeesseananes 147
6.10. XID CACRE .evviiiiieeieiiiiiiiciie et e e e e ettt e e e e e e e eeeaab e e eaaeeessasanaaaeeaeesrssnnnns 148
6.10.1. CaChe ENIIES tiievvviiiiieieeiiiiiiiiiee e e e et e e e e e e e e eaa e e e e e eeeeaasaenns 148
6.10.2. CaChE SIZEceiiiiiiiiiii et e e e e e et e e e e eaaraaaaans 148
6.10.3. EXECUtion GUATANTEESccvvvvviiiieeeeieiiiiiiiiieeeeeeeeerrtiisaeeeeeerssseenaaeeeseeesssnnnnns 148
6.10.4. Enabling XID CaChecooviiiiiiiiiiiiiiii et e e eeeeaens 149
6.11. Broadcast RPCooooiiiiiiii et e e e e e et e e e e e e e eaar s 149
6.12. Identifying Remote Programs and Proceduresccoeeeieeeiiiiiiiiiiiiiee e, 149
6.12.1. Remote Program NUMDEISciiiieiiiiiiiiiiiiiieeeeeeeiiiiees e e e e e evevirn e e eeeaeeeans 149
6.12.2. Remote Version NUMDELSouuuiiiiiiiiiiiiiiiiiiieeeeeeceeiiiee e e e e e eevvii e e eeeeeeens 150
6.12.3. Remote Procedure NUMDELScoouviiiiiiiiiiiiiiiiiie e 150
6.13. Additional TEIMScccvvviiiiiiieeeeiiiiiiicei e e e e e ettt e e e e e e e eeeart e e eeeeeeeasrbaaaaeeeeresssennnns 150
Chapter 7. Building Distributed Applications with RPCccuviivvvririvrcsssercssercsnns 152
7 T 013 (0T 18 15 o) 4 U UUPPPURUPR 152
7.2. Distributed Application COMPONENLSuueenireeerrriiiiiiiieeeeerreeriiiiireeeeereeersrenaaaeaeeeens 152
7.3. What YOU Need t0 DO .ooiiiiiiiiieiiiiiiiiiiee et e e e et e e e e e eeaaaneas 152
7.4. Obtaining RPC INfOrmMAatioNnccceeeiiiiiiiiiiiiieeeeeiiieiiies e e e e ettt e e e e e e eeeavee e e eaeeaenees 154

iv

VSI TCP/IP Programmer's Reference

7.4.1. Requesting a Program LiStINGccoeeeeiiiiiiiiiiiiiieeeeeeiiiiicieee e e e eeeeviiieeeeeeeeaes 154

Chapter 8. RPCGEN COMPIIELccoverirrreicriercssnicssnisssanisssaresssnsssssssssssssssssssssssssssssssssnss 156
8.1, INTrOAUCTION ...oiiiiiiiiiiiie e e e e e ettt e s e e e e e e eeaa e eeeeeeeasssennaaeaaaaeenns 156

8.2. What Is RPCGENT? ...ttt e e e et e e e e e e e 156

8.3. Software REQUITCIMENTSccuviiiiiiieeeeiiiiiiiiiee e e e e eeeeriieeee e e eeeeevabteaeeeeeeeearseennaaaeaaaeees 156

8.4, INPUL FIIES ..oiiiiiiiiiii i e e et e e e e e e e e e bbb e e e e e eeaaaaenas 156

8.5, OULPUL FIlES .ovvveniiiiiiiiiiiciie et e e e et e e e e e e e e e bt eeeeeeeeeaasnannnes 157

8.6. Preprocessor DITCCLIVEScvvviiuiiiieeeeeiiiiiiiiiieeeeeeeeeetiiiseeeeeeeeeeasteseeeeeeeessssenaaaaaaaeens 158

8.7. Invoking RPCGENoooiiiiiiiiiiiiiiiiiii et e e e e e e e e vt e e e e e e eeeesanenns 158
8.7.1. Creating All Output Files at ONCecooeeeiiiiiiiiiiiiieeeeieciiiceie e 158

8.7.2. Creating Specific Output Filescoeeeiiiiiiiiiiiiiiie e, 158

8.7.3. EXAMPIES: 1iiiiiiiiiiiieeeii et e et e e e e e et e e e e e e rat e 159

8.7.4. Creating Server Stubs for TCP or UDP TransSportsccceeeeeeevvevviviiieeeeeneennnns 159

8.8. Error HandIiNgoouiuiiiiiiiiiiiiiieie e e e e e ettt e e e e e e e e e a e 160

8.9, RESIIICHIONS ..iiiiiiiiiiiieeeee i et e e e e e ettt e e e e e e e et et eeeeeeeeeeassaeaaeeeeaeesssesnnnaaaeaseessses 160
Chapter 9. RPC RTL Management ROULINESccovvriervuricssnncsssnrcsssnncssenssssnncssnsscsnsnes 161
L2 B 13 (04 18 15 o) 1 U UUPPPUUUR 161

9.2. Management ROULINEScouuuuiiiieieiiiiiiiiiiiiieeeeeeceeiiees e e e eeeeeratieseeeeeeeeessasennaeeaaaens 161

9.3. Routine Name CONVENLIONSccevvrrruiuniieeeerreriiiiiiisaeeeeerersrnenaeeeeseresssennaaeeeseesssrennnns 161

R B (T Ve (Sl S (< PSPPSR 161

9.5. Management ROULINEScouuuuiiiiieeiiiiiiiiiiiieeeeeeeeeiieee e e eeeeeevttiesseeeeeeeersanenaaeeaaaens 162
Chapter 10. RPC RTL Client Routines 165
TO. 1. INErOQUCTION ...ceeiiiiiiiiiiiee e e e et e e e e ettt e e e e e e e ettt e e e e e e eeeasseaaeeeeeeeessssnnnaaaaaaaeees 165

10.2. COMMON ATZUMENLS ..vvvvenneeeerieriiiiieeeeeeeetettteeiaaeeeeresrsraenaaaeessressrsnnaaaeeessrsssssnnnanns 165

10.3. CHENt ROULINES ...vvveiiieeiiiiiiiiiiiie e e e ee ettt e e e e e e e ettt eee e e e e e e e eeasttseeeeaeasessssnnnaaaaaaaeees 165
Chapter 11. RPC RTL Port Mapper RoOUtinesc.cccceevereesvnrcssnrcssercssercssnssssnssssnsssses 182
T1.1. INEEOAUCTION tovtviinieeeiiiiiiiiiieis e e e e e ettt e e e e e e e et et bt e e eeeeeeeabbaneeeeeeaeesssannnaaeeeeeesssnnnnns 182

11.2. Port Mapper ROULINESccoeviiiiiiiiieeieiiiiiiiiieeeeeeeeeetiiee e e e e e e eeevaae e e e e e e eeeaaaennneeeeeas 182

11.3. Port Mapper ATZUMENLSuuuuieeeeeieiiiiiiieeeeeeeeeeettiisaeeeeeeeeesraennaaeeeseesssssnnnaaasasseesses 182
Chapter 12. RPC RTL Server ROULINEScccovvericrvricssancsssnrcssnncsssnessserssssssssssssssssssssonns 186
12,1, INEFOAUCTION ...eeiiiiiiiiiiee e e e ettt e e ettt e e e e e e e e vt e e e e e e e eeeassaaeeeeeeesssssnnnaaeaaaaeees 186
12.2. SEIVET ROULINES .vvvvviiiieeiiiiiiiiiiiie e e e ee ettt e e e e e e ettt e e e e e e e eeaaaaaeeeeeeaeesssannn e eeeaaanens 186
Chapter 13. RPC RTL XDR ROULINES ...ccccevereirnicssnicssnrecsssresssssessassssssssssssssssssssssnsssssns 200
I3.1. INErOAUCTION ...eiiiiiiiiiiiiee e e e et e e e ettt e e e e e ettt ittt e e e e e e e eeebbsteeeeeeeeessssnnnaaeaaaeeees 200
13.2. XDR ROULINES ...uceeiiiiiiiiiiiieeeeeeetiiiiiiieeeeeeeeettiieeaeeeeeeeevsteaaeeeeseeeesssnnnaaeeesesssssnnnnnnns 200
13.2.1. What XDR RoUtINES DOccceiiiiiiiiiiiiieiiiiiiiiccis et e e e e e aeens 200

13.2.2. When to Call XDR ROULINEScuuueiieieiiiiiiiiiiiieeeeee e e e e e e eeevviieeeeeeeaees 200

13.3. QUICK RETEIENCE ...ovvniiiiiiiiiiiiie e e e 200
Appendix A. SOCKet OPLIONSccoveierrercisnicssnisssnnessssnessssrsssas 229
Appendix B. Trademark and Copyright Notificationscccevvercrveicssercssnencssnnccsennes 240

Preface

uma Software

1. About VSI

VMS Software, Inc. (VSI) is an independent software company licensed by Hewlett Packard
Enterprise to develop and support the OpenVMS operating system.

VSI seeks to continue the legendary development prowess and customer-first priorities that are so
closely associated with the OpenVMS operating system and its original author, Digital Equipment
Corporation.

2. Intended Audience

This manual is intended for programmers who will develop applications that use VSI TCP/IP
network services. It provides the description of programmer's interface to VSI TCP/IP and contains
information about:

Various aspects of application programming using VSI TCP/IP
Purpose and format of each VSI TCP/IP socket library function

$QIO Interface

Application Programming Interface (API) routines required for an application program to export
private Management Information Bases (MIBs) using the VSI TCP/IP SNMP agent

VSI TCP/IP RPC Services and building distributed applications with RCP
RPCGEN Compiler

RPC Run-Time Library (RTL) conventions and management, client, port-mapper, server, XDR
routines in the RPC RTL

3. Typographical Conventions

The following conventions are used in this manual:

Convention Meaning

Ctrl/X

Ctrl while you press another key or a pointing device button.

PF1 X A sequence such as PF1 Xindicates that you must first press and release

the key labeled PF1 and then press and release another key (X) or a pointing

device button.

Enter In examples, a key name in bold indicates that you press that key.

A sequence such as Ctrl/x indicates that you must hold down the key labeled

A horizontal ellipsis in examples indicates one of the following possibilities:-

Additional optional arguments in a statement have been omitted.- The
preceding item or items can be repeated one or more times.- Additional
parameters, values, or other information can be entered.

vi

Preface

Convention Meaning

A vertical ellipsis indicates the omission of items from a code example or
command format; the items are omitted because they are not important to the
topic being discussed.

() In command format descriptions, parentheses indicate that you must enclose
choices in parentheses if you specify more than one. In installation or
upgrade examples, parentheses indicate the possible answers to a prompt,
such as:

I's this correct? (Y/N) [V]

[] In command format descriptions, brackets indicate optional choices. You
can choose one or more items or no items. Do not type the brackets on the
command line. However, you must include the brackets in the syntax for
directory specifications and for a substring specification in an assignment
statement. In installation or upgrade examples, brackets indicate the default
answer to a prompt if you press Enter without entering a value, as in:

Is this correct? (Y/N) [V]

In command format descriptions, vertical bars separate choices within
brackets or braces. Within brackets, the choices are optional; within braces,
at least one choice is required. Do not type the vertical bars on the command
line.

{} In command format descriptions, braces indicate required choices; you
must choose at least one of the items listed. Do not type the braces on the
command line.

bold type Bold type represents the name of an argument, an attribute, or a reason. In
command and script examples, bold indicates user input. Bold type also
represents the introduction of a new term.

italic type Italic type indicates important information, complete titles of manuals, or
variables. Variables include information that varies in system output (Internal
error number), in command lines (/PRODUCER=name), and in command
parameters in text (where dd represents the predefined code for the device
type).

UPPERCASE TYPE Uppercase type indicates a command, the name of a routine, the name of a
file, or the abbreviation for a system privilege.

Exanpl e This typeface indicates code examples, command examples, and interactive
screen displays. In text, this type also identifies website addresses, UNIX
command and pathnames, PC-based commands and folders, and certain
elements of the C programming language.

- A hyphen at the end of a command format description, command line, or
code line indicates that the command or statement continues on the following
line.

numbers All numbers in text are assumed to be decimal unless otherwise noted.
Nondecimal radixes-binary, octal, or hexadecimal-are explicitly indicated.

4. VSI TCP/IP Support

VSI supports VSI TCP/IP running on VSI OpenVMS Integrity Version 8.4-2L1 (or higher) only.
Please contact your support channel for help with this product. Users who have OpenVMS support

vii

Preface

contracts through VSI can contact support@vmssoftware.com [mailto:support@vmssoftware.com] for
help with this product. Users who have OpenVMS support contracts through HPE should contact their
HPE Support channel for assistance.

5. VSI Encourages Your Comments

You may send comments or suggestions regarding this manual or any VSI document by sending
electronic mail to the following Internet address: <doci nf o@nssof t war e. conp.

6. How to Order Additional Documentation

For information about how to order additional documentation, email the VSI OpenVMS information
account: <i nf o@nssof t war e. con>. We will be posting links to documentation on our
corporate website soon.

viii

mailto:support@vmssoftware.com
mailto:support@vmssoftware.com

Chapter 1. VSI TCP/IP Programming
Tutorial

This chapter contains short tutorials on various aspects of application programming using VSI TCP/IP.

1.1. Sockets

A socket is an endpoint for communication. Two cooperating sockets, one on the local host and one
on the remote host, form a connection. Each of the two sockets has a unique address that is described
generically by the sockaddr C programming language structure. The sockaddr structure is defined as
follows:

struct sockaddr {

u_char sa_len; /* length of data structure */

u_char sa famly; /* Address famly */

char sa_dat a[14]; /* up to 14 bytes of direct address*/
i

The sa_family field specifies the address family for the communications domain to which the socket
belongs. For example, AF_INET for the Internet family. The sa_data field contains up to 14 bytes of
data, the interpretation of which depends on the value of sa_family.

If the sa_family field is AF_INET, the same sockaddr structure can also be interpreted as a
sockaddr_in structure that describes an Internet address. A sockaddr_in structure is defined as
follows:

struct sockaddr _in {
u_char sin_len;
u_char sin_famly;
u_short sin_port;
struct in_addr sin_addr;
char sin_zero[8];

i

The sin_family field specifies the address family AF _INET. The sin_port field specifies the TCP
(Transmission Control Protocol) or UDP (User Datagram Protocol) port number of the address.
Whether the communication uses TCP or UDP is not determined here, but rather by the type of socket
created with the socket() call: SOCK _STREAM for TCP or SOCK DGRAM for UDP. The sin_addr
field specifies the Internet address. The sin_zero field must be zero. Both the sin_port field and the
sin_addr field are in network byte order. For more information about network byte ordering see
Chapter 4, $QIO Interface.

The sockaddr and sockaddr_in structures serve as input and output to a number of library routines.
For example, they may be used as input, specifying the address to which to make a connection or
send a packet, or as output, reporting the address from which a connection was made or a packet
transmitted.

Internet addresses are normally manipulated with the gethostbyname(), gethostbyaddr(),
inet_addr(), and inet_ntoa() functions. gethostbyname() and inet_addr() convert a host name or
ASCII representation of an address into the binary representation for the sockaddr_in structure.
gethostbyaddr() and inet_ntoa() are used to convert the binary representation into the host name or
ASCII representation for display.

Chapter 1. VSI TCP/IP Programming Tutorial

Port numbers are normally manipulated with the getservbyname() and getservbyport() functions.
getservbyname() converts the ASCII service name to the numeric value, and getservbyport()
converts the numeric value to the ASCII name.

The following example shows a typical program that converts the Internet address and the port into
binary representations.

#include "I P$root:[IP.include.sys]types.h"
#include "1 P$root:[IP.include. sys]socket.h"
#include "I P$root:[IP.include]netdb.h"
#include "1 P$root:[IP.include.netinet]in.h"

mai n(argc, ar gv)

int argc;

char *argv[];

struct sockaddr _in sin;

struct hostent *hp;

struct servent *sp;

/* Zero the sin structure to initialize it */

bzero((char *) &sin, sizeof(sin));
sin.sin_famly = AF_I NET;

/* Lookup the host and initialize sin_addr */

hp = gethost byname(argv[1]);
if ('hp) { /* Perhaps it is an ASCIl string */

sin.sin_addr.s_addr = inet_addr(argv[1]);
if (sin.sin_addr.s_addr == -1) {
printf("syntax error in |IP address\n");
exit(1l);

}

} else { /* Extract the |IP address */
bcopy(hp->h_addr, (char *) &sin.sin_addr,
hp->h_l engt h);

}

/* Lookup up the nanme of the SMIP service */

sp = getservbynane("sntp","tcp");|

if (!'sp) {

printf("unable to find sntp service");
exit(1l);

}

sin.sin_port = sp->s_port;

/* Now we are ready to create a socket and
pass the address of this sockaddr_in
structure to the connect() call to

connect to the renote SMIP port */

}

Chapter 1. VSI TCP/IP Programming Tutorial

1.2. TCP Client

A TCP client process establishes a connection to a server and uses the socket_read() and socket_
write() functions to transfer data. Typically, you use the following sequence of functions to set up the
connection:

1. Create a TCP socket:
socket (AF_I NET, SOCK_STREAM 0);

2. Set up a sockaddr_in structure with the address you want to connect to by calling
gethostbyname() and getservbyname().

3. Make a connection to the server with the connect() function.

4. Once connect() completes, the TCP connection is established and you can use socket_read() and
socket write() to transfer data.

1.3. TCP Server

A TCP server process binds a socket to a well-known port and listens on that port for connection
attempts. When a connection arrives, the server processes it by transferring data using socket_read()
and socket_write(). Typically, you use the following sequence of functions to set up a server:

1. Create a TCP socket:
socket (AF_I NET, SOCK _STREAM O0);

2. Use the getservbyname() function to get the port number of the service on which you want to
listen for connections.

3. Set up a sockaddr_in structure with the port number and an Internet address of INADDR_ANY,
and bind this address to the socket with the bind() function.

4. Use the listen() function to inform the VSI TCP/IP kernel that you are listening for connections on
this socket. Then wait for a connection and accept it with accept().

5. Once accept() completes, the TCP connection is established and you can use socket _read() and
socket write() to transfer data. When you are done with the connection, you can close the channel
returned by accept() and start a new accept() call on the original channel to wait for another
connection.

Note

When writing a TCP server that will run under the control of the | P_SERVER process, you must
assign a channel to SYS$I NPUT before calling any of the C I/O routines.

Another way to write a TCP server is to let the | PESERVER process do the work for you. The | P
$SERVER can perform all of the above steps, and when a connection request arrives, can use the
OpenVMS system service SCREPRC to create a process running your program.

1.4. UDP

A UDP program sends and receives packets to and from a remote port using the send() or sendto()
and recv() or recvfrom() functions. UDP is a connectionless transport protocol. It does not incur the

Chapter 1. VSI TCP/IP Programming Tutorial

overhead of creating and maintaining a connection between two sockets, but rather merely sends and
receives datagrams. It is not a reliable transport, and does not provide guaranteed data delivery, packet
ordering, or flow control.

Typically, you use the following sequence of functions in a UDP program:

1. Create a UDP socket:
socket (AF_I NET, SOCK DGRAM 0);

2. Bind the socket to a local port number with the bind() function. Specify the sin_port field as 0
(zero) if you want VSI TCP/IP to choose an unused port number for you automatically (typical of
a client), or specify the sin_port field as the UDP port number (typical of a server). The sin_addr
field is usually specified as INADDR _ANY, which means that packets addressed to any of the
host's Internet addresses are accepted.

3. Optionally, use connect() to specify the remote port and Internet address. If you do not use
connect(), you must use sendto() to specify the remote address when you send packets, and
recvirom() to learn the address when you receive them.

4. Read and write packets to transfer data using the send() or sendto() and recv() or recvfrom()
functions, respectively.

Note

When writing a UDP server that will run under the control of the | P_SERVER process, you must
assign a channel to SYS$! NPUT before calling any of the C I/O routines.

Another way to write a UDP server is to let the | PBSERVER process handle the work. The | P
$SERVER can perform all the above steps, and when a packet arrives on a UDP port, can use the
OpenVMS system service SCREPRC to create a process running your program.

1.5. BSD-Specific Tips

The following sections contain information specific to working with BSD code.

1.5.1. BSD Sockets Porting Note

When porting a program written for BSD sockets to VSI TCP/IP, observe the following guidelines:

 Change any #include statements to reference files with the same names in the | P$ ROOT:
[1P. I NCLUDE. . .] directory areas.

* Implement your change in the source code using #ifdef statements to enable the use of VSI TCP/

IP include files; you can then compile your software in a UNIX environment by selecting the other
side of the #ifdef.

1.5.2. BSD 4.4 TCP/IP Future Compatibility
Considerations

VSI TCP/IP supports both BSD 4.3 and BSD 4.4 format sockaddrs.

Chapter 1. VSI TCP/IP Programming Tutorial

The BSD 4.4 format is:

struct sockaddr _in {
u_char sin_len;
u_char sin_famly;
u_char sin_port;
struct i n_addr sin_addr;
char sin_zero[8];

b
The BSD 4.3 format of the sockaddr_in structure is:

struct sockaddr _in {

short sin_famly;
u_short sin_port;

st ruct i n_addr sin_addr;
char sin_zero[8];

b

VSI TCP/IP will accept either format from customer applications. This affects applications that
explicitly check the sin_family field for the value AF_INET. Applications can avoid incompatibilities
by avoiding explicit references or checks of the sin_family field, or by assuming that it can be in
either format. The INET device uses the | O8M_EXTEND modifier to specify that a BSD 4.4 sockaddr
(or current format) is used when | O3M_EXTEND is not used on the function code, the old (BSD 4.3)
format is used.

Support for the BSD 4.4 style sockaddr data structure is included in the BGDRIVER (UCX
interface). If the | OBM_EXTEND modifier is set on any one of the following QIO operations, the
sockaddr parameter passed in these operations is assumed to be in BSD 4.4 format.

| O&_SETMODE/ | O6_ SETCHAR (socket, bind)

| O8__ACCESS (connect, listen)

| O5_SENSEMODE/ | 08 SENSECHAR (getsockname, getpeername)

| O&_READVBLK (recv_from, when P3 is specified for a UDP or raw IP message)
* | O_WRI TEVBLK (send_to, when P3 is specified for a UDP or raw IP message)

When the | OG8M_EXTEND modifier is used in the creation of a socket via | C&_SETMODE/ | O
$_SETCHAR (socket, bind), the setting is remembered for the lifetime of the socket and all sockaddr
structures passed in are assumed to be in BSD 4.4 format. Refer to the TCP/IP Services for OpenVMS
System Services and C Socket Programming manual for additional information.

Operations that return a sockaddr (READVBLK (recv_from) like accept, getsockname, and
getpeername), return that sockaddr in BSD 4.4 format. Operations that accept a sockaddr
(WRITEVBLK (send to) like connect and bind) expect the address family value to be in the position
it is in for the BSD 4.4 structure. When a CONNECT /BIND /ACCEPT operation is done for a

TCP connection with the | O6V_EXTEND bit set, the setting is remembered for the duration of the
connection and all specified sockaddr structures are expected to be in BSD 4.4 format, and operations
returning a sockaddr will return it in BSD 4.4 format.

For | G&_ACCESS (connect) and | O3 SETMODE (bind), if the portion of the sockaddr structure that
is used to specify the address family in BSD 4.4 format is non-zero, then the sockaddr structure is
assumed to be in BSD 4.4 format.

Chapter 1. VSI TCP/IP Programming Tutorial

1.5.3. TCP/IP Services (UCX) Compatibility

VSI TCP/IP supports programs written for TCP/IP Services. The C run time library will automatically
use the compatible entry points in the UCX$lI PC_SHR. EXE image included with VSI TCP/IP. VSI
TCP/IP supports the following IPv6 compatible routines:

getaddrinfo
freeaddrinfo
get nanei nfo
gai _strerror
i net_pton

i net_ntop

Chapter 2. Socket Library Functions

This chapter describes the purpose and format of each VSI TCP/IP socket library function.

The socket functions described in this chapter are available in the shareable image IP$:IP
$SOCKET LIBRARY.EXE, included in the standard VST TCP/IP distribution.

In addition to supporting the VSI TCP/IP socket library, applications developed for the VSI
OpenVMS/ULTRIX Connection (UCX) software using the C socket library (UCX$I PC. OLB) will
run over VSI TCP/IP, using an emulation of UCX$IPC_SHR.EXE.

Note

To avoid potential conflicts between VSI TCP/IP socket library definitions and C compiler
definitions, include a reference to the file | PSROOT: [| P. | NCLUDE. SYS] TYPES.H before any
other header file references.

2.1. Debugging and Tracing

VSI TCP/IP provides a call tracing facility that can be used to debug and trace the use of the sockets
API for many applications. This facility works for both the VSI TCP/IP socket library and the API
that the newer versions of the C compiler work with. This does NOT log QIO operations. To enable
the tracing define the | PSSOCKET_TRACE logical name. The value of the logical name can be used
in the following ways:

* As a bit mask for types of operations to trace. Bit 0 (zero) signifies control operations, bit 1signifies
read operations and bit 2 signifies write operations. When these values are used the information is
written to SYS$OUTPUT: .

* As apartial or full file name. When used as a partial file name the default name specified to open
the file is: SYS$SCRATCH: | P$SOCKET_<pr ocess_nane>. LOG Control, read and write
operations are logged when logging is done to a file.

2.2. AST Reentrancy

The VSI TCP/IP socket library is based on the equivalent UNIX programming library, and was
therefore not designed with reentrancy in mind. If you call into the socket library with AST delivery
disabled, some of the library routines will suspend execution and fail to return control to the caller.

This situation occurs most often when applications try to call those functions from within an AST
routine where AST delivery is not possible.

Any routine that relies on the select() function is subject to this restriction (including the select() call
itself, and most of the domain name resolution routines such as gethostbyname(), and so on).

Another reentrancy consideration is the socket library's use of static internal data structures, some of
which are passed back to the application, as in the case of the hostent structure address returned by
gethostbyname(). Other functions use these data structures internally to maintain context.

In either case, it is dangerous to call into these routines from an AST because it is possible to interrupt
a similar call already in progress, using the same static buffer, thereby corrupting the contents of the
buffer.

Chapter 2. Socket Library Functions

Another consideration is the use of routines that send and receive data. Every socket in the kernel
contains two fixed-size buffers for sending and receiving data. If an application tries to transmit data
when there is insufficient buffer space, that call will block (or suspend execution) until buffer space
becomes available. This can become an issue if the application blocks while attempting to transmit
a large data buffer, and an AST routine tries to transmit a small data buffer. The small data buffer is
transmitted before the large one.

The same situation applies to the functions that read data from the network. This situation may also

arise if multiple reads and writes are performed on sockets which have been set up to be non-blocking
(NBIO).

These considerations might seem overly restrictive; however, the VSI TCP/IP socket library is a port
of the BSD socket library, which is subject to all of the same restrictions. Applications which need to
perform I/O from within AST routines should use the SYS$Q Osystem service to talk directly to the
VSI TCP/IP device driver.

Therefore, none of the socket routines should be considered AST reentrant.

The following are the Socket Library functions:

accept()/accept_44() ntohl()

bemp() ntohs()

bind()/bind_44() recv()/recv_44()

Section 2.3, “Domain Name Resolver Routines” |recvfrom()recvirom_44()
endhostent() recvimsg()/recvmsg_44()
endnetent() select()

endprotoent() select_wake()
endservent() send()/send_44()
getaddrinfo() getnameinfo()
getdtablesize() sendmsg()/sendmsg_44()
gethostbyaddr()/gethostbyaddr 44() sendto()/sendto_44
gethostbysockaddr()/gethostbysockaddr_44() |sethostent()
gethostname() setnetent()
getnetbyaddr() setprotoent()
getnetbyname() setservent()
getpeername()/getpeername_44() setsockopt()
getprotobyname() shutdown()
getprotobynumber() socket()

getprotoent() socket close()
getservbyname() socket ioctl()
getservbyport() socket ioctl FIONBIO
getservent() socket ioctl FIONREAD
getsockname()/getsockname_44() socket ioctl SIOCADDRT
getsockopt() socket ioctl SIOCDELRT
gettimeofday() socket ioctl SIOCATMARK

Chapter 2. Socket Library Functions

hostalias() socket ioctl SIOCDARP
htonl() socket ioctl SIOCGARP
htons() socket ioctl SIOCSARP

inet_addr()

socket ioctl SIOCGIFADDR

inet_Inaof()

socket ioctl SIOCSIFADDR

inet makeaddr()

socket ioctl SIOCGIFBRDADDR

inet_netof()

socket ioctl SIOCSIFBRDADDR

inet_network()

socket ioctl SIOCGIFCONF

inet_ntoa()

socket ioctl SIOCGIFDSTADDR

klread() socket ioctl SIOCSIFDSTADDR
klseek() socket ioctl SIOCGIFFLAGS
klwrite() socket ioctl SIOCSIFFLAGS
listen() socket ioctl SIOCGIFMETRIC

ip_kernel nlist

socket ioctl SIOCSIFMETRIC

nlist()

socket ioctl SIOCGIFNETMASK

socket option SO_BROADCAST

socket ioctl SIOCSIFNETMASK

socket option SO_DEBUG

socket option SO_REUSEADDR

socket option SO DONTROUTE

socket option SO_SNDBUF

socket option SO_ERROR

socket option SO RCVLOWAT

socket option SO_KEEPALIVE

socket option SO_SNDTIMEO

socket option SO_LINGER

socket option SO_TYPE

socket option SO _OOBINLINE

socket option TCP_KEEPALIVE

socket option SO_RCVBUF

socket option TCP_NODELAY

socket option SO_RCVLOWAT

socket perror()

socket option SO_RCVTIMEO

socket read()

vms_errno_string()

socket write()

accept()/accept_44()

accept()/accept_44() — Extracts the first connection from the queue of pending connections on

a socket, creates a new socket with the same properties as the original socket, and assigns a new
OpenVMS channel to the new socket. If no pending connections are present on the queue, accept()
blocks the caller until a new connection is present. The original socket remains open and can be used
to accept more connections, but the new socket cannot be used to accept additional connections.

Format

New_VMS Channel = accept(VMS_Channel, Address, AddrLen);

short New VMS Channel, VMS Channel,

struct sockaddr *Address;

unsigned int *AddrLen;

Chapter 2. Socket Library Functions

Description

The original socket is created with the socket() function, bound to an address with bind(), and is
listening for connections after a listen().

The accept() function is used with connection-based socket types. Currently the only connection-
based socket is SOCK_STREAM, which, together with AF_INET, constitutes a TCP socket.

The accept_44() function is the BSD 4.4 sockaddr variant of this call. This call is used automatically
when | PSROOT: [| P. | NCLUDE. NETI NET] I N. His used and the program is compiled with
USE_BSD44_ENTRI ES defined.

Arguments

VMS_Channel

VMS Usage: channel

type: word (signed)
access: read only
mechanism: by value

A channel to the original socket from which to accept the connection.

Address

VMS Usage: socket_address
type: struct sockaddr
access: write only
mechanism: by reference

The optional Address argument is a result parameter. It is filled in with the address of the connecting
entity, as known to the communications layer. The exact format of the Address argument is
determined by the domain in which the communication is occurring.

AddrLen

VMS Usage: socket _address length
type: longword (unsigned)
access: modify

mechanism: by reference

On entry, the optional AddrLen argument contains the length of the space pointed to by Address, in
bytes. On return, it contains the actual length, in bytes, of the address returned.

Returns

If the accept() is successful, an OpenVMS channel number is returned. If an error occurs, a value
of -1 is returned, and a more specific message is returned in the global variables socket errno and

vmserrno.

An error code of ENETDOWN can indicate that the program has run out of VMS channels to use in
creating new sockets. This can be due to either the SYSGEN parameter CHANNEL CNT being too low

Chapter 2. Socket Library Functions

for the number of connections in use by the program, or to a socket leak in the code. Make sure the
code closes the socket (using close()) when it is done with the socket.

bcmp()

bemp() — Compares a range of memory. This function operates on variable-length strings of bytes
and does not check for null bytes as stremp() does. bemp() is part of the 4.3BSD run-time library, but
is not provided by VSI as part of the C run-time library. It is provided here for compatibility with the
4.3BSD library.

Format

Status = bcmp(String1, String2, Length);

char *Stringl, *String2;

unsigned int Length;

Arguments

Stringl, String2

VMS Usage: arbitrary
type: byte buffer
access: read only
mechanism: by reference

Pointers to the two buffers to be compared.

Length

VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

The number of bytes to be compared.

Returns

The bemp() function returns zero if the strings are identical. It returns a nonzero value if they are
different.

bcopy()

beopy() — Copies memory from one location to another. This function operates on variable-length
strings of bytes and does not check for null bytes as strepy() does. beopy() is part of the 4.3BSD
run-time library, but is not provided by VSI as part of the C run-time library. It is provided here for
compatibility with the 4.3BSD library.

Chapter 2. Socket Library Functions

Format

(void) beopy(Stringl, String2, Length);

char *Stringl, *String2;

unsigned int Length;

Arguments

Stringl

VMS Usage arbitrary
type: byte buffer
access: read only
mechanism: by reference

The source buffer for the copy operation.

String2

VMS Usage: arbitrary
type: byte buffer
access: write only
mechanism: by reference

The destination buffer for the copy operation.

Length

VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

The number of bytes to be copied.

bind()/bind_44()

bind()/bind_44() — Assigns an address to an unnamed socket. When a socket is created with
socket(), it exists in a name space (address family) but has no assigned address. bind() requests
that the address be assigned to the socket. If the port number specified in the sin_port field

of the sockaddr structure is less than 1024, SYSPRYV is required to use this function. The
bind_44() function is the BSD 4.4 sockaddr variant of this call. This call is used automatically
when | PSROOT: [| P. | NCLUDE. NETI NET] I N. His used and the program is compiled with
USE_BSD44_ENTRI ES defined.

Format

Status = bind(VMS_Channel, Name, NameLen);

Chapter 2. Socket Library Functions

short VMS Channel;
struct sockaddr *Name;

unsigned int NameLen;

Arguments

VMS_ Channel

VMS Usage: channel

type: word (signed)
access: read only
mechanism: by value

A channel to the socket.

Name

VMS Usage: socket address
type: struct sockaddr
access: read only
mechanism: by reference

The address to which the socket should be bound. The exact format of the Address argument is
determined by the domain in which the socket was created.

NameLen

VMS Usage: socket_address_length
type: longword (unsigned)
access: read only

mechanism: by value

The length of the Name argument, in bytes.

Returns

If the bind() is successful, a value of 0 is returned. If an error occurs, a value of -1 is returned, and a
more specific message is returned in the global variables socket _errno and vmserrno.

bzero()

bzero() — Fills memory with zeros. bzero() is part of the 4.3BSD run-time library, but is not
provided by VSI as part of the C run-time library. It is provided here for compatibility with the
4.3BSD library.

Format

(void) bzero(String, Length);

Chapter 2. Socket Library Functions

char *String;

unsigned int Length;

Arguments

String

VMS Usage: arbitrary
type: byte buffer
access: write only
mechanism: by reference

The address of the buffer to receive the zeros.

Length

VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

The number of bytes to be zeroed.

connect()/connect_44()

connect()/connect_44() — When used on a SOCK_STREAM socket, connect() attempts to make a
connection to another socket. This function, when used on a SOCK_DGRAM socket, permanently
specifies the peer to which datagrams are sent to and received from. The peer socket is specified by
name, which is an address in the communications domain of the socket. Each communications domain
interprets the name parameter in its own way. If the address of the local socket has not yet been
specified with bind(), the local address is also set to an unused port number when connect() is called.
The connect_44() function is the BSD 4.4 sockaddr variant of this call. This call is used automatically
when | PSROOT: [| P. | NCLUDE. NETI NET] I N. His used and the program is compiled with
USE_BSD44_ENTRI ES defined.

Format

Status = connect(VMS_Channel, Name, NameLen);
short VMS Channel;

struct sockaddr *Name;

unsigned int NameLen;

Arguments

VMS_ Channel
VMS Usage: channel

Chapter 2. Socket Library Functions

type: word (signed)
access: read only
mechanism: by value

A channel to the socket.

Name

VMS Usage: socket_address
type: struct sockaddr
access: read only
mechanism: by reference

The address of the peer to which the socket should be connected. The exact format of the Address
argument is determined by the domain in which the socket was created.

NameLen

VMS Usage: socket_address_length
type: longword (unsigned)
access: read only

mechanism: by value

The length of the Name argument, in bytes.

Returns

If the connect() is successful, a value of 0 is returned. If an error occurs, a value of -1 is returned, and
a more specific message is returned in the global variables socket_errno and vmserrno.

2.3. Domain Name Resolver Routines

The following functions exist for compatibility with UNIX 4.3BSD programs that call the DNS Name
Resolver directly rather than through gethostbyname(). The arguments and calling conventions are
compatible with BIND Version 4.8.3. They are subject to change and are not documented here.

The h_er r no variable in the VST TCP/IP socket library that contains the error status of the resolver
routine is accessible to C programs.

dn_comp() p_rr()

dn_expand() p_type()

dn_skip() putlong()
dn_skipname() putshort()
fp_query() _res_close()
_getlong() res_init()
_getshort() res_mkquery()
herror() res_query()
p_cdname() res_querydomain()

Chapter 2. Socket Library Functions

p_class() res_search()

p_query() res_send()

endhostent()

endhostent() — Tells the DNS Name Resolver to close the TCP connection to the DNS Name Server
that may have been opened as the result of calling sethostent() with StayOpen set to 1.

Format

(void) endhostent();

endnetent()

endnetent() — Tells the DNS Name Resolver to close the TCP connection to the DNS Name Server
that may have been opened as the result of using setnetent() with StayOpen set to 1.

Format

(void) endnetent();

endprotoent()
endprotoent() — Tells the host table routines that the scan started by getprotoent() is complete.

endprotoent() is provided only for compatibility with UNIX 4.3BSD, and is ignored by the VSI TCP/
IP software.

Format

(void) endprotoent();

endservent()
endservent() — Tells the host table routines that the scan started by getservent() is complete.

endservent() is provided only for compatibility with UNIX 4.3BSD, and is ignored by the VSI TCP/
IP software.

Format

(void) endservent();

getdtablesize()

getdtablesize() — Returns the maximum number of channels available to a process. This function is
normally used to determine the Width argument to the select() function.

Format

Width = getdtablesize();

Chapter 2. Socket Library Functions

Returns

The size of the channel table.

gethostbyaddr()/gethostbyaddr_44()

gethostbyaddr()/gethostbyaddr_44() — Looks up a host by its address in the binary host

table or the DN'S Name Server and returns information about that host. An alternate entry point
_gethostbyaddr(), that looks only in the binary host table, is also available. The VSI TCP/IP
socket library is not reentrant. If you call into it from an AST (interrupt) routine, the results are
unpredictable. The gethostbyaddr_44() function is the BSD 4.4 sockaddr variant of this call. This
call is used automatically when | PSROOT: [| P. | NCLUDE. NETI NET] | N. His used and the
program is compiled with USE_BSD44_ENTRI ES defined.

Format

(struct hostent *) gethostbyaddr(Addr, Length, Family);
(struct hostent *) gethostbyaddr(Addr, Length, Family);
char *Addr;

unsigned int Length;

unsigned int Family;

Arguments

Addr

VMS Usage: address

type: dependent on Family
access: read only
mechanism: by reference

A pointer to the address to look up. The type is dependent on the Family argument. For Internet
(AF_INET family) addresses, Addr is a pointer to an in_addr structure.

Length

VMS Usage: address_length

type: longword (unsigned)
access: read only
mechanism: by value

The size, in bytes, of the buffer pointed to by Addr.

Family

VMS Usage: address_family

type: longword (unsigned)

Chapter 2. Socket Library Functions

access: read only

mechanism: by value

The address family, and consequently the interpretation of the Addr argument. Normally, this is
AF _INET, indicating the Internet family of addresses.

Returns
If gethostbyaddr() succeeds, it returns a pointer to a structure of type hostent. (See int
sctp_getaddrlen (int family) for more information on the hostent structure.) If this function fails, a

value of 0 is returned, and the global variable h_errno is set to one of the DNS Name Server error
codes defined in the file i p$r oot : [| P. i ncl ude] net db. h.

getaddrinfo()

getaddrinfo() — Looks up hostname and/or service name and returns results. This call supports both
IPv4 and IPv6 requests.

Format
int getaddrinfo(hostname, servname, hints, res)
char *hostname, *servname;

struct addrinfo *hints, **res;

Arguments

hostname

VMS Usage: host_name
type: ASCIZ string
access: read only
mechanism: by reference

A C-language string containing the name of the host to look up.

servname
VMS Usage: service name
type: ASCIZ string
access: read only
mechanism: by reference

A C-language string containing the name of the service to look up.

hints
VMS Usage: hints
type: struct addrinfo

Chapter 2. Socket Library Functions

access: read only

mechanism: by reference

An addrinfo structure that provides hints on the lookups to be performed.

res
VMS Usage: results

type: pointer
access: write only
mechanism: by reference

A linked list of addrinfo structures that contain the results of the operation.

Returns

An integer value is returned. Zero is success, non-zero is failure. Failure values can be interpreted
with gaistrerror().
struct addrinfo {

int ai_flags;

int ai _famly;

i nt ai_socktype;

int ai_protocol;

size_t ai _addrlen;

char *ai _canonnane;

struct sockaddr *ai _addr;
struct addrinfo *ai_next;

b

Use freeaddrinfo(res) to free the chain of data structures returned when the program is done using it.

getnameinfo()

getnameinfo() — Returns hostname and/or servicename information from a sockaddr structures. This
call can handle both IPv6 and IPv4 requests.

Format

int getnameinfo(sa, salen, host, hostlen, serv, servlen, flags)
struct sockaddr *sa;

size_t salen, hostlen, servlen;

char *host, *serv;

int flags;

Arguments

sa

Chapter 2. Socket Library Functions

VMS Usage: sockaddr
type: sockaddr
access: read only
mechanism: by reference

A pointer to a sockaddr to obtain information on.

salen

VMS Usage: sockaddr length
type: integer

access: read only
mechanism: by value

The length of the sockaddr structure.

host

VMS Usage: hostname
type: ASCIZ string
access: write only
mechanism: by reference

Storage area for a hostname to be returned.

hostlen

VMS Usage: length of hostname string space
type: integer

access: read only

mechanism: by value

The amount of space available in the host string for storing the hostname.

serv
VMS Usage: service_name
type: ASCIZ string
access: write only
mechanism: by reference

Storage area for a service name to be returned.

servlen

VMS Usage: length of servicename string space
type: integer

access: read only

Chapter 2. Socket Library Functions

‘mechanism: by value

The amount of space available in the serv string for storing the service name

Returns

An integer value is returned. Zero is success, non-zero is failure. Failure values can be interpretted
with gaistrerror().

gethostbyname()/gethostbyname_44()

gethostbyname()/gethostbyname_44() — Looks up a host by name in the binary host table

or the DNS Name Server and returns information about that host. An alternate entry point
_gethostbyname(), that looks only in the binary host table, is also available. The VSI TCP/IP
socket library is not reentrant. If you call into it from an AST (interrupt) routine, the results are
unpredictable. The gethostbyname_44() function is the BSD 4.4 sockaddr variant of this call. This
call is used automatically when | PSROOT: [| P. | NCLUDE. NETI NET] | N. His used and the
program is compiled with USE_BSD44_ENTRI ES defined.

Format

(struct hostent *) gethostbyname(Name);

(struct hostent *) _gethostbyname(Name);

char *Name;

Arguments

Name

VMS Usage: host_name
type: ASCIZ string
access: read only
mechanism: by reference

A C-language string containing the name of the host to look up.

Returns

If gethostbyname() succeeds, it returns a pointer to a structure of type hostent. If this function fails,
a value of 0 is returned, and the global variable h_errno is set to one of the DNS Name Server error
codes defined in the file | P$r oot : [| P. i ncl ude] net db. h.

The hostent structure is defined as follows:

struct hostent {

char *h_nane; /* official name */
char **h_aliases; /* alias list */

i nt h_addrtype; /* host address type */
i nt h_| engt h; /* length of address */
char **h_addr _|ist; /* list of addresses */

#define h_addr h_addr list[0] /* address, for conpat */

Chapter 2. Socket Library Functions

char *h_cput ype; /* cpu type */

char *h_opsys; /* operating system*/
char **h_pr ot os; /* protocols */

struct sockaddr *h_addresses; /* sockaddr form */
b

gethostbysockaddr()/gethostbysockaddr_44()

gethostbysockaddr()/gethostbysockaddr_44() — Looks up a host by socket address in

the binary host table or the DNS Name Server and returns information about that host. An
alternate entry point _gethostbysockaddr(), that looks only in the binary host table, is also
available. gethostbysockaddr() is identical in functionality to gethostbyaddr(), but takes its
arguments in a different form. The VSI TCP/IP socket library is not reentrant. If you call into
it from an AST (interrupt) routine, the results are unpredictable. The gethostbysockaddr_44()
function is the BSD 4.4 sockaddr variant of this call. This call is used automatically when

| PSROOT: [| P. | NCLUDE. NETI NET] I N. His used and the program is compiled with
USE_BSD44_ENTRI ES defined.

Format

(struct hostent *) gethostbysockaddr(Addr, Length);

struct sockaddr *Addr;

unsigned int Length;

Arguments

Addr

VMS Usage: socket_address
type: struct sockaddr
access: read only
mechanism: by reference

A pointer to a sockaddr structure

describing the address to look up.

Length

VMS Usage: socket_address length
type: longword (unsigned)
access: read only

mechanism: by value

The size, in bytes, of the sockaddr structure pointed to by Addr.

Returns

If gethostbysockaddr() succeeds, it returns a pointer to a structure of type hostent. (See int
sctp_getaddrlen (int family) for more information on the hostent structure.) If this function fails,
a value of 0 is returned, and the global variable h_errno is set to one of the DNS Name Server error
codes defined in the file | P$r oot : [| P. i ncl ude] net db. h.

22

Chapter 2. Socket Library Functions

gethostname()

gethostname() — Returns the Internet name of the host it is executed on. This name comes from the
logical name | PSHOST_NAME and can be set using the SET HOST-NAME command in the VSI
TCP/IP Network Configuration utility (NET-CONFIG).

Format
Status = gethostname(String, Length);

char *String;

unsigned int Length;

Arguments

String

VMS Usage: hostname
type: ASCIZ string
access: write only
mechanism: by reference

A pointer to a buffer to receive the host name.

Length

VMS Usage: hostname_length
type: longword (unsigned)
access: read only
mechanism: by value

The length of the buffer, in bytes. The buffer should be at least 33 bytes long to guarantee that the
complete host name is returned.

Returns

If the gethostname() function is successful, it returns a 0. It returns a -1 if it is unable to translate the
logical name.

getnetbyaddr()

getnetbyaddr() — Looks up a network by its network number in the binary host table or the DNS
Name Server and returns information about that network. An alternate entry point _getnetbyaddr(),
that looks only in the binary host table, is also available.

Format
(struct netent *) getnetbyaddr(Net, Protocol);

(struct netent *) _getnetbyaddr(Net, Protocol);

23

Chapter 2. Socket Library Functions

unsigned int Net, Protocol;

Arguments

Net

VMS Usage: network _number
type: longword (unsigned)
access: read only
mechanism: by value

The network number to look up.

Protocol

VMS Usage: protocol_number
type: longword (unsigned)
access: read only
mechanism: by value

The address family of the network to look up. For Internet networking, this should be specified as
AF_INET.

Returns

If getnetbyaddr() succeeds, it returns a pointer to a structure of type netent. (See int
sctp_getaddrlen (int family) for more information on the netent structure.) If this function fails, a
value of 0 is returned, and the global variable h_errno is set to one of the DNS Name Server error
codes defined in | P$r oot : [| P. i ncl ude] net db. h.

getnetbyname()

getnetbyname() — Looks up a network by name in the binary host table or the DNS Name Server
and returns information about that network. An alternate entry point _getnetbyname(), that looks
only in the binary host table, is also available.

Format
(struct netent *) getnetbyname(Name);

(struct netent *) _getnetbyname(Name);

char *Name;

Arguments

Name

VMS Usage: network _name
type: ASCIZ string
access: read only
mechanism: by reference

24

Chapter 2. Socket Library Functions

A pointer to a C-language string containing the name of the network.

Returns

If getnetbyname() succeeds, it returns a pointer to a structure of type netent. If this function fails,
a value of 0 is returned, and the global variable h_errno is set to one of the DNS Name Server error
codes defined in | P$r oot : [| P. i ncl ude] net db. h.

The netent structure is defined as follows:

struct
char
char
i nt
unsi gned | ong
struct

netent {

}s

Nn_nane; /
**n_aliases; /*
n_addrtype; /*
n_net; /*

sockaddr *n_addresses; [*

official nanme */
alias list */
address type */
network # */
sockaddr form */

getpeername()/getpeername_44()

getpeername()/getpeername_44() — Returns the name of the peer connected to the specified socket.
The accept_44() function is the BSD 4.4 sockaddr variant of this call. This call is used automatically
when | PSROOT: [| P. | NCLUDE. NETI NET] I N. His used and the program is compiled with

USE_BSD44_ENTRI ES defined.

Format

Status = getpeername(VMS_Channel, Address, AddrLen);

short VMS Channel;

struct sockaddr *Address;

unsigned int *AddrLen;

Arguments

VMS_Channel

VMS Usage: channel

type: word (signed)
access: read only
mechanism: by value

A channel to the socket.

Address

VMS Usage: socket_address
type: struct sockaddr
access: write only
mechanism: by reference

25

Chapter 2. Socket Library Functions

A result parameter. This argument is filled in with the address of the peer, as known to the
communications layer. The exact format of the Address argument is determined by the domain in
which the communication is occurring.

AddrLen

VMS Usage: socket _address length
type: longword (unsigned)
access: modify

mechanism: by reference

On entry, contains the length of the space pointed to by Address, in bytes. On return, it contains the
actual length, in bytes, of the address returned.

Returns

If the getpeername() is successful, a value of 0 is returned. If an error occurs, a value of -1 is
returned, and a more specific message is returned in the global variables socket_errno and vmserrno.

getprotobyname()

getprotobyname() — Looks up a protocol by name in the binary host table and returns information
about that protocol.

Format

(struct protoent *) getprotobyname(Name);

char *Name;

Arguments

Name

VMS Usage: protocol name
type: ASCIZ string
access: read only
mechanism: by reference

A pointer to a C-language string containing the name of the protocol.

Returns

If getprotobyname() succeeds, it returns a pointer to a structure of type protoent. If this function
fails, a value of 0 is returned.

The protoent structure is defined as follows:

struct protoent {

char *p_narne; /* official protocol nane */
char **p aliases; [/* alias list */
i nt p_proto; /* protocol # */

};

26

Chapter 2. Socket Library Functions

getprotobynumber()

getprotobynumber() — Looks up a protocol by number in the binary host table and returns
information about that protocol.

Format
(struct protoent *) getprotobynumber(Number);

unsigned int Number;

Arguments

Number

VMS Usage: protocol_number
type: longword (unsigned)
access: read only
mechanism: by value

The numeric value of the protocol.

Returns

If getprotobynumber() succeeds, it returns a pointer to a structure of type protoent. If this function
fails, a value of 0 is returned.

The protoent structure is defined as follows:

struct protoent {

char *p_narne; /* official protocol name */
char **p aliases; [* alias list */

i nt p_proto; [* protocol # */

b

getprotoent()

getprotoent() — Returns the next protocol entry from the binary host table. It is used with
setprotoent() and endprotoent() to scan through the protocol table. The scan is initialized
with setprotoent(), run by calling getprotoent() until it returns a 0, and terminated by calling
endprotoent().

Format

(struct protoent *) getprotoent();

Returns

The getprotoent() function returns either a 0, indicating that there are no more entries, or a pointer to
a structure of type protoent.

The protoent structure is defined as follows:

struct protoent {

27

Chapter 2. Socket Library Functions

char *p_narne; /* official protocol nane */
char **p_aliases; /[* alias list */

i nt p_proto; /* protocol # */

b

getservbyname()

getservbyname() — Looks up a service by name in the binary host table and returns information
about that service. The service must be present in the HOSTS. SERVI CES or HOSTS. LOCAL file,
and the host table must be compiled into binary form using the host table compiler. See the V.SI TCP/
IP Administrator’s Guide: Volume II for more information about editing and compiling the host table
files.

Format
(struct servent *) getservbyname(Name, Protocol);

char *Name, *Protocol;

Arguments

Name

VMS Usage: service_name
type: ASCIZ string
access: read only
mechanism: by reference

A pointer to a C-language string containing the name of the service.

Protocol

VMS Usage: protocol_name
type: ASCIZ string
access: read only
mechanism: by reference

A pointer to a C-language string containing the name of the protocol associated with the service, such
as "TCP".

Returns

If getservbyname() succeeds, it returns a pointer to a structure of type servent. If this function fails, a
value of 0 is returned.

The servent structure is defined as follows:

struct servent {

char *s_ nane; /* official service name */
char **s aliases; /* alias list */

i nt S_port; /* port # */

char *s _proto; /* protocol to use */

};

28

Chapter 2. Socket Library Functions

getservbyport()

getservbyport() — Looks up a service by protocol port in the binary host table and returns
information about that service. The service must be present in the HOSTS. SERVI CES or

HOSTS. LOCAL file, and the host table must be compiled into binary form using the host table
compiler. See the VSI TCP/IP Administrator’s Guide: Volume II for more information about editing
and compiling the host table files.

Format
(struct servent *) getservbyport(Number, Protocol);
unsigned int Number;

char *Protocol;

Arguments

Number

VMS Usage: service_number
type: longword (unsigned)
access: read only
mechanism: by value

The numeric value of the service port.

Protocol

VMS Usage: protocol name
type: ASCIZ string
access: read only
mechanism: by reference

A pointer to a C-language string containing the name of the protocol associated with the service, such
as "TCP".

Returns

If getservbyport() succeeds, it returns a pointer to a structure of type servent. (See int
sctp_getaddrlen (int family) for the format of the servent structure.) If this function fails, a value of
0 is returned.

getservent()

getservent() — Returns the next server entry from the binary host table. This function is used
with setservent() and endservent() to scan through the service table. The scan is initialized with
setservent(), run by calling getservent() until it returns a 0, and terminated by calling endservent().

Format

(struct servent *) getservent();

29

Chapter 2. Socket Library Functions

Returns

If getservent() succeeds, it returns a pointer to a structure of type servent. (See int sctp_getaddrlen
(int family) for the format of the servent structure.) If this function fails, a value of 0 is returned.

getsockname()/getsockname_44()
getsockname()/getsockname_44() — Returns the current name of the specified socket. The
getsockname_44() function is the BSD 4.4 sockaddr variant of this call. This call is used

automatically when IPSROOT:[IPINCLUDE.NETINET]IN.H is used and the program is compiled
with USE_BSD44 ENTRIES defined.

Format

Status = getsockname(VMS_Channel, Address, AddrLen);
short VMS_Channel;

struct sockaddr *Address;

unsigned int *AddrLen;

Arguments

VMS_Channel

VMS Usage: channel

type: word (signed)
access: read only
mechanism: by value

A channel to the socket.

Address

VMS Usage: socket_address
type: struct sockaddr
access: write only
mechanism: by reference

A result parameter. It is filled in with the address of the local socket, as known to the communications
layer. The exact format of the Address argument is determined by the domain in which the
communication is occurring.

AddrLen

VMS Usage: socket_address_length
type: longword (unsigned)
access: modify

mechanism: by reference

30

Chapter 2. Socket Library Functions

On entry, contains the length of the space pointed to by Address, in bytes. On return, it contains the
actual length, in bytes, of the address returned.

Returns

If getsockname() is successful, a ,value of 0 is returned. If an error occurs, a value of -1 is returned
and a more specific message is returned in the global variables socket _errno and vmserrno.

getsockopt()

getsockopt() — Retrieves the options associated with a socket. Options can exist at multiple protocol
levels; however, they are always present at the uppermost socket level. When manipulating socket
options, you must specify the level at which the option resides and the name of the option. To
manipulate options at the socket level, specify Level as SOL_SOCKET. To manipulate options at
any other level, specify the protocol number of the appropriate protocol controlling the option. For
example, to indicate that an option will be interpreted by the TCP protocol, set Level to the protocol
number of TCP, which can be determined by calling getprotobyname(). OptName and any specified
options are passed without modification to the appropriate protocol module for interpretation. The
include file | P$r oot : [| P. i ncl ude. sys] socket . h contains definitions for socket-level
options. Options at other protocol levels vary in format and name. For more information on what
socket options may be retrieved with getsockopt(), see setsockopt().

Format
Status = getsockopt(VMS_Channel, Level, OptName, OptVal, OptLen);

short VMS_Channel;

unsigned int Level, OptName, *OptLen;

char *OptVal;

Arguments

VMS_Channel

VMS Usage: channel

type: word (signed)
access: read only
mechanism: by value

A channel to the socket.

Level

VMS Usage: option_level

type: longword (unsigned)
access: read only
mechanism: by value

The protocol level at which the option will be manipulated. Specify Level as SOL_SOCKET, or as a
protocol number as returned by getprotobyname().

31

Chapter 2. Socket Library Functions

OptName

VMS Usage: option_name

type: longword (unsigned)
access: read only
mechanism: by value

The option to be manipulated.

OptVval

VMS Usage: dependent on OptName
type: byte buffer

access: write only
mechanism: by reference

A pointer to a buffer that will receive the current value of the option. The format of this buffer is
dependent on the option requested.

OptLen

VMS Usage: option_length

type: longword (unsigned)
access: modify

mechanism: by reference

On entry, contains the length of the space pointed to by OptVal, in bytes. On return, it contains the
actual length, in bytes, of the option returned.

Returns

If the getsockopt() is successful, a value of 0 is returned. If an error occurs, a value of -1 is returned,
and a more specific message is returned in the global variables socket errno and vmserrno.

gettimeofday()

gettimeofday() — Returns the current time of day in UNIX format. This is the number of seconds and
microseconds elapsed since January 1, 1970. gettimeofday() is part of the 4.3BSD run-time library,
but is not provided by VSI as part of the C run-time library. It is provided here for compatibility with

the 4.3BSD library.

Format
Status = gettimeofday(TimeVal);

struct timeval *TimeVal;

Arguments

TimeVal

VMS Usage:

UNIX_time

32

Chapter 2. Socket Library Functions

type: struct timeval
access: write only
mechanism: by reference

A pointer to a structure that receives the current time. The timeval structure is defined as follows:

struct tinmeval {

| ong tv_sec; /* seconds */

| ong tv_usec; /* and m croseconds */
1

Returns

The gettimeofday() function always returns a value of 0, which indicates it was successful.

hostalias()

hostalias() — Examines the user-specific host alias table (if the user has set one by defining the | P
$HOSTALI ASES logical name) to see if the specified host name is a valid alias for another host
name. This is normally called by gethostbyname() and res_search() automatically.

Format

(char *) hostalias(Name);

char *Name;

Arguments

Name

VMS Usage: host_name
type: ASCIZ string
access: read only
mechanism: by reference

A C-language string containing the name of the host to look up in the host alias table.

Returns

If successful, the hostalias() function returns a pointer to the character string of the canonical name of
the host. Otherwise, it returns a 0 to indicate that no alias exists.

htonl()

htonl() — Swaps the byte order of a four-byte integer from OpenVMS byte order to network byte
order. This allows you to develop programs that are independent of the hardware architecture on
which they are running.

Format

RetVal = htonl(Val);

33

Chapter 2. Socket Library Functions

unsigned long Val;

Arguments

Val

VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

The four-byte integer to convert to network byte order.

Returns

The htonl() function returns the byte-swapped integer that corresponds to Val . For example, if Val
1s 0xc029e401, the returned value is 0x01e429¢0.

htons()

htons() — Swaps the byte order of a two-byte integer from OpenVMS byte order to network byte
order. This allows you to develop programs that are independent of the hardware architecture on
which they are running.

Format
RetVal = htons(Val);

unsigned short Val;

Arguments

Val

VMS Usage: word_unsigned
type: word (unsigned)
access: read only
mechanism: by value

The two-byte integer to convert to network byte order.

Returns

The htons() function returns the byte-swapped integer that corresponds to Val . For example, if Val
1s 0x0017, the returned value is 0x1700.

inet_addr()

inet_addr() — Converts Internet addresses represented in the ASCII form "xx.yy.zz.ww" to a binary
representation in network byte order.

34

Chapter 2. Socket Library Functions

Format

RetVal = inet_addr(Address);

char *Address;

Arguments

Address

VMS Usage: internet_address_string
type: ASCIZ string

access: read only

mechanism: by reference

A pointer to a C-language string containing an ASCII representation of the Internet address to convert.

Returns
If successful, the inet_addr() function returns an integer corresponding to the binary representation

of the Internet address in network byte order. It returns a -1 to indicate that it could not parse the
specified Address string.

inet_Inaof()

inet_Inaof() — Returns the local network address portion of the specified Internet address. For
example, the class A address 0x0a050010 (10.5.0.16) is returned as 0x00050010 (5.0.16).

Format
RetVal = inet Inaof(Address);

struct in_addr Address;

Arguments

Address

VMS Usage: internet_address
type: struct in_addr
access: read only
mechanism: by value

The Internet address from which to extract the local network address portion. The Internet address is
specified in network byte order.

Returns

The inet_Inaof() function returns the local network address portion of the Internet address in
OpenVMS byte order.

35

Chapter 2. Socket Library Functions

inet_makeaddr()

inet_makeaddr() — Builds a complete Internet address from the separate host and network portions.

Format
RetVal = inet_makeaddr(Network, Host);

unsigned int Network, Host;

Arguments

Network

VMS Usage: network_number
type: longword (unsigned)
access: read only
mechanism: by value

The network portion of the Internet address to be constructed. The network portion is specified in
OpenVMS byte order.

Host

VMS Usage: host number

type: longword (unsigned)
access: read only
mechanism: by value

The host portion of the Internet address to be constructed. The host portion is specified in OpenVMS
byte order.

Returns

The inet_makeaddr() function returns the complete Internet address in network byte order.

inet_netof()

inet_netof() — Returns the network number portion of the specified Internet address. For example,
the class A address 0x0a050010 (10.5.0.16) is returned as 0x0a (10).

Format
RetVal = inet_netof(Address);

struct in_addr Address;

Arguments

Address

36

Chapter 2. Socket Library Functions

VMS Usage: internet_address
type: struct in_addr
access: read only
mechanism: by value

The Internet address from which to extract the network number portion. The Internet address is
specified in network byte order.

Returns

The inet_netof() routine returns the network portion of the Internet address in OpenVMS byte order.

inet_network()

nn

inet_network() — Interprets Internet network numbers represented in the ASCII form "xx", "xx.yy",
or "xx.yy.zz", and converts them into a binary representation in OpenVMS byte order.

Format

RetVal = inet_network(Address);

char *Address;

Arguments

Address

VMS Usage: network_address_string
type: ASCIZ string

access: read only

mechanism: by reference

A pointer to a C-language string containing an ASCII representation of the Internet network number
to convert.

Returns

If successful, the inet_network() function returns an integer corresponding to the binary
representation of the Internet network in OpenVMS byte order. It returns a -1 to indicate that it could

not parse the specified string.

inet_ntoa()

inet_ntoa() — Converts an Internet address represented in binary form into an ASCII string suitable
for printing.

Format

(char *) inet_ntoa(Address);

37

Chapter 2. Socket Library Functions

struct in_addr Address;

Arguments

Address

VMS Usage: internet_address
type: struct in_addr
access: read only
mechanism: by value

The Internet address in binary form. The Internet address is specified in network byte order.

Returns

The inet_ntoa() function returns a pointer to a C- language string corresponding to the Internet
address.

kiread()

klread() — Used with klseek() and ip_kernel nlist() to emulate the UNIX 4.3BSD nlist() function
and the reading of the /dev/kmem device. klread() and klseek() read OpenVMS kernel memory
through an interface that is similar to using read() and Iseek() on the /dev/kmem device. The
OpenVMS CMKRNL privilege is required to use klread(). Before calling klread(), specify the
address to read from using klseek().

Format
Status = klread(Buffer, Size);
char *Buffer;

unsigned int Size;

Arguments

Buffer

VMS Usage: arbitrary
type: byte buffer
access: write only
mechanism: by reference

The address to which to return the kernel memory.

Size

VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Chapter 2. Socket Library Functions

The number of bytes to read.

Returns

If successful, the klread() function returns the number of bytes read. It returns a -1 to indicate that it
failed because the kernel memory was not readable. This usually indicates that the current position, as
set by klseek(), is invalid.

kiseek()

klseek() — Used with klread() and ip_kernel nlist() to emulate the UNIX 4.3BSD nlist() function
and reading the /dev/kmem device. klread() and klseek() read OpenVMS kernel memory through an
interface that is similar to using read() and Iseek() on the /dev/kmem device. Use klseek() to set the
current position in the network kernel. This position will be used by klread() and klwrite() in the next
attempt to read or write data.

Format
Status = klseek(Position);

unsigned int Position;

Arguments

Position

VMS Usage: kernel_address
type: longword (unsigned)
access: read only
mechanism: by value

The address in the network kernel to make the current position for the next klread() or klwrite() call.

Returns

The klseek() routine returns the current position as a success status.

klwrite()

klwrite() — Used with klseek() and ip_kernel nlist() to emulate the UNIX 4.3BSD nlist() and
writing the /dev/kmem device. klwrite() and klseek() write OpenVMS kernel memory through

an interface that is similiar to using write() and Iseek() on the /dev/kmem device. The OpenVMS
CMKRNL privilege is required to use klwrite(). Before calling klwrite(), specify the address to write
using Klseek().

Format
Status = klwrite(Buffer, Size);
char *Buffer;

unsigned int Size;

39

Chapter 2. Socket Library Functions

Arguments

Buffer

VMS Usage: arbitrary
type: byte buffer
access: read only
mechanism: by reference

The address of the data to write into kernel memory.

Size

VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

The number of bytes to write.

Returns

If successful, the klwrite() function returns the number of bytes written. It returns a -1 to indicate that

it failed because the kernel memory was not writable. This usually indicates that the current position,
as set by klseek(), is invalid.

listen()

listen() — Specifies the number of incoming connections that may be queued waiting to be accepted.

This backlog must be specified before accepting a connection on a socket. The listen() function
applies only to sockets of type SOCK_STREAM.

Format
Status = listen(VMS_Channel, Backlog);
short VMS_Channel;

unsigned int Backlog;

Arguments

VMS_Channel

VMS Usage: channel

type: word (signed)
access: read only
mechanism: by value

A channel to the socket.

40

Chapter 2. Socket Library Functions

Backlog

VMS Usage: connection_backlog
type: longword (unsigned)
access: read only
mechanism: by value

The maximum length of the queue of pending connections. If a connection request arrives when the
queue is full, the request is ignored. The backlog queue length is limited to 5.

Returns

If listen() is successful, a value of 0 is returned. If an error occurs, a value of -1 is returned, and a
more specific message is returned in the global variables socket _errno and vmserrno.

ip_kernel_nlist

ip_kernel_nlist — A special version of the UNIX 4.3BSD nlist() function that reads the symbol
table to the VSI TCP/IP kernel. Unlike the UNIX 4.3BSD kernel, the VSI TCP/IP kernel's symbol
table must be relocated before you can use klseek(), klread(), or klwrite() to examine the networking
kernel. Many of the same kernel symbols available under 4.3BSD are also available under the VSI
TCP/IP software. Use of this interface is unsupported, as the symbol names and data types may
change in future releases of the Berkeley TCP/IP networking code and in future releases of the VSI
TCP/IP software. To access the symbol table to the VSI TCP/IP image that is currently running, read
from the file indicated by the logical name | PBNETWORK _| MAGE: . For more information about
how to use ip_kernel nlist(), see nlist().

Format

ip_kernel nlist

nlist()

nlist() — Examines the symbol table in an executable image or symbol table file.

Format
Status = nlist(Filename, nl);
char *Filename;

struct nlist nl[];

Arguments

Filename

VMS Usage: filename
type: ASCIZ string
access: read only
mechanism: by reference

41

Chapter 2. Socket Library Functions

The file name of the executable image or symbol table file to read.

nl

VMS Usage: symbol_table_info
type: array of struct nlist
access: modify

mechanism: by reference

An array of nlist structures. The n_name field of each element specifies the name of the symbol to
look up; the array is terminated by a null name. Each symbol is looked up in the file. If the symbol is
found, the n_type and n_value fields are filled in with the type and value of the symbol. Otherwise,

they are set to 0.

Returns

If successful, the nlist() function returns a 0. Otherwise, it returns a -1.

ntohl()

ntohl() — Swaps the byte order of a four-byte integer from network byte order to OpenVMS byte
order. This allows you to develop programs that are independent of the hardware architecture on
which they are running.

Format
RetVal = ntohl(Val);

unsigned long Val;

Arguments

Val

VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

The four-byte integer to convert to OpenVMS byte order.

Returns

The ntohl() function returns the byte-swapped integer that corresponds to Val. For example, if Val is
0x01e429¢0, the returned value is 0xc029¢401.

ntohs()

ntohs() — Swaps the byte order of a two-byte integer from network byte order to OpenVMS byte
order. This allows you to develop programs that are independent of the hardware architecture on
which they are running.

Chapter 2. Socket Library Functions

Format
RetVal = ntohs(Val);

unsigned short Val;

Arguments

Val

VMS Usage: word_unsigned
type: word (unsigned)
access: read only
mechanism: by value

The two-byte integer to convert to OpenVMS byte order.

Returns

The ntohs() function returns the byte-swapped integer that corresponds to Val. For example, if Val is
0x1700, the returned value is 0x0017.

recv()/recv_44()

recv()/recv_44() — Receives messages from a socket. This function is equivalent to a recvfrom()
function called with the From and FromLen arguments specified as zero. The socket read() function
is equivalent to a recv() function called with the Flags argument specified as zero. The length of the
message received is returned as the status. If a message is too long to fit in the supplied buffer and

the socket is type SOCK_DGRAM, excess bytes are discarded. If no messages are at the socket, the
receive function waits for a message to arrive, unless the socket is non-blocking (see socket ioctl
FIONBIO). In this case, a status of -1 is returned and the global variable socket errno is set to
EWOULDBLOCK. The recv_44() function is the BSD 4.4 sockaddr variant of this call. This call is
used automatically when | PSROOT: [| P. | NCLUDE. NETI NET] I N. His used and the program is
compiled with USE_BSD44 ENTRI ES defined.

Format

Status = int recv (short VMS Channel, char *Buffer, int Size, int Flags);

Arguments

VMS_ Channel

VMS Usage: channel

type: word (signed)
access: read only
mechanism: by value

A channel to the socket.

Buffer

43

Chapter 2. Socket Library Functions

VMS Usage: arbitrary
type: byte buffer
access: write only
mechanism: by reference

The address of a buffer in which to place the data read.

Size

VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by value

The length of the buffer specified by Buffer. The actual number of bytes read is returned in the
Status.

Flags

VMS Usage: mask _word
type: word (unsigned)
access: read only
mechanism: by value

Control information that affects the recv() function. The Flags argument is formed by ORing one or
more of the following values:

#defi ne MSG_OOB 0x1 /* process out-of-band data */
#defi ne MSG PEEK 0x2 /* peek at incom ng message */

The MSG_OOB flag causes recv() to read any out-of-band data that has arrived on the socket.

The MSG_PEEK flag causes recv() to read the data present in the socket without removing the data.
This allows the caller to view the data, but leaves it in the socket for future recv() calls.

Returns

If recv() is successful, a count of the number of characters received is returned. A return value of 0
indicates an end-of-file; that is, the connection has been closed. A return value of -1 indicates an error
occurred. A more specific message is returned in the global variables socket_errno and vmserrno.

recvfrom()recvirom_44()

recvirom()recvfrom_44() — Receives messages from a socket. This function is equivalent to the
recv() function, but takes two additional arguments that allow the caller to determine the remote
address from which the message was received. The length of the message received is returned as the
status. If a message is too long to fit in the supplied buffer and the socket is type SOCK _DGRAM,
excess bytes are discarded. If no messages are available at the socket, the receive call waits for

a message to arrive, unless the socket is non-blocking (see socket ioctl FIONBIO). In this case,

a status of -1 is returned and the global variable socket_errno is set to EWOULDBLOCK. The
recvirom_44() function is the BSD 4.4 sockaddr variant of this call. This call is used automatically

44

Chapter 2. Socket Library Functions

when | PSROOT: [| P. | NCLUDE. NETI NET] I N. His used and the program is compiled with
USE_BSD44_ENTRI ES defined.

Format

Status = int recvfrom (short VMS_Channel, char *Buffer, int Size, int Flags, struct sockaddr *From,

unsigned int *FromLen);

Arguments
VMS_ Channel
VMS Usage: channel
type: word (signed)
access: read only
mechanism: by value
A channel to the socket.
Buffer
VMS Usage: arbitrary
type: byte buffer
access: write only
mechanism: by reference

The address of a buffer in which to place the data read.

Size

VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by value

The length of the buffer specified by Buffer. The actual number of bytes read is returned in the
Status.

Flags

VMS Usage: mask _word
type: word (unsigned)
access: read only
mechanism: by value

Control information that affects the recvfrom() function. The Flags argument is formed by ORing one
or more of the following values:

#defi ne M5G OOB 0Ox1 /* process out-of-band data */
#def i ne MSG PEEK 0x2 /* peek at incom ng nmessage */

The MSG_OOB flag causes recvfrom() to read any out-of-band data that has arrived on the socket.

45

Chapter 2. Socket Library Functions

The MSG_PEEK flag causes recvfrom() to read the data present in the socket without removing the
data. This allows the caller to view the data, but leaves it in the socket for future recvfrom() calls.

From

VMS Usage: socket_address
type: struct sockaddr
access: write only
mechanism: by reference

On return, this optional argument is filled in with the address of the host that transmitted the packet, as
known to the communications layer. The exact format of the Address argument is determined by the
domain in which the communication is occurring.

FromLen

VMS Usage: socket_address_length
type: longword (unsigned)
access: modify

mechanism: by reference

On entry, this optional argument contains the length of the space pointed to by From, in bytes. On
return, it contains the actual length, in bytes, of the address returned.

Returns

If recvfrom() is successful, a count of the number of characters received is returned. A return value of
0 indicates an end-of-file condition; that is, the connection has been closed. If an error occurs, a value
of -1 is returned, and a more specific message is returned in the global variables socket_errno and
vmserrno.

recvmsg()/recvmsg_44()

recvmsg()/recvmsg 44() — Receives messages from a socket. This function is equivalent

to the recvfrom() function, but takes its arguments in a different fashion and can receive into
noncontiguous buffers. The length of the message received is returned as the status. If a message
is too long to fit in the supplied buffer and the socket is type SOCK_DGRAM, excess bytes

are discarded. If no messages are available at the socket, the receive call waits for a message to
arrive, unless the socket is non-blocking (see socket ioctl FIONBIO). In this case, a status of -1
is returned and the global variable socket_errno is set to EWOULDBLOCK. The recvmsg_44()
function is the BSD 4.4 sockaddr variant of this call. This call is used automatically when

| PEBROOT: [| P. | NCLUDE. NETI NET] I N. His used and the program is compiled with
USE_BSD44_ENTRI ES defined.

Format

Status = recvmsg(VMS_Channel, Message, Flags);
short VMS_Channel;

struct msghdr *Message;

unsigned int Flags;

46

Chapter 2. Socket Library Functions

Arguments

VMS_ Channel

VMS Usage: channel

type: word (signed)
access: read only
mechanism: by value

A channel to the socket.

Message

VMS Usage: message header
type: struct msghdr
access: read only
mechanism: by reference

A pointer to a "msghdr" structure that describes the buffer to be received into. The access rights
portion of the structure is unused.

Flags

VMS Usage: mask longword
type: longword (unsigned)
access: read only
mechanism: by value

Control information that affects the recvmsg() function. The Flags argument is formed by ORing one
or more of the following values:

#def i ne MSG OOB 0x1 /* process out-of-band data */
#def i ne MSG PEEK 0x2 /* peek at incom ng nmessage */

The MSG_OOB flag causes recvmsg() to read any out-of-band data that has arrived on the socket.

The MSG_PEEK flag causes recvmsg() to read the data present in the socket without removing the
data. This allows the caller to view the data, but leaves it in the socket for future recvmsg() calls.

Returns

If recvmsg() is successful, a count of the number of characters received is returned. A return value of
0 indicates an end-of-file condition; that is, the connection has been closed. If an error occurs, a value
of -1 is returned, and a more specific message is returned in the global variables socket_errno and
vmserrno.

select()

select() — Examines the OpenVMS Channel sets whose addresses are passed in ReadFds, WriteFds,
and ExceptFds to see if some of their Channels are ready for reading, ready for writing, or have

an exceptional condition pending. On return, select() replaces the given Channel sets with subsets
consisting of the Channels that are ready for the requested operation. The total number of ready
Channels in all the sets is returned.

47

Chapter 2. Socket Library Functions

Description

The select() function is only useful for NETWORK file descriptors and cannot be used for any other
OpenVMS 1/0 device.

The Channel sets are stored as bit fields in arrays of integers. The following macros are provided

for manipulating such Channel sets: FD_ZERO(&fdset) initializes a Channel set fdset to the

null set; FD_SET(VMS_Channel, &fdset) includes a particular Channel VMS_Channel in fdset;
FD_CLR(VMS_Channel, &fdset) removes VMS_Channel from fdset; FD _ISSET(VMS_Channel,
&fdset) is nonzero if VMS_Channel is a member of fdset, otherwise it is zero. The behavior of these
macros is undefined if a Channel value is less than zero or greater than or equal to FD_SETSIZE *
CHANNELSIZE, which is normally at least equal to the maximum number of Channels supported
by the system. Make sure that the definition of these macros comes from the VSI TCP/IP t ypes. h
file, as the definitions differ from the UNIX definitions.

Note

Do not change the value of FD_SETSI ZE. However, if you must change it, make sure its value is
equal to the maximum number of channels your system can handle.

The VSI TCP/IP socket library is not reentrant. If you call into it from an AST (interrupt) routine,
the results are unpredictable. The select() call must not be used while ASTs have been disabled. If
the select() call is performed with ASTs disabled, the select() call will never return and will hang
the program from which it was called. Instances when this improper call to select() can occur are as
follows:

* A call to select() is performed within an AST routine (that is, executing an AST routine disables the
delivery of other ASTs at the same (user-mode) priority).

* You have explicitly disabled AST delivery in normal (non-AST) code using the $SETAST system
service.

Format

Status = int select(int Width, fd_set, *ReadFds, fd set, *WriteFds, fd set, *ExceptFds,
struct timeval, *Timeout);

FD SET (VMS_Channel, &fdset)

FD CLR (VMS_Channel, &fdset)

FD _ISSET (VMS_Channel, &fdset)

FD ZERO (&fdset)

fd set fdset;

Arguments

Width
VMS Usage: channel count

48

Chapter 2. Socket Library Functions

type: long (unsigned)
access: read only
mechanism: by value

The number of bits to be checked in each bit mask that represents a Channel; the Channels from
0 through Width-1 in the Channel sets are examined. Typically, width has the value returned by
getdtablesize for the maximum number of Channels.

ReadFds

VMS Usage: channel bitmask
type: struct fd_set
access: modify
mechanism: by reference

A bit-mask of the Channels that select() should test for the ready for reading status. May be specified
as a NULL pointer if no Channels are of interest. Selecting true for reading on a Channel on which
a listen() call has been performed indicates that a subsequent accept() call on that Channel will not

block.

WriteFds

VMS Usage: channel bitmask
type: struct fd_set
access: modify
mechanism: by reference

A bit-mask of the Channels that select() should test for the ready for writing status. May be specified
as a NULL pointer if no Channels are of interest.

ExceptFds

VMS Usage: channel bitmask
type: struct fd_set
access: modify
mechanism: by reference

A bit-mask of the Channels that select() should test for exceptional conditions pending. May be
specified as a NULL pointer if no Channels are of interest. Selecting true for exception conditions
indicates that out-of-band data is present in the Channel's input buffers.

Timeout

VMS Usage: timeout

type: struct timeval
access: read only
mechanism: by reference

A maximum interval to wait for the selection to complete. If Timeout is a NULL pointer, the select
blocks indefinitely. To effect a poll, the Timeout argument should be a non-NULL pointer, pointing to

a zero-valued timeval structure.

49

Chapter 2. Socket Library Functions

Returns

select() returns the number of ready Channels that are contained in the Channel sets, or -1 if an error
occurred. If the time limit expires, select() returns 0. If select() returns with an error, the Channel sets
are unmodified.

select_wake()

select_wake() — Wakes a process waiting in a select() call, aborting the select() operation. This
function may be called from an AST (interrupt) routine, in which case the select() call will be aborted
when the AST routine completes.

Format

select wake();

send()/send_44()

send()/send_44() — Transmits a message to another socket. This function is equivalent to a
sendto() called with the To and ToLen arguments specified as zero. The socket write() function
is equivalent to a send() function called with Flags specified as zero. Use the send() function only
when a socket has been connected with connect(); however, you can use sendto() at any time. If
no message space is available at the socket to hold the message to be transmitted, send() blocks
unless the socket has been placed in non-blocking I/O mode via the socket ioctl FIONBIO. If

the socket is type SOCK_DGRAM and the message is too long to pass through the underlying
protocol in a single unit, the error EMSGSIZE is returned and the message is not transmitted. The
send_44() function is the BSD 4.4 sockaddr variant of this call. This call is used automatically
when | PSROOT: [| P. | NCLUDE. NETI NET] I N. His used and the program is compiled with
USE_BSD44_ENTRI ES defined.

Format
Status = int send (short VMS_Channel, char *Buffer, int Size[, int Flags]);

If Flags are not specified, then 0 (zero) is used.

Arguments

VMS_Channel

VMS Usage: channel

type: word (signed)
access: read only
mechanism: by value

A channel to the socket.

Buffer
VMS Usage: arbitrary
type: byte buffer

50

Chapter 2. Socket Library Functions

access: read only

mechanism: by reference

The address of a buffer containing the data to send.

Size

VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by value

The length of the buffer specified by Buffer.

Returns

If the send() function is successful, the count of the number of characters sent is returned. If an error
occurs, a value of -1 is returned, and a more specific message is returned in the global variables
socket_errno and vmserrno.

sendmsg()/sendmsg_44()

sendmsg()/sendmsg_44() — Transmits a message to another socket. It is equivalent to sendto(),
but takes its arguments in a different fashion and can send noncontiguous data. If no message
space is available at the socket to hold the message to be transmitted, sendmsg() blocks unless

the socket has been placed in non-blocking I/0 mode via the socket ioctl FIONBIO. If the

socket is type SOCK_DGRAM and the message is too long to pass through the underlying
protocol in a single unit, the error EMSGSIZE is returned and the message is not transmitted. The
sendmsg_44() function is the BSD 4.4 sockaddr variant of this call. This call is used automatically
when | PSROOT: [| P. | NCLUDE. NETI NET] I N. His used and the program is compiled with
USE_BSD44_ENTRI ES defined.

Format

Status = sendmsg(VMS_Channel, Message, Flags);
short VMS_Channel;

struct msghdr *Message;

unsigned int Flags;

Arguments

VMS_Channel

VMS Usage: channel

type: word (signed)
access: read only
mechanism: by value

51

Chapter 2. Socket Library Functions

A channel to the socket.

Message

VMS Usage: message header
type: struct msghdr
access: read only
mechanism: by reference

A pointer to a "msghdr" structure that describes the data to be sent and the address to send it to. The

access rights portion of the structure is unused.

Flags

VMS Usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Control information that affects the sendto() function. The Flags argument can be zero or the
following:

#define MSG OOB Ox1 /* process out-of-band data */

The MSG_OOB flag causes sendto() to send out-of-band data on sockets that support this operation

(such as SOCK_STREAM).

Returns

If the sendmsg() function is successful, the count of the number of characters sent is returned. If an

error occurs, a value of -1 is returned, and a more specific message is returned in the global variables

socket_errno and vmserrno.

sendto()/sendto_44

sendto()/sendto_44 — Transmits a message to another socket. It is equivalent to send(), but

also allows the caller to specify the address to which to send the message. The sendto() function
can be used on unconnected sockets, while send() and socket_write() cannot. If no message
space is available at the socket to hold the message to be transmitted, sendto() blocks unless

the socket has been placed in non-blocking I/0 mode via the socket ioctl FIONBIO. If the

socket is type SOCK_DGRAM and the message is too long to pass through the underlying
protocol in a single unit, the error EMSGSIZE is returned and the message is not transmitted. The
sendto_44() function is the BSD 4.4 sockaddr variant of this call. This call is used automatically
when | PSROOT: [| P. | NCLUDE. NETI NET] I N. His used and the program is compiled with
USE_BSD44_ENTRI ES defined.

Format
Status = sendto(VMS_Channel, Buffer, Size, Flags, To, ToLen);
short VMS_Channel;

char *Buffer;

52

Chapter 2. Socket Library Functions

int Size;
unsigned short Flags;
struct sockaddr *To;

unsigned int ToLen;

Arguments

VMS_Channel

VMS Usage: channel
type: word (signed)
access: read only
mechanism: by value

A channel to the socket.

Buffer

VMS Usage: arbitrary
type: byte buffer
access: read only
mechanism: by reference

The address of a buffer containing the data to send.

Size

VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by value

The length of the buffer specified by Buffer.

Flags

VMS Usage: mask _word
type: word (unsigned)
access: read only
mechanism: by value

Control information that affects the sendto() function. The Flags argument can be zero or the
following:

#defi ne MSG OOB 0x1 /* process out-of-band data */

The MSG_OOB flag causes sendto() to send out-of-band data on sockets that support this operation
(such as SOCK_STREAM).

53

Chapter 2. Socket Library Functions

To

VMS Usage: socket_address
type: struct sockaddr
access: read only
mechanism: by reference

This optional argument is a pointer to the address to which the packet should be transmitted. The
exact format of the Address argument is determined by the domain in which the communication is

occurring.

ToLen

VMS Usage: socket_address_length
type: longword (unsigned)
access: read only

mechanism: by value

This optional argument contains the length of the address pointed to by the To argument.

Returns

If the sendto() function is successful, the count of the number of characters sent is returned. If an
error occurs, a value of -1 is returned, and a more specific message is returned in the global variables
socket_errno and vmserrno.

sethostent()

sethostent() — Initializes the host table and DNS Name Server routines. It is usually unnecessary to
call this function because the host table and Name Server routines are initialized automatically when
any of the other host table routines are called.

Format
(void) sethostent(StayOpen);

unsigned int StayOpen,;

Arguments

StayOpen

VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Specifies whether the DNS Name Resolver should use TCP or UDP to communicate with the DNS
Name Server. A nonzero value indicates TCP, and a value of 0 (the default if sethostent() is not

called) indicates UDP.

Chapter 2. Socket Library Functions

setnetent()

setnetent() — Initializes the host table and DNS Name Server routines. It is usually unnecessary to
call this function because the host table and Name Server routines are initialized automatically when
any of the other host table routines are called.

Format
(void) setnetent(StayOpen);

unsigned int StayOpen,;

Arguments

StayOpen

VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Specifies whether the DNS Name Resolver should use TCP or UDP to communicate with the DNS
Name Server. A nonzero value indicates TCP, and a value of 0 (the default if setnetent() is not called)
indicates UDP.

setprotoent()

setprotoent() — Initializes the host table routines and sets the next protocol entry returned by
getprotoent() to be the first entry.

Format
(void) setprotoent(StayOpen);

unsigned int StayOpen;

Arguments

StayOpen

VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Provided only for compatibility with UNIX 4.3BSD, and is ignored by the VSI TCP/IP software.

setservent()

setservent() — Initializes the host table routines and sets the next service entry returned by
getservent() to be the first entry.

55

Chapter 2. Socket Library Functions

Format
(void) setservent(StayOpen);

unsigned int StayOpen;

Arguments

StayOpen

VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Provided only for compatibility with UNIX 4.3BSD, and is ignored by the VSI TCP/IP software.

setsockopt()

setsockopt() — Manipulates options associated with a socket. Options may exist at multiple protocol
levels; however, they are always present at the uppermost socket level. When manipulating socket
options, you must specify the level at which the option resides and the name of the option. To
manipulate options at the socket level, specify Level as SOL_SOCKET. To manipulate options at
any other level, specify the protocol number of the appropriate protocol controlling the option. For
example, to indicate that an option is to be interpreted by the TCP protocol, set Level to the protocol
number of TCP; see getprotobyname(). OptName and any specified options are passed without
modification to the appropriate protocol module for interpretation. The include file | P$r oot :
[1P.include. sys] socket . h contains definitions for socket-level options. Options at other
protocol levels vary in format and name.

Format
Status = setsockopt(VMS_Channel, Level, OptName, OptVal, OptLen);

short VMS_Channel;

unsigned int Level, OptName, OptLen;

char *OptVal;

Arguments

VMS Channel

VMS Usage: channel

type: word (signed)
access: read only
mechanism: by value

A channel to the socket.

Level

56

Chapter 2. Socket Library Functions

VMS Usage: option_level

type: longword (unsigned)
access: read only
mechanism: by value

The protocol level at which the option is to be manipulated. Level can be specified as SOL_SOCKET,
or a protocol number as returned by getprotobyname().

OptName

VMS Usage: option_name

type: longword (unsigned)
access: read only
mechanism: by value

The option that is to be manipulated.

OptVval

VMS Usage: dependent on OptName
type: byte buffer

access: read only

mechanism: by reference

A pointer to a buffer that contains the new value of the option. The format of this buffer depends on

the option requested.

OptLen

VMS Usage: option_length

type: longword (unsigned)
access: read only
mechanism: by value

The length of the buffer pointed to by OptVal.

Returns

If the setsockopt() is successful, a value of 0 is returned. If an error occurs, a value of -1 is returned,
and a more specific message is returned in the global variables socket errno and vmserrno.

shutdown()

shutdown() — Shuts down all or part of a full-duplex connection on the socket associated with
VMS_Channel. This function is usually used to signal an end-of-file to the peer without closing the

socket, which would prevent further data from being received.

Format

Status = shutdown(VMS_Channel, How);

57

Chapter 2. Socket Library Functions

short VMS Channel;

unsigned int How;

Arguments

VMS Channel

VMS Usage: channel

type: word (signed)
access: read only
mechanism: by value

A channel to the socket.

How

VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Controls which part of the full-duplex connection to shut down. If How is 0, further receive
operations are disallowed. If How is 1, further send operations are disallowed. If How is 2, further

send and receive operations are disallowed.

Returns

If shutdown() is successful, a value of 0 is returned. If an error occurs, a value of -1 is returned, and a

more specific error message is returned in the global variables socket_errno and vmserrno.

socket()

socket() — Creates an end point for communication and returns an OpenVMS channel that describes

the end point.

Format

VMS Channel = socket(Address_Family, Type, Protocol);

short VMS_Channel;

unsigned int Address Family, Type, Protocol;

Arguments

Address_Family

VMS Usage: address_family

type: longword (unsigned)
access: read only

58

Chapter 2. Socket Library Functions

‘mechanism: ‘by value

An address family with which addresses specified in later operations using the socket should be
interpreted. The following formats are currently supported; they are defined in the include file | P
$root: [IP.include. sys] socket. h: AF_| NET, Internet (TCP/IP) addresses.

Type

VMS Usage: socket_type

type: longword (unsigned)
access: read only
mechanism: by value

The semantics of communication using the created socket. The following types are currently defined:
SOCK_STREAM SOCK_DGRAM SOCK_RAW

A SOCK_STREAM socket provides a sequenced, reliable, two-way connection-oriented byte
stream with an out- of-band data transmission mechanism. A SOCK_DGRAM socket supports
communication by connectionless, unreliable messages of a fixed (typically small) maximum
length. SOCK_RAW sockets provide access to internal network interfaces. The type SOCK RAW is
available only to users with SYSPRYV privilege.

The Type argument, together with the Address_Family argument, specifies the protocol to be used.
For example, a socket created with AF_INET and SOCK_STREAM is a TCP socket, and a socket
created with AF_INET and SOCK_DGRAM is a UDP socket.

Protocol

VMS Usage: protocol_number
type: longword (unsigned)
access: read only
mechanism: by value

A particular protocol to be used with the socket. Normally, only a single protocol exists to support a
particular socket type using a given address format. However, it is possible that many protocols may
exist, in which case a particular protocol must be specified by Protocol. The protocol number to use
depends on the communication domain in which communication will take place.

For TCP and UDP sockets, the protocol number MUST be specified as 0. For SOCK_RAW sockets,
the protocol number should be the value returned by getprotobyname().

Returns
If the socket() is successful, an OpenVMS channel is returned. If an error occurs, a value of -1 is

returned, and a more specific error message is returned in the global variables socket_errno and
vmserrno.

socket_close()

socket close() — Deassigns the OpenVMS channel from the VSI TCP/IP INET: device. When
the last channel assigned to the device is deassigned, the device and attached socket are deleted. If

59

Chapter 2. Socket Library Functions

the SO LINGER socket option is set and data remains in the socket's output queue, socket close()
deletes only the device. The attached socket remains in the system until the data is sent, after which it
is deleted. Once socket_close() is called, there is no way to reference this socket. Normally, channels
are automatically deassigned at image exit. However, because there is a limit on the number of open
channels per process, the socket _close() function is necessary for programs that deal with many
connections.

Format
Status = socket close(VMS_Channel);

short VMS_Channel;

Arguments

VMS Channel

VMS Usage: channel

type: word (signed)
access: read only
mechanism: by value

A channel to the socket to close.

Returns

If the socket_close() is successful, a value of 0 is returned. If an error occurs, a value of -1 is returned,
and a more specific error message is returned in the global variables socket_errno and vmserrno.

socket_ioctl()

socket_ioctl() — Performs a variety of functions on the network. In particular, it manipulates socket
characteristics, routing tables, ARP tables, and interface characteristics. A socket_ioctl() request has
encoded in it whether the argument is an input or output parameter, and the size of the argument, in
bytes. Macro and define statements used in specifying a socket_ioctl() request are located in the file
| P$root:[IP.include.sys]ioctl.h.

Format

Status = socket_ioctl(VMS_Channel, Request, ArgP);
short VMS_Channel;

unsigned int Request;

char *ArgP;

Arguments

VMS_ Channel
VMS Usage: channel

60

Chapter 2. Socket Library Functions

type: word (signed)
access: read only
mechanism: by value

A channel to the socket.

Request

VMS Usage: ioctl_request

type: longword (unsigned)
access: read only
mechanism: by value

Which socket_ioctl() function to perform.

ArgP

VMS Usage: arbitrary

type: byte buffer

access: read, write, or modify depending on Request
mechanism: by reference

A pointer to a buffer whose format and function depend on the Request specified.

Returns

If the socket_ioctl() is successful, a value of 0 is returned. If an error occurs, a value of -1 is returned,

and a more specific error message is returned in the global variables socket_errno and vmserrno.

For a list of the socket_ioctl() functions supported by VSI TCP/IP, see the following pages.

socket ioctl FIONBIO

socket ioctl FIONBIO — Controls nonblocking I/O on a socket. If nonblocking I/O is enabled and

another function is called that would have to wait for a connection, for data to arrive, or for data to be
transmitted, the function completes with a -1 error return, and the global variable socket_errno is set

to EWOULDBLOCK.

Format

Status = socket_ioctl(VMS_Channel, FIONBIO, Enable);

unsigned int *Enable;

Arguments

Enable

VMS Usage:

longword_unsigned

61

Chapter 2. Socket Library Functions

type: longword (unsigned)
access: read only
mechanism: by reference

A pointer to an integer that specifies whether nonblocking I/0 is enabled or disabled. A value of 1
enables nonblocking 1/0, and a value of 0 disables nonblocking 1/0. By default, nonblocking 1/O is
disabled when a socket is created.

socket ioctl FIONREAD

socket ioctl FIONREAD — Retrieves the number of bytes waiting to be read. A return of 0 indicates
that no data is buffered.

Format
Status = socket_ioctl(VMS_Channel, FIONREAD, Count);

unsigned int *Count;

Arguments

Count

VMS Usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

A pointer to an integer buffer that will receive a count of the number of characters waiting to be read.

socket ioctl SIOCADDRT

socket ioctl SIOCADDRT — Adds routing information to the network routing tables. This function
does not modify the socket itself, but rather modifies the operation of the network in general. It does
not matter what the state of the socket is. Normally, to modify Internet routing tables, you use a socket
created with the AF_INET and SOCK_DGRAM arguments.

Format
Status = socket ioctl(VMS_Channel, SIOCADDRT, Route);

struct rtentry *Route;

Arguments

Route

VMS Usage: routing_entry
type: struct rtentry

62

Chapter 2. Socket Library Functions

access: read only

mechanism: by reference

A pointer to the address of a rtentry structure that describes the route to be added. The rtentry
structure is defined in | P$r oot : [i p. i ncl ude. net] rout e. h as follows:

struct rtentry {
u long rt_hash;
struct sockaddr rt_dst;
struct sockaddr rt_gateway;
short rt_flags;
short rt_refcnt;
u long rt_use;
struct ifnet *rt_ifp;

}s

Field Description

rt_hash, rt_refent, rt_use, and |Are ignored by SIOCADDRT and should be set to zero.
rt_ifp

rt_dst Specifies the address of the destination host or network.
rt_gateway Specifies the address of the local gateway to this host or network.
rt_flags Specifies one or more of the following flags that affect a routing
entry:
#defi ne RTF_UP Ox1 /* route useable */
#defi ne RTF_GATEWAY 0x2 /* destination is a
gateway */

#def i ne RTF_HOST 0x4 /* host entry (net
ot herw se) */

RTF_UP — Indicates that the route is usable. It should always be
specified.

RTF_GATEWAY — Indicates that the next hop to the destination
is a gateway, so that the output routines know to address the
gateway rather than the destination directly.

RTF HOST — Indicates that the address specified in rt_dst is an
Internet host, rather than an Internet network (the default).

socket ioctl SIOCDELRT

socket ioctl SIOCDELRT — Deletes routing information from the network routing tables. This
function does not modify the socket itself, but rather modifies the operation of the network in general.
It does not matter what the state of the socket is. Normally, to modify Internet routing tables, you use

a socket created with the AF_INET and SOCK_DGRAM arguments. It is impossible to obtain a list of
the routes installed via socket_ioctl(). To delete a route, you must either know it already exists or use
ip_kernel_nlist() to read the routing tables directly from the networking kernel.

Format

Status = socket ioctl(VMS_Channel, SIOCDELRT, Route);

63

Chapter 2. Socket Library Functions

struct rtentry *Route;

Arguments

Route

VMS Usage: routing_entry
type: struct rtentry
access: read only
mechanism: by reference

A pointer to the address of a rtentry structure that describes the route to be deleted. The rtentry

structure is defined in | P$r oot :

struct rtentry {
u_long rt_hash;

[i p.include. net]route. h as follows:

struct sockaddr rt_dst;
struct sockaddr rt_gateway;

short rt_flags;
short rt_refcnt;
u long rt_use;

struct ifnet *rt_ifp;

b

Field

Description

rt_hash, rt_refent, rt_use, and
rt_ifp

Are ignored by SIOCDELRT and should be set to zero.

rt_dst Specifies the address of the destination host or network.
rt_gateway Specifies the address of the local gateway to this host or network.
rt_flags Specifies one or more of the following flags that affect a routing

entry:

#defi ne RTF_UP Ox1 /* route useable */
#defi ne RTF_GATEVWAY 0x2 /* destination is a
gateway */

#defi ne RTF_HOST Ox4 [/* host entry (net
ot herwi se) */

RTF_UP — Indicates that the route is usable. It should always be
specified.

RTF_GATEWAY — Indicates that the next hop to the destination
is a gateway, so that the output routines know to address the
gateway rather than the destination directly.

RTF _HOST — Indicates that the address specified in rt_dst is an
Internet host, rather than an Internet network (the default).

socket ioctl SIOCATMARK

socket ioctl SIOCATMARK — Retrieves an indication as to whether the next byte in the stream
coincides with an out-of-band or URGENT data mark.

64

Chapter 2. Socket Library Functions

Format
Status = socket_ioctl(VMS_Channel, SIOCATMARK, AtMark);

unsigned int *AtMark;

Arguments

AtMark

VMS Usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

A pointer to an integer buffer that will receive the indication. The buffer is set to 0 if the socket is not
at the out-of-band mark. It is set to nonzero if the socket is at the out-of-band mark.

socket ioctl SIOCDARP

socket ioctl SIOCDARP — Deletes an entry from the ARP table. This format is compatible with the
UNIX 4.3BSD function of the same name.

Format
Status = socket_ioctl (VMS_Channel, SIOCDARP, ARP_Req);

struct arpreq *ARP_Req;

Arguments

ARP_Req

VMS Usage: arp_request
type: struct arpreq
access: read only
mechanism: by reference

The address of an arpreq structure that contains the protocol address and the hardware address. The
arpreq structure is defined in | P$r oot : [i p. i ncl ude. net]if _ar p. h as follows:

struct arpreq {

struct sockaddr arp_pa; /* protocol address */
struct sockaddr arp_ha; /* hardware address */
i nt arp_fl ags; /[* flags */

s

/* arp_flags and at_flags field values */

#def i ne ATF_I NUSE 0x01 /* entry in use */

#def i ne ATF_COM 0x02 /* conpleted entry (enaddr valid) */

#def i ne ATF_PERM 0x04 /* permanent entry */

65

Chapter 2. Socket Library Functions

#def i ne ATF_PUBL 0x08 /* publish entry (respond for other host)
*/

#def i ne ATF_USETRAI LERS 0x10 /* has requested trailers */
#def i ne ATF_PROXY 0x20 /* Do PROXY arp */

The arp_pa field is a sockaddr field that is set to the ip address the remote interface uses.

The arp_ha.sa_data field is 6 bytes of binary data that represents the Ethernet address of the remote
interface.

socket ioctl SIOCGARP

socket ioctl SIOCGARP — Displays an entry in the ARP table. This function is compatible with the
UNIX 4.3BSD function of the same name.

Format
Status = socket_ioctl (VMS_Channel, SIOCGARP, ARP_Req);

struct arpreq *ARP_Req;

Arguments

ARP_Req

VMS Usage: arp_request
type: struct arpreq
access: modify
mechanism: by reference

The address of an arpreq structure that contains the protocol address and the hardware address. The
arpreq structure is defined in | P$r oot : [i p. i ncl ude. net]if_arp. h as follows:

struct arpreq {

struct sockaddr arp_pa; /* protocol address */
struct sockaddr arp_ha; /* hardware address */
i nt arp_fl ags; /* flags */
i
/* arp_flags and at_flags field values */
#def i ne ATF_I NUSE 0x01 /* entry in use */
#def i ne ATF_COM 0x02 /* conpleted entry (enaddr valid) */
#def i ne ATF_PERM 0x04 /* permanent entry */
#def i ne ATF_PUBL 0x08 /* publish entry (respond for other host)
*/

#def i ne ATF_USETRAI LERS 0x10 /* has requested trailers */
#def i ne ATF_PROXY 0x20 /* Do PROXY arp */

The arp_pa field is a sockaddr field that is set to the ip address the remote interface uses.

The arp_ha.sa_data field is 6 bytes of binary data that represents the Ethernet address of the remote
interface.

66

Chapter 2. Socket Library Functions

socket ioctl SIOCSARP

socket ioctl SIOCSARP — Adds an entry to the ARP table. This function is compatible with the
UNIX 4.3BSD function of the same name.

Format
Status = socket ioctl (VMS Channel, SIOCSARP, ARP_Req);

struct arpreq *ARP_Req;

Arguments

ARP_Req

VMS Usage: arp_request
type: struct arpreq
access: read only
mechanism: by reference

The address of an arpreq structure that contains the protocol address and the hardware address. The
arpreq structure is defined in | P$r oot : [i p. i ncl ude. net]if_arp. h as follows:

struct arpreq {

struct sockaddr arp_pa; /* protocol address */
struct sockaddr arp_ha; /* hardware address */
i nt arp_fl ags; /* flags */
1
/* arp_flags and at_flags field values */
#defi ne ATF_I NUSE 0x01 /* entry in use */
#def i ne ATF_COM 0x02 /* conpleted entry (enaddr valid) */
#def i ne ATF_PERM 0x04 /* permanent entry */
#def i ne ATF_PUBL 0x08 /* publish entry (respond for other host)
*/

#defi ne ATF_USETRAI LERS 0x10 /* has requested trailers */
#defi ne ATF_PROXY 0x20 /* Do PROXY arp */

The arp_pa field is a sockaddr field that is set to the ip address the remote interface uses.

The arp_ha.sa_data field is 6 bytes of binary data that represents the Ethernet address of the remote
interface.

socket ioctl SIOCGIFADDR

socket ioctl SIOCGIFADDR — Retrieves the Internet address of a network interface. This function
does not modify the socket itself, but rather examines the operation of the network in general. It does
not matter what the state of the socket is. Normally, to examine Internet addresses, you use a socket
created with the AF_INET and SOCK_DGRAM arguments.

Format

Status = socket_ioctl(VMS_Channel, SIOCGIFADDR, Interface Req);

67

Chapter 2. Socket Library Functions

struct ifreq *Interface Req;

Arguments

Interface Req

VMS Usage: interface_request
type: struct ifreq
access: modify
mechanism: by reference

The address of an ifreq structure that describes the interface from which to retrieve the address. The
ifreq structure is defined in | P$r oot : [i p. i ncl ude. net]i f. h as follows:

struct ifreq {
char ifr_nane[16];
struct sockaddr ifr_addr;

b
The ifr_name field is a null-terminated string specifying the name of the interface to be examined,
such as "se0".

The ifr_addr field is a sockaddr structure that is set to the address of the interface.

socket ioctl SIOCSIFADDR

socket ioctl SIOCSIFADDR — Sets the Internet address of a network interface. Normally, this is
done using the IP SET/INTERFACE command. This function does not modify the socket itself,
but rather modifies the operation of the network in general. It does not matter what the state of the
socket is. Normally, to modify Internet addresses, you use a socket created with the AF_INET and
SOCK _DGRAM arguments.

Format
Status = socket_ioctl(VMS_Channel, SIOCSIFADDR, Interface Req);

struct ifreq *Interface Req;

Arguments

Interface Req

VMS Usage: interface request
type: struct ifreq
access: read only
mechanism: by reference

The address of an ifreq structure that describes the address to be set. The ifreq structure is defined in
| P$root:[ip.include.net]if.h asfollows:

struct ifreq {
char ifr_name[16];
struct sockaddr ifr_addr;

}s

68

Chapter 2. Socket Library Functions

The ifr_name field is a null-terminated string specifying the name of the interface to be modified,
such as "se0".

The ifr_addr field is a sockaddr structure specifying the address to be set.

socket ioctl SIOCGIFBRDADDR

socket ioctl SIOCGIFBRDADDR — Retrieves the Internet broadcast address of a network interface.
This function does not modify the socket itself, but rather examines the operation of the network in
general. It does not matter what the state of the socket is. Normally, to examine Internet broadcast
addresses, you use a socket created with the AF_INET and SOCK_DGRAM arguments.

Format
Status = socket ioctl(VMS_Channel, SIOCGIFBRDADDR, Interface_Req);

struct ifreq *Interface Req;

Arguments

Interface_Req

VMS Usage: interface_request
type: struct ifreq
access: modify
mechanism: by reference

The address of an ifreq structure that describes the interface from which to retrieve the broadcast
address. The ifreq structure is defined in | P$r oot : [i p. i ncl ude. net]i f. h as follows:

struct ifreq {

char ifr_name[16];
struct sockaddr ifr_broadaddr;

}s

The ifr_name field is a null-terminated string specifying the name of the interface to be examined,
such as "se0".

The ifr_broadaddr field is a sockaddr structure that is set to the broadcast address of the interface.

socket ioctl SIOCSIFBRDADDR

socket ioctl SIOCSIFBRDADDR — Sets the Internet broadcast address of a network interface.
Normally, this is done using the IP SET/INTERFACE command. This function does not modify the
socket itself, but rather modifies the operation of the network in general. It does not matter what the
state of the socket is. Normally, to modify Internet broadcast addresses, you use a socket created with
the AF_INET and SOCK_DGRAM arguments.

Format
Status = socket ioctl(VMS_Channel, SIOCSIFBRDADDR, Interface Req);

struct ifreq *Interface Req;

69

Chapter 2. Socket Library Functions

Arguments

Interface_Req

VMS Usage: interface_request
type: struct ifreq
access: read only
mechanism: by reference

The address of an ifreq structure that describes the interface on which to set the broadcast address.
The ifreq structure is defined in | P$r oot : [i p. i ncl ude. net]i f. h as follows:

struct ifreq {
char ifr_nane[16];
struct sockaddr ifr_broadaddr;

b

The ifr_name field is a null-terminated string specifying the name of the interface to be modified,
such as "se0".

The ifr_broadaddr field is a sockaddr structure specifying the broadcast address to be set.

socket ioctl SIOCGIFCONF

socket ioctl SIOCGIFCONF — Retrieves the list of network interfaces from the networking kernel
for further examination by the other SIOCGxxxx functions. This function does not modify the socket
itself, but rather examines the operation of the network in general. It does not matter what the state
of the socket is. Normally, to examine the network configuration, you use a socket created with the
AF _INET and SOCK_DGRAM arguments.

Format
Status = socket_ioctl(VMS_Channel, SIOCGIFCONF, Interface_Config);

struct ifconf *Interface Config;

Arguments

Interface_Config

VMS Usage: interface configuration request
type: struct ifconf

access: modify

mechanism: by reference

The address of an ifconf structure describing a buffer in which to return the interface configuration.
The ifconf structure is defined in | P$r oot : [i p. i ncl ude. net]i f. h as follows:

struct ifconf {
i nt ifc_len; /* size of buffer */
uni on {
caddr _t ifcu_buf;
struct ifreq *ifcu_req;

70

Chapter 2. Socket Library Functions

} ifc_ifcu;
#define ifc_buf ifc_ifcu.ifcu_buf /* buffer address */
#define ifc_req ifc_ifcu.ifcu_req /* array of structures */

b

The ifc_len field should be set to the length of the buffer specified by ifc_buf. Upon return, the
ifc_len field contains the actual number of bytes written into the buffer.

The ifc_buf field should be set to a buffer large enough to hold the entire network configuration.
Upon return, if VMS_Channel is an AF_INET socket the ifc_req buffer contains an array of ifreq
structures, one for each interface and address. If VMS_Channel is an AF_INET6 socket, then the
ifc_req buffer contains an array of ifreq6 structures, one for each address present. The array of ifreq6
structures may contain both IPv4 and IPv6 addresses.

The following short fragment of C-language code prints all Internet family interfaces and shows how
to decode the ifconf structure:

n =ifc.ifc_len/sizeof(struct ifreq);

for (ifr =ifc.ifc_req; n>0; n--, ifr++) {
if (ifr->ifr_addr.sa_fanmily != AF_INET) continue;
printf("%\n",ifr->ifr_nane);

}
The ifreq6 structure is defined in | P$r oot : [i p. i ncl ude. net]i f. h as follows:
struct ifreq6 {

char ifr_nane[16];

struct sockaddr_in6 ifr_addr;

}s

socket ioctl SIOCGIFDSTADDR

socket ioctl SIOCGIFDSTADDR — Retrieves the destination Internet address of a point-to-point
network interface. This function does not modify the socket itself, but rather examines the operation
of the network in general. It does not matter what the state of the socket is. Normally, to examine
Internet addresses, you use a socket created with the AF_INET and SOCK_DGRAM arguments.

Format
Status = socket _ioctl(VMS Channel, SIOCGIFDSTADDR, Interface Req);

struct ifreq *Interface Req;

Arguments

Interface Req

VMS Usage: interface request
type: struct ifreq
access: modify
mechanism: by reference

The address of an ifreq structure that describes the interface from which to retrieve the destination
address. The ifreq structure is defined in | P$r oot : [i p. i ncl ude. net]i f. h as follows:

71

Chapter 2. Socket Library Functions

struct ifreq {
char ifr_nane[16];
struct sockaddr ifr_dstaddr;

b

The ifr_name field is a null-terminated string specifying the name of the interface to be examined,
such as "se0".

The ifr_dstaddr field is a sockaddr structure that is set to the destination address of the interface.

socket ioctl SIOCSIFDSTADDR

socket ioctl SIOCSIFDSTADDR — Sets the destination Internet address of a point-to-point network
interface. Normally, this is done using the IP SET/INTERFACE command. This function does not
modify the socket itself, but rather modifies the operation of the network in general. It does not matter
what the state of the socket is. Normally, to modify Internet addresses, you use a socket created with
the AF_INET and SOCK_DGRAM arguments.

Format
Status = socket ioctl(VMS_Channel, SIOCSIFDSTADDR, Interface Req);

struct ifreq *Interface Req;

Arguments

Interface Req

VMS Usage: interface request
type: struct ifreq
access: read only
mechanism: by reference

The address of an ifreq structure that describes the interface on which to set the destination address.
The ifreq structure is defined in | P$r oot : [i p. i ncl ude. net]i f. h as follows:

struct ifreq {
char ifr_nane[16];
struct sockaddr ifr_dstaddr;

b

The ifr_name field is a null-terminated string specifying the name of the interface to be modified,
such as "se0".

The ifr_dstaddr field is a sockaddr structure specifying the destination address to be set.

socket ioctl SIOCGIFFLAGS

socket ioctl SIOCGIFFLAGS — Retrieves various control flags from a network interface. This
function does not modify the socket itself, but rather examines the operation of the network in general.
It does not matter what the state of the socket is. Normally, to examine interface flags, you use a
socket created with the AF_INET and SOCK_DGRAM arguments.

72

Chapter 2. Socket Library Functions

Format
Status = socket_ioctl(VMS_Channel, SIOCSIFFLAGS, Interface Req);

struct ifreq *Interface Req;

Arguments

Interface Req

VMS Usage: interface request
type: struct ifreq
access: modify
mechanism: by reference

The address of an ifreq structure that describes the state of the flags. The ifreq structure is defined in
| P$root:[ip.include.net]if.h asfollows:

struct ifreq {
char ifr_name[16];
short ifr_flags;
char Xfill[14];

1

The ifr_name field is a null-terminated string specifying the name of the interface to be examined,
such as "se0".

The ifr_flags field receives the state of the interface flags. The following flag bits are valid:

#define | FF_UP 0x1 /* interface is up */
#def i ne | FF_BROADCAST 0x2 /* broadcast address valid */
#def i ne | FF_DEBUG 0x4 /* turn on debugging */

#def i ne | FF_LOOPBACK 0x8 /* is a | oopback net */
#define | FF_PO NTOPO NT 0x10 /* interface is ptp link */
#define | FF_NOTRAI LERS 0x20 /* avoid use of trailers */
#def i ne | FF_RUNNI NG 0x40 /* resources allocated */
#def i ne | FF_NOARP 0x80 /* no ARP protocol */

socket ioctl SIOCSIFFLAGS

socket ioctl SIOCSIFFLAGS — Sets various control flags on a network interface. Normally this
is done using the IP SET /INTERFACE command. To modify the state of a flag, first call the
SIOCGIFFLAGS socket_ioctl() function, change whichever bits are necessary, and then reset the
flags by calling SIOCSIFFLAGS socket_ioctl(). This function does not modify the socket itself,
but rather modifies the operation of the network in general. It does not matter what the state of the
socket is. Normally, to modify interface flags, you use a socket created with the AF_INET and
SOCK _DGRAM arguments.

Format
Status = socket _ioctl(VMS_Channel, SIOCSIFFLAGS, Interface Req);

struct ifreq *Interface Req;

73

Chapter 2. Socket Library Functions

Arguments

Interface_Req

VMS Usage: interface_request
type: struct ifreq
access: read only
mechanism: by reference

The address of an ifreq structure that describes the new state of the flags. The ifreq structure is
defined in | P$r oot : [i p. i ncl ude. net]if. h as follows:

struct ifreq {
char ifr_nane[16];
short ifr_fl ags;
char Xfill[14];

1

The ifr_name field is a null-terminated string specifying the name of the interface to be modified,
such as "se0".

The ifr_flags field specifies the new state of the interface flags. The following flags can be set or
cleared:

#define | FF_UP 0x1 /* interface is up */

#def i ne | FF_DEBUG 0x4 /* turn on debugging */
#defi ne | FF_NOTRAI LERS 0x20 /* avoid use of trailers */
#def i ne | FF_NOAR 0x80 /* no ARP protocol */

socket ioctl SIOCGIFMETRIC

socket ioctl SIOCGIFMETRIC — Retrieves the network interface metric, or cost. The interface
metric is ignored by the VSI TCP/IP software, and is not documented further here.

Format

socket ioctl SIOCGIFMETRIC

socket ioctl SIOCSIFMETRIC

socket ioctl SIOCSIFMETRIC — Sets the network interface metric, or cost. The interface metric is

ignored by the VSI TCP/IP software, and is not documented further here.

Format

socket ioctl SIOCSIFMETRIC

socket ioctl SIOCGIFNETMASK

socket ioctl SIOCGIFNETMASK — Retrieves the Internet address mask of a network interface.
This function does not modify the socket itself, but rather examines the operation of the network
in general. It does not matter what the state of the socket is. Normally, to examine Internet address
masks, you use a socket created with the AF_INET and SOCK_DGRAM arguments.

74

Chapter 2. Socket Library Functions

Format
Status = socket_ioctl(VMS_Channel, SIOCGIFNETMASK, Interface Req);

struct ifreq *Interface Req;

Arguments

Interface Req

VMS Usage: interface_request
type: struct ifreq
access: modify
mechanism: by reference

The address of an ifreq structure that describes the interface from which to retrieve the address mask.
The ifreq structure is defined in | P$r oot : [i p. i ncl ude. net]i f. h as follows:

struct ifreq {
char ifr_nane[16];
struct sockaddr ifr_addr;

1
The ifr_name field is a null-terminated string specifying the name of the interface to be examined,
such as "se0".

The ifr_addr field is a sockaddr structure that is set to the address mask of the interface.

socket ioctl SIOCSIFNETMASK

socket ioctl SIOCSIFNETMASK — Sets the Internet address mask of a network interface.
Normally, this is done using the IP SET/INTERFACE command. This function does not modify the
socket itself, but rather modifies the operation of the network in general. It does not matter what the
state of the socket is. Normally, to modify Internet address masks, you use a socket created with the
AF _INET and SOCK_DGRAM arguments.

Format
Status = socket _ioctl(VMS Channel, SIOCSIFNETMASK, Interface Req);

struct ifreq *Interface Req;

Arguments

Interface Req

VMS Usage: interface_request
type: struct ifreq
access: read only
mechanism: by reference

The address of an ifreq structure that describes the interface on which to set the address mask. The
ifreq structure is defined in | P$r oot : [i p. i ncl ude. net]i f. h as follows:

75

Chapter 2. Socket Library Functions

struct ifreq {
char ifr_nane[16];
struct sockaddr ifr_addr;

b

The ifr_name field is a null-terminated string specifying the name of the interface to be modified,
such as "se0".

The ifr_addr field is a sockaddr structure specifying the address mask to be set.

socket option SO_BROADCAST

socket option SO_BROADCAST — Enables transmission of broadcast messages on the specified
socket.

Format
Status = setsockopt(VMS_Channel, SOL_SOCKET, SO BROADCAST, On, sizeof(*On));

unsigned int *On;

Arguments

On

VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

A pointer to an integer buffer that specifies whether the transmission of broadcast messages is enabled
or disabled. A nonzero value enables the transmission of broadcast messages, a value of 0 disables the
transmission.

socket option SO_DEBUG

socket option SO_DEBUG — Controls the recording of debugging information by the VSI TCP/IP
networking kernel.

Format
Status = setsockopt(VMS_Channel, SOL._SOCKET, SO_DEBUG, On, sizeof(*On));

unsigned int *On;

Arguments

On

VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only

76

Chapter 2. Socket Library Functions

mechanism: by reference

A pointer to an integer buffer that specifies whether debugging is enabled or disabled. A nonzero
value enables debugging. A value of 0 disables debugging.

socket option SO_DONTROUTE

socket option SO_DONTROUTE — Indicates that outgoing messages bypass the standard routing
facilities. Instead, messages are directed to the appropriate network interface, as determined by the
network portion of the destination address.

Format
Status = setsockopt(VMS_Channel, SOL_SOCKET, SO DONTROUTE, On, sizeof(*On));
unsigned int *On;

Arguments

On

MiSvord_unsigned
Usage:

lgpgword (unsigned)

reackpnly
byeckfenence

A pointer to an integer buffer that specifies whether SO_DONTROUTE is enabled or disabled. A
nonzero value enables SO DONTROUTE. A value of 0 disables SO DONTROUTE.

socket option SO_ERROR

socket option SO_ERROR — Retrieves and clears any error status pending on the socket. This
function is only valid with the getsockopt() function.

Format
Status = getsockopt(VMS_Channel, SOL_SOCKET, SO _ERROR, Value, Length);
unsigned int *Value;

unsigned int *Length;

Arguments

Value

VMS Usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

77

Chapter 2. Socket Library Functions

A pointer to an integer buffer that receives the value of errno (the error number) that is pending on
the socket.

Length

VMS Usage: longword_unsigned
type: longword (unsigned)
access: modify

mechanism: by reference

On entry, contains the length of the space pointed to by Value, in bytes. On return, it contains the
actual length, in bytes, of the Value returned.

socket option SO_KEEPALIVE

socket option SO _KEEPALIVE — Enables periodic transmission of messages on an idle connected
socket. If the connected party fails to respond to these messages, the connection is considered

broken and processes using the socket are notified via an error returned by a read. Keepalives are

a questionable use of the network in that they cause idle connections to add network traffic by
constantly probing their peer. Avoid keepalives if another mechanism is available to detect the loss of
a peer, such as timeouts.

Format
Status = setsockopt(VMS_Channel, SOL_SOCKET, SO_KEEPALIVE, On, sizeof(*On));

unsigned int *On;

Arguments

On

VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

A pointer to an integer buffer that specifies whether keepalives are enabled or disabled. A nonzero
value enables keepalives. A value of 0 disables keepalives.

socket option SO_LINGER

socket option SO_LINGER — Controls the action taken when unsent messages are queued on a
socket and a socket_close() function call is issued. If the socket promises reliable delivery of data and
SO _LINGER is set, socket_close() deletes only the device. The attached socket remains in the system
until this data is sent or until it determines that it cannot deliver the information (a timeout period,
termed the linger interval, is specified in the setsockopt() function). Only then is the attached socket
deleted.

Format

Status = setsockopt(VMS_Channel, SOL_SOCKET, SO_LINGER, Linger, sizeof(*Linger));

78

Chapter 2. Socket Library Functions

struct linger *Linger;

Arguments

Linger

VMS Usage: linger_ structure
type: struct linger
access: read only
mechanism: by reference

A pointer to a structure describing whether the SO LINGER option is enabled or disabled.

struct linger {
i nt | _onoff; /* option on/off */
i nt | _linger; /* linger time */
s

When the 1_onoff field is nonzero, SO _LINGER is enabled. When it is 0, SO _LINGER is disabled. If
SO _LINGER is being enabled, the 1_linger field specifies the timeout period, in seconds.

socket option SO_OOBINLINE

socket option SO_OOBINLINE — Enables receipt of out-of-band data along with the regular data
stream. You can use this option instead of specifying the MSG_OOB flag to the recv() or recvfrom()
functions.

Format
Status = setsockopt(VMS_Channel, SOL._SOCKET, SO_OOBINLINE, On, sizeof(*On));

unsigned int *On;

Arguments

On

VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

A pointer to an integer buffer that specifies whether the SO _OOBINLINE option is enabled or
disabled. A nonzero value enables SO_OOBINLINE. A value of 0 disables SO_OOBINLINE.

socket option SO_RCVBUF

socket option SO_RCVBUF — Specifies the amount of buffer space that can be used to buffer
received data on the socket. The default value is 6144. You can specify this option to raise the TCP
window size, increase the maximum size of UDP datagrams that can be received, or increase buffer
space in general.

79

Chapter 2. Socket Library Functions

Format
Status = setsockopt(VMS_Channel, SOL_SOCKET, SO_RCVBUF, Value, sizeof(*Value));

unsigned int *Value;

Arguments

Value

VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

A pointer to an integer buffer that specifies the new size of the receive buffer, in bytes.

socket option SO_RCVLOWAT

socket option SO_RCVLOWAT — This option exists only for compatibility with UNIX 4.3BSD
and has no effect on VSI TCP/IP sockets.

Format

socket option SO RCVLOWAT

socket option SO_RCVTIMEO

socket option SO_RCVTIMEQ — This option exists only for compatibility with UNIX 4.3BSD and
has no effect on VSI TCP/IP sockets.

Format

socket option SO RCVTIMEO

socket option SO_REUSEADDR

socket option SO_REUSEADDR — Specifies how to reuse local addresses. When

SO REUSEADDR is enabled, bind() allows a local port number to be used even if sockets using
the same local port number already exist, provided that these sockets are connected to a unique
remote port. This option allows a server to bind() to a socket to listen for new connections, even if
connections are already in progress on this port.

Format
Status = setsockopt(VMS_Channel, SOL_SOCKET, SO REUSEADDR, On, sizeof(*On));
unsigned int *On;

Arguments

On

80

Chapter 2. Socket Library Functions

VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

A pointer to an integer buffer that specifies whether SO REUSEADDR is enabled or disabled. A
nonzero value enables SO REUSEADDR. A value of 0 disables SO REUSEADDR.

socket option SO_SNDBUF

socket option SO _SNDBUF — Specifies the amount of buffer space that can be used to buffer
transmitted data on the socket. The default value is 6144 for TCP and 2048 for UDP. You can specify
this option to raise the TCP window size, increase the maximum size of UDP datagrams that can be
transmitted, or increase buffer space in general.

Format
Status = setsockopt(VMS_Channel, SOL_SOCKET, SO_SNDBUF, Value, sizeof(*Value));

unsigned int *Value;

Arguments

Value

VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

A pointer to an integer buffer that specifies the new size of the transmit buffer, in bytes.

socket option SO_SNDLOWAT

socket option SO_SNDLOWAT — This option exists only for compatibility with UNIX 4.3BSD and
has no effect on VSI TCP/IP sockets.

Format

socket option SO SNDLOWAT

socket option SO_SNDTIMEO

socket option SO_SNDTIMEO — This option exists only for compatibility with UNIX 4.3BSD and
has no effect on VSI TCP/IP sockets.

Format

socket option SO_SNDTIMEO

81

Chapter 2. Socket Library Functions

socket option SO_TYPE

socket option SO_TYPE — Retrieves the socket type (such as SOCK_DGRAM or
SOCK_STREAM). This function is only valid with the getsockopt() function.

Format
Status = getsockopt(VMS_Channel, SOL_SOCKET, SO _TYPE, sizeof(*Value));

unsigned int *Value;

Arguments

Value

VMS Usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

A pointer to an integer buffer that receives the socket type.

socket option TCP_KEEPALIVE

socket option TCP_KEEPALIVE — Lets you specify how long an idle socket remains open if the
SO _KEEPALIVE option is enabled.

Format

Status = setsockopt(VMS_Channel, IPPROTO_TCP, TCP_KEEPALIVE, keepalive), sizeof(struct
tcp_keepalive));

struct tcp_keepalive *keepalive
Description

If SO_KEEPALIVE is enabled, TCP_KEEPALIVE lets you specify:

Idle time The amount of time a TCP socket should remain idle before
sending the first keepalive packet.

Probe interval The amount of time between keepalive packets.

Probe count The number of keepalive packets to be sent before the connection
is closed.

This feature is available to both the INETDRIVER and the UCXDRIVER, although it is usually
accessed through the UCXDRIVER.

Arguments

Keepalive

VMS Usage: keepalive structure

82

Chapter 2. Socket Library Functions

type: struct tcp_keepalive
access: read only
mechanism: by reference

A pointer to a structure specifying the keepalive parameter values idle_time, probe_intvl, and
probe_count.

The structure TCP_KEEPALIVE definition can be found in the include file TCP. H, as follows:

struct tcp_keepalive {
int idle_tine; /*Tinme before first probe */
int probe_intvl; /*Tinme between probes */
int probe _count; /*Nunmber of probes before closing connection */

b

The idle_time and probe_intvl values are specified in seconds; probe count is the number of probes
to send before closing the connection.

The minimum value for idle_time is 75 seconds. If a value less than 75 is specified, 75 is used.

If a value of 0 (zero) is specified for any of the entries in the structure, the current value is retained.

Note

The system default values are an idle_time value of 120 minutes, a probe_intvl value of 75 seconds,
and a probe_count value of 8.

socket option TCP_NODELAY

socket option TCP_NODELAY — Disables the Nagle algorithm (RFC 896) which causes TCP to
have, at most, one outstanding unacknowledged small segment. By default, the Nagle algorithm is
enabled, delaying small segments of output data up to 200 ms so that they can be packaged into larger
segments. If you enable TCP_ NODELAY, TCP sends small segments as soon as possible, without
waiting for acknowledgments from the receiver or for the 200 ms TCP fast timer to expire.

Format
Status = setsockopt(VMS _Channel, IPPROTO_TCP, TCP_ NODELAY, On, sizeof(*On));

unsigned int *On;

Arguments

On

VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

A pointer to an integer buffer that specifies whether the TCP_ NODELAY option is enabled or
disabled. A value of 0 disables TCP_ NODELAY.

83

Chapter 2. Socket Library Functions

socket_perror()

socket perror() — Formats and prints the error code that is placed in the global variables
socket_errno and vmserrno when an error occurs in one of the other socket functions. The error
message is printed on the OpenVMS equivalent to the UNIX "stdout" device (normally SYS
$OUTPUT), and is prefixed by the specified string.

Description

A typical use of socket_perror() might be the following:

if (connect(s, &sin, sizeof(sin)) < 0) {
socket _perror("connect failed");
exit(l);

}

Format
(void) socket_perror(String);

char *String;

Arguments

String

VMS Usage: arbitrary_string
type: ASCIZ string
access: read only
mechanism: by reference

A C-language string with information about the last call to fail. This is printed as a prefix to the error
message.

socket_read()

socket_read() — Reads messages from a socket. See also recv()/recv_44() and
recvirom()recvfrom_44(). This function is equivalent to a recv() function called with Flags specified
as zero. The length of the message received is returned as the status. If a message is too long to

fit in the supplied buffer and the socket is type SOCK_DGRAM, excess bytes are discarded. If no
messages are available at the socket, the receive call waits for a message to arrive, unless the socket

is non-blocking (see socket_ioctl()). In this case, a status of -1 is returned, and the global variable
socket_errno is set to EWOULDBLOCK.

Format

int socket read (short VMS Channel, char *Buffer, int Size);

Arguments

VMS_Channel

84

Chapter 2. Socket Library Functions

VMS Usage: channel

type: word (signed)
access: read only
mechanism: by value

A channel to the socket.

Buffer

VMS Usage: arbitrary
type: byte buffer
access: write only
mechanism: by reference

The address of a buffer into which to place the data read.

Size

VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by value

The length of the buffer specified by Buffer. The actual number of bytes read is returned in the
Status.

Returns

If the socket_read() routine is successful, the count of the number of characters received is returned.
A return value of 0 indicates an end-of-file condition; that is, the connection has been closed. If an
error occurs, a value of -1 is returned, and a more specific message is returned in the global variables
socket_errno and vmserrno.

socket_write()

socket write() — Writes a message to another socket. This function is equivalent to a send() function
called with Flags specified as zero. This function can be used only when a socket has been connected
with connect(). If no message space is available at the socket to hold the message to be transmitted,
socket_write() blocks unless the socket has been placed in non-blocking I/O mode via the socket
ioctl FIONBIO. If the socket is type SOCK _DGRAM and the message is too long to pass through

the underlying protocol in a single unit, the error EMSGSIZE is returned and the message is not
transmitted.

Format
int socket write (short VMS_Channel, char *Buffer, int Size);

Arguments

VMS_Channel

85

Chapter 2. Socket Library Functions

VMS Usage: channel

type: word (signed)
access: read only
mechanism: by value

A channel to the socket.

Buffer

VMS Usage: arbitrary
type: byte buffer
access: read only
mechanism: by reference

The address of a buffer containing the data to send.

Size

VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by value

The length of the buffer specified by Buffer.

Returns

If the socket_write() routine is successful, the count of the number of characters sent is returned. If
an error occurs, a value of -1 is returned, and a more specific error message is returned in the global
variables socket _errno and vmserrno.

vms_errno_string()

vms_errno_string() — Formats a string corresponding to the error code that is placed in
socket_errno and vmserrno when an error occurs in one of the other socket functions.

Format
(char *) vims_errno_string();

Returns

The vms_errno_string() function returns a pointer to the string.

2.4. SCTP

Support for SCTP (Stream Control Transport Protocol) has been added to the VSI TCP/IP C socket
library, with the shareable image | P$: TCPI P$SCTP_SHR. EXE. SCTP provides end-to-end
guaranteed delivery without the potential of blocking that TCP can encounter. SCTP also allows for

86

Chapter 2. Socket Library Functions

multiple streams within a conventional pairing of sockets between two IP addresses. Messages on one
stream can be sent and received independently of other streams on the connection. See RFC 4960 for
more information about SCTP.

Definitions for routines and constants are in

« | PSROOT: [| P. I NCLUDE. NETI NET] SCTP. H

« | PSROOT: [| P. | NCLUDE. NETI NET] SCTP_CONSTANTS. H

e | PSROOT: [| P. | NCLUDE. NETI NET] SCTP_U O H

To use SCTP create a socket with the following parameters:

» socket (AF_INET, SOCK _STREAM, IPPROTO_SCTP)

The following routines are supported:

* int sctp_opt_info(int sd, sctp_assoc t id, int opt, void *arg, short *size)

Description

sctp_opt_info is a wrapper library function that can be used to get SCTP level options on a socket.

Parameter Usage

sd is the socket descriptor for which the option is requested. For one-to-many style sockets, id
specifies the association to query. For one-to-one style sockets, id is ignored.

opt specifes the SCTP socket option to get.
arg is an option-specific structure buffer provided by the caller. size is a value-result parameter,

initially containing the size of the buffer pointed to by arg and modified on return to indicate the
actual size of the value returned.

Returns

On success, sctp_opt_info returns 0 and on failure -1 is returned with errno set to the appropriate
error code.

Supported Options:
SCTP_RTOINFO
SCTP_ASSOCINFO
SCTP_INITMSG
SCTP_NODELAY
SCTP_AUTOCLOSE

SCTP_PRIMARY ADDR

87

Chapter 2. Socket Library Functions

SCTP_DISABLE_FRAGMENTS
SCTP_PEER_ADDR PARAMS
SCTP_EVENTS

SCTP I WANT MAPPED V4 ADDR
SCTP._ MAXSEG

SCTP_STATUS

SCTP_GET PEER_ADDR_INFO

int sctp_bindx(int sd, struct sockaddr *addrs, int
addrcnt, int flags)

int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, int flags) — sctp_bindx adds or
removes a set of bind addresses passed in the array addrs to/from the socket sd. addrent is the number
of addresses in the array and the flags parameter indicates if the addresses need to be added or
removed.

Description

An application can use SCTP_BI NDX_ADD_ADDR to associate additional addresses with an endpoint
after calling bind(2). SCTP_BI NDX_REM ADDR directs SCTP to remove the given addresses from
the association. A caller may not remove all addresses from an association. It will fail with EINVAL.

Parameter Usage

If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. If sd is an IPv6 socket, the
addresses passed can be either IPv4 or IPv6 addresses.

addrs is a pointer to an array of one or more socket addresses. Each address is contained in its
appropriate structure (i.e. struct sockaddr_in or struct sockaddr_in6). The family of the address
type must be used to distinguish the address length.

The caller specifies the number of addresses in the array with addrent.

The flags parameter can be either SCTP_BI NDX_ADD_ ADDR or SCTP_BI NDX_REM ADDR.
Return Value

On success, 0 is returned. On failure, -1 is returned, and errno is set appropriately.

Errors

* EBADEF - sd is not a valid descriptor.

* ENOTSOCK - sd is a descriptor for a file, not a socket.

» EFAULT - Error while copying in or out from the user address space.

* EINVAL - Invalid port or address or trying to remove all addresses from an association.

88

Chapter 2. Socket Library Functions

* EACCES - The address is protected, and the user is not the super-user.

int sctp_getpaddrs(int sd, sctp_assoc _tid, struct
sockaddr **addrs)

int sctp_getpaddrs(int sd, sctp_assoc_t id, struct sockaddr **addrs) — sctp_getpaddrs returns all
peer addresses in an association.

Description

On return, addrs will point to a dynamically allocated packed array of sockaddr structures of the
appropriate type for each address. The caller should use sctp_freepaddrs to free the memory. Note
that the in/out parameter addrs must not be NULL.

Parameter Usage

If sd is an IPv4 socket, the addresses returned will be all IPv4 addresses. If sd is an IPv6 socket, the
addresses returned can be a mix of IPv4 or IPv6 addresses.

For one-to-many style sockets, id specifies the association to query. For one-to-one style sockets, id is
ignored.

sctp_freepaddrs frees all the resources allocated by sctp_getpaddrs.

Return Value

On success, sctp_getpaddrs returns the number of peer addresses in the association. If there
is no association on this socket, 0 is returned and the value of *addrs is undefined. On error,
sctp_getpaddrs returns -1 and the value of *addrs is undefined.

sctp_freepaddrs (struct sockaddr *addrs)

sctp_freepaddrs (struct sockaddr *addrs) — The sctp_freepaddrs() and sctp_freeladdrs()
functions are used to release the memory allocated by previous calls to sctp_getpaddrs() or
sctp_getladdrs() respectively.

Format

sctp_freepaddrs (struct sockaddr *addrs)

sctp_getladdrs (int sd, sctp_assoc _t id, struct
sockaddr **addrs)

sctp_getladdrs(int sd, sctp_assoc_t id, struct sockaddr **addrs) — sctp_getladdrs returns all
locally bound addresses on a socket.

Description

On return, addrs will point to a dynamically allocated packed array of sockaddr structures of the
appropriate type for each local address. The caller should use sctp_freeladdrs to free the memory.
Note that the in/out parameter addrs must not be NULL.

89

Chapter 2. Socket Library Functions

Parameter Usage

If sd is an IPv4 socket, the addresses returned will be all IPv4 addresses. If sd is an IPv6 socket, the
addresses returned can be a mix of IPv4 or IPv6 addresses.

For one-to-many style sockets, id specifies the association to query. For one-to-one style sockets, id is
ignored. If the id field is set to 0, then the locally bound addresses are returned without regard to any
particular association.

sctp_freeladdrs frees all the resources allocated by sctp_getladdrs.

Return Value

On success, sctp_getladdrs returns the number of local addresses bound to the socket. If the socket is
unbound, 0 is returned and the value of *addrs is undefined. On error, sctp_getladdrs returns -1 and
the value of *addrs is undefined.

sctp_freeladdrs (struct sockaddr *addrs)

sctp_freeladdrs(struct sockaddr *addrs) — The sctp_freepaddrs() and sctp_freeladdrs()
functions are used to release the memory allocated by previous calls to sctp_getpaddrs() or
sctp_getladdrs() respectively.

Format

sctp_freeladdrs(struct sockaddr *addrs)

int sctp_connectx(int sd, struct sockaddr *addrs, int
addrcnt)

int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt) — sctp_connectx initiates a
connection to a set of addresses passed in the array addrs to/from the socket sd. addrent is the number
of addresses in the array.

Paramter Usage

If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. If sd is an IPv6 socket, the
addresses passed can be either IPv4 or IPv6 addresses.

addrs is a pointer to an array of one or more socket addresses. Each address is contained in its
appropriate structure (i.e. struct sockaddr_in or struct sockaddr_in6). The family of the address

type must be used to distinguish the address length. The caller specifies the number of addresses in the
array with addrent.

Return Value
On success, 0 is returned. On failure, -1 is returned, and errno is set appropriately.

Errors

EBADF - sd is not a valid descriptor.

90

Chapter 2. Socket Library Functions

ENOTSOCK - sd is a descriptor for a file, not a socket.

EFAULT - Error while copying in or out from the user address space.
EINVAL - Invalid port or address.

EACCES - The address is protected, and the user is not the super-user.
EISCONN - The socket is already connected.

ECONNREFUSED - No one listening on the remote address.

ETIMEDOUT - Timeout while attempting connection. The server may be too busy to accept new
connections. Note that for IP sockets the timeout may be very long when syncookies are enabled on
the server.

ENETUNREACH - Network is unreachable.
EADDRINUSE - Local address is already in use.

EINPROGRESS - The socket is non-blocking and the connection cannot be completed immediately.
It is possible to select(2) or poll(2) for completion by selecting the socket for writing. After select
indicates writability, use getsockopt(2) to read the SO _ERROR option at level SOL_SOCKET

to determine whether connect completed successfully (SO_ERROR is zero) or unsuccessfully
(SO_ERROR is one of the usual error codes listed here, explaining the reason for the failure).

EALREADY - The socket is non-blocking and a previous connection attempt has not yet been
completed.

EAGAIN - No more free local ports or insufficient entries in the routing cache. For PF_INET see the
net.ipv4.ip_local port_range sysctl in ip(7) on how to increase the number of local ports.

EAFNOSUPPORT - The passed address did not have the correct address family in its sa_family field.

EACCES, EPERM - The user tried to connect to a broadcast address without having the socket
broadcast flag enabled or the connection request failed because of a local firewall rule.

sctp_assoc_t sctp_getassocid(int sd, struct sockaddr
*addr)

sctp_assoc_t sctp_getassocid(int sd, struct sockaddr *addr) — return an association id for a
specified socket address. The sctp_getassocid() call attempts to look up the specified socket address
addr and find the respective association identification.

Return Values

The call returns the association id upon success and 0 is returned upon failure.

Errors
The sctp_getassocid() function can return the following errors.
ENOENT- The address does not have an association setup to it.

EBADF - The argument s is not a valid descriptor.

91

Chapter 2. Socket Library Functions

ENOTSOCK - The argument s is not a socket.

int sctp_getaddrlen (int family)

int sctp_getaddrlen(int family) — return the address length of an address family.

Description

The sctp_getaddrlen() function returns the size of a specific address family. This function is provided
for application binary compatibility since it provides the application with the size the operating system
thinks the specific address family is. Note that the function will actually create an SCTP socket and
then gather the information via a getsockopt() system calls. If for some reason a SCTP socket cannot
be created or the getsockopt() call fails, an error will be returned with errno set as specified in the
socket() or getsockopt() system call.

Return Values

The call returns the number of bytes that the operating system expects for the specific address family
or SOCKET ERROR (-1).

Errors
The sctp_getaddrlen() function can return the following errors:

EINVAL - The address family specified does NOT exist.

92

Chapter 3. Using the $QIO System
Service

This chapter describes how to use the $QIO system service and its data structures with TCP/IP
Services.

After you create a network pseudodevice (BG:) and assign a channel to it, use the $QIO system
service for I/O operations.

3.1. $QIO System Service Variations

The two variations of the $QIO system service are:

* Queue I/0 Request ($QI0) — Completes asynchronously. It returns to the caller immediately after

queuing the I/O request, without waiting for the 1/O operation to complete.

* Queue I/O Request and Wait (8QIOW) — Completes synchronously. It returns to the caller after

the I/0 operation completes. The only difference between the $QIO and $QIOW calling sequences

is the service name. The system service arguments are the same.

3.2. $QIO Format

The $QIO calling sequence has the following format:

SYS$Q O [ef n], chan, func, [iosb], [astadr],[astprm,[pl],[p2],[p3].[p4],.[pP5],
[p6]

The following table describes each argument.

Table 3.1. $QIO Arguments

Argument Description

astadr AST (asynchronous system trap) service routine

astprm AST parameter to be passed

chan I/O channel

efn Event flag number

func Network pseudodevice function code and/or
function modifier

iosb I/O status block

pl, p2, p3, p4, p5, p6 Function-specific I/O request parameters

3.2.1. Symbol Definition Files

The following table lists the symbol definition files for the $QIO arguments p1 through p6. Use the
standard mechanism for the programming language you are using to include the appropriate symbol
definition files in your program.

93

Chapter 3. Using the $QIO System Service

Table 3.2. Network Symbol Definition Files

File Name File Name
TCPIPSINETDEF.H C
TCPIPSINETDEF.FOR VAX Fortran
TCPIPSINETDEF.PAS VAX PASCAL
TCPIPSINETDEF.MAR MACRO-32
TCPIPSINETDEF.PLI VAX PL/1
TCPIPSINETDEF.R32 BLISS-32
TCPIPSINETDEF.ADA VAX Ada
TCPIPSINETDEF.BAS VAX BASIC

3.3. $QI0 Functions

The following table lists the $QIO function codes commonly used in a network application.

Note

The I0$_SETMODE and I0$_SETCHAR function codes are identical. All references to the 10
$ SETMODE function code, its arguments, options, function modifiers, and condition values returned
also apply to the I0$ SETCHAR function code, which is not explicitly described in this manual.

The I0$_SENSEMODE and 10§ SENSECHAR function codes are identical. All references to the
10$ SENSEMODE function code, its arguments, options, function modifiers, and condition values
returned also apply to the I0$ SENSECHAR function code, which is not explicitly described in this
manual.

Table 3.3. $QIO Function Codes

$QIO Function Codes Description
$QIO(I0S$_SETMODE) Creates the socket by setting the internet domain, protocol
$QIO(IO$_SETCHAR) (socket) type, and protocol of the socket.

Binds a name (local address and port) to the socket.

Defines a network pseudodevice as a listener on a TCP/IP server.

Specifies socket options.

$QIO(IOS_ACCESS) Initiates a connection request from a client to a remote host using
TCP.

Specifies the peer where you can send datagrams.

Accepts a connection request from a TCP/IP client when used
with the IO$M_ACCEPT function modifier.

$QIO(I0S$_WRITEVBLK) Writes data (virtual block) from the local host to the remote host
for stream sockets, datagrams, and raw IP.

$QIO(I0$ READVBLK) Reads data (virtual block) from the remote host to the local host
for stream sockets, datagrams, and raw IP.

$QIO(0$ DEACCESS) Disconnects the link established between two communication

agents through an I0§ DEACCESS function.

94

Chapter 3. Using the $QIO System Service

$QIO Function Codes Description

Shuts down the communication link when used with the 10
$M_SHUTDOWN function modifier. You can shut down the
receive or transmit portion of the link, or both.

$QIO(I0$ SENSECHAR) Obtains socket information.
$QIO(10$ _SENSEMODE)

3.4. $QIO Arguments

You pass two types of arguments with the $QIO system service: functionindependent arguments
and function-dependent arguments. The following sections provide information about $QIO system

service arguments.

3.4.1. $QIO Function-Independent Arguments

The following table describes the $QIO function-independent arguments.

Table 3.4. $QIO Function-Independent Arguments

Argument

Description

astadr

Address of the asynchronous system trap (AST) routine to be executed when the 1/
O operation is completed.

astprm

A quadword (Alpha) or longword (VAX) containing the value to be passed to the
AST routine.

chan

A longword value that contains the number of the I/O channel. The $QIO system
service uses only the low-order word.

efn

A longword value of the event flag number that the $QIO system service sets
when the I/O operation completes. The $QIO system service uses only the low-
order byte.

func

A longword value that specifies the network pseudodevice function code and
function modifiers that specify the operation to be performed.

Function modifiers affect the operation of a specified function code. In
MACRO-32, you use the exclamation point (!) to logically OR the function code
and its modifier. In Compaq C, you use the vertical bar (|). This manual uses the
vertical bar (|) in text.

iosb

The I/0O status block that receives the final status message for the I/O operation.
The iosb argument is the address of the quadword I/O status block. (For the format
of the I/O status block, see nextsection

3.4.2. 1/O Status Block

The system returns the status of a $QIO operation in the I/O status block (IOSB) supplied as an
argument to the $QIO call. In the case of a successful I0§ READVBLK or I0$§ WRITEVBLK
operation, the second word of the I/O status block contains the number of bytes transferred during the
operation (see Figure 5-1).

95

Chapter 3. Using the $QIO System Service

Figure 3.1. I/0 Status Block for a Successful READ or WRITE Operation

READ/WRITE
31

16 15

0

Transfer size

OpenVMS completion status code

Buffer address

With an unsuccessful I0O§ READVBLK or I0O$ WRITEVBLK operation, in most cases, the system
returns a UNIX error code in the second word of the I/O status block.

For C programs, the OpenVMS completion codes are defined in the SSDEF.H header file. The UNIX
error codes are defined in the ERRNO.H header file and in the TCPIPSINETDEF.H header file. For
other language variants, see xxxTable 5-2.

3.4.3. $QIO0 Function-Dependent Arguments

Arguments p1, p2, p3, p4, p5, and p6 to the $QIO system service are used to pass function-dependent
arguments. Table 5-5 lists arguments p1 through p6 for the $QIO system service and indicates
whether the parameter is passed by value, by reference, or by descriptor.

Table 3.5. $QIO Function-Dependent Arguments

$QIO pl p2 p3 p4 p5 p6
I0$ ACCESS Not used Notused [Remote Not used Notused |Not used
socket name®
I0$ ACCESS |10 Not used Not used |Remote Channel Not used |Not used
$M_ACCEPT socket number®
name”
10§ ACPCONTROL |Subfunction |Input Buffer Bufferd Notused |Not used
code? parameter? | length®
10§ DEACCESS Not used Notused |Not used Not used Notused |Not used
I0$ DEACCESS | 10 |Not used Notused [Not used Shutdown Notused |Not used
$M_SHUTDOWN flags®
10$ READVBLK Buffer® Buffer Remote Flags® Not used |Output
size® socket buffer
name” listd
I10$ READVBLK | |Buffer® Buffer Not used Not used Not used |Not used
IO$M_INTERRUPT size®
10$ WRITEVBLK |Buffer® Buffer Remote Flags® Input Not used
size® socket name® buffer list!
10$ WRITEVBLK | |Buffer® Buffer Not used Not used Notused |Not used
IO$SM_INTERRUPT size®
I0$ SETMODE Socket char® [Notused |Local socket |Backlog Input Not used
name limit® parameter
list*
10§ SETMODE | IO |AST User Access Not used Not used |Not used
$ OUTBAND procedure® |argument® |mode®

96

Chapter 3. Using the $QIO System Service

$QI1I0 pl p2 p3 p4 p5 pé

I0$ SETMODE | IO |AST User Access Not used Notused |Not used

$ READATTN procedure® |argument® |mode®

I0$ SETMODE | IO |AST User Access Not used Notused |Not used

$WRTATTN procedure® |argument® |mode®

I0$ SENSEMODE | Not used Notused |Local socket |Remote Not used |Output
name” socket name® parameter

list®

By item_list_2 descriptor.
bBy item_list 3 descriptor
By reference.

dBy descriptor

By value

3.5. Passing Arguments by Descriptor

In addition to OpenVMS argument descriptors, I/O functions specific to TCP/IP Services also pass
arguments by using item_list 2 and item_list 3 argument descriptors. The format of these argument
descriptors is unique to TCP/IP Services, and they supplement argument descriptors defined in the
OpenVMS Calling Standard.

Use of an item_list 2 or item_list 3 argument descriptor is indicated when the argument’s passing
mechanism is specified as an item_list 2 descriptor or an item_list 3 descriptor.

The item_list 2 argument descriptors describe the size, data type, and starting address of a service
parameter. An item_list 2 argument descriptor contains three fields, as depicted in the following
diagram:

3 16 15 0
Type Length
Address

The first field is a word containing the length (in bytes) of the parameter being described. The second
field is a word containing a symbolic code specifying the data type of the parameter. The third field is
a longword containing the starting address of the parameter.

The item_list 3 argument descriptors describe the size, data type, and address of a buffer in which
a service writes parameter information returned from a get operation. An item_list 3 argument
descriptor contains four fields, as depicted in the following diagram:

31 16 15 0
Type | Length

Buffer address

Return length address

The first field is a word containing the length (in bytes) of the buffer in which a service writes
information. The length of the buffer needed depends on the data type specified in the type field.
If the value of buffer length is too small, the service truncates the data. The second field is a word

97

Chapter 3. Using the $QIO System Service

containing a symbolic code specifying the type of information that a service is to return. The third
field is a longword containing the address of the buffer in which a service writes the information. The
fourth field is a longword containing the address of a longword in which a service writes the length (in
bytes) of the information it actually returned.

Note

When a parameter specified as a descriptor is described as “‘read-only”, the descriptor itself is
only read, and TCP/IP Services does not modify the memory described. However, system service
postprocessing requires that the described memory must be both readable and writable.

3.5.1. Specifying an Input Parameter List

Use the p5 argument with the I0$ SETMODE function to specify input parameter lists. The p5
argument specifies the address of a item_list 2 descriptor that points to and identifies the type of input
parameter list.

To initialize an item_list 2 descriptor, you need to:

1. Set the descriptor’s type field to one of the following symbolic codes to specify the type of input
parameter list:

Symbolic Name Input Parameter List Type
TCPIP$C _SOCKOPT Socket options
TCPIP$C_TCPOPT TCP protocol options
TCPIPSC IPOPT IP protocol options
TCPIP$C IOCTL I/O control commands

2. Set the descriptor’s length field to specify the length of the input parameter list.
3. Set the descriptor’s address field to specify the starting address of the input parameter list.

The following figure illustrates how the p5 argument specifies an input parameter list.

Figure 3.2. Specifying an Input Parameter List

o5
3 16 15 D]
31 16 15 0 Pammeterlisttype| Length
t Parameter type Length f———— Parameter list address
8 bytes iterm 1 itern_list_2 descriptor
L Parameter address
L : L
o - pr
T Parameter type Length
B bytes itern n
J, Parameter address

input_parameter_list

98

Chapter 3. Using the $QIO System Service

As the name implies, input parameter lists consist of one or more contiguous item_list 2

or ioctl comm structures. The length of a input parameter list is determined solely from the length
field of its associated argument descriptor. Input parameter lists are never terminated by a longword
containing a zero.

Each item_list 2 structure that appears in an input parameter list describes an individual parameter
or item to set. Such items include socket or protocol options as identified by the item’s type field. To
initialize an item_list 2 descriptor, you need to:

1. Set the item’s type field to one of the symbolic codes in Appendix A.

2. Set the item’s length field to specify the length of the item.

3. Set the item’s address field to specify the starting address of its data.

The following figure illustrates how to specify setting socket options.

Figure 3.3. Setting Socket Options

p5
31 16 15]
31 16 15 o TCPIPSC _SOCKOPT LE-'I'Igﬂ'I
T Option name Option length -.—. Parameter list address
8 bytes itemn 1 itern_list_2 descriptor
1 Option addrass
_n--r : Kl
e - L
T QOption name Option length
8 bytes iterm n
L Option address

input_parameter_list

Each ioctl_comm structure appearing in an input parameter list contains an I/O control command---
the IOCTL request code (as defined by $SIOCDEF) and its associated IOCTL structure address. The
following figure illustrates how to specify (set) I/O control (IOCTL) commands.

Figure 3.4. Setting IOCTL Parameters

8 bytes

}

IOCTL command

31 16 15

s

TCPIPSC_IOCTL| Length

Parameter list address

IOCTL structure address

L 1
L

IOCTL command

IOCTL structure address

input_parameter_list

item_list_2 descriptor

99

Chapter 3. Using the $QIO System Service

3.5.2. Specifying an Output Parameter List

Use the p6 argument with the IO§ SENSEMODE function to specify output parameter lists. The p6
argument specifies the address of an item_list 2 descriptor that points to and identifies the type of
output parameter list.

To initialize an item_list 2 descriptor, you need to:

1. Set the descriptor’s type field to one of the following symbolic codes to specify the type of output
parameter list:

Symbolic Name Output Parameter List Type
TCPIP$C _SOCKOPT Socket options

TCPIP$C _TCPOPT TCP protocol options
TCPIPSC IPOPT IP protocol options

TCPIP$C IOCTL I/O control commands

2. Set the descriptor's length field to specify the length of the output parameter list.
3. Set the descriptor's address field to specify the starting address of the output parameter list.

The following figure illustrates how the p6 argument specifies an output parameter list:

Figure 3.5. Specifying an Qutput Parameter List

o6
31 16 15 {:l:|
31 16 15 0 Parameter isttype| Length
Parametertype | Bufferlength | | Parameter list address
iterm 1

item_list_2 descriptor
12 bytes Buffer address

Retumn length address

3 i
LU

bt
Pt

31

Parameter type Buffer length

12 bytes Buffer address

item n

Return length address

output_parameter_list

As the name implies, output parameter lists consist of one or more contiguous item_list 3

or ioctl_comm structures. The length of an output parameter list is determined solely from the length
field of its associated argument descriptor. Output parameter lists are never terminated by a longword
containing a zero.

Each item_list 3 structure that appears in an output parameter list describes an individual parameter
or item to return. Such items include socket or protocol options as identified by the item's type field.

To initialize an item_list 3 structure, you need to:

1. Set the item's type field to one of symbolic codes found in Appendix A.

100

Chapter 3. Using the $QIO System Service

2. Set the item's buffer length field to specify the length of its buffer.
3. Set the item's buffer address field to specify the starting address of its buffer.

4. Set the item's returned length address field to specify the address of a longword to receive the
length in bytes of the information actually returned for this item.

The following figure illustrates how to specify getting socket options.

Figure 3.6. Getting Socket Options

ph
31 16 15 H]
]| 16 15 0 TCPIPEC_SOCKOPT Length

Parameter list address

Option name Option lkength

i2 bytes Option address iterm 1 itern_list_2 descriptor

Option retum length address

J L

Ly 1
LE

Option name Option length

12 bytes Option address itern n

Option return length address

output_parameter_list

Each ioctl_comm structure appearing in a output parameter list contains an I/O control command---
the IOCTL request code (as defined by $SIOCDEF) and its associated IOCTL structure address. The
following figure illustrates how to specify (get) I/O control (IOCTL) commands.

Figure 3.7. Getting IOCTL Parameters

pE
3 16 15 0
31 0 TCRIPSC_IOCTL Length
T I0CTL command - Parameter list address
8 bytes I .
t list 2d t
I IOCTL structure address an .= cestnpr
_-li-- L
K rd LS
I IOCTL command
8 bytes
I IOCTL structure address

output_parameter_list

3.5.3. Specifying a Socket Name

Use the p3 or p4 argument with the I0$ ACCESS, I0$ READVBLK,
I0$_SENSEMODE, 10$ SETMODE, and I0$ WRITEVBLK functions to specify a socket name.

101

Chapter 3. Using the $QIO System Service

The p3 and p4 arguments specify the address of an item_list 2 or item_list 3 descriptor that points to
a socket name structure. The socket name structure contains address domain, port number, and host
internet address.

Note

NotePort numbers 1 to 1023 require a system UIC or a UIC with SYSPRV and BYPASS privileges
when assigned. If you specify zero when binding a socket name, the system assigns an available port.

Use an item_list_2 argument descriptor with the IO$ ACCESS, 10§ WRITEVBLK, and
10$_SETMODE functions to specify (set) a socket name. The descriptor's parameter type is
TCPIP$SC_SOCK_NAME.

Use an item_list 3 argument descriptor with the I0$ ACCESS|IO$M_ACCEPT, I0$ READVBLK,
and I0$_SENSEMODE functions to specify (get) a socket name. The descriptor's parameter type is
TCPIP$C_SOCK NAME.

With BSD Version 4.3, specify socket names as illustrated in the following figure:

Figure 3.8. Specifying a Socket Name

p3
k]| 16 15 0
31 16 15 0 TEPIFSE_S00_MAME Length
1 Port number | Address family Address
item_list_2 descriptor
IPv4 address - .
16 bytes
| Unused
{must be 0)
Ip¥d socket_name
p
k]| 16 15 0
1] 16 15 i TCFIPSE_S00H_MAME Length
Port number | Address family Buffer address
Return length address
IPv4 address
16 bytes itern_list_3 descriptor
| Unused _
{must be 0)

- | Retumn length
IPv4 socket_name

longword

3.5.4. Specifying a Buffer List

Use the p5 argument with the I0$§ WRITEVBLK function to specify input buffer lists. The p5
argument specifies the address of a 32- or 64-bit fixed-length descriptor (on Alpha systems) or a 32-
bit fixed-length descriptor (on VAX systems) pointing to an input buffer list.

102

Chapter 3. Using the $QIO System Service

Use the p6 argument with the I0$§ READVBLK function to specify output buffer lists. The p6
argument specifies the address of a 32- or 64-bit fixed-length descriptor (on Alpha systems) or a 32-
bit fixed-length descriptor (on VAX systems) pointing to an output buffer list.

To initialize the p5 or p6 arugment descriptor, you need to:

1. Set the descriptor's data-type code (the DTYPE field) to DSC$SK DTYPE DSC to specify a buffer
list containing one or more descriptors defining the length and starting address of user buffers.

2. Set the descriptor's class code (the CLASS field) to DSC$K_CLASS S.
3. Set the descriptor's length field to specify the length of the buffer list.

4. Set the descriptor's MBO field to 1 and the MBMO field to all 1s if this is a 64-bit argument
descriptor.

The following figire illustrates how to specify a buffer list:

103

Chapter 3. Using the $QIO System Service

Figure 3.9. Specifying a Buffer List

peipE
31 2423 1615 n:|
31 2423 1615 0 cuass=1|oTvPei=2| Length

Buffer list address

CLASS |DTYPE | Buffer length
8 bytes buffer 1 4 pit descriptor
l Buffer address

LR
J 1
L3

I |cLass |oTvPE | Buffer length
B bytes buffer n

l Buffer address

buffer_list (using 32-bit descriptors)

Jistieli]
31 24 23 1615 n:|
C:_#SSL=1L|DT\"PE[=24]| MBO (=1)

MBMO (= -1)
— Length —
— 31 2423 16 15 0
CLASS [DTYPE | MBO (=1) Buffer list address —
MEMO (= -1)
64-bit descriptor
24 bytes [~ Buffer lkength =1 buffar 1
— Buffer address —
o~ : o~
Pt -

CLASS [DTYPE | MBO (=1)
MBMO (= -1)

24 bytas — Buffer length —— buffer n

— Buffer address —

buffer_list (using 64-bit descriptors)

Buffer lists, as the name implies, consist of one or more contiguous 32- or 64-bit fixed-length
descriptors (on Alpha systems) or 32-bit fixed-length descriptors (on VAX systems).

Each 32- or 64-bit descriptor that appears in a buffer list describes one user buffer. Initialize each
descriptor by setting its data type, class, length, and address fields as appropriate for 32- and 64-bit
descriptors.

For more information about using 32-bit and 64-bit descriptors, refer to the OpenVMS Calling
Standard.

104

Chapter 4. $QIO Interface

The $QIO interface allows programmers to use more sophisticated programming techniques than
available with the socket library. Using the $QIO interface, you can perform fully asynchronous I/O to
the network and receive Asynchronous System Traps (ASTs) when out-of-band data arrives (similar
to the UNIX SI GURGsignal). In general, there is a one-to-one mapping between the socket library
functions and $QIO calls.

The $QIO interface returns an OpenVMS error code in the first word of the Input/Output Status Block
(1 OSB). If the low bit of the OpenVMS error code is clear, an error has been returned by the network.
The OpenVMS error code is generated from the UNIX errno code by multiplying the UNIX code by
8 (eight) and logical ORing it with 0x8000.

You can mix and match the socket library function and the $QIO calls. For example, you can use
socket() and connect() to establish a connection, then use IO$_SEND and I0$ RECEIVE to send
and receive data on it.

Note

If more than one $QIO operation is pending on a socket at any one time, there is no guarantee that the
$QIO calls will complete in the order they are queued. In particular, if more than one read or write
operation is pending at any one time, the data may be interleaved. You do not need to use multiple
read or write operations concurrently on the same socket to increase performance because of the
network buffering.

The function codes for the VST TCP/IP-specific $QIO functions are defined in the include file
| P_root:[IP.include.vns]inetiodef.h.

If the compile time constant USE_BSD44_ENTRI ES is defined, then the BSD 4.4 variant of the
| O3_ACCEPT, | G5_BI ND, | O5_CONNECT, | O8_GETPEERNAME, | O6_GETSOCKNAME, | O
$_RECEI VE, | O_SEND s selected.

The following are the interface functions:

10$_ACCEPT 10$_SEND

10$_ACCEPT_WAIT 10$_SENSEMODE

10$_BIND 10$_SENSEMODE | IOSM_CTRL
10$_CONNECT 10$_SETCHAR

10$_ GETPEERNAME 10$_SETMODE[IO$SM_ATTNAST
10$_GETSOCKNAME 10$_SETSOCKOPT
10$_GETSOCKOPT 10$_SHUTDOWN

10$_IOCTL 10$_SOCKET

10$_LISTEN SYS$SCANCEL

10$_RECEIVE (103_READVBLK) SYS$SDASSGN

10$_SELECT

105

Chapter 4. $QIO Interface

I0$_ACCEPT

10$_ACCEPT — Extracts the first connection from the queue of pending connections on a socket,
creates a new socket with the same properties as the original socket, and associates an OpenVMS
channel to the new socket. IO$_ACCEPT is equivalent to the accept() socket library function.
Normally, instead of calling IO$_ACCEPT to wait for a connection to become available, 10
$_ACCEPT WAIT is used. This allows your process to wait for the connection without holding the
extra network channel and tying up system resources. When the I0$_ACCEPT_WAIT completes, it
indicates that a connection is available. IO§_ACCEPT is then called to accept it.

Format

Status = SYS$SQIOW(Efn, New VMS_ Channel, I0O$ ACCEPT, IOSB, AstAdr, AstPrm, Address,
AddrLen, VMS Channel, 0, 0, 0);

Arguments

New_VMS Channel

OpenVMS Usage: channel

type: word (signed)
access: read only
mechanism: by value

An OpenVMS channel to a newly-created INET device. Create this channel by using SYS$ASSIGN
to assign a fresh channel to INETO: before issuing the IO$_ACCEPT call. The accepted connection
is accessed using this channel.

VMS_Channel

OpenVMS Usage: channel

type: word (signed)
access: read only
mechanism: by value

The OpenVMS channel to the INET: device on which the IO$_LISTEN call was performed. After
accepting the connection, this device remains available to accept new connections.

Address

OpenVMS Usage: special_structure

type: structure defined below
access: write only

mechanism: by reference

An optional pointer to a structure that, following the completion of the IO$ ACCEPT call, contains
the address of the socket that made the connection. This structure is defined as follows:

struct {

unsi gned | ong Lengt h;
struct sockaddr Address;

106

Chapter 4. $QIO Interface

b

AddrLen

OpenVMS Usage: word_unsigned
type: word (unsigned)
access: read only
mechanism: by value

The length of the buffer pointed to by the Address argument, in bytes. It must be at least 20 bytes.

I0$_ACCEPT_WAIT

I0$ ACCEPT_WAIT — Used to wait for an incoming connection without accepting it. This allows
your process to wait for the connection without holding the extra network channel and tying up
system resources. When the IO$_ACCEPT_WAIT call completes, it indicates that a connection

is available. IO$_ACCEPT is then called to accept it. The IO$_ACCEPT_ WAIT call takes no
function-specific parameters.

Format

Status = SYS$SQIOW(Efn, VMS_Channel, I0$§ ACCEPT_ WAIT, IOSB, AstAdr, AstPrm, 0, 0, 0, 0,
0, 0);

Arguments

VMS_ Channel

OpenVMS Usage: channel

type: word (signed)
access: read only
mechanism: by value

The OpenVMS channel to the INET: device on which the IO$_LISTEN call was performed.

10$_BIND

10$_BIND — Assigns an address to an unnamed socket. When a socket is created with 10

$ SOCKET, it exists in a name space (address family) but has no assigned address. 10§ BIND
requests that the address be assigned to the socket. I0$_BIND is equivalent to the bind() socket
library function.

Format

Status = SYS$SQIOW(Efn, VMS_Channel, IO$§ BIND, IOSB, AstAdr, AstPrm, Name, NameLen, 0,
0,0, 0);

Arguments

VMS_Channel

107

Chapter 4. $QIO Interface

OpenVMS Usage: channel

type: word (signed)
access: read only
mechanism: by value

A channel to the socket.

Name

OpenVMS Usage: socket address
type: struct sockaddr
access: read only
mechanism: by reference

The address to which the socket should be bound. The exact format of the Address argument is

determined by the domain in which the socket was created.

NameLen

OpenVMS Usage: socket_address_length
type: longword (unsigned)
access: read only

mechanism: by value

The length of the Name argument, in bytes.

I0$_CONNECT

I0$_CONNECT — When used on a SOCK_STREAM socket, this function attempts to make a
connection to another socket. When used on a SOCK_DGRAM socket, this function permanently
specifies the peer to which datagrams are sent to and received from. The peer socket is specified by
name, which is an address in the communications domain of the socket. Each communications domain
interprets the name parameter in its own way. I0$ _CONNECT is equivalent to the connect() socket
library function. If the address of the local socket has not yet been specified with I0$_BIND, the
local address is also set to an unused port number when I0$ _CONNECT is called.

Format

Status = SYS$SQIOW(Efn, VMS_Channel, I0$§ CONNECT, IOSB, AstAdr, AstPrm, Name,
NameLen, 0, 0, 0, 0);

Arguments

VMS_Channel

OpenVMS Usage: channel

type: word (signed)
access: read only

108

Chapter 4. $QIO Interface

mechanism:

by value

A channel to the socket.

Name

OpenVMS Usage: socket address
type: struct sockaddr
access: read only
mechanism: by reference

The address of the peer to which the socket should be connected. The exact format of the Address
argument is determined by the domain in which the socket was created.

NameLen

OpenVMS Usage: socket_address length
type: longword (unsigned)
access: read only

mechanism: by value

The length of the Name argument, in bytes.

I0$_GETPEERNAME

I0$_GETPEERNAME — Returns the name of the peer connected to the specified socket. It is

equivalent to the getpeername() socket library function.

Format

Status = SYS$SQIOW(Efn, VMS_Channel, I0$ GETPEERNAME, IOSB, AstAdr, AstPrm, Address,

AddrLen, 0, 0, 0, 0);

Arguments

VMS_ Channel

OpenVMS Usage: channel

type: word (signed)
access: read only
mechanism: by value

A channel to the socket.

Address

OpenVMS Usage: socket_address
type: struct sockaddr
access: write only
mechanism: by reference

109

Chapter 4. $QIO Interface

A result parameter filled in with the address of the peer, as known to the communications layer. The
exact format of the Address argument is determined by the domain in which the communication is

occurring.

AddrLen

OpenVMS Usage: socket_address length
type: longword (unsigned)
access: modify

mechanism: by reference

On entry, contains the length of the space pointed to by Address, in bytes. On return, it contains the
actual length, in bytes, of the address returned.

I0$_GETSOCKNAME

10$_GETSOCKNAME — Returns the current name of the specified socket. Equivalent to the
getsockname() socket library function.

Format

Status = SYS$SQIOW(Efn, VMS_Channel, I0$§ GETSOCKNAME, I0SB, AstAdr, AstPrm, Address,

AddrLen, 0, 0, 0, 0);

Arguments

VMS_ Channel

OpenVMS Usage: channel

type: word (signed)
access: read only
mechanism: by value

A channel to the socket.

Address

OpenVMS Usage: socket address
type: struct sockaddr
access: write only
mechanism: by reference

A result parameter filled in with the address of the local socket, as known to the communications
layer. The exact format of the Address argument is determined by the domain in which the

communication is occurring.

AddrLen

OpenVMS Usage: socket_address length
type: longword (unsigned)
access: modify

110

Chapter 4. $QIO Interface

mechanism: by reference

On entry, contains the length of the space pointed to by Address, in bytes. On return, it contains the
actual length, in bytes, of the address returned.

I0$_GETSOCKOPT

10$_GETSOCKOPT — Retrieves options associated with a socket. It is equivalent to the
getsockopt() library routine. Options can exist at multiple protocol levels; however, they are always
present at the uppermost socket level. When manipulating socket options, you must specify the
level at which the option resides and the name of the option. To manipulate options at the socket
level, specify level as SOL_SOCKET. To manipulate options at any other level, specify the
protocol number of the appropriate protocol controlling the option. For example, to indicate that
an option is to be interpreted by the TCP protocol, set Level to the protocol number of TCP, as
determined by calling getprotobyname(). OptName and any specified options are passed without
modification to the appropriate protocol module for interpretation. The include file | P_r oot :

[P.include. sys] socket . h contains definitions for socket-level options. Options at other
protocol levels vary in format and name. For more information on what socket options may be
retrieved with [IO$_GETSOCKOPT, see setsockopt().

Format

Status = SYSSQIOW(Efn, VMS_Channel, I0§ GETSOCKOPT, IOSB, AstAdr, AstPrm, Level,
OptName, OptVal, OptLen, 0, 0);

Arguments

VMS_Channel

OpenVMS Usage: channel

type: word (signed)
access: read only
mechanism: by value

A channel to the socket.

Level

OpenVMS Usage: option_level

type: longword (unsigned)
access: read only
mechanism: by value

The protocol level at which the option will be manipulated. Specify Level as SOL_SOCKET or a

protocol number as returned by getprotoent().

OptName

OpenVMS Usage: option_name

type: longword (unsigned)
access: read only

111

Chapter 4. $QIO Interface

mechanism: by value

The option that is to be manipulated.

OptVal

OpenVMS Usage: dependent on OptName
type: byte buffer

access: write only

mechanism: by reference

A pointer to a buffer that is to receive the current value of the option. The format of this buffer is
dependent on the option requested.

OptLen

OpenVMS Usage: option_length

type: longword (unsigned)
access: modify

mechanism: by reference

On entry, contains the length of the space pointed to by OptVal, in bytes. On return, it contains the
actual length, in bytes, of the option returned.

10$_10CTL

10$_IOCTL — Performs a variety of functions on the network; in particular, it manipulates socket
characteristics, routing tables, ARP tables, and interface characteristics. The IO$_IOCTL call is
equivalent to the socket_ioctl() library routine. A IO$_IOCTL request has encoded in it whether
the argument is an input or output parameter, and the size of the argument, in bytes. Macro and
define statements used in specifying an I0$ IOCTL request are located in the file | P_r oot :
[1P.include.sys]ioctl.h.

Format

Status = SYS$SQIOW(Efn, VMS_Channel, I0O$ TIOCTL, IOSB, AstAdr, AstPrm, Request, ArgP, 0, 0,
0, 0);

Arguments

VMS_ Channel

OpenVMS Usage: channel

type: word (signed)
access: read only
mechanism: by value

A channel to the socket.

Request

112

Chapter 4. $QIO Interface

OpenVMS Usage: ioctl_request

type: longword (unsigned)
access: read only
mechanism: by value

Which I0$_IOCTL function to perform. The available IO$_IOCTL functions are documented in the
socket ioctl sections.

ArgP

OpenVMS Usage: arbitrary

type: byte buffer

access: read, write, or modify depending on Request
mechanism: by reference

A pointer to a buffer whose format and function is dependent on the Request specified.

|I0$_LISTEN

I0$_LISTEN — Specifies the number of incoming connections that may be queued while waiting
to be accepted. This backlog must be specified before accepting a connection on a socket. The IO
$ _LISTEN function applies only to sockets of type SOCK_STREAM. The I0$_LISTEN call is
equivalent to the listen() socket library function.

Format

Status = SYS$SQIOW(Efn, VMS_Channel, IO§ LISTEN, IOSB, AstAdr, AstPrm, BackLog, 0, 0, 0, 0,
0);

Arguments

VMS_Channel

OpenVMS Usage: channel

type: word (signed)
access: read only
mechanism: by value

A channel to the socket.

Backlog

OpenVMS Usage: connection_backlog
type: longword (unsigned)
access: read only
mechanism: by value

Defines the maximum length of the queue of pending connections. If a connection request arrives
when the queue is full, the request is ignored. The backlog queue length is limited to 5.

113

Chapter 4. $QIO Interface

|I0$_RECEIVE (I0$_READVBLK)

10$_RECEIVE — Receives messages from a socket. This call is equivalent to the recvfrom(),
recv(), and socket_read() socket library functions. The length of the message received is returned
in the second and third word of the I/O Status Block (IOSB). A count of 0 indicates an end-of-file

condition; that is, the connection has been closed. If a message is too long to fit in the supplied buffer

and the socket is type SOCK_DGRAM, excess bytes are discarded. If no messages are available at
the socket, the IO$_RECEIVE call waits for a message to arrive, unless the socket is nonblocking

(see socket_ioctl()).

Format

Status = SYS$SQIOW(Efn, VMS_Channel, I0§ RECEIVE, I0SB, AstAdr, AstPrm, Buffer, Size,
Flags, From, FromLen, 0);

Arguments

VMS_Channel

OpenVMS Usage: channel
type: word (signed)
access: read only
mechanism: by value

A channel to the socket.

Buffer

OpenVMS Usage: arbitrary
type: byte buffer
access: write only
mechanism: by reference

The address of a buffer in which to place the data read.

Size

OpenVMS Usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

The length of the buffer specified by Buffer. The actual number of bytes read is returned in the

Status.

Flags

OpenVMS Usage: mask longword
type: longword (unsigned)
access: read only
mechanism: by value

114

Chapter 4. $QIO Interface

Control information that affects the IO$_RECEIVE call. The Flags argument is formed by ORing
one or more of the following values:

#def i ne MSG_O0B 0x1 /* process out-of-band data */
#def i ne MSG _PEEK 0x2 /* peek at incom ng nmessage */

The MSG_OOB flag causes IO$_RECEIVE to read any out-of-band data that has arrived on the
socket.

The MSG_PEEK flag causes IO$_RECEIVE to read the data present in the socket without removing
the data. This allows the caller to view the data, but leaves it in the socket for future I0$ RECEIVE
calls.

From

OpenVMS Usage: special_structure

type: structure defined below
access: write only

mechanism: by reference

An optional pointer to a structure that, following the completion of the IO$_RECEIVE, contains the
address of the socket that sent the packet. This structure is defined as follows:

struct {
unsi gned short Length;
struct sockaddr Address;

i

FromLen

OpenVMS Usage: wor d_unsi gned
type: word (unsigned)
access: read only
mechanism: by value

The length of the buffer pointed to by the From argument, in bytes. It must be at least 18 bytes.

|I0$_SELECT

10$_SELECT — Examines the specified channel to see if it is ready for reading, ready for writing,
or has an exception condition pending (the presence of out-of-band data is an exception condition).
The UNIX select() system call can be emulated by posting multiple IO$_SELECT calls on different
channels. IO$_SELECT is only useful for channels assigned to the INET: device. It cannot be used
for any other VMS 1/O device.

Format

Status = SYS$SQIOW(Efn, VMS_Channel, I0$ SELECT, IOSB, AstAdr, AstPrm, Modes, 0, 0, 0, 0,
0);

Arguments

VMS_Channel

115

Chapter 4. $QIO Interface

OpenVMS Usage: channel

type: word (signed)
access: read only
mechanism: by value

A channel to the socket.

Modes

OpenVMS Usage: mask_longword
type: longword (unsigned)
access: modify

mechanism: by reference

On input, the Modes argument is a bit mask of one or more of the following values:

#define SELECT DONTWAI T (1<<0)
#define SELECT READABLE (1<<1)
#define SELECT WRI TEABLE (1<<2)
#define SELECT EXCEPTION (1<<3)

If the SELECT DONTWAIT bit is set, the IO$_SELECT call will complete immediately, whether
or not the socket is ready for any I/O operations. If this bit is not set, the IO$ _SELECT call will wait
until the socket is ready to perform one of the requested operations.

If the SELECT_READABLE bit is set, the IO$_SELECT call will check if the socket is ready for
reading or a connecting has been received and is ready to be accepted.

If the SELECT_WRITEABLE bit is set, the IO$_SELECT call will check if the socket is ready for
writing or a connect request has been completed.

If the SELECT_EXCEPTION bit is set, the IO$_SELECT call will check if the socket has out-of-
band data ready to read.

On output, the Modes argument is a bit mask that indicates which operations the socket is ready
to perform. If the SELECT DONTWAIT operation was specified, the Modes value may be
zero; if SELECT DONTWAIT is not specified, then one or more of the SELECT READABLE,
SELECT WRITABLE, or SELECT EXCEPTION bits will be set.

I0$_SEND

10$_SEND — Transmits a message to another socket. It is equivalent to the sendto(), send(), and
socket write() socket library functions. If no message space is available at the socket to hold the
message to be transmitted, [O$_SEND blocks unless the socket has been placed in non-blocking 1/0
mode via IO$_TOCTL. If the message is too long to pass through the underlying protocol in a single
unit, the error EMSGSIZE is returned and the message is not transmitted.

Format

Status = SYS$SQIOW(Efn, VMS_Channel, I0$ SEND, IOSB, AstAdr, AstPrm, Buffer, Size, Flags,
To, ToLen, 0);

116

Chapter 4. $QIO Interface

Arguments

VMS_ Channel

OpenVMS Usage: channel
type: word (signed)
access: read only
mechanism: by value

A channel to the socket.

Buffer

OpenVMS Usage: arbitrary
type: byte buffer
access: read only
mechanism: by reference

The address of a buffer containing the data to send.

Size

OpenVMS Usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

The length of the buffer specified by Buffer.

Flags

OpenVMS Usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Control information that affects the IO$_SEND call. The Flags argument can be zero or the

following:

#defi ne M5G OOB 0x1 /* process out-of-band data */

The MSG_OOB flag causes I0$ SEND to send out-of-band data on sockets that support this

operation (such as SOCK_STREAM).

To

OpenVMS Usage: socket_address
type: struct sockaddr
access: read only
mechanism: by reference

117

Chapter 4. $QIO Interface

An optional pointer to the address to which the packet should be transmitted. The exact format of the
Address argument is determined by the domain in which the communication is occurring.

ToLen

OpenVMS Usage: socket_address length
type: longword (unsigned)
access: read only

mechanism: by value

An optional argument that contains the length of the address pointed to by the To argument.

I0$_SENSEMODE

10$_SENSEMODE — Reads the active connections status and returns status information for all of
the active and listening connections.

Format

Status = SYS$QIO(efn, chan, I0§ SENSEMODE, iosb, astadr, astprm, buffer, address, conn_type, 0,
0, 0)

Arguments

pl=buffer

OpenVMS Usage: vector_byte unsigned

type: byte (unsigned)

access: write only

mechanism: by reference

Optional address of the 8-byte device characteristics buffer. Data returned is: the device class (DC
$_SCOM in the first byte, the device type (0) in the second byte, and the default buffer size, which
is the maximum datagram size, in the high-order word of the first longword. I0O$_SENSEMODE

returns the second longword as 0.

p2=address

OpenVMS Usage: vector_word_unsigned
type: word (unsigned)
access: write only

mechanism: by descriptor

Address of the descriptor for the buffer to receive the status information on the active connections.

P3=value

OpenVMS Usage: Longword_unsigned
type: Longword (unsigned)
access: Read only

118

Chapter 4. $QIO Interface

mechanism:

by value

0 to get information about TCP connections, non-zero to get information about UDP connections.

Figure 4.1, “Connection Status Information” shows the 22 bytes of information returned for each

connection.

Protocol type

Word value is 4 for INETDRIVER stream sockets, and 5 for
BGDRIVER stream sockets.

Unit number

Word value is the INETDRIVER, or BGDRIVER device unit
number for the connection.

Receive queue

Word value is the number of bytes received from the peer waiting
to be delivered to the user through the I0$_READVBLK
function.

Send queue

Word value is the number of bytes waiting to be transmitted to or
to be acknowledged by the peer.

Local internet address

Longword value is the local internet address (or 0 if the connection
is not open and no local internet address was specified for the
connection).

Local port number

Word value is the local port number.

Peer internet address

Longword value is the peer's internet address (or 0 if the
connection is not open and no peer internet address was specified
for the connection).

Peer port number

Word value is the peer's port number, or 0 if the connection is
not open and you did not specify a peer port number for the
connection.

TCP state

Word value is the Transmission Control Protocol connection state
mask. See Table 4.1, “TCP State Mask Values” for the mask value
definitions.

Figure 4.1. Connection Status Information

+3 +2 +1 +J

Protocel Type +J

Unit Nomber +2

Receive ?C!ueue +4

Send élillueue +5

+Local Interpet Address% +5
| Local F‘nrtiNumber +12
:Peer Internet Address +14
| Peer PurtéNumber +18
TCP State +20

119

Chapter 4. $QIO Interface

Status
SS$ BUFFEROVF Buffer too small for all connections
Truncated buffer returned
SS$ DEVINACT Device not active
Contact system manager why VSI TCP/IP (or INETDRIVER) not
started
SS$ NORMAL Success
Status information returned

The byte count for the status information buffer is returned in the high-order word of the first
longword of the I/O status block. This may be less than the bytes requested. See Figure 4.2, “I/O
Status Block” for more information.

The size in bytes of each connection's record (22 bytes) is returned in the low order word of the
second longword of the I/O status block.

The total number of active connections is returned in the high-order word of the second longword of
the 1/O status block. This can be greater than the number of reported connections if the buffer is full.

Figure 4.2. I/0 Status Block

Byte Count Status Code

MNumber of Connections Bytes/Record=22

Table 4.1. TCP State Mask Values

Mask State Mask State Mask State

Value Value Value

1 LISTEN 16 FIN-WAIT-1 256 LAST-ACK
2 SYN-SENT 32 FIN-WAIT-2 512 TIME-WAIT
4 SYN-RECEIVED 64 CLOSE-WAIT 1024 CLOSED

8 ESTABLISHED 128 CLOSING

|I0$_SENSEMODE | IO$M_CTRL

10$_SENSEMODE | I0$M_CTRL

Description

SS$ BUFFEROVF Buffer too small for all characteristics

Truncated characteristics buffer is returned

120

Chapter 4. $QIO Interface

SS$_DEVINACT

Device not active

Contact system manager why VSI TCP/IP (or TCPDRIVER) not

started

SS$ NORMAL

Success

Characteristics returned

The byte count for the characteristics buffer is returned in the high-order word of the first longword

of the I/O status block. This may be less than the bytes requested. The number of bytes in the receive
queue is returned in the low order word of the second longword in the 1/O status block. The number
of bytes in the read queue is returned in the high-order word of the second longword in the 1/O status

block. Figure 4.3, “I/O Status Block” shows the 1/O Status Block.

Figure 4.3. I/0 Status Block

Byte Count

Status Code

Bytes in Send Queue

Bytes in Receive Queue

Note

You can use the SYS$GETDVI system service to obtain the local port number, peer port number, and
peer internet address. The DEVDEPEND field stores the local port number (low order word) and peer

port number (high-order word). The DEVDEPEND? field stores the peer internet address.

Performs the following functions:

¢ Reads network device information

» Reads the routing table

¢ Reads the ARP information

¢ Reads the IP SNMP information

¢ Reads the ICMP SNMP information

¢ Reads the TCP SNMP information

* Reads the UDP SNMP information

Format

Status = SYS$QIO(efn, chan, I0O$ SENSEMODE | IO$SM_CTRL, iosb, astadr, astprm, buffer,

address, function, line-id, 0, 0)

Arguments

pl=buffer

121

Chapter 4. $QIO Interface

OpenVMS Usage: vector_byte unsigned
type: byte (unsigned)
access: write only
mechanism: by reference

Optional address of the 8-byte device characteristics buffer. The data returned is the device class (DC
$_SCOM in the first byte, the device type (0) in the second byte, and the default buffer size (0) in the

high-order word of the first longword. The second longword is returned as 0.

p2=address

OpenVMS Usage: vector_word_unsigned
type: Word (unsigned)
access: write only

mechanism: by descriptor

Address of the descriptor for the buffer to receive the information. The format of the buffer depends

on the information requested. Each buffer format is described separately in the section that follows.

If bit 12 (mask 4096) is set in the parameter identifier (PID), the PID is followed by a counted string.
If bit 12 is clear, the PID is followed by a longword value. While VSI TCP/IP currently never returns
a counted string for a parameter, this may change in the future.

p3=function

OpenVMS Usage: Longword-unsigned
type: Longword (unsigned)
access: read only

mechanism: by value

Code that designates the function.

The function codes are shown in the Table 4.2, “P3 Function Codes”.

Table 4.2. P3 Function Codes

Code Function

1 P1 of the QIO is not used

2 VMS descriptor of the space to put the return information
3 10

4 Not used

5 Not used

6 Not used

7 Read UDP SNMP counters

8 Read routing table

10 Read interface throughput information
p4=line-id

122

Chapter 4. $QIO Interface

OpenVMS Usage: Longword-unsigned
type: Longword (unsigned)
access: read only

mechanism: by value

Specify this argument only if you are reading a network device's ARP table function.

Reading Network Device Information

Use I0$_SENSEMODE | IO$SM_CTRL with p3=1 to read network device information. The
information returned in the buffer (specified by p2=address) can consist of multiple records. Each
record consists of nine longwords, and one record is returned for each device.

When you read network device information, the data in each record is returned in the order presented
below. All are longword values.

Line id (see the description of the line-id argument)

Line's local internet address

Line's internet address network mask

AW N ==

Line's maximum transmission unit (MTU) in the low-order word, and the line flags in
the high-order word

Number of packets transmitted (includes ARP packets for Ethernet lines)

Number of transmit errors

Number of packets received (includes ARP and trailer packets for Ethernet lines)

Number of receive errors

O | 0| Q| | W

Number of received packets discarded due to insufficient buffer space

Reading the Routing Table

Use I0$_SENSEMODE | IO$SM_CTRL with p3=8 to read the routing table. The information
returned in the buffer (specified by p2=address) can consist of multiple records. Each record consists
of five longwords, and one record is returned for each table entry.

The p3=8 function returns full routing information and is a superset of p3=2, which was retained
for backwards compatibility with existing programs. p3=2 and p3=8 return the same table of routing
entries, in the following order, except that p3=2 does not return items 7 and 8 (address mask and Path

MTU):

1 Destination Destination host or network to which the datagram is bound.
internet address. |Returned as a longword value.

2 Gateway internet |Internet address to which the datagram for this route is transmitted.
address. Returned as a longword value.

3 Flags. Routing table entry's flag bits. Returned as a word value:

Mask 1, name GATEWAY, if set, the route is to a gateway (the
datagram is sent to the gateway internet address). If clear, the route is
a direct route.

123

Chapter 4. $QIO Interface

Mask 2, name HOST, if set, the route is for a host. If clear, the route
is for a network.

Mask 4, name DYNAMIC, if set, the route was created by a received
ICMP redirect message.

Mask 8, name AUTOMATIC, if set, this route was added by
IP_RAPD process and will be modified or remoted by that process as
appropriate.

Mask 16, name LOCKED, if set, the route cannot be changed by an
ICMP redirect message.

Mask 32, name INTERFACE, if set, the route is for a network
interface.

Mask 64, name DELETED, if set, the route is marked for deletion (it
is deleted when the reference count reaches 0).

Mask 128, name POSSDOWN, if set, the route is marked as possibly
down.

4 Reference count. | Number of connections currently using the route. Returned as a word
value.

5 Use count. Number of times the route has been used for outgoing traffic.
Returned as a longword value.

6 Line ID. Line identification for the network device used to transmit the
datagram to the destination. See the description of the line-id
argument later in this section for the line ID codes. Table 4.3, “Line
ID Values” shows the line identification values.

7 Address mask. Address mask for the destination address. Returned as a longword
value.

8 Path MTU. Path maximum transmission unit. Returned as a longword value.

Table 4.3. Line ID Values

Line ID Line ID Value |Line ID Line ID Value |Line ID Line ID Value
LO-0 AX00000001 DN-n AX00nn0241 [(PD-n ~X00nn0042
PSI-n AX00nn0006 |PPP-n AX00nn0341

SL-n AX00nn0141 |[SE-n AX00nn0402

Note

The I/0O status block (iosb) returns routing table entry size information for the p3=8 function to assist
in diagnosing buffer overflow situations. See the Status section for details.

Reading Interface Throughput Information

Use I0$_SENSEMODE | IO$SM_CTRL with p3=10 to read network device information. The
information returned in the buffer (specified by p2=descriptor) can consist of multiple records. Each
record consists of nine longwords, and one record is returned for each device.

124

Chapter 4. $QIO Interface

When you read network device information, the data in each record is returned in the order presented
below. All are longword values.

Table 4.4. QIO Parameters

Code Function
P1 of the QIO is not used

1

2 is a VMS descriptor of the space to put the return information
3 10

4 Not used
5

6

Not used
Not used

The returned data is in the following format (all values are integers):

Line ID

Average Out Bytes (for the last 6 seconds)

Average Out Packets

1
2
3 Average In Bytes
4
5

Average In Packets

Reading the ARP Table Function

Use I0$_SENSEMODE | IO$M_CTRL with function=3 to read a network device's ARP table
function. The information returned in the buffer (specified by p2=address) depends on the line id
specified in line-id.

The line-id argument is the line id and is a longword value. The least significant byte of the line id is
the major device type code. The next byte is the device type subcode. The next byte is the controller
unit number. The most significant byte is ignored.

The information returned in the buffer can consist of multiple records. Each record consists of 12
bytes, and one record is returned for each ARP table entry.

When reading a table function, the data in each record is returned in the following order:
1. Internet address. Returned as a longword value.
2. Physical address. Returned as a 6 byte value.

3. Flags. Returned as a word value. The ARP table entry’s flag bits are shown in Table 4.5, “ARP
Table Entry Flag Bits”.

Table 4.5. ARP Table Entry Flag Bits

Mask Name Description

1 PERMANENT If set, the entry can only be removed by a NETCU REMOVE ARP
command and if RARP is enabled, the local host responds if a RARP
request is received for this address. If clear, the entry can be removed
if not used within a short period.

125

Chapter 4. $QIO Interface

Mask Name Description

2 PUBLISH If set, the local host responds to ARP requests for the internet address
(this bit is usually only set for the local hosts's entry). If clear, the
local host does not respond to received ARP requests for this address.

4 LOCKED If set, the physical address cannot be changed by received ARP
requests/replies.

4096 LASTUSED If set, last reference to entry was a use rather than an update.

8192 CONFNEED If set, confirmation needed on next use.

16384 CONFPEND If set, confirmation pending.

32768 RESOLVED If set, the physical address is valid.

Status

SS$_BADPARAM Code specified in function argument invalid.

SS$_BUFFEROVF Buffer too small for all information

Truncated buffer returned.

SS$ DEVI NACT Device not active
Contact your system manager to determine why VSI TCP/IP was
not started.

SS$_NORVAL Success

Requested information returned.

SS$_NOSUCHDEV Line identification specified in arp argument does not exist.

The byte count for the information or counters buffer is returned in the high-order word of the first
longword of the I/O status block. This can be less than the bytes requested.

* For the p3=2 routing table function, in the second longword of the I/O status block, bit 0 is always
set, bit 1 is set if the forwarding capability is enabled, and bit 2 is set if ARP replies for non-local
internet addresses are enabled.

* For the p3=8 routing table function, the IOSB contains the following:

Status Code SS$_NORMAL or SS$_ BUFFEROVF
Transfer Byte Count Number of bytes of returned information
Entry Size Number of bytes in each entry

Number of Entries Number of entries in the routing table

If the status is SS$_BUFFEROVF, you can determine the number of routing entries actually returned
by calculating (Transfer Byte Count) DIV (Entry Size) and comparing that with the Number of Entries
value. Be sure to check the Entry Size in the 1O status block.

Reading the IP SNMP Counters Function

Use I0$_SENSEMODE | IO$SM_CTRL with function=4 to read the I[P SNMP counters.

The data returned is an array of longwords in the following format:

126

Chapter 4. $QIO Interface

* Indicates whether or not this entity is acting as an IP router.

* The default value inserted in the IP header's time-to-live field.

* The total number of input datagrams received.

* The number of input datagrams discarded due to errors in their IP headers.

* The number of input datagrams discarded because the IP address in their IP header's destination
field was not a valid address to be received at this entity.

* The number of IP datagrams for which this entity was not their final destination, and for which
forwarding to another entity was required.

* The number of datagrams received but discarded because of an unknown or unsupported protocol.
* The number of input datagrams received but discarded for reasons other than errors.
* The total number of input datagrams successfully delivered to IP user protocols, including ICMP.

* The total number of IP datagrams that local IP user protocols (including ICMP) supplied to IP in
request for transmission.

* The number of output IP datagrams that were discarded for reasons other than errors.

* The number of IP datagrams discarded because no route could be found to transmit them to their
destination.

* The maximum number of seconds that received fragments are held while they are awaiting
reassembly at this entity.

* The number of IP fragments received that needed to be reassembled at this entity.
* The number of IP datagrams successfully reassembled.

* The number of failures detected by the IP reassembly algorithm.

* The number of IP datagrams that have been successfully fragmented at this entity.

* The number of IP datagrams that have been discarded at this entity because they could not be
fragmented.

* The number of IP datagrams that have been created as a result of fragmentation at this entity.

Reading the ICMP SNMP Counters Function

Use I0$_SENSEMODE | IO$SM_CTRL with function=5 to read the ICMP SNMP counters.
The data returned is an array of longwords in the following format:

* The total number of ICMP messages received.

* The number of ICMP messages received but determined as having ICMP-specific errors.

* The number of ICMP Destination Unreachable messages received.

* The number of ICMP Time Exceeded messages received.

127

Chapter 4. $QIO Interface

The number of ICMP Parameter Problem messages received.
The number of ICMP Source Quench messages received.

The number of ICMP Redirect messages received.

The number of ICMP Echo (request) messages received.

The number of ICMP Echo reply messages received.

The number of ICMP Timestamp (request) messages received.
The number of ICMP Timestamp Reply messages received.

The number of ICMP Address Mask Request messages received.
The number of ICMP Address Mask Reply messages received.

The total number of ICMP messages that this entity attempted to send.

The number of ICMP messages that this entity did not send because of ICMP-related problems.

The number of ICMP Destination Unreachable messages sent.
The number of ICMP Time Exceeded messages sent.

The number of ICMP Parameter Problem messages sent.

The number of ICMP Source Quench messages sent.

The number of ICMP Redirect messages sent.

The number of ICMP Echo (request) messages sent.

The number of ICMP Echo reply messages sent.

The number of ICMP Timestamp (request) messages sent.
The number of ICMP Timestamp Reply messages sent.

The number of ICMP Address Mask Request messages sent.

The number of ICMP Address Mask Reply messages sent.

Reading the TCP SNMP Counters Function

Use I0$_SENSEMODE | IO$M_CTRL with function=6 to read TCP SNMP counters.

The data returned is an array of longwords in the following format:

The algorithm used to determine the timeout value for retransmitting unacknowledged octets.

The minimum value (measured in milliseconds) permitted by a TCP implementation for the
retransmission timeout.

The maximum value (measured in milliseconds) permitted by a TCP implementation for the
retransmission timeout.

128

Chapter 4. $QIO Interface

The limit on the total number of TCP connections supported.

The number of times TCP connections have made a transition to the SYN-SENT state from the
CLOSED state.

The number of times TCP connections have made a direct transition to the SYN-REVD state from
the LISTEN state.

The number of failed connection attempts.

The number of resets that have occurred.

The number of TCP connections having a current state of either ESTABLISHED or CLOSE-WAIT.

The total number of segments received.
The total number of segments sent.

The total number of segments retransmitted.

Reading the UDP SNMP Counters Function

Use I0$_SENSEMODE | IO$SM_CTRL with function=7 to read the UDP SNMP counters.

The data returned is an array of longwords in the following format:

The total number of IDP datagrams delivered to UDP users.

The total number of received UDP datagrams for which there was not an application at the
destination port.

The number of received UDP datagrams that could not be delivered for reasons other than the lack
of an application at the destination port.

The total number of UDP datagrams sent from this entity.

I0$_SETCHAR

I0$_SETCHAR — Sets special characteristics that control the operation of the INET: device, rather
than the socket attached to it. These operations are normally used by only the | P_SERVER process to
hand off a connection to a process that it creates to handle the connection.

Format

Status = SYS$SQIOW(Efn, VMS_Channel, I0O$§ SETCHAR, IOSB, AstAdr, AstPrm, Flags, 0, 0, 0, 0,
0);

Arguments

VMS Channel

OpenVMS Usage: channel

type: word (signed)

129

Chapter 4. $QIO Interface

access: read only

mechanism: by value

A channel to the socket.

Flags

OpenVMS Usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

A bit mask of one or more of the following values. If IO$_SETCHAR is not called, all options are
set to OFF.

#def i ne SETCHAR PERVANENT (1<<0)
#defi ne SETCHAR SHAREABLE (1<<1)
#def i ne SETCHAR HANDOFF (1<<2)

If the SETCHAR PERMANENT bit is set when the last channel to the socket device is deassigned
using the SYSSDASSGN system service, the socket is not closed and the socket device is not deleted.
Normally, the last deassign closes the socket. If this bit has been set, it must be explicitly cleared
before the socket can be deleted.

If the SETCHAR SHAREABLE bit is set, the socket becomes a shareable device and any process can
assign a channel to it.

If the SETCHAR HANDOFF bit is set, the socket is not closed and the socket device is not deleted
when the last channel to the socket device is deassigned. After this occurs, the socket reverts

to a normal socket, and if a new channel is assigned and deassigned, the socket is closed. The
SETCHAR HANDOFF bit is a safer version of the SETCHAR PERMANENT bit because it allows
a single hand-off to another process without the risk of a socket getting permanently stuck on your
system.

I0$_SETMODE|IO$M_ATTNAST

10$_SETMODE|IOSM_ATTNAST — Enables an AST to be delivered to your process when out-
of-band data arrives on a socket. This is similar to the UNIX 4.3BSD SIGURG signal being delivered.
You cannot enable the delivery of the AST through the socket library functions. After the AST is
delivered, you must explicitly reenable it using this call if you want the AST to be delivered when
future out-of-band data arrives.

Format

Status = SYS$SQIOW(Efn, VMS_Channel, I0§ SETMODE[IO$SM_ATTNAST, IOSB, AstAdr,
AstPrm, Routine, Parameter, 0, 0, 0, 0);

Arguments

Routine

OpenVMS Usage: ast_procedure

130

Chapter 4. $QIO Interface

type: procedure entry mask
access: call without stack unwinding
mechanism: by reference

The address of the AST routine to call when out-of-band data arrives on the socket. To disable AST
delivery, set Routine to 0.

Parameter

OpenVMS Usage: user_arg

type: longword (unsigned)
access: read only
mechanism: by value

The argument with which to call the AST routine.

I0$_SETSOCKOPT

10$_SETSOCKOPT — Manipulates options associated with a socket. It is equivalent to the
setsockopt() socket library function. Options may exist at multiple protocol levels; however, they are
always present at the uppermost socket level. When manipulating socket options, you must specify
the level at which the option resides and the name of the option. To manipulate options at the socket
level, specify Level as SOL_SOCKET. To manipulate options at any other level, specify the protocol
number of the appropriate protocol controlling the option. For example, to indicate that an option is to
be interpreted by the TCP protocol, set Level to the protocol number of TCP; see getprotobyname().
OptName and any specified options are passed without modification to the appropriate protocol
module for interpretation. The include file | P_r oot : [| P. i ncl ude. sys] socket . h contains
definitions for socket-level options. Options at other protocol levels vary in format and name.

Format

Status = SYS$SQIOW(Efn, VMS_Channel, I0§ SETSOCKOPT, IOSB, AstAdr, AstPrm, Level,
OptName, OptVal, OptLen, 0, 0);

Arguments

VMS_Channel

OpenVMS Usage: channel

type: word (signed)
access: read only
mechanism: by value

A channel to the socket.

Level
OpenVMS Usage: option_level
type: longword (unsigned)

131

Chapter 4. $QIO Interface

acCCess:

read only

mechanism:

by value

The protocol level at which the option will be manipulated. Specify Level as SOL_SOCKET, or a
protocol number as returned by getprotobyname().

OptName

OpenVMS Usage: option_name

type: longword (unsigned)
access: read only
mechanism: by value

The option that is to be manipulated. For a description of each of the valid options for IO
$ SETSOCKOPT, see the socket option sections.

OptVval

OpenVMS Usage: dependent on OptName
type: byte buffer

access: read only

mechanism: by reference

A pointer to a buffer that contains the new value of the option. The format of this buffer depends on

the option requested.

OptLen

OpenVMS Usage: option_length

type: longword (unsigned)
access: read only
mechanism: by value

The length of the buffer pointed to by OptVal.

10$_SHUTDOWN

10$_SHUTDOWN — Shuts down all or part of a full-duplex connection on the socket associated
with VMS Channel. This function is usually used to signal an end-of-file to the peer without closing
the socket itself, which would prevent further data from being received. It is equivalent to the
shutdown() socket library function.

Format

Status = SYS$SQIOW(Efn, VMS_Channel, I0$§ SHUTDOWN, IOSB, AstAdr, AstPrm, How, 0, 0, 0,
0, 0);

Arguments

VMS_Channel

132

Chapter 4. $QIO Interface

OpenVMS Usage: channel

type: word (signed)
access: read only
mechanism: by value

A channel to the socket.

How

OpenVMS Usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Controls which part of the full-duplex connection to shut down, as follows: if How is 0, further
receive operations are disallowed; if How is 1, further send operations are disallowed; if How is 2,
further send and receive operations are disallowed.

|I0$_SOCKET

I0$_SOCKET — Creates an end point for communication and returns an OpenVMS channel that
describes the end point. It is equivalent to the socket() socket library function. Before issuing the 10
$ SOCKET call, an OpenVMS channel must first be assigned to the INETO: device to get a new
channel to the network.

Format

Status = SYS$SQIOW(Efn, VMS_Channel, I0O§ SOCKET, IOSB, AstAdr, AstPrm, Address_Family,
Type, Protocol, 0, 0, 0);

Arguments

Address_Family

OpenVMS Usage: address_family

type: longword (unsigned)
access: read only
mechanism: by value

An address family with which addresses specified in later operations using the socket will be
interpreted. The following formats are currently supported; they are defined in the include file
I P_root:[IP.include.sys]socket. h:

AF INET Internet (TCP/IP) addresses
AF_PUP Xerox PUP addresses

AF _CHAOS CHAOSnet addresses

Type

133

Chapter 4. $QIO Interface

OpenVMS Usage: socket type

type: longword (unsigned)
access: read only
mechanism: by value

The semantics of communication using the created socket. The following types are currently defined:

SOCK _STREAM SOCK_DGRAM SOCK _RAW

A SOCK_STREAM socket provides a sequenced, reliable, two-way connection-oriented byte
stream with an out-of-band data transmission mechanism. A SOCK_DGRAM socket supports
communication by connectionless, unreliable messages of a fixed (typically small) maximum length.
SOCK_RAW sockets provide access to internal network interfaces. The type SOCK_RAW is
available only to users with SYSPRYV privilege.

The Type argument, together with the Address Family argument, specifies the protocol to be used.
For example, a socket created with AF_INET and SOCK_STREAM is a TCP socket, and a socket
created with AF_INET and SOCK_DGRAM is a UDP socket.

Protocol

OpenVMS Usage: protocol number
type: longword (unsigned)
access: read only
mechanism: by value

A protocol to be used with the socket. Normally, only a single protocol exists to support a particular
socket type using a given address format. However, many protocols may exist, in which case a
particular protocol must be specified by Protocol. The protocol number to use depends on the
communication domain in which communication will take place.

For TCP and UDP sockets, the protocol number MUST be specified as 0. For SOCK_RAW sockets,
the protocol number should be the value returned by getprotobyname().

SYS$CANCEL

SYS$CANCEL — Cancels any I/O IOSB status of SS§ CANCEL. Outstanding I/O operations are
automatically cancelled at image exit. For more information on SYS$CANCEL, see the OpenVMS
System Services Reference Manual.

Format

Status = SYSSCANCEL(VMS_Channel);

SYS$DASSGN

SYSSDASSGN — Equivalent to the socket_close() function. When you deassign a channel, any
outstanding 1/O is completed with an IOSB status of SS$ CANCEL. Deassigning a channel
closes the network connection. I/O channels are automatically deassigned at image exit. For more
information on SYS$DASSGN, see the OpenVMS System Services Reference Manual.

134

Chapter 4. $QIO Interface

Format

Status = SYS$DASSGN(VMS_Channel);

135

Chapter 5. SNMP Extensible Agent
API Routines

This chapter is for application programmers. It describes the Application Programming Interface
(API) routines required for an application program to export private Management Information Bases
(MIBs) using the VSI TCP/IP SNMP agent.

To be able to use your private Management Information Base (MIB) with VSI TCP/IP's SNMP agent,
develop a shareable image that exports the following application programming interface routines, in
addition to routines you may need to access the MIB variables:

SnmpExtensionInit Called by the SNMPD agent after startup to initialize the MIB
subagent
SnmpExtensionInitEx Registers multiple subtrees with the subagent (called by the

SNMPD agent at startup only implemented)

SnmpExtensionQuery Completes the MIB subagent query (called by the SNMPD agent
to handle a get, getnext, or set request)

SnmpExtensionTrap Sends an enterprise-specific trap (called by the SNMPD agent
when the subagent alerts the agent that a trap needs to be set)

Note

The routine names used in this API are taken from the Microsoft SNMP Extension Agent for
Windows NT.

The SNMP shareable images need to be configured for the SNMP agent to interact with them.

SNMP subagent developers should use the include file SNMP_COMMON. H. found in the | P
$COVMON_ROOT: [| P. I NCLUDE] directory. This file defines the data structures the API uses.

For details on VSI TCP/IP's SNMP agent, see the VSI TCP/IP Administrator s Guide: Volume I1.

5.1. Requirements

You require the following before using the SNMP extensible agent API routines:

* Working knowledge of SNMP; specifically the following RFCs:
» RFC 1155, Structure and Identification of Management Information for TCP/IP-based Internets
* RFC 1157, A Simple Network Management Protocol (SNMP)

» RFC 1213, Management Information Base for Network Management of TCP/IP-based internets:
MIB-IT

* Working knowledge of OpenVMS shareable images

5.2. Linking the Extension Agent Image

To link the Extension Agent Image you need to create an option file. The example below is for Alpha
Systems.

136

Chapter 5. SNMP Extensible Agent API Routines

Alpha

I Not e: Exclude SnnpExtensionlnitEx if it is not needed.

ISee the definition of this routine.
|

SYMBOL_VECTOR=(SnnpExt ensi onl ni t =PROCEDURE, -
SnnpExt ensi onQuer y=PROCEDURE, -

SnnpExt ensi onTr ap=PROCEDURE, -

SnnpExt ensi onl ni t Ex=PROCEDURE)

!

I'List your object/library files here

Your link statement should then look like this:

$ LI NK / SHARE=i mage- naneoption-fil e/ OPT

i mage- nane is the name of the shareable image you want to build, and opt i on-fi | e is the
option file mentioned above.

5.3. Installing the Extension Agent Image

You should copy the shareable image you build for your SNMP subagent to the SYSSSHARE.

Warning

Since the shareable image is loaded into the same process address space as the SNMPD server, an
access violation by the subagent shareable image can crash the server application. Ensure the integrity
of your shareable image by testing it thoroughly. Shareable image errors can also corrupt the server's
memory space or may result in memory or resource leaks.

5.4. Debugging Code

SNMP subagent developers can use a debug logical, IPSSNMP_ DEBUG, to set certain debug masks.
Define the logical as follows and use the mask values in Table 5.1, “Debugging Mask Values”:

$ DEFI NE | PSSNVP_DEBUG nask

Table 5.1. Debugging Mask Values

Mask Value y/

0010 Raw SNMP input

0020 Raw SNMP output

0040 ASN.1 encoded message input

0080 ASN.1 encoded message output

1000 SNMP Subagent Developer debug mask (prints events and
statuses)

5.5. Subroutine Reference

The following pages include the subroutine descriptions.

137

Chapter 5. SNMP Extensible Agent API Routines

SnmpExtensionlinit

SnmpExtensionInit — Initializes the SNMP subagent and registers the subagent in the SNMPD

agent. The subagent calls this routine at startup.

Format

status = SnmpExtensionlnit (t r ap- al ert-routi ne,ti me-zero-reference,trap-

event , support ed-vi ew)

Return Values

TRUE Subagent initialized successfully
FALSE Subagent initialization failed
Arguments

trap-alert-routine

OpenVMS usage: address

type: integer

access: read only

mechanism: by value

Address of the routine the subagent should call when it is ready to send a trap.

trap-event

OpenVMS usage: unsigned long

type: longword (unsigned)
access: write only
mechanism: by reference

Currently unused.

time-zero-reference

OpenVMS usage: unsigned long

type: longword (unsigned)
access: read only
mechanism: by value

Time reference the SNMP agent provides, in hundredths of a second. Use C routines t i me() and

di fftime() to calculate MIB uptime (in hundredths of a second).

supported-view

OpenVMS usage: object identifier
type: AsnOBIJID (see the SNMP_COMMON H file)
access: write only

138

Chapter 5. SNMP Extensible Agent API Routines

‘mechanism: ‘by reference

Prefix of the MIB tree the subagent supports.

SnmpExtensioninitEx

SnmpExtensionInitEx — Registers multiple MIB subtrees with agent. This routine is called multiple
times, once for each MIB subtree that needs to be registered. If the routine passes back the first

or next MIB subtree, return with TRUE. If all the MIB subtrees were passed back, return with
FALSE. Only implement this routine if you have multiple MIB subtrees in your extendible agent.

The VSI TCP/IP SNMP agent executes this routine if it exists and overwrites MIB information set by
SnmpExtensionInit.

Format
status = SnmpExtentionInitEx (supported-view)

Return Values

TRUE Returning first or next MIB subtree
FALSE All MIB subtrees were passed back
Arguments

supported-view

OpenVMS usage: object identifier

type: AsnOBIJID (see the SNMP_COMMON. H file)

access: write only

mechanism: by reference

Prefix of the MIB tree the subagent supports.

Example

i nt SnnpExt ensionlnitEx (AsnOBJI D *supportedVi ew)
{

int viewl[] ={1, 3, 6, 1, 4, 1, 12, 2, 1};
int view2[] ={1, 3, 6, 1, 4, 1, 12, 2, 2 };
int view3[] ={1, 3, 6, 1, 4, 1, 12, 2, 51};

static int whichView = 0;

switch (whichView++) {

case O:

supportedVi ew >i dLength = 9;

mencpy (supportedVi ew >ids, viewl, 9* sizeof (int));
br eak;
case 1:

supportedVi ew >i dLength = 9;

mencpy (supportedVi ew >ids, view2, 9* sizeof (int));
br eak;
case 2:

supportedVi ew >i dLength = 9;

139

Chapter 5. SNMP Extensible Agent API Routines

mencpy (supportedVi ew >ids, view3, 9* sizeof (int));
br eak;

defaul t:

return (0);

}

return (1);

}

SnmpExtensionQuery

SnmpExtensionQuery — Queries the SNMP subagent to get or set a variable in the MIB tree served
by the subagent. This routine is called by the SNMPD agent to handle a get, getnext, or set request.

Format

status = SnmpExtensionQuery (r equest -t ype, var-bi nd-1ist,error-status,error-
i ndex)

Return Values

TRUE Operation successfully completed

FALSE Operation could not be carried out by the subagent; use er r or -
status and error-i ndex to provide more information

Arguments

request-type

OpenVMS usage: byte

type: unsigned char
access: read only
mechanism: by value

Identifies the type of request GET, SET, or GET NEXT.

var-bind-list

OpenVMS usage: user defined

type: RFC1157VarBindList (see the SNMP_COVMON. H file)
access: read-write

mechanism: by value

The list of name-value pairs used in the request. For a GET request the value is filled by the subagent
and for a SET request, the value is be used to change the current variable value in the subagent.

error-status

OpenVMS usage: integer
type: integer
access: write only
mechanism: by reference

140

Chapter 5. SNMP Extensible Agent API Routines

Status of a failed operation.

error-index

OpenVMS usage: integer
type: integer
access: write only
mechanism: by reference

The index of the variable in the variable binding list for which the operation failed.

SnmpExtensionTrap

SnmpExtensionTrap — Sends a trap from the subagent. If the subagent wants to send a trap, it must
first call the trap-alert-routine (see SnmpExtensionInit routine). The trap-alert-routine should be
called with two parameters (objids, idlength). For example:

Description

If the VSI’s DNS process wants to send trap information to all the communities that are interested
then the DNS server must be running and the objectids passed are 1, 3,6, 1,4, 1,105, 1,2, 1, 1, 1, 3,
1, and the length of 14.

1,3,6,1,4,1 is the default prefix

105 is the enterprise id for VSI

1,2,1,1,1 are the Mib object ids for the DNS process
* 3,1 are the objectids for DNSUpTrap

The SNMP agent trap-alert-routine creates a table of all received trap mibs. For each of these entries,
the agent then calls the subagent's SnmpExtensionTrap routine when it is ready to send the trap.

Note

The SNMP agent calls the subagent from inside the trap-alert-routine.

Format

status = SnmpExtensionTrap (ent er pri se, generi c-trap,specific-trap,ti me-stanp,
var-bind-1list)

Return Values

TRUE More traps to be generated
FALSE No more traps to be generated
Arguments

enterprise

141

Chapter 5. SNMP Extensible Agent APl Routines

OpenVMS usage: array of object identifiers

type: AsnOBIJID (see the SNMP_COMMON. H file)
access: write only

mechanism: by reference

The prefix of the MIB for the enterprise sending the trap.

generic-trap

OpenVMS usage: integer
type: integer
access: write only
mechanism: by reference

The generic enterprise trap id(6).

specific-trap

OpenVMS usage: integer
type: integer
access: write only
mechanism: by reference

The enterprise-specific trap number.

Note

Since an enterprise can have many traps, the combination of enterprise id, generic trap, and specific

trap should give a unique identification for a trap.

time-stamp

OpenVMS usage: integer

type: integer (timeticks)
access: write only
mechanism: by reference

The time at which the trap was generated.

var-bind-list

OpenVMS usage: user defined

type: RFC1157VarBindList (see the SNMP_COMMON.H file)
access: read-write

mechanism: by value

The list of name-value pairs. This list contains name and value of the MIB variable for which the trap

is generated.

142

Chapter 6. RPC Fundamentals

6.1. Introduction

VSI TCP/IP RPC Services must be used with the VSI TCP/IP C Socket Library.

This chapter is for RPC programmers. It provides basic information you need to know before using
RPC Services to write distributed applications, including:

¢ What RPC Services are
* What components are in RPC Services
 How RPC clients and servers communicate

» Important RPC concepts and terms

6.2. What Are RPC Services?

RPC Services are a set of software development tools that allow you to build distributed applications
on OpenVMS systems.

6.2.1. VSI TCP/IP Implementation

RPC Services are based on the Open Network Computing Remote Procedure Call (RPC) protocols
developed by Sun Microsystems, Inc. These protocols are defined in the following Requests for
Comments (RFCs):

* RPC: Remote Procedure Call Protocol Specification, Version 2 (RFC 1057)

* XDR: External Data Representation Standard (RFC 1014)

6.2.2. Distributed Applications

A distributed application executes different parts of its programs on different hosts in a network.
Computers on the network share the processing workload, with each computer performing the tasks
for which it is best equipped.

For example, a distributed database application might consist of a central database running on a
system server and numerous client workstations. The workstations send requests to the server. The
server carries out the requests and sends the results back to the workstations. The workstations use the
results in other modules of the application.

RPCs allow programs to invoke procedures on remote hosts as if the procedures were local. RPC
Services hides the networking details from the application.

RPC Services facilitates distributed processing because it relieves the application programmer
of performing low-level network tasks such as establishing connections, addressing sockets, and
converting data from one machine's format to another.

6.3. Components of RPC Services

RPC Services comprises the following components: Run-Time Libraries (RTLs), RPCGEN Compiler,
Port Mapper, RPC Information.

143

Chapter 6. RPC Fundamentals

6.3.1. Run-Time Libraries (RTLS)

RPC Services provides a single shareable RTL. The library contains:
* RPC client and server routines
* XDR routines

The Chapter 9, RPC RTL Management Routines, and the chapters that follow it describe the RTLs in
detail.

6.3.2. RPCGEN Compiler

RPCGEN is a compiler that creates the network interface portion of a distributed application. It
effectively hides from the programmer the details of writing and debugging low-level network
interface code. Chapter 8, RPCGEN Compiler describes how to use RPCGEN.

6.3.3. Port Mapper

The Port Mapper helps RPC client programs connect to ports that are being used by RPC servers. A
Port Mapper runs on each host that implements RPC Services. These steps summarize how the Port
Mapper works:

1. RPC servers register with the Port Mapper by telling it which ports they are using.

2. When an RPC client needs to reach a particular server, it supplies the Port Mapper with the
numbers of the remote program and program version it wants to reach. The client also specifies a
transport protocol (UDP or TCP). (provides details on these numbers.)

3. The Port Mapper provides the correct port number for the requested service. This process is called
binding.

Once binding has taken place, the client does not have to call the Port Mapper for subsequent calls to

the same server. A service can register for different ports on different hosts. For example, a server can
register for port 800 on Host A and port 1000 on Host B. The Port Mapper is itself an RPC server and
uses the RPC RTL. The Port Mapper plays an important role in disseminating messages for broadcast
RPC. The Port Mapper is part of the Master Server Process.

6.3.4. RPC Information

Use the RPC information command to:
* Request a listing of all programs that are registered with the Port Mapper

You enter this command at the DCL prompt. (See Chapter 7, Building Distributed Applications with
RPC for more information.)

6.4. Client-Server Relationship

In RPC, the terms client and server do not describe particular hosts or software entities. Rather, they
describe the roles of particular programs in a given transaction. Every RPC transaction has a client
and a server. The client is the program that calls a remote procedure; the server is the program that
executes the procedure on behalf of the caller.

144

Chapter 6. RPC Fundamentals

A program can be a client or a server at different times. The program's role merely depends on
whether it is making the call or servicing the call.

6.5. External Data Representation (XDR)

External Data Representation (XDR) is a standard that solves the problem of converting data from one
machine's format to another.

RPC Services uses the XDR data description language to describe and encode data. Although similar
to C language, XDR is not a programming language. It merely describes the format of data, using
implicit typing. XDR: External Data Representation Standard (RFC 1014) defines the XDR language.

6.6. RPC Processing Flow

Remote and local procedure calls share some similarities. In both cases, a calling process makes
arguments available to a procedure. The procedure uses the arguments to compute a result, then
returns the result to the caller. The caller uses the results of the procedure and resumes execution.

Figure 6.1, “RPC Processing Flow” shows the underlying processing that makes a remote procedure
call different from a local call.

The following steps describe the processing flow during a remote procedure call:

1. The client program passes arguments to the client stub procedure. (See Chapter 8, RPCGEN
Compiler for details on how to create stubs.)

2. The client stub marshals the data by:
* Calling the XDR routines to convert the arguments from the local representation to XDR
* Placing the results in a packet

Using RPC RTL calls, the client stub sends the packet to the UDP or TCP layer for transmission to
the server.

3. The packet travels on the network to the server, up through the layers to the server stub.

4. The server stub un-marshals the packet by converting the arguments from XDR to the local
representation. Then it passes the arguments to the server procedure.

Figure 6.1. RPC Processing Flow

Clent Program Server procedure
i i
L Y
Client stulb Server stub
;) ; I
T L
RPC RPC
Runtine Library Runtime Library
_ Y) i
L L L L
LIDE aor TCF R LUIDF or TCF
transpar o esulls Tramspn
anguments .-

145

Chapter 6. RPC Fundamentals

6.7. Local Calls versus Remote Calls

This section describes some of the ways in which local and remote procedure calls handle system
crashes, errors, and call semantics.

6.7.1. Handling System Crashes

Local procedure calls involve programs that reside on the same host. Therefore, the called procedure
cannot crash independently of the calling program.

Remote procedure calls involve programs that reside on different hosts. Therefore, the client program
does not necessarily know when the remote host has crashed.

6.7.2. Handling Errors

If a local procedure call encounters a condition that prevents the call from executing, the local
operating system usually tells the calling procedure what happened.

If a remote procedure call cannot be executed for some reason (e.g., errors occur on the network or
remote host), the client might not be informed of what happened. You may want to build a signaling
or condition-handling mechanism into the application to inform the client of such errors.

RPC returns certain types of errors to the client, such as those that occur when it cannot decode
arguments. The RPC server must be able to return processing-related errors, such as those that occur
when arguments are invalid, to the client. However, the RPC server may not return errors during batch
processing or broadcast RPC.

6.7.3. Call Semantics

Call semantics determine how many times a procedure executes.
Local procedures are guaranteed to execute once and only once.
Remote procedures have different guarantees, depending on which transport protocol is used.

The TCP transport guarantees execution once and only once as long as the server does not crash.
The UDP transport guarantees execution at least once. It relies on the XID cache to prevent a remote
procedure from executing multiple times.

See Section 6.10, “XID Cache” for details on the XID cache.

6.8. Programming Interface

The RPC RTL is the programming interface to RPC. You may think of this interface as containing
multiple levels.

The RPC RTL reference chapters describe each routine.

6.8.1. High-Level Routines

The higher-level RPC routines provide the simplest RPC programming interface. These routines call
lower-level RPC routines using default arguments, effectively hiding the networking details from the
application programmer.

146

Chapter 6. RPC Fundamentals

When you use high-level routines, you sacrifice control over such tasks as client authentication, port
registration, and socket manipulation, but you gain the benefits of using a simpler programming
interface. Programmers using high-level routines can usually develop applications faster than they can
using low-level RPC routines.

You can use the RPCGEN compiler only when you use the highest-level RPC programming interface.

6.8.2. Mid-Level Routines

The mid-level routines provide the most commonly used RPC interface. They give the programmer
some control over networking tasks, but not as much control as the low-level routines permit.

For example, you can control memory allocation, authentication, ports, and sockets using mid-level
routines.

The mid-level routines require you to know procedure, program, and version numbers, as well as

input and output types. Output data is available for future use. You can use the registerrpc and callrpc
routines.

6.8.3. Low-Level Routines

The low-level routines provide the most complicated RPC interface, but they also give you the most
control over networking tasks such as client authentication, port registration, and socket manipulation.
These routines are used for the most sophisticated distributed applications.

6.9. Transport Protocols

RPC Services uses the transport protocols listed in the following table. The RPC client and server
must use the same transport protocol for a given transaction.

Table 6.1. RPC Transport Protocols

Protocols Characteristics

UDP Unreliable datagram service
Connectionless
Used for broadcast RPC

Maximum broadcast message size in either direction on an
Ethernet line: 1500

Execution is guaranteed at least once (see Section 6.10, “XID
Cache”)

Calls cannot be processed in batch
TCP Reliable

Connection-oriented

Can send an unlimited number of bytes per RPC call

Execution is guaranteed once and only once

Calls can be processed in batch

No broadcasting

147

Chapter 6. RPC Fundamentals

You must use the VSI TCP/IP C Socket Library with RPC Services.

6.10. XID Cache

The XID cache stores responses the server has sent. When the XID cache is enabled, the server does
not have to recreate every response to every request. Instead, the server can use the responses in the
cache. Thus, the XID cache saves computing resources and improves the performance of the server.

Only the UDP transports can use the XID cache. The reliability of the TCP transport generally makes
the XID cache unnecessary. UDP is inherently unreliable.

Table 6.2, “XID Cache Differences” shows how the XID caches differ for the UDP and UDPA/TCPA
transports.

Table 6.2. XID Cache Differences

UDP Transport UDPA/TCPA Transports

Places every response in the Allows the server to specify which responses are to be cached,
XID cache using the svcudp enablecache and svctcpa enablecache routines
XID cache cannot be disabled |Requires you to disable the XID cache after use

6.10.1. Cache Entries

Each entry in the XID cache contains:
» The encoded response that was sent over the network
» The internet address of the client that sent the request

* The transaction ID that the client assigned to the request

6.10.2. Cache Size

You determine the size of the XID cache. Consider these factors:

* How many clients are using the server.

» Approximately how long the cache should save the responses.

* How much memory you can allocate. Each entry requires about 8Kbytes.

The more active the server is, the less time the responses remain in the cache.

6.10.3. Execution Guarantees

As explained earlier in Local Calls versus Remote Callssection remote procedures have different
execution guarantees, depending on which transport protocol is used. The XID cache affects the
execution guarantee.

The TCP transport guarantees execution once and only once as long as the server does not crash. The
UDP transport guarantees execution at least once. If the XID cache is enabled, a UDP procedure is
unlikely to execute more than once.

148

Chapter 6. RPC Fundamentals

6.10.4. Enabling XID Cache

Use the sveudp enablecache routine to enable the XID cache. This routine is described in the RPC
RTL reference chapters.

Not enabling the XID cache saves memory.

6.11. Broadcast RPC

Broadcast RPC allows the client to send a broadcast call to all Port Mappers on the network and wait
for multiple replies from RPC servers.

For example, a host might use a broadcast RPC message to inform all hosts on a network of a system
shutdown.

Table 6.3, “Normal RPC vs Broadcast RPC” shows the differences between normal RPC and
broadcast RPC.

Table 6.3. Normal RPC vs Broadcast RPC

Normal RPC Broadcast RPC

Client expects one answer Client expects many answers
Can use TCP or UDP Requires UDP

Server always responds to errors Server does not respond to errors;

Client does not know when errors occur

Port Mapper is desirable, but not required if you |Requires Port Mapper services
use fixed port numbers

Broadcast RPC sends messages to only one port — the Port Mapper port — on every host in the
network. On each host, the Port Mappers pass the messages to the target RPC server. The servers
compute the results and send them back to the client.

6.12. Identifying Remote Programs and
Procedures

The RPC client must uniquely identify the remote procedure it wants to reach. Therefore, all remote
procedure calls must contain these three fields:

* A remote program number
* The version number of the remote program

* A remote procedure number

6.12.1. Remote Program Numbers

A remote program is a program that implements at least one remote procedure. Remote programs

are identified by numbers that you assign during application development. Use Table 6.4, “Remote
Program Numbers” to determine which program numbers are available. The numbers are in groups of
hexadecimal 20000000.

149

Chapter 6. RPC Fundamentals

Table 6.4. Remote Program Numbers

Range Purpose

0 to 1FFFFFFF Defined and administered by Sun Microsystems. Should be
identical for all sites. Use only for applications of general interest
to the Internet community.

20000000 to 3FFFFFFF Defined by the client application program. Site-specific. Use
primarily for new programs.

40000000 to SFFFFFFF Use for applications that generate program numbers dynamically.
60000000 to FFFFFFFF Reserved for the future. Do not use.

6.12.2. Remote Version Numbers

Multiple versions of the same program may exist on a host or network. Version numbers distinguish
one version of a program from another. Each time you alter a program, remember to increment its
version number.

6.12.3. Remote Procedure Numbers

A remote program may contain many remote procedures. Remote procedures are identified by
numbers that you assign during application development. Follow these guidelines when assigning
procedure numbers:

» Use 1 for the first procedure in a program. (Procedure 0 should do nothing and require no
authentication to the server.)

* For each additional procedure in a program, increment the procedure number by one.

6.13. Additional Terms

Before writing RPC applications, you should be familiar with the terms in the Table 6.5, “Additional
Terms”.

Table 6.5. Additional Terms

Term Definition

Channel An OpenVMS term referring to a logical path that connects a
process to a physical device, allowing the process to communicate
with that device. A process requests OpenVMS to assign a channel
to a device. Refer to Hewlett-Packard’s documentation for more
information on channels.

Client handle Information that uniquely identifies the server to which the client
is sending the request. Consists of the server's host name, program
number, program version number, and transport protocol.

See the following routines in the Chapter 10, RPC RTL Client
Routines:

authnone_create clnt_create clnt_perror /
clnt_sperror

150

Chapter 6. RPC Fundamentals

Term Definition
authunix_create clnttcp_create
authunix_create _defa|clntudp create /
clntudp_bufcreate
Port An abstract point through which a datagram passes from the host

layer to the application layer protocols.

Server handle

Information that uniquely identifies the server. Content varies
according to the transport being used. See the following routines in
Chapter 12, RPC RTL Server Routines:

svcudp create / svctep create svc_destroy
svc_freeargs svc_getargs
svc_register svc_sendreply

Socket

An abstract point through which a process gains access to the
Internet. A process must open a socket and bind it to a specific
destination.

Note

The VSI TCP/IP C Socket Library must be used with RPC
Services.

151

Chapter 7. Building Distributed
Applications with RPC

7.1. Introduction

This chapter is for RPC programmers. It explains:
* What components a distributed application contains
* How to use RPC to develop a distributed application, step by step

* How to get RPC information

7.2. Distributed Application Components

Table 7.1, “Application Components” lists the components of a distributed application.

Table 7.1. Application Components

Component Description
Main program (client) An ordinary main program that calls a remote procedure as if local
Network interface Client and server stubs, header files, XDR routines for input

arguments and results

Server procedure Carries out the client's request (at least one is required)

These components may be written in any high-level language. The RPC Run-Time Library (RTL)
routines are written in the C language.

7.3. What You Need to Do

The following steps summarize what you need to do to build a distributed application:

1. Design the application.

2. Write an RPC interface definition. Compile it using RPCGEN, then edit the output files as
necessary. (This step is optional. An RPC interface definition is not required. If you do not write
one, proceed to step 3.)

3. Write any necessary code that RPCGEN did not generate.

4. Compile the RPCGEN output files, server procedures, and main program using the appropriate
language compiler(s). RPCGEN output files must be compiled using HP C.

5. Link the object code, making sure you link in the RPC RTL.
6. Start the Port Mapper on the server host.

7. Execute the client and server programs.

152

Chapter 7. Building Distributed Applications with RPC

Step 1: Design the Application

You must write a main (client) program and at least one server procedure. The network interface,
however, may be hand-written or created by RPCGEN. The network interface files contain client and
server stubs, header files, and XDR routines. You may edit any files that RPCGEN creates.

When deciding whether to write the network interface yourself, consider these factors:

Is execution time critical? Your hand-written code may execute faster than
code that RPCGEN creates.

Which RPC interface layer do you want to RPCGEN permits you to use only the highest
use? layer interface. If you want to use the lower
layers, you must write original code.

Which transport protocol do you want to use?

You may write your own XDR programs, but it is usually best to let RPCGEN handle these.

Step 2: Write and Compile the Interface Definition

An interface definition is a program the RPCGEN compiler accepts as input. See Chapter 8,
RPCGEN Compiler for more information about interface definitions.

Interface definitions are optional. If you write the all of the network interface code yourself, you do
not need an interface definition.

You must write an interface definition if you want RPCGEN to generate network interface code.
After compiling the interface definition, edit the output file(s).

If you are not writing an interface definition, skip this step and proceed to Step 3.

Step 3: Write the Necessary Code

Write any necessary code that RPCGEN did not create for you. Table 7.2, “Coding References” lists
the texts you may use as references.

Table 7.2. Coding References

Reference Purpose

RFC 1057 Defines the RPC language. Use for writing
interface definitions.

RFC 1014 Defines the XDR language. Use for writing XDR
filter routines.

Chapter 10, RPC RTL Client Routines Defines each routine in the RPC RTL. Use for
writing stub procedures and XDR filter routines.

Step 4: Compile All Files
Compile the RPCGEN output files, server procedures, and main program separately.
HP C (Alpha):

$ CC / STANDARD=RELAXED / WARNI NG=DI SABLE=(| MPLI Cl TFUNC) fil enane.C

153

Chapter 7. Building Distributed Applications with RPC

Step 5: Link the Object Code

Link the object code files. Make sure you link in the RPC RTL. Use the following command.
HP C (Alpha):

$ LINK filenanmes, SYS$I NPUT / OPTI ONS

TCPI P$RPCXDR_SHR / SHARE

SYS$SHARE: DECC$SHR / SHARE

arl/z

After entering the command, press Ctrl/Z.

To avoid repetitive data entry, you may create an OpenVMS command procedure to execute these
commands.

Step 6: Start the Port Mapper

The Port Mapper must be running on the server host. If it is not running, use the IP CONFIGURE /
SERVER command to start it. If you want to generate your own screen shot, you can use CRASH.
Then all you have to do is change the user-entered items to bold, and change the V10.5 (42) to V10.5
(nnn) in the banner line.

Step 7: Execute the Client and Server Programs

Perform these steps:

1. Run the server program interactively to debug it, or using the /DETACHED qualifier. Refer to the
VSI documentation for details.

2. Run the client main program.

7.4. Obtaining RPC Information

You can: request a listing of all programs registered with a Port Mapper.

7.4.1. Requesting a Program Listing

To request a listing of all programs that are registered with the Port Mapper, enter the IP SHOW /
RPC_PORTMAP command in the following format at the DCL prompt:

$ | P SHOW / RPC_PORTNVAP
If you add /REMOTE_HOST=host nane to this command:
$ | P SHOW / RPC_PORTMAP / REMOTE HOST=[host - nane]

Specify the domain name of the host on which the Port Mapper resides. If you omit this parameter,
RPC uses the name of the local host. Example 7.1, “Sample RPC Information Output” shows an
example.

Example 7.1. Sample RPC Information Output

$ | P SHOW RPC_PORTMAP

154

Chapter 7. Building Distributed Applications with RPC

VSI TCP/IP for OpenVMsS regi stered RPC prograns:

Pr ogr am Ver si on Pr ot ocol Por t
NLOCKMGR 3 TCP 2049
NLOCKMER 1 TCP 2049
NLOCKMGR 3 ubP 2049
NLOCKMER 1 ubP 2049
NFS 2 TCP 2049
NFS 2 ubP 2049
MOUNT 1 TCP 1024
MOUNT 1 ubP 1028
STATUS 1 TCP 1024
STATUS 1 ubP 1024

Chapter 8. RPCGEN Compiler

8.1. Introduction

This chapter is for RPC programmers.

8.2. What Is RPCGEN?

RPCGEN is the RPC Protocol Compiler. This compiler creates the network interface portion of a
distributed application, effectively hiding from the programmer the details of writing and debugging
low-level network interface code.

You are not required to use RPCGEN when developing a distributed application. If speed and
flexibility are critical to your application, you can write the network interface code yourself, using
RPC Run-Time Library (RTL) calls where they are needed.

Compiling with RPCGEN is one step in developing distributed applications. See Chapter 7, Building
Distributed Applications with RPC for a complete description of the application development process.

RPCGEN allows you to use the highest layer of the RPC programming interface. The Chapter 6, RPC
Fundamentals provides details on these layers.

8.3. Software Requirements

The following software must be installed on your system before you can use RPCGEN:
e OpenVMS Version 8.4-2L1

» HP C compiler Version 3.2 or later

8.4. Input Files

The RPCGEN compiler accepts as input programs called i nt er f ace defi ni ti ons, written
in RPC Language (RPCL), an extension of XDR language. RFC 1057 and RFC 1014 describe these
languages in detail.

An interface definition must always contain the following information:

* Remote program number

* Version number of the remote program

» Remote procedure number(s)

* Input and output arguments

Example 8.1, “Interface Definition” shows a sample interface definition.

Example 8.1. Interface Definition

/*
** RPCGEN input file for the print file RPC batchi ng exanpl e.

* %

156

Chapter 8. RPCGEN Compiler

** This file is used by RPCGEN to create the files PRI NT.H and PRI NT_XDR C
** The client and server files were devel oped from scratch.
*/

const MAX_STRI NG LEN = 1024; /* maxi mum string length */

/*

** This is the information that the client sends to the server
*/

struct a record

{
string ar_buffer< MAX _STRI NG LEN>;
b

program PRI NT_FI LE_PROG
{ version PRI NT_FILE_VERS 1

{

voi d PRI NT_RECORD(a_record) = 1;
u_l ong SHOW COUNT(void) = 2;

} = L

} = 0x20000003;
/* end file PRINT. X */

The default extension for RPCGEN input files is .X.

You do not need to call the RPC RTL directly when writing an interface definition. RPCGEN inserts
the necessary library calls in the output file.

8.5. Output Files

RPCGEN output files contain code in C language. Table 8.1, “RPCGEN Output Files” lists the
RPCGEN output files and summarizes their purpose. You can edit RPCGEN output files during
application development.

Table 8.1. RPCGEN Output Files

File Purpose

Client and server stub calls Interface between the network and the client and server programs.
Stubs use RPC RTL to communicate with the network.

XDR routines Convert data from a machine's local data format to XDR for mat,
and vice versa.

Header Contains common definitions, such as those needed for any
structures being passed.

I nvoki ng RPCexplains how to request specific output files.

Table 8.2, “RPCGEN File Naming Conventions” shows the conventions you should use to name
output files.

Table 8.2. RPCGEN File Naming Conventions

File Output Filename
Client stub i nput name_CLNT. C
Server stub i nput nanme_SVC. C

157

Chapter 8. RPCGEN Compiler

File Output Filename
Header file i nput nane. H
XDR filter routines i nput name_XDR. C

i nput name is the name of the input file. For example, if the input file is TEST.X, the server stub is
TEST_SVC. C.

When you use the RPCGEN command to create all output files at once, RPCGEN creates the output
filenames listed in Table 8.2, “RPCGEN File Naming Conventions” by default. When you want to
create specific kinds of output files, you must specify the names of the output files in the command
line.

8.6. Preprocessor Directives

RPCGEN runs the input files through the C preprocessor before compiling. You can use the macros
listed in Table 8.3, “Macros” with the #ifdef preprocessor directive to indicate that specific lines of
code in the input file are to be used only for specific RPCGEN output files.

Table 8.3. Macros

File Macro
Client stub RPC_CLNT
Server stub RPC SVC
Header file RPC HDR
XDR filter routines RPC_XDR

8.7. Invoking RPCGEN

This section explains how to invoke RPCGEN to create:
* All output files at once
* Specific output files

 Server stubs for either the TCP or UDP transport

8.7.1. Creating All Output Files at Once

This command creates all four RPCGEN output files at once:
RPCGEN i nput
where i nput is the name of the file containing the interface definition.

In the following example, RPCGEN creates the output files PROGRAM H, PROGRAM CLNT. C,
PROGRAM SVC. C, and PROGRAM_XDR. C:

RPCGEN PROGRAM X

8.7.2. Creating Specific Output Files

This command creates only the RPCGEN output file that you specify:

158

Chapter 8. RPCGEN Compiler

RPCGEN { -c|-h|-l1|-m } [-o out put]i nput

-C Creates an XDR filter file (_XDR. C)

-h Creates a header file (. H)

-1 Creates a client stub (_CLNT. C)

-m Creates a server stub (_SVC. C) that uses both the UDP and TCP transports
-0 Specifies an output file (or the terminal if no output file is given)

output Name of the output file

input Name of an interface definition file with a . X extension

Follow these guidelines:

* Specify just one output file (-c, -h, -1, or -m) in a command line

 If you omit the output file, RPCGEN sends output to the terminal screen

8.7.3. Examples:

1. RPCGEN - h PROGRAM

RPCGEN accepts the file PROGRAM X as input and sends the header file output to the screen,
because no output file is specified.

2. RPCGEN -1 -0 PROGRAM CLNT. C PROGRAM X

RPCGEN accepts the PROGRAM X file as input and creates the PROGRAM_CLNT. Cclient stub

file.

3. RPCGEN -m -0 PROGRAM SVC. C PROGRAM X

RPCGEN accepts the PROGRAM X file as input and creates the PROGRAM_SVC. Cserver stub
file. The server can use both the UDP and TCP transports.

8.7.4. Creating Server Stubs for TCP or UDP
Transports

This command creates a server stub file for either the TCP or UDP transport:

RPCGEN-s { udp | tcp } [-o out put]i nput

-S

Creates a server (_SVC.C) that uses either the UDP or TCP transport (with -s, you must
specify either udp or tcp; do not also use -m)

udp Creates a UDP server

tep Creates a TCP server

-0 Specifies an output file (or the terminal if no output file is given)
output Name of the output file

input Name of an interface definition file with a .X extension

If you omit the output file, RPCGEN sends output to the terminal screen.

159

Chapter 8. RPCGEN Compiler

In this example, RPCGEN accepts the PROGRAM X file as input and creates the PROGRAM _SVC. C
output file, containing a TCP server stub:

RPCGEN -s tcp -o PROGRAM_SVC.C PROGRAM.X

8.8. Error Handling

RPCGEN stops processing when it encounters an error. It indicates which line the error is on.

8.9. Restrictions

RPCGEN does not support the following:

» The syntax int X, y; . You must write thisasi nt x int y;

160

Chapter 9. RPC RTL Management
Routines

9.1. Introduction

This chapter is for RPC programmers. It introduces RPC Run-Time Library (RTL) conventions and
documents the management routines in the RPC RTL. These routines are the programming interface
to RPC.

9.2. Management Routines

The RPC RTL contains:

* RPC management routines

* RPC client and server routines for the UDP and TCP transport layers

« On Alpha systems, RPC provides a single shareable image accessed via the TCPl PSRPCXDR_SHR
logical. This shareable image contains routines for all of the HP C floating-point types. The correct
routines will be called automatically based on the compiler options used to compile the RPC

application. See the VSI C documentation for how to use the floating-point compiler options.

Chapter 7, Building Distributed Applications with RPC explains how to link in the RPC RTL.

9.3. Routine Name Conventions

In this chapter, all routines are documented according to their standard UNIX names.

9.4. Header Files

All RPC programs include the file named RPC. H. Locations for this file are TCPI P$RPC: RPC. H.

The RPC. Hfile includes the files listed in Table 9.1, “Header Files Included In RPC.H”.

Table 9.1. Header Files Included In RPC.H

Filename Purpose

AUTH. H Used for authentication.

AUTH_UNI X. H Contains XDR definitions for UNIX-style authentication.

CLNT. H Contains various RPC client definitions.

IN. H Defines structures for the internet and socket addresses
(in_addrand and sockaddr_in). This file is part of the C Socket
Library.

RPC_NMSG. H Defines the RPC message format.

SVC. H Contains various RPC server definitions.

SVC_AUTH. H Used for server authentication.

161

Chapter 9. RPC RTL Management Routines

Filename Purpose

TYPES. H Defines UNIX C data types.

XDR H Contains various XDR definitions.

NETDB. H Defines structures and routines to parse /etc/rpc.

There is an additional header file not included by RPC. H that is used by xdr_pmap and
xdr_pmaplist routines. The file name is pmap_prot.h, and the location is:

TCPI P$RPC: PMAP_PROT. H

9.5. Management Routines

RPC management routines retrieve and maintain information that describes how a process is
using RPC.This section describes each management routine and function in detail. The following
information is provided for each routine:

* Format

* Arguments

* Description

» Diagnostics, or status codes returned, if any
The management routines are

* get _myaddress

* getrpcbynumber

* getrpcport

get_myaddress
get myaddress — Returns the internet address of the local host.

Format

#i ncl ude
voi d get myaddress (struct sockaddr _in *addr);

Argument
addr

Address of a sockaddr_in structure that will be loaded with the host internet address. The port number
is always set to htons(PMAPPORT).

Description

The get_myaddress routine returns the internet address of the local host without doing any name
translation or DNS lookups.

162

Chapter 9. RPC RTL Management Routines

getrpcbynumber
getrpcbynumber — Gets an RPC entry.

Format

#i ncl ude
struct rpcent *getrpcbynunber (number)
i nt numnber;

Argument
nunber

Program name or number.

Description

The getrpcbynumber routine returns a pointer to an object with the following structure containing
the broken-out fields of a line in the RPC program number database, /etc/rpc.

struct rpcent {

char *r_nane; /* nanme of server for this RPC program */
char **r_aliases; /* alias list */
| ong r_number; /* RPC program nunber */
1
The members of this structure are:
r_name Name of the server for this RPC program
r_aliases Zero-terminated list of alternate names for the RPC program
r_number RPC program number for this service

The getrpcbynumber routine sequentially searches from the beginning of the file until a matching
RPC program name or program number is found, or until an EOF is encountered.

Diagnostics

A NULL pointer is returned on EOF or error.

getrpcport
getrpcport — Gets an RPC port number.

Format

int getrpcport(host, prognum versnum proto)
char *host;

int prognum versnum proto;

Arguments

host

163

Chapter 9. RPC RTL Management Routines

Host running the RPC program.
prognum

Program number.

proto

Protocol name. Must be | PPROTO_TCP or | PPROTO_UDP.

Description

The getrpcport routine returns the port number for version ver snumof the RPC program pr ognum
running on host and using protocol pr ot 0.

It returns 0 if it cannot contact the portmapper, or if pr ognumis not registered. If pr ognumis
registered but not with ver snum it still returns a port number (for some version of the program),
indicating that the program is indeed registered. The version mismatch is detected on the first call to
the service.

164

Chapter 10. RPC RTL Client Routines

10.1. Introduction

This chapter is for RPC programmers. It documents the client routines in the RPC Run-Time Library
(RTL). These routines are the programming interface to RPC.

10.2. Common Arguments

Many client, Port Mapper, and server routines use the same arguments.

Table 10.1, “Common Arguments” lists these arguments and defines their purpose. Arguments that are
unique to each routine are documented together with their respective routines in this and the following
chapters

Table 10.1. Common Arguments

Argument Purpose

args_ptr Address of the buffer to contain the decoded RPC arguments.

auth RPC authentication client handle created by the authnone_create,
authunix_create, or authunix_create_default routine.

cint Client handle returned by any of the client create routines.

in Input arguments for the service procedure.

inproc XDR routine that encodes input arguments.

out Results of the remote procedure call.

outproc XDR routine that decodes output arguments.

procnum Number of the service procedure.

prognum Program number of the service program.

protocol Transport protocol for the service. Must be | PPROTO_UDP or
| PPROTO_TCP.

s String containing the message of your choice. The routines append

an error message to this string.

sockp Socket to be used for this remote procedure call. If sockp is
RPC_ANYSQOCK, the routine creates a new socket and defines
sockp. The clnt_destroy routine closes the socket.

If sockp is a value other than RPC_ANYSCOCK, the routine uses
this socket and ignores the internet address of the server.

versnum Version number of the service program.

xdr_args XDR procedure that describes the RPC arguments.

xdrs Structure containing XDR encoding and decoding information.
xprt RPC server handle.

10.3. Client Routines

The client routines are called by the client main program or the client stub procedures.

165

Chapter 10. RPC RTL Client Routines

The following sections describe each client routine in detail. The client routines are

auth_destroy cint_destroy

authnone_create cint_geterr

authunix create cInt_pcreateerror / cInt_spcreateerror
authunix_create_default cInt_perrno / clnt_sperrno

callrpc cInt_perror / cInt_sperror
cInt_broadcast cintraw_create

cint_call cinttcp _create

cInt_control cintudp_create / cintudp_bufcreate
cint_create

auth_destroy

auth_destroy — A macro that destroys authentication information associated with an authentication
handle.

Format

voi d auth_destroy (AUTH *aut h)

Argument
aut h

RPC authentication client handle created by the authnone_create, authunix_create, or
authunix_create_default routine.

Description

Use auth_destroy to free memory that was allocated for authentication handles. This routine
undefines the value of aut h by deallocating private data structures.

Do not use this memory space after auth_destroy has completed. You no longer own it.

See Also

authnone_create, authunix_create, authunix_create_default

authnone_create

authnone_create — Creates and returns a null RPC authentication handle for the client process.
Format

#i ncl ude

AUTH *aut hnone_create();

166

Chapter 10. RPC RTL Client Routines

Arguments

None.

Description

This routine is for client processes that require no authentication. RPC uses it as a default when it
creates a client handle.

See Also

authunix _create default, clnt_create, cIntraw_create, clnttcp create, cIntudp create /
clntudp_bufcreate

authunix_create

authunix_create — Creates and returns an RPC authentication handle for the client process. Use this
routine when the server requires UNIX-style authentication.

Format
#i ncl ude

AUTH *aut huni x_create (char *host, int uid,int gid,int len,int
gi ds);

Arguments

host

Address of the name of the host that created the authentication information. This is usually the local
host running the client process.

uid

User ID of the person who is executing this process.

gid

User's group ID.

I en

Number of elements in the *gi ds array.

gi ds

Address of the array of groups to which the user belongs.
Description

Since the client does not validate the ui d and gi d, it is easy to impersonate an unauthorized user.
Choose values the server expects to receive. The application must provide OpenVMS-to-UNIX
authorization mapping.

167

Chapter 10. RPC RTL Client Routines

You can use a Socket Library lookup routine to get the host name.
See Also

authnone create, authunix create default

authunix_create_default

authunix_create_default — Calls the authunix_create routine and provides default values as
arguments.

Format

#i ncl ude

AUTH *aut huni x_create_defaul t ()

Arguments

See below.

Description

Like the authunix_create routine, authunix_create default provides UNIX-style authentication for
the client process. However, authunix_create default does not require you to enter any arguments.
Instead, this routine provides default values for the arguments used by authunix_create, listed in

Table 10.2, “Default Arguments”.

Table 10.2. Default Arguments

Argument Default Value

host local host domain name
uid getuid ()

gid getgid ()

len 0

gids 0

You can replace this call with authunix_create and provide appropriate values.

Example

aut h_destroy(client->cl _auth);
client->cl _auth = authuni x_create_defaul t();

This example overrides the authnone_create routine, where cl i ent is the value returned by the
cInt_create, cintraw_create, clnttcp _create, or cintudp_create / cIntudp bufcreate routine.

See Also

callrpe

168

Chapter 10. RPC RTL Client Routines

callrpc

callrpe

Format
#i ncl ude

int callrpc (char *host,u_long prognumu_l ong versnum u_| ong
procnum xdrproc_t inproc,u_char *in, xdrproc_t outproc,u_char *out);

Arguments

host

Host where the procedure resides.

prognum versnum procnum inproc, in, outproc, out

See Table 10.1, “Common Arguments” for a description of the above arguments.
Description

The callrpce routine performs the same functions as the clnt_create, and clnt_destroy routines.

Since the callrpe routine uses the UDP transport protocol, messages can be no larger than 8Kbytes.
This routine does not allow you to control timeouts or authentication.

If you want to use the TCP transport, use the cInt_create or clnttcp_create routine.
Diagnostics

The callrpce routine returns zero if it succeeds, and the value of enum cl nt _st at cast to an integer
if it fails.

You can use the cInt_perrno / clnt_sperrno routine to translate failure status codes into messages.
See Also

cInt_broadcast, cint_call, cint_create, cint_destroy, clnt_perrno / clnt_sperrno, clnttcp_create

cint_broadcast

clnt_broadcast — Broadcasts a remote procedure call to all local networks, using the broadcast
address.

Format
#i ncl ude
enum cl nt _stat clnt_broadcast (u_l ong prognum u_long versnum

u_long procnum xdrproc_t inproc, u_char *in, xdrproc_t outproc,
u_char *out, resultproc_t eachresult);

169

Chapter 10. RPC RTL Client Routines

Arguments

prognum versnum procnum inproc, in, outproc, out
See Table 10.1, “Common Arguments” for a description of the above arguments.
eachresul t

Each time cInt_broadcast receives a response, it calls the eachr esul t routine. If eachr esul t
returns zero, clnt_broadcast waits for more replies. If eachr esul t returns a nonzero value,
cInt_broadcast stops waiting for replies. The eachr esul t routine uses this form:

i nt eachresult(out, addr)
u_char *out;
struct sockaddr _in *addr;

out Contains the results of the remote procedure call, in the local data
format.

*addr Is the address of the host that sent the results.

Description

The cInt_broadcast routine performs the same functions as the callrpe routine. However,
clnt_broadcast sends a message to all local networks, using the broadcast address. The
clnt_broadcast routine uses the UDP protocol.

Table 10.3, “Maximum Message Size” indicates how large a broadcast message can be.

Table 10.3. Maximum Message Size

Line Maximum Size
Ethernet 1500 bytes
proNet 2044 bytes
Diagnostics

This routine returns diagnostic values defined in the CLNT. H file for enum cint_stat.

See Also

callrpe, clnt_perrno / cIlnt_sperrno

cint_call

clnt_call — A macro that calls a remote procedure.

Format

enum clnt_stat clnt_call (CLIENT *clnt, u_long procnum xdrproc_t

i nproc, u_char *in, xdrproc_t outproc, u_char *out, struct tineval
tout);

170

Chapter 10. RPC RTL Client Routines

Arguments
clnt, procnum inproc, in, outproc, out
See Table 10.1, “Common Arguments” for a description of the above arguments.

t out

Time allowed for the results to return to the client, in seconds and microseconds. If you use the
clnt_control routine to change the CLSET_TI MEQUT code, this argument is ignored.

Description
Use the cInt_call routine after using cInt_create. After you have finished with the client handle, use

the cInt_destroy routine. You can use the clnt_perror / cInt_sperror routine to print messages for
any errors that occurred.

Diagnostics
This routine returns diagnostic values defined in the CLNT. H file for enum cint_stat.
See Also

clnt_control, cInt_create, cInt_destroy, clnt_perrno / cint_sperrno

cint_control

clnt_control — A macro that changes or retrieves information about an RPC client process.
Format

bool t clnt_control (CLIENT *clnt, u_long code, void *info);
Arguments

cl nt

Client handle returned by any of the client create routines.

code

Code listed in Table 10.4, “Valid Codes”.

Table 10.4. Valid Codes

Code Type Purpose
CLSET_TI MEQUT struct timeval Set total timeout
CLGET_TI MEQUT struct timeval Get total timeout
CLSET_RETRY_TI MEQUT* struct timeval Set retry timeout
CLGET_RETRY_TI MEQUT* struct timeval Get retry timeout
CLGET_SERVER_ADDR struct sockaddr in Get server address

171

Chapter 10. RPC RTL Client Routines

Code Type Purpose

* Valid only for the UDP transport protocol.

The timeval is specified in seconds and microseconds. The total timeout is the length of time that the

client waits for a reply. The default total timeout is 25 seconds.

The retry time is the length of time that UDP waits for the server to reply before transmitting the
request. The default retry timeout is 5 seconds. You might want to increase the retry time if your

network is slow.

For example, suppose the total timeout is 10 seconds and the retry time is five seconds. The client
sends the request and waits five seconds. If the client does not receive a reply, it sends the request
again. If the client does not receive a reply within five seconds, it does not send the request again.

If you use CLSET_TI MEQUT to set the timeout, the clnt_call routine ignores the timeout parameter it

receives for all future calls.

info

Address of the information being changed or retrieved.
Diagnostics

This routine returns TRUE if it succeeds, and FALSE if it fails.
See Also

cint_call, cInt_create, clnt_destroy, clntraw_create, clnttcp_create, cintudp_create /
cintudp_bufcreate

cint_create

clnt_create — Creates an RPC client handle.
Format

#i ncl ude

CLIENT *clnt_create (char *host, u_long prognum u_long versnum
char *proto);

Arguments

host

Address of the string containing the name of the remote host where the server is located.
prognum versnum

See Table 10.1, “Common Arguments” for a description of the above arguments.

proto

172

Chapter 10. RPC RTL Client Routines

Address of a string containing the name of the transport protocol. Valid values are UDP and TCP.

Description

The cInt_create routine creates an RPC client handle for pr ognum An RPC client handle is a
structure containing information about the RPC client. The client can use the UDP or TCP transport
protocol.

This routine uses the Port Mapper. You cannot control the local port.

The default sizes of the send and receive buffers are 8800 bytes for the UDP transport, and 4000 bytes
for the TCP transport.

The retry time for the UDP transport is five seconds.

Use the cInt_create routine instead of the callrpc or clnt_broadcast routines if you want to use one
of the following:

* The TCP transport
* An authentication other than null
¢ More than one active client at the same time

You can also use clntraw_create to use the [P protocol, clnttep_create to use the TCP protocol, or
clntudp_create / cintudp_bufcreate to use the UDP protocol.

The cInt_create routine uses the global variable r pc_creat eerr.rpc_creat eerr is a structure
that contains the most recent service creation error. Use r pc_cr eat eer r if you want the client
program to handle the error. The value of r pc_cr eat eer r is set by any RPC client creation routine
that does not succeed.

The r pc_cr eat eerr variable is defined in the CLNT. H file.
Diagnostics

The cInt_create routine returns the address of the client handle, or zero (if it could not create the
client handle).

If the cInt_create routine fails, you can use theclnt_pcreateerror / clnt_spcreateerror routine to
obtain diagnostic information.

See Also

clnt_call, cInt_control, cInt_destroy, clntraw_create, clnt_pcreateerror / cInt_spcreateerror,
clnttcp_create, cintudp_create / cIntudp_bufcreate

cint_destroy

clnt_destroy — A macro that destroys an RPC client handle.

Format

void clnt_destroy (CLIENT *clnt);

173

Chapter 10. RPC RTL Client Routines

Argument
cl nt

Client handle returned by any of the client create routines.

Description

The clnt_destroy routine destroys the client's RPC handle by deallocating all memory related to the
handle. The client is undefined after the clnt_destroy call.

If the cInt_create routine had previously opened a socket, this routine closes the socket. Otherwise,
the socket remains open.

See Also

clnt_create, clntraw_create, clnttcp_create, cintudp_create / clntudp_bufcreate

cint_geterr

clnt_geterr — A macro that returns an error code indicating why an RPC call failed.

Format

void clnt_geterr (CLIENT *clnt, struct rpc_err *errp);

Arguments

cl nt

Client handle returned by any of the client create routines.
errp

Address of the structure containing information that indicates why an RPC call failed. This
information is the same as ¢l nt _st at contains, plus one of the following: the C error number, the
range of server versions supported, or authentication errors.

Description

This routine is primarily for internal diagnostic use.

Example

#defi ne PROGRAM 1
#defi ne VERSI ON 1

CLI ENT *clnt;
struct rpc_err err;

clnt = clnt_create("server nane", PROGRAM VERSION, "udp");

/* calls to RPC library */

174

Chapter 10. RPC RTL Client Routines

clnt_geterr(clnt, &err);

This example creates a UDP client handle and performs some additional RPC processing. If an RPC
call fails, clnt_geterr returns the error code.

See Also

clnt_perror / clnt_sperror

cint_pcreateerror / cint_spcreateerror

clnt_pcreateerror / clnt_spcreateerror — Return a message indicating why RPC could not create a
client handle.

Format
#i ncl ude

void clnt_pcreateerror (char *s); char *clnt_spcreateerror (char
*S);

Argument

S

String containing the message of your choice. The routines append an error message to this string.

Description
The cInt_pcreateerror / clnt_spcreateerror routine prints a message to SYS$OUTPUT.

The cInt_pcreateerror / clnt_spcreateerror routine returns the address of a string. Use this routine
if:

* You want to save the string.
* You do not want to use pri nt f to print the message.
» The message format is different from the one that clnt_perrno / cInt_sperrno supports.

The clnt_pcreateerror / clnt_spcreateerror routine overwrites the string it returns, unless you save
the results.

Use these routines when the cInt_create, cintraw_create, clnttcp_create, or clntudp_create /
clntudp_bufcreate routine fails.

See Also

cint_create, cintraw_create, cinttcp_create, cintudp_create / cilntudp_bufcreate

cint_perrno / cint_sperrno

clnt_perrno / cInt_sperrno — Return a message indicating why the callrpc or cIlnt_broadcast
routine failed to create a client handle.

175

Chapter 10. RPC RTL Client Routines

Format
#i ncl ude

void clnt_perrno (enumclnt_stat stat); char *clnt_sperrno (enum
clnt _stat stat);

Argument
st at

Appropriate error condition. Values for St at are defined in the CLNT. Hfile.

Description

The cInt_perrno / clnt_sperrno routine prints a message to SYS$OUTPUT.

The clnt_perrno / clnt_sperrno routine returns the address of a string. Use this routine instead if:
* You want to save the string.

* You do not want to use printf to print the message.

* The message format is different from the one that clnt_perrno / clnt_sperrno supports.

To save the string, copy it into your own memory space.

See Also

callrpe, clnt_broadcast

cint_perror / cint_sperror

clnt_perror / clnt_sperror — Return a message if the cInt_call routine fails.

Format
#i ncl ude

void clnt_perror (CLIENT *clnt, char *s); char *clnt_sperror (CLIENT
*clnt, char *s);

Arguments

cl nt

See Table 10.1, “Common Arguments” for a description of the above argument. String containing the
message to output.

Description
Use these routines after clnt_call.

The cInt_perror / clnt_sperror routine prints an error message to SYS$OUTPUT.

176

Chapter 10. RPC RTL Client Routines

The cIlnt_perror / clnt_sperror routine returns a string. Use this routine if:

* You want to save the string.

* You do not want to use pri nt f to print the message.

* The message format is different from the one that cInt_perror / clnt_sperror supports.

The cInt_perror / clnt_sperror routine overwrites the string with each call. Copy the string into your
own memory space if you want to save it.

See Also

clnt_call, cInt_create, cIntraw_create, clnttcp_create, cintudp_create / cIntudp_bufcreate

cintraw_create

clntraw_create — Returns an RPC client handle. The remote procedure call uses the IP transport.

Format
#i ncl ude

CLIENT *clntraw create (struct sockaddr_in *addr, u_long prognum
u_long versnum int *sockp, u_long sendsize, u_long recvsize);

Arguments

addr, prognum versnum

See Table 10.1, “Common Arguments”for a description of the above arguments.
sockp

Socket to be used for this remote procedure call. Sockp can specify the local address and port
number. If sockp is RPC_ANYSQOCK, then a port number is assigned. The example shown for the
cintudp_create / cintudp_bufcreate routine shows how to set up Sockp to specify a port. See
Table 10.1, “Common Arguments” for a description of sockp and RPC_ANYSCOCK.

addr

Internet address of the host on which the server resides.

sendsi ze

Size of the send buffer. If you enter a value less than 100, then 4000 is used as the default.
recvsize

Size of the receive buffer. If you enter a value less than 100, then 4000 is used as the default.

Description

The clntraw_create routine creates an RPC client handle for addr , pr ognum and ver snum The
client uses the IP transport. The routine is similar to the clnt_create routine, except clnttcp_create

177

Chapter 10. RPC RTL Client Routines

allows you to specify a socket and buffer sizes. If you specify the port number as zero by using
addr - >si n_port, the Port Mapper provides the number of the port on which the remote program
is listening.

The transport used to pass messages to the service is actually a buffer within the process's

address space, so the corresponding RPC server should live in the same address space (see also
sveraw_create). This allows simulation of RPC and getting RPC overheads, such as round trip times,
without kernel interference.

The cInttep_create routine uses the global variable r pc_cr eat eer r, which is a structure that
contains the most recent service creation error. Use rpc_createerr if you want the client program to
handle the error. The value of rpc_createerr is set by any RPC client creation routine that does not
succeed. The rpc_createerr variable is defined in the CLNT. H file.

Diagnostics

The cIlntraw_create routine returns the address of the client handle, or zero (if it could not create the
client handle). If the routine fails, use the clnt_pcreateerror / clnt_spcreateerror routine to obtain
additional diagnostic information.

See Also

clnt_call, cInt_control, cInt_create, cInt_destroy, cint_pcreateerror / clnt_spcreateerror,
clnttcp_create, cintudp_create / cIntudp_bufcreate

cinttcp_create

clnttcp_create — Returns an RPC client handle. The remote procedure call uses the TCP transport.
Format

#i ncl ude

CLIENT *clnttcp_create (struct sockaddr_in *addr, u_long prognum
u_long versnum int *sockp, u_long sendsize, u_long recvsize);

Arguments

addr, prognum versnum

See Table 10.1, “Common Arguments” for a description of the above arguments.
sockp

Socket to be used for this remote procedure call. SOCKp can specify the local address and port
number. If sockp is RPC_ANYSOCK, then a port number is assigned. The example shown for the
cintudp_create / cintudp_bufcreate routine shows how to set up Sockp to specify a port. See
Table 10.1, “Common Arguments” for a description of sockp and RPC_ANYSOCK.

addr
Internet address of the host on which the server resides.

sendsi ze

178

Chapter 10. RPC RTL Client Routines

Size of the send buffer. If you enter a value less than 100, then 4000 is used as the default.
recvsize

Size of the receive buffer. If you enter a value less than 100, then 4000 is used as the default.

Description

The cInttep_create routine creates an RPC client handle for addr , pr ognum and ver snum The
client uses the TCP transport. The routine is similar to the clnt_create routine, except clnttcp_create
allows you to specify a socket and buffer sizes. If you specify the port number as zero by using

addr - >si n_por t, the Port Mapper provides the number of the port on which the remote program
is listening.

The clnttep_create routine uses the global variable r pc_createerr.rpc_createerr isa
structure that contains the most recent service creation error. Use r pc_cr eat eer r if you want the
client program to handle the error. The value of r pc_cr eat eerr is set by any RPC client creation
routine that does not succeed. The r pc_cr eat eer r variable is defined in the CLNT. Hfile.

Diagnostics

The cinttep_create routine returns the address of the client handle, or zero (if it could not create the
client handle). If the routine fails, use the clnt_pcreateerror / clnt_spcreateerror routine to obtain
additional diagnostic information.

See Also

cint_call, cInt_control, cint_create, clnt_destroy, clnt_pcreateerror / clnt_spcreateerror,
clntudp_create / cintudp_bufcreate

cintudp_create / cintudp_bufcreate

cilntudp_create / cintudp_bufcreate — Returns an RPC client handle. The remote procedure call
uses the UDP transport.

Format
#i ncl ude

CLI ENT *cl ntudp_create (struct sockaddr_in *addr, u_long prognum
u_long versnum struct tineval wait, int *sockp);

CLI ENT *cl ntudp_bufcreate (struct sockaddr_in *addr, u_l ong proghum
u_long versnum struct tineval wait, int *sockp, u_long sendsize,
u_long recvsize);

Arguments
addr
Internet address of the host on which the server resides.

prognum versnum sockp

179

Chapter 10. RPC RTL Client Routines

See Table 10.1, “Common Arguments” for a description of the above arguments.
wai t

Time interval the client waits before resending the call message. This value changes the
CLSET_RETRY_TI MEQUT code. The cInt_call routine uses this value.

sendsi ze
Size of the send buffer. If you enter a value less than 100, then 4000 is used as the default.
recvsi ze

Size of the receive buffer. If you enter a value less than 100, then 4000 is used as the default.

Description

These routines create an RPC client handle for addr , pr ognum and ver snum The client uses the
UDP transport protocol.

If you specify the port number as zero by using addr - >si n_por t , the Port Mapper provides the
number of the port on which the remote program is listening.

Note

Use the cintudp_create / cIntudp_bufcreate routine only for procedures that handle messages
shorter than 8K bytes. Use the clntudp_create / cIntudp_bufcreate routine for procedures that
handle messages longer than 8K bytes.

The clntudp_create / cintudp_bufcreate routine uses the global variable r pc_cr eat eerr.
rpc_creat eerr is a structure that contains the most recent service creation error.

User pc_cr eat eerr if you want the client program to handle the error. The value of
rpc_creat eerr isset by any RPC client creation routine that does not succeed.

The r pc_cr eat eerr variable is defined in the CLNT. Hfile.

Example

mai n()
{
int sock;
u long prog = PROGRAM vers = VERSI ON;
CLIENT *clnt;
struct sockaddr _in |ocal _addr, renote_addr;
struct tinmeval timeout = { 35, 0},
retry = { 5, 0};
renote_addr.sin_fanmly = AF_|I NET;
renote_addr.sin_port = 0; /* consult the renote port mapper */
renote_addr.sin_addr.s_addr = 0x04030201; /* internet
addr 1.2.3.4 */
| ocal _addr.sin famly = AF_| NET;
| ocal _addr.sin_port = 12345; /* use port 12345 */
| ocal _addr.sin_addr.s_addr = 0x05030201; /* internet addr
1.2.3.5 */
sock = socket(AF_I NET, SOCK DGRAM 0);

180

Chapter 10. RPC RTL Client Routines

/* bind the socket to the |ocal addr */

bi nd(sock, &l ocal _addr, sizeof(|ocal _addr));

/* create a client that uses the local I A and port given above */
clnt = clntudp_create(& enote_addr, prog, vers, retry, &sock);
/* use a connection tinmeout of 35 seconds, not the default */
clnt_control (clnt, CLSET_TIMEQUT, &tineout);

[*call the server here*/

}

This example defines a socket structure, binds the socket, and creates a UDP client handle.

Diagnostics

These routines return the address of the client handle, or zero (if they cannot create the client handle).

If these routines fail, you can obtain additional diagnostic information by using the
clnt_pcreateerror / clnt_spcreateerror routine.

See Also

cint_call, cInt_control, cint_create, clnt_destroy, clnt_pcreateerror / clnt_spcreateerror,
cinttcp_create

181

Chapter 11. RPC RTL Port Mapper
Routines

11.1. Introduction

This chapter is for RPC programmers. It documents the port mapper routines in the RPC Run-Time
Library (RTL). These routines are the programming interface to RPC.

11.2. Port Mapper Routines

Port Mapper routines provide a simple callable interface to the Port Mapper. They allow you to
request Port Mapper services and information about port mappings. Table 11.1, “Port Mapper
Routines” summarizes the purpose of each Port Mapper routine.

Table 11.1. Port Mapper Routines

Routine Purpose

pmap_getmaps Returns a list of Port Mappings for the specified host.

pmap_getport Returns the port number on which a specified service is waiting.

pmap_rmtcall Requests the Port Mapper on a remote host to call a procedure on
that host.

pmap_set Registers a remote service with a remote port.

pmap_unset Unregisters a service so it is no longer mapped to a port.

11.3. Port Mapper Arguments

Port Mapper routines use many of the same arguments as client routines. See Table 10.1, “Common
Arguments” for a list of these arguments.

The following sections describe each Port Mapper routine in detail.

pmap_getmaps

pmap_getmaps — Returns a list of Port Mappings for the specified host.

Format

struct pmaplist *pmap_get maps (struct sockaddr_in *addr);
Argument

addr

Address of a structure containing the internet address of the host whose Port Mapper is being called.
Description

The pmap_getmaps routine returns a list of current RPC server-to-Port Mappings on the host at
addr . The list structure is defined in the PMAP_PROT. Hfile.

182

Chapter 11. RPC RTL Port Mapper Routines

The IP SHOW /RPC_PORTMAP command uses this routine.
Diagnostics

If an error occurs (for example, pmap_getmaps cannot get a list of Port Mappings, the internet
address is invalid, or the remote Port Mapper does not exist), the routine returns either NULL or the
address of the list.

See Also

pmap_getport, pmap_set, pmap_unset

pmap_getport
pmap_getport — Returns the port number on which a specified service is waiting.
Format

u_short pmap_getport (struct sockaddr_in *addr, u_long prognum
u_l ong versnum u_l ong protocol);

Arguments

addr

Address of a structure containing the internet address of the remote host on which the server resides.
prognum versnum protoco

See Table 10.1, “Common Arguments” for a list of these arguments
Diagnostics

If the requested mapping does not exist or the routine fails to contact the remote Port Mapper, the
routine returns either the port number or zero.

The pmap_getport routine uses the global variable r pc_createerr.rpc_createerr isa
structure that contains the most recent service creation error. Use r pc_cr eat eer r if you want
the service program to handle the error. The value of r pc_cr eat eerr is set by any RPC server
creation routine that does not succeed.

The r pc_cr eat eerr variable is defined in the CLNT. H file.

See Also

pmap_getmaps, pmap_set, pmap_unset

pmap_rmtcall
pmap_rmtcall — Requests the Port Mapper on a remote host to call a procedure on that host.
Format

enum cl nt_stat pmap_rntcall (struct sockaddr_in *addr, u_long
prognum u_long versnum u_long procnum xdrproc_t inproc, u_char

183

Chapter 11. RPC RTL Port Mapper Routines

*in, xdrproc_t outproc, u_char *out, struct timeval tout, u_long
*portp);

Arguments

addr

Address of a structure containing the internet address of the remote host on which the server resides.
prognum versnum procnum inproc, in, outproc, out

See Table 10.1, “Common Arguments” for a list of these arguments

t out

Time allowed for the results to return to the client, in seconds and microseconds.

portp

Address where pmap_rmtcall will write the port number of the remote service.

Description

The pmap_rmtcall routine allows you to get a port number and call a remote procedure in one call.
The routine requests a remote Port Mapper to call a pr ognum ver snum and pr ocnumon the Port
Mapper's host. The remote procedure call uses the UDP transport.

If pmap_rmtcall succeeds, it changes por t p to contain the port number of the remote service.
After calling the pmap_rmtcall routine, you may call the clnt_perrno / clnt_sperrno routine.
Diagnostics

This routine returns diagnostic values defined in the CLNT. H file for enum cl nt _st at .
See Also

cInt_broadcast, clnt_perrno / clnt_sperrno

pmap_set
pmap_set — Registers a remote service with a remote port.
Format

bool _t pmap_set (u_long prognum u_long versnum u_Ilong protocol,
u_short port);

Arguments
prognum versnum protoco
See Table 10.1, “Common Arguments” for a list of these arguments

port

184

Chapter 11. RPC RTL Port Mapper Routines

Remote port number.

Description

The pmap_set calls the local Port Mapper to tell it which port and pr ot ocol thepr ognum
ver snumis using.

You are not likely to use pmap_set, because Svc_r egi st er calls it.
Diagnostics

The pmap_set routine returns TRUE if it succeeds, and FALSE if it fails.
See Also

pmap_getport, pmap_getmaps, pmap_unset, svc_register

pmap_unset

pmap_unset — Unregisters a service so it is no longer mapped it to a port.
Format

bool t prap_unset (u_long prognum u_long versnunj;
Arguments

prognum versnum

See Table 10.1, “Common Arguments” for a list of these arguments
Description

The pmap_unset routine calls the local Port Mapper and, for all protocols, removes the pr ognum
and ver snumfrom the list that maps servers to ports.

You are not likely to use pmap_unset, because svc_unr egi st er calls it.

Diagnostics
The pmap_unset routine returns TRUE if it succeeds, FALSE if it fails.

See Also

pmap_getport, pmap_getmaps, pmap_set, svc_unregister

185

Chapter 12. RPC RTL Server Routines

12.1. Introduction

This chapter is for RPC programmers. It documents the server routines in the RPC Run-Time Library
(RTL). These routines are the programming interface to RPC.

12.2. Server Routines

The server routines are called by the server program or the server stub procedures. Table 12.1, “Server
Routines” lists each server routine and summarizes its purpose.

Table 12.1. Server Routines

Routine

Purpose

registerrpc

Performs creation and registration tasks for server.

svc_destroy

Macro that destroys RPC server handle.

sve_freeargs

Macro that frees memory allocated when RPC arguments were
decoded.

svc_getargs

Macro that decodes RPC arguments.

sve_getreqset

Reads data for each server connection.

svc_register

Adds specified server to list of active servers, and registers service
program with Port Mapper.

sve_run

Waits for RPC requests and calls sve_getreqset routine to dispatch
to appropriate RPC service program.

sve_sendreply

Sends results of remote procedure call to client.

svc_unregister

Calls Port Mapper to unregister specified program and version for
all protocols.

sveerr_auth / sveerr_decode /
sveerr_noproc /
sveerr_noprog /
sveerr_progvers /
sveerr_systemerr /
sveerr_weakauth

Sends error code when server cannot authenticate client.
Sends error code to client if server cannot decode arguments.

Sends error code to client if server cannot implement requested
procedure.

Sends error code to client when requested program is not registered
with Port Mapper.

Sends error code to client when requested program is registered
with Port Mapper, but requested version is not registered.

Sends error code to client when server encounters error not
handled by particular protocol.

Sends error code to client when server cannot perform remote
procedure call because it received insufficient (but correct)
authentication parameters.

186

Chapter 12. RPC RTL Server Routines

Routine Purpose

svefd_create Returns address of structure containing server handle for specified
TCP socket.

svctep_create Returns address of server handle that uses TCP transport.

svcudp_create / Returns address of server handle that uses UDP transport. For

svcudp_bufcreate procedures that pass messages longer than 8Kbytes.

Returns address of server handle that uses UDP transport. For
procedures that pass messages shorter than 8Kbytes.

svcudp_enablecache Enables XID cache for specified UDP transport server.
xprt_register Adds UDP or TCP server socket to list of sockets.
xprt_unregister Removes UDP or TCP server socket from list of sockets.

The following sections describe each server routine in detail.

registerrpc

registerrpc — Performs creation and registration tasks for the server.

Format

#include int registerrpc (u_long prognum u_long versnum u_l ong

procnum u_char *(*procnane) (), xdrproc_t inproc, xdrproc_t
out proc);

Arguments

prognum Vversnum procnum inproc, outproc
See Table 10.1, “Common Arguments” for a list of these arguments
pr ocname

Address of the routine that implements the service procedure. The routine uses the following format:

u_char *procnane(out);
u_char *out;

out is the address of the data decoded by out pr oc.

Description

The registerrpc routine performs the following tasks for a server:

* Creates a UDP server handle.

» Calls the svc_register routine to register the program with the Port Mapper.

* Adds prognum ver snum and pr ocnumto an internal list of registered procedures. When the
server receives a request, it uses this list to determine which routine to call.

A server should call registerrpc for every procedure it implements, except for the NULL procedure.

187

Chapter 12. RPC RTL Server Routines

Diagnostics
The registerrpc routine returns zero if it succeeds, and -1 if it fails.
See Also

svc_register

svc_destroy
svc_destroy — Macro that destroys the RPC server handle.
Format

voi d svc_destroy (SVCXPRT *xprt);

Argument
Xprt

RPC server handle.
Description

The svc_destroy routine destroys Xpr t by deallocating private data structures. After this call, Xxprt
is undefined.

If the server creation routine received RPC_ANYSOCK as the socket, sve_destroy closes the socket.
Otherwise, you must close the socket.

See Also

svefd _create, svetep_create, sveudp _create / sveudp _bufcreate

svc_freeargs

svc_freeargs — Macro that frees the memory that was allocated when the RPC arguments were
decoded.

Format

bool _t svc_freeargs (SVCXPRT *xprt, xdrproc_t xdr_args, char
*args_ptr);

Arguments

Xprt, xdr_args, args_ptr

See Table 10.1, “Common Arguments” for a list of these arguments
Description

The sve_freeargs routine calls the xdr_free routine.

188

Chapter 12. RPC RTL Server Routines

Diagnostics
This routine returns TRUE if it succeeds and FALSE if it fails.

See Also

sve_getargs, xdr_free

svc_getargs
svc_getargs — Macro that decodes the RPC arguments.
Format

bool _t svc_getargs (SVCXPRT *xprt, xdrproc_t xdr_args, u_char
*args_ptr);

Arguments

xprt, xdr_args, args_ptr

See Table 10.1, “Common Arguments” for a list of these arguments
Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.
See Also

sve_freeargs

svc_getreqgset

sve_getreqset — Reads data for each server connection.
Format

#i ncl ude

void svc_getregset (int rdfds);

Argument

rdfds

Address of the read socket descriptor array. This array is returned by the select routine.
Description

The server calls sve_getreqset when it receives an RPC request. The svc_getreqset routine reads in
data for each server connection, then calls the server program to handle the data.

189

Chapter 12. RPC RTL Server Routines

The sve_getreqset routine does not return a value. It finishes executing after all r df ds sockets have
been serviced.

You are unlikely to call this routine directly, because the sve_run routine calls it. However, there are
times when you cannot call sve_run. For example, suppose a program services RPC requests and
reads or writes to another socket at the same time. The program cannot call sve_run. It must call
select and sve_getreqset.

The sve_getreqset routine is for servers that implement custom asynchronous event processing, do
not use the sve_run routine.

You may use the global variable svc_f dset with sve_getreqset. The svc_f dset variable lists all
sockets the server is using. It contains an array of structures, where each element is a socket pointer
and a service handle. It uses the following format:

struct sockarr svc_fdset [MAXSOCK +1];

This is how to use svc_f dset : first, copy the socket handles from svc_f dset into a temporary
array that ends with a zero. Pass the array to the select() routine. The select() routine overwrites the
array and returns it. Pass this array to the sve_getreqset routine.

You may use svc_f dset when the server does not use sve_run.
The svc_f dset variable is not compatible with UNIX.
Example

#defi ne MAXSOCK 10

i nt readfds[MAXSOCK+1], [/* sockets to select from */
s

for(i =0, j =0; i < MAXSOCK; i ++)

if((svc_fdset[i].socknane != 0) && (svc_fdset[i].socknanme !=
1))

readfds[j ++] = svc_fdset[i].socknang;

readfds[j] = O; /* list of sockets ends w a zero */

switch(select(O, readfds, 0, 0, 0))

{

case -1: /* an error happened */

case O: /[* time out */

br eak;

default: /* 1 or nore sockets ready for reading */

errno = 0;

ONCRPC_SVC CGET_REQSET(readfds);
if(errno == ENETDOMWN || errno == ENOTCONN)
sys$exit(SS$_TH RDPARTY) ;
}
See Also

sve_run

svc_register

svc_register — Adds the specified server to a list of active servers, and registers the service program
with the Port Mapper.

190

Chapter 12. RPC RTL Server Routines

Format
#i ncl ude

bool t svc_register (SVCXPRT *xprt, u_long prognum u_long versnum
void (*dispatch) (), u_long protocol);

Arguments

Xprt, prognum versnum

See Table 10.1, “Common Arguments” for a list of these arguments
di spat ch

Routine that svc_register calls when the server receives a request for pr ognum ver snum This
routine determines which routine to call for each server procedure. This routine uses the following
form:

voi d di spatch(request, xprt)

struct svc_req *request;

SVCXPRT *xprt;

The sve_getreqset and sve_run routines call di spat ch.
pr ot ocol

Must be | PPROTO_UDP, | PPROTO_TCRP, or zero. Zero indicates that you do not want to register the
server with the Port Mapper.

Diagnostics
The svc_register routine returns TRUE if it succeeds and FALSE if it fails.

See Also

pmap_set, svc_getreqset, svc_unregister

svc_run

sve_run — Waits for RPC requests and calls the sve_getreqset routine to dispatch to the appropriate
RPC service program.

Format

#i ncl ude

voi d svc_run()
Arguments

None.

191

Chapter 12. RPC RTL Server Routines

Description

The sve_run routine calls the select() routine to wait for RPC requests. When a request arrives,
svc_run calls the sve_getreqset routine. Then sve_run calls select() again.

The sve_run routine never returns.

You may use the global variable svc_f dset with sve_run. See the sve_getreqset routine for more
information on svc_f dset .

See Also

svc_getreqset

svc_sendreply
sve_sendreply — Sends the results of a remote procedure call to the client.
Format

#i ncl ude

bool t svc_sendreply (SVCXPRT *xprt, xdrproc_t outproc, caddr _t
*out);

Arguments

Xprt, outproc, out

See Table 10.1, “Common Arguments” for a list of these arguments
Description

The routine sends the results of a remote procedure call to the client.
Diagnostics

These routines returns TRUE if they succeed and FALSE if they fail.

svc_unregister

sve_unregister — Calls the Port Mapper to unregister the specified program and version for all
protocols. The program and version are removed from the list of active servers.

Format

#i ncl ude

voi d svc_unregister (u_long prognum u_long versnum;
Arguments

prognum versnum

192

Chapter 12. RPC RTL Server Routines

See Table 10.1, “Common Arguments” for a list of these arguments

See Also

pmap_unset, svc_register

svcerr_auth / svcerr_decode / svcerr_noproc /
svcerr_noprog / svcerr_progvers / svcerr_systemerr /
svcerr_weakauth

sveerr_auth / sveerr_decode / svecerr_noproc / svcerr_noprog / sveerr_progvers /
sveerr_systemerr / sveerr_weakauth — Sends various error codes to the client process.

Format

#i ncl ude

void svcerr_auth (SVCXPRT *xprt, enum auth_stat why);
voi d svcerr_decode (SVCXPRT *xprt);

voi d svcerr_noproc (SVCXPRT *xprt);

voi d svcerr_noprog (SVCXPRT *xprt);

voi d svcerr_progvers (SVCXPRT *xprt, u_long |lowvers, u_long high-
vers);

voi d svcerr_systenmerr (SVCXPRT *xprt);

voi d svcerr_weakauth (SVCXPRT *xprt);

Arguments

Xprt

RPC server handle.

why

Error code defined in the AUTH. Hfile.

| ow-vers

Lowest version number in the range of versions that the server supports.
hi gh-vers

Highest version in the range of versions that the server supports.
Description

svcerr_auth

193

Chapter 12. RPC RTL Server Routines

See sve_getreqset. Calls sveerr_auth when it cannot authenticate a client. The svcerr_auth routine
returns an error code (Why) to the caller.

svcerr_decode

Sends an error code to the client if the server cannot decode the arguments.
svcerr_noproc

Sends an error code to the client if the server does not implement the requested procedure.
svcerr_noprog

Sends an error code to the client when the requested program is not registered with the Port Mapper.
Generally, the Port Mapper informs the client when a server is not registered. Therefore, the server is
not expected to use this routine.

svcerr_progvers

Sends an error code to the client when the requested program is registered with the Port Mapper, but
the requested version is not registered.

svcerr_systenerr

Sends an error code to the client when the server encounters an error that is not handled by a
particular protocol.

svcerr_weakauth

Sends an error code to the client when the server cannot perform a remote procedure call because

it received insufficient (but correct) authentication parameters. This routine calls the sveerr_auth /
sveerr_decode / svcerr_noproc / svcerr_noprog / sveerr_progvers / sveerr_systemerr /
svecerr_weakauth routine. The value of why is AUTH _TOOWEAK, which means "access permission
denied."

svcfd_create

svefd_create — Returns the address of a structure containing a server handle for the specified TCP
socket.

Format
#i ncl ude

SVCXPRT *svcfd _create (int sock, u_long sendsize, u_|long recvsize);

Arguments

sock

Socket number. Do not specify a file descriptor.
sendsi ze

Size of the send buffer. If you enter a value less than 100, then 4000 is used as the default.

194

Chapter 12. RPC RTL Server Routines

recvsize
Size of the receive buffer. If you enter a value less than 100, then 4000 is used as the default.
Description

The svefd_create routine returns the address of a server handle for the specified TCP socket. This
handle cannot use a file. The server calls the svefd create routine after it accepts a TCP connection.

Diagnostics
This routine returns zero if it fails.
See Also

svctep_create

svcraw_create

sveraw_create — Creates a server handle for memory-based Sun RPC for simple testing and timing.
Format

#i ncl ude

SVCXPRT svcraw create ();

Argument

None.

Description
The sveraw_create routine creates a toy Sun RPC service transport, to which it returns a pointer. The
transport is really a buffer within the process's address space, so the corresponding client should live

in the same address space.

This routine allows simulation of and acquisition of Sun RPC overheads (such as round trip times)
without any kernel interference.

Diagnostics
This routine returns NULL if it fails.

See Also

clntraw_create

svctcp create

svctep_create — Returns the address of a server handle that uses the TCP transport.

195

Chapter 12. RPC RTL Server Routines

Format
#i ncl ude

SVCXPRT *svctcp _create (int sock, u_long sendsize, u_long recvsize);

Arguments
sock

Socket for this service. The svetep_create routine creates a new socket if you enter RPC_ANYSOCK.
If the socket is not bound to a TCP port, svetep_create binds it to an arbitrary port.

sendsi ze
Size of the send buffer. If you enter a value less than 100, then 4000 bytes is used as the default.
recvsi ze

Size of the receive buffer. If you enter a value less than 100, then 4000 bytes is used as the default.
Diagnostics

The svetep_create routine returns either the address of the server handle or zero (if it could not create
the server handle).

See Also

svefd_create, sve_destroy

svcudp_create / svcudp_bufcreate

svcudp_create / sveudp_bufcreate — Returns the address of a server handle that uses the UDP
transport.

Format
#i ncl ude
SVCXPRT *svcudp_create (int sock);

SVCXPRT *svcudp_bufcreate (int sock, u_long sendsize, u_long
recvsize);

Arguments

sock

Socket for this service. The svcudp_create / routine creates a new socket if you enter
RPC_ANYSQOCK. If the socket is not bound to a UDP port, the svcudp_create / routine binds it to an
arbitrary port.

sendsi ze

196

Chapter 12. RPC RTL Server Routines

Size of the send buffer. The minimum size is 100 bytes. The maximum size is 65468, the maximum
UDP packet size. If you enter a value less than 100, then 4000 is used as the default.

recvsi ze

Size of the receive buffer. The minimum size is 100 bytes. The maximum size is 65000, the maximum
UDP packet size. If you enter a value less than 100, then 4000 is used as the default.

Description

Use the sve_create routine only for procedures that pass messages shorter than 8Kbytes long. Use the
svcudp_create / sveudp_bufcreate routine for procedures that pass messages longer than 8Kbytes.

Diagnostics
These routines return either a server handle, or zero (if they could not create the server handle).

See Also

svc_destroy, svcudp_enablecache

svcudp_enablecache

svcudp_enablecache — Enables the XID cache for the specified UDP transport server.

Format

bool t svcudp_enabl ecache (SVCXPRT *xprt, u_long size);

Arguments
Xprt

RPC server handle.
si ze

Number of entries permitted in the XID cache. You may estimate this number based on how active the
server is, and on how long you want to retain old replies.

Description

Use the sveudp_enablecache routine after a UDP server handle is created. The server places all
outgoing responses in the XID cache. The cache can be used to improve the performance of the

server, for example, by preventing the server from recalculating the results or sending incorrect

results.

You cannot disable the XID cache for UDP servers.
The Chapter 6, RPC Fundamentals provides more information on the XID cache.

Example

#def i ne FALSE 0

197

Chapter 12. RPC RTL Server Routines

#define UDP_CACHE_SIZE 10
SVCXPRT *udp_xprt;
udp_xprt = svcudp_create(RPC_ANYSOCK) ;
i f(svcudp_enabl ecache(udp_xprts, UDP_CACHE SIZE) == FALSE)
printf("XID cache was not enabl ed");

el se
printf("Xl D cache was enabl ed");

Diagnostics

This routine returns TRUE if it enables the XID cache, and FALSE if the cache was previously
enabled or an error occurs.

xprt_register

xprt_register — Adds a TCP or UDP server socket to a list of sockets.
Format

#i ncl ude

void xprt_register (SVCXPRT *xprt);

Argument

Xprt

RPC server handle.

Description

The xprt_register and xprt_unregister routines maintain a list of sockets. This list ensures that
the correct server is called to process the request. The xprt_register routine adds the server socket
to the svc_f dset variable, which also stores the server handle that is associated with the socket.
The sve_run routine passes the list of sockets to the select() routine. The select() routine returns to
svc_run a list of sockets that have outstanding requests.

You are unlikely to call this routine directly because svc_register calls it.

See Also

svc_register, xprt_unregister

xprt_unregister

xprt_unregister — Removes a TCP or UDP server socket from a list of sockets.
Format

#i ncl ude

voi d xprt_unregi ster (SVCXPRT *xprt);

198

Chapter 12. RPC RTL Server Routines

Argument
Xprt

RPC server handle.
Description

This list of sockets ensures that the correct server is called to process the request. See the
xprt_unregister routine for a description of how this list is maintained.

You are unlikely to call this routine directly because sve_unregister calls it.

See Also

svc_unregister, xprt_register

199

Chapter 13. RPC RTL XDR Routines

13.1. Introduction

This chapter is for RPC programmers. It documents the XDR routines in the RPC Run-Time Library
(RTL). These routines are the programming interface to RPC.

13.2. XDR Routines

This section explains what XDR routines do and when you would call them. It also provides quick
reference and detailed reference sections describing each XDR routine.

13.2.1. What XDR Routines Do

Most XDR routines share these characteristics:

* They convert data in two directions: from the host's local data format to XDR format (called
encoding or marshalling), or the other way around (called decoding or unmarshalling).

» They use xdrs, a structure containing instructions for encoding, decoding, and deallocating memory.
* They return a boolean value to indicate success or failure.

Some XDR routines allocate memory while decoding an argument. To free this memory, call the
xdr_free routine after the program is done with the decoded value.

Table 13.1, “XDR Actions” shows the order in which XDR routines perform encoding and decoding.

Table 13.1. XDR Actions

Client Server

1. Encodes arguments 1. Decodes arguments

2. Decodes results 2. Encodes results

3. Frees results from memory 3. Frees arguments from memory

13.2.2. When to Call XDR Routines

Under most circumstances, you are not likely to call any XDR routines directly. The clnt_call and
svc_sendreply routines call the XDR routines.

You would call the XDR routines directly only when you write your own routines to convert data to or
from XDR format.

13.3. Quick Reference

Table 13.2, “XDR Encoding and Decoding Routines” lists the XDR routines that encode and decode
data.

200

Chapter 13. RPC RTL XDR Routines

Table 13.2. XDR Encoding and Decoding Routines

This routine...

Encodes and decodes...

xdr_array Variable-length array

xdr_bool Boolean value

xdr_bytes Bytes

xdr_char Character

xdr_double Double-precision floating point number

xdr_enum Enumerated type

xdr_float Floating point value

xdr_hyper Quad word to an XDR hyper-integer, or the other way
xdr_int Four-byte integer

xdr_long Longword

xdr_opaque

Contents of a buffer (treats the data as a fixed length of bytes and
does not attempt to interpret them)

xdr_pointer

Pointer to a data structure

xdr_reference

Pointer to a data structure (the address must be non-zero)

xdr_short Two-byte unsigned integer

xdr_string Null-terminated string

xdr_u_char Unsigned character

xdr_u_hyper Quad word to an XDR unsigned hyper-integer
xdr_u_int Four-byte unsigned integer

xdr_u_long Unsigned longword

xdr_u_short

Two-byte unsigned integer

xdr_union Union
xdr_vector Vector (fixed length array)
xdr_void Nothing

xdr_wrapstring

Null-terminated string

Table 13.3, “XDR Support Routines” lists the XDR routines that perform various support functions.

Table 13.3. XDR Support Routines

This routine...

Does this...

xdr_free

Deallocates a data structure from memory

xdrmem_create

Creates a memory buffer XDR stream

xdrrec_create

Creates a record-oriented XDR stream

xdrrec_endofrecord

Marks the end of a record

xdrrec_eof

Goes to the end of the current record, then verifies whether any
more data can be read

xdrrec_skiprecord

Goes to the end of the current record

xdrstdio_create

Initializes an stdio stream

201

Chapter 13. RPC RTL XDR Routines

Table 13.4, “Upper Layer XDR Routines” lists the upper layer XDR routines that support RPC.

Table 13.4. Upper Layer XDR Routines

This routine... Encodes and decodes...

xdr_accepted_reply Part of an RPC reply message after the reply is accepted

xdr_authunix_parms UNIX-style authentication information

xdr_callhdr Static part of an RPC request message header (encoding only)

xdr_callmsg RPC request message

xdr_netobj Data in the netobj structure

xdr_opaque_auth Authentication information

xdr_pmap Port Mapper parameters

xdr_pmaplist List of Port Mapping data

xdr_rejected_reply Part of an RPC reply message after the reply is rejected

xdr_replymsg RPC reply header; it then calls the appropriate routine to convert
the rest of the message

The following sections describe each XDR routine in detail.

xdr_accepted_reply

xdr_accepted reply — Converts an RPC reply message from local format to XDR format, or the
other way around.

Format

#i ncl ude

bool t xdr_accepted reply (XDR *xdrs, struct accepted reply *ar);
Arguments

xdrs

Address of a structure containing XDR encoding and decoding information.
ar

Address of the structure containing the RPC reply message.
Description

The xdr_replymsg routine calls the xdr_accepted_reply routine.
Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

See Also

xdr_replymsg

202

Chapter 13. RPC RTL XDR Routines

xdr_array

xdr_array — Converts a variable-length array from local format to XDR format, or the other way
around.

Format
#i ncl ude

bool t xdr_array (XDR *xdrs, u_char **addrp, u_long *sizep, u_long
maxsi ze, u_long elsize, xdrproc_t elproc);

Arguments

xdrs

Address of a structure containing XDR encoding and decoding information.
addr p

Address of the address containing the array being converted. If addr p is zero, then xdr_array
allocates ((* si zep) * el si ze) number of bytes when it decodes.

si zep

Address of the number of elements in the array.
maxsi ze

Maximum number of elements the array can hold.
el si ze

Size of each element, in bytes.

el proc

XDR routine that handles each array element.
Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

xdr_authunix_parms

xdr_authunix_parms — Converts UNIX-style authentication information from local format to XDR
format, or the other way around.

Format
#i ncl ude

bool _t xdr_aut huni x_parns (XDR *xdrs, struct authunix_parns *aupp);

203

Chapter 13. RPC RTL XDR Routines

Arguments
xdrs
Address of a structure containing XDR encoding and decoding information.

aupp

UNIX-style authentication information being converted.
Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

xdr_bool

xdr_bool — Converts a boolean value from local format to XDR format, or the other way around.

Format

#i ncl ude

bool _t xdr_bool (XDR *xdrs, bool _t *bp);
Arguments

xdrs

Address of a structure containing XDR encoding and decoding information.
bp

Address of the boolean value.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

xdr_bytes

xdr_bytes — Converts bytes from local format to XDR format, or the other way around.
Format

#i ncl ude

bool _t xdr_bytes (XDR *xdrs, u_char **cpp, u_long *sizep, u_long
maxsi ze) ;

Arguments

xdrs

204

Chapter 13. RPC RTL XDR Routines

Address of a structure containing XDR encoding and decoding information.

cpp

Address of the address of the buffer containing the bytes being converted. If * cpp is zero, xdr_bytes
allocates maxsi ze bytes when it decodes.

si zep

Address of the actual number of bytes being converted.

maxsi ze

Maximum number of bytes that can be used. The server protocol determines this number.
Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

xdr_callhdr

xdr_callhdr — Encodes the static part of an RPC request message header.

Format

#i ncl ude

bool _t xdr_call hdr (XDR *xdrs, struct rpc_nsg *chdr);

Arguments

xdrs

Address of a structure containing XDR encoding and decoding information.

chdr

Address of the data being converted.

Description

The xdr_callhdr routine converts the following fields: transaction ID, direction, RPC version, server
program number, and server version. It converts the last four fields once, when the client handle is
created.

The cInttcp_create and clntudp_create / cintudp_bufcreate routines call the xdr_callhdr routine.
Diagnostics

This routine always returns TRUE.

See Also

cint_call, cInttcp create, cintudp_create / cintudp_bufcreate, xdr_callmsg

205

Chapter 13. RPC RTL XDR Routines

xdr_callmsg

xdr_callmsg — Converts an RPC request message from local format to XDR format, or the other
way around.

Format

#i ncl ude

bool t xdr_callnmsg (XDR *xdrs, struct rpc_nsg *cnsg);
Arguments

xdrs

Address of a structure containing XDR encoding and decoding information.
cnsg

Address of the message being converted.

Description

The xdr_callmsg routine converts the following fields: transaction ID, RPC direction, RPC version,
program number, version number, procedure number, client authentication.

The pmap_rmtcall, sve_sendreply, and svc_sendreply dq routines call xdr_callmsg.
Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

See Also

xdr_callhdr

xdr_char

xdr_char — Converts a character from local format to XDR format, or the other way around.
Format

#i ncl ude

bool _t xdr_char (XDR *xdrs, char *cp);

Arguments

xdrs

Address of a structure containing XDR encoding and decoding information.

cp

206

Chapter 13. RPC RTL XDR Routines

Address of the character being converted.

Description

This routine provides the same functionality as the xdr_u_char routine.
Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

See Also

xdr_u_char

xdr_double

xdr_double — Converts a double-precision floating point number between local and XDR format.
Format

#i ncl ude

bool _t xdr_double (XDR *xdrs, double *dp);

Arguments

xdrs

Pointer to an XDR stream handle created by one of the XDR stream handle creation routines.
dp

Pointer to the double-precision floating point number.

Description

This routine provides a filter primitive that translates between double-precision numbers and their
external representations. It is actually implemented by four XDR routines:

xdr_double_D Converts D format floating point numbers
xdr_double G Converts G format floating point numbers
xdr_double_T Converts IEEE T format floating point numbers
xdr_double_X Converts IEEE X format floating point numbers

You can reference these routines explicitly or you can use compiler settings to control which routine is
used when you reference the xdr_double routine.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

207

Chapter 13. RPC RTL XDR Routines

xdr_enum

xdr_enum — Converts an enumerated type from local format to XDR format, or the other way
around.

Format

#i ncl ude

bool _t xdr_enum (XDR *xdrs, enumt *ep);
Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.
ep

Address containing the enumerated type.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

xdr_float

xdr_float — Converts a floating point value from local format to XDR format, or the other way
around.

Format

#i ncl ude

bool _t xdr_float (XDR *xdrs, float *fp);

Arguments

xdrs

Pointer to an XDR stream handle created by one of the XDR stream handle creation routines.
fp

Pointer to a single-precision floating point number.

Description

This routine provides a filter primitive that translates between double-precision numbers and their
external representations. It is actually implemented by four XDR routines:

xdr_float F Converts F format floating point numbers

xdr_float_S Converts IEEE T format floating point numbers

208

Chapter 13. RPC RTL XDR Routines

You can reference these routines explicitly or you can use compiler settings to control which routine is
used when you reference the xdr_float routine.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

xdr_free

xdr_free — Deallocates a data structure from memory.
Format

#i ncl ude

void xdr_free (xdrproc_t proc, u_char *objp);
Arguments

proc

XDR routine that describes the data structure.

obj p

Address of the data structure.

Description

Call this routine after decoded data is no longer needed. Do not call it for encoded data.
Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

xdr_hyper

xdr_hyper — Converts a quad word to an XDR hyper-integer, or the other way around.
Format

bool t xdr_hyper (XDR *xdrs, quad *ptr);

Arguments

xdrs

Address of a structure containing XDR encoding and decoding information.

ptr

Address of the structure containing the quad word. The quad word is stored in standard quad word
format, with the low-order longword first in memory.

209

Chapter 13. RPC RTL XDR Routines

Description

This routine provided the same functionality as the xdr_u_hyper routine.
Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

See Also

xdr_u_hyper

xdr_int

xdr_int — Converts one four-byte integer from local format to XDR format, or the other way around.
Format

#i ncl ude

bool _t xdr_int (XDR *xdrs, int *ip);

Arguments

xdrs

Address of a structure containing XDR encoding and decoding information.

ip

Address containing the integer.

Description

This routine provides the same functionality as the xdr_u_int, xdr_long, and xdr_u_long routines.
Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

See Also

xdr_u_int, xdr_long, xdr_u_long

xdr_long

xdr_long — Converts one longword from local format to XDR format, or the other way around.
Format

#i ncl ude

bool t xdr_long (XDR *xdrs, u_long *Ip);

210

Chapter 13. RPC RTL XDR Routines

Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.

I'p

Address containing the longword.

Description

This routine provides the same functionality as the xdr_u_long, xdr_int, and xdr_u_int routines.
Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

See Also

xdr_u_long, xdr_int, xdr_u_int

xdr_netobj

xdr_netobj — Converts data in the netobj structure from the local data format to XDR format, or the
other way around.

Format

bool t xdr_netobj (XDR *xdrs, netobj *ptr);
Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.
ptr

Address of the following structure:

t ypedef struct

{
u_long n_len;
byte *n_bytes;
} netobj

This structure defines the data being converted.

Description

The netobj structure is an aggregate data structure that is opaque and contains a counted array of 1024
bytes.

211

Chapter 13. RPC RTL XDR Routines

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

xdr_opaque
xdr_opaque — Converts the contents of a buffer from the local data format to XDR format, or

the other way around. This routine treats the data as a fixed length of bytes and does not attempt to
interpret them.

Format

#i ncl ude

bool _t xdr_opaque (XDR *xdrs, char *cp, u_long cnt);
Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.
cp

Address of the buffer containing opaque data.

cnt

Byte length.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

xdr_opaque_auth

xdr_opaque_auth — Converts authentication information from the local data format to XDR format,
or the other way around.

Format

#i ncl ude

bool _t xdr_opaque_auth (XDR *xdrs, struct opaque_auth *ap);
Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.

ap

212

Chapter 13. RPC RTL XDR Routines

Address of the authentication information. This data was created by the authnone_create,
authunix_create, or authunix_create_ default routine.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

xdr_pmap

xdr_pmap — Converts Port Mapper parameters from the local data format to XDR format, or the
other way around.

Format

#i ncl ude "1 P$I NCLUDE: PMAP_PROT. H'

bool t xdr_pmap (XDR *xdrs, struct pmap *regs);
Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.
regs

Address of a structure containing the program number, version number, protocol number, and port
number. This is the data being converted.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

xdr_pmaplist

xdr_pmaplist — Converts a list of Port Mapping data from the local data format to XDR format, or
the other way around.

Format

#i ncl ude "TCPI P$RPC. PMAP_PROT. H'

bool t xdr_pmaplist (XDR *xdrs, struct pmaplist **rpp);
Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.

rpp

Address of the address of the structure containing Port Mapper data. If this routine is used to decode a
Port Mapper listing, r pp is set to the address of the newly allocated linked list of structures.

213

Chapter 13. RPC RTL XDR Routines

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

xdr_pointer

xdr_pointer — Converts a recursive data structure from the local data format to XDR format, or the
other way around.

Format
#i ncl ude tcpi p$rpc: xdr. h

bool _t xdr_pointer (XDR *xdrs, u_char **objpp, u_long obj_size,
xdrproc_t xdr_obj);

Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.
obj pp

Address of the address containing the data being converted. May be zero.

obj _si ze

Size of the data structure in bytes.

xdr _obj

XDR routine that describes the object being pointed to. This routine can describe complex data
structures, and these structures may contain pointers.

Description

An XDR routine for a data structure that contains pointers to other structures, such as a linked list,
would call the xdr_pointer routine. The xdr_pointer routine encodes a pointer from an address into a
boolean. If the boolean is TRUE, the data follows the boolean.

Example
bool t xdr_pointer(xdrs, objpp, obj_size, xdr_obj)
XDR *xdrs;
char **obj pp;
| ongw obj _si ze;
xdr proc_t xdr _obj ;
{
bool _t nore_dat a;
/*

** determine if the pointer is a valid address (0 is invalid)
*/
i f(*objpp !'= NULL)

214

Chapter 13. RPC RTL XDR Routines

nore_data = TRUE;
el se
nor e_data = FALSE;

/*
** XDR the flag
** | f we are decoding, then nore_data is overwitten.
*/

i f(!'xdr_bool (xdrs, &mrore_data))

return(FALSE);

/*
** |f there is no nore data, set the pointer to O (No effect if we
** were encoding) and return TRUE

*/
i f(!'nore_data)
{
*obj pp = NULL;
return(TRUE);
}
/*

** (therwise, call xdr_reference. The result is that xdr_pointer is
** the sane as xdr_reference, except that xdr_pointer adds a Bool ean
** to the encoded data and will properly handl e NULL pointers.
*/

return(xdr_reference(xdrs, objpp, obj_size, xdr_obj));
} /* end function xdr_pointer() */

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

xdr_reference

xdr_reference — This routine recursively converts a structure that is referenced by a pointer inside
the structure.

Format
#i ncl ude tcpi p$rpc: xdr. h

bool t xdr_reference (XDR *xdrs, u_char **objpp, u_long obj_size,
xdrproc_t xdr_obj);

Arguments
xdrs
Address of the structure containing XDR encoding and decoding information.

obj pp

Address of the address of a structure containing the data being converted. If obj pp is zero, the
xdr_reference routine allocates the necessary storage when decoding. This argument must be non-
zero when encoding.

When xdr_reference encodes data, it passes *obj pp to xdr _obj . When decoding, xdr_reference
allocates memory if *obj pp equals zero.

215

Chapter 13. RPC RTL XDR Routines

obj _si ze
Size of the referenced structure.
xdr _obj

XDR routine that describes the object being pointed to. This routine can describe complex data
structures, and these structures may contain pointers.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

xdr_rejected_reply

xdr_rejected_reply — Converts the remainder of an RPC reply message after the header indicates
that the reply is rejected.

Format

#i ncl ude tcpi p$rpc: xdr. h

bool _t xdr_rejected_reply (XDR *xdrs, struct rejected_reply *rr);
Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.

rr

Address of the structure containing the reply message.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

xdr_replymsg

xdr_replymsg — Converts the RPC reply header, then calls the appropriate routine to convert the rest
of the message.

Format

#i ncl ude tcpi p$rpc: xdr. h

bool t xdr_replymsg (XDR *xdrs, struct rpc_nsg *rnsg);
Arguments

xdrs

216

Chapter 13. RPC RTL XDR Routines

Address of the structure containing XDR encoding and decoding information.

rnsg

Address of the structure containing the reply message.

Description

The xdr_replymsg routine calls the xdr_rejected_reply or xdr_accepted_reply routine to convert

the body of the RPC reply message from the local data format to XDR format, or the other way
around.

Diagnostics
This routine returns TRUE if it succeeds and FALSE if it fails.
See Also

xdr_accepted_reply, xdr_rejected_reply

xdr_short

xdr_short — Converts a two-byte integer from the local data format to XDR format, or the other way
around.

Format

#i ncl ude tcpi p$rpc: xdr. h

bool t xdr_short (XDR *xdrs, short *sp);
Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.
sSp

Address of the integer being converted.

Description

This routine provides the same functionality as xdr_u_short.
Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.
See Also

xdr_u_short

217

Chapter 13. RPC RTL XDR Routines

xdr_string

xdr_string — Converts a null-terminated string from the local data format to XDR format, or the
other way around.

Format

#i ncl ude tcpi p$rpc: xdr. h

bool _t xdr_string (XDR *xdrs, char **cpp, u_long nmaxsize);
Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.
cpp

Address of the address of the first byte in the string.

maxsi ze

Maximum length of the string. The service protocol determines this value.
Description

The xdr_string routine is the same as the xdr_wrapstring routine, except xdr_string allows you to
specify the naxsi ze.

Diagnostics
This routine returns TRUE if it succeeds and FALSE if it fails.

See Also

xdr_wrapstring

xdr_u_char

xdr_u_char — Converts an unsigned character from local format to XDR format, or the other way
around.

Format
#i ncl ude tcpi p$rpc: xdr. h

bool _t xdr_u_char (XDR *xdrs, u_char bp);

Arguments

xdrs

218

Chapter 13. RPC RTL XDR Routines

Address of the structure containing XDR encoding and decoding information.
bp

Address of the character being converted.

Description

This routine provides the same functionality as xdr_char.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

See Also

xdr_char

xdr_u_hyper

xdr_u_hyper — Converts a quad word to an XDR unsigned hyper-integer, or the other way around.
Format

bool _t xdr_u_hyper (XDR *xdrs, quad *ptr);

Arguments

xdrs

Address of a structure containing XDR encoding and decoding information.

ptr

Address of the structure containing the quad word. The quad word is stored in standard format, with
the low-order longword first in memory.

Description

This routine provides the same functionality as the xdr_hyper routine.
Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

See Also

xdr_hyper

xdr_u_int

xdr_u_int — Converts a four-byte unsigned integer from local format to XDR format, or the other
way around.

219

Chapter 13. RPC RTL XDR Routines

Format

#i ncl ude tcpi p$rpc: xdr. h

bool t xdr_u_int (XDR *xdrs, int *ip);

Arguments

xdrs

Address of a structure containing XDR encoding and decoding information.
ip

Address of the integer.

Description

This routine provides the same functionality as xdr_int, xdr_long, and xdr_u_long.
Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

See Also

xdr_int

xdr_u_long

xdr_u_long — Converts an unsigned longword from local format to XDR format, or the other way
around.

Format

#i ncl ude tcpi p$rpc: xdr. h

bool _t xdr_u_long (XDR *xdrs, u_long *Ip);
Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.
I'p

Address of the longword.

Description

This routine provides the same functionality as xdr_long, xdr_int, and xdr_u_int.

220

Chapter 13. RPC RTL XDR Routines

Diagnostics
This routine returns TRUE if it succeeds and FALSE if it fails.
See Also

xdr_long, xdr_int, xdr_u_int

xdr_u_short

xdr_u_short — Converts a two-byte unsigned integer from the local data format to XDR format, or
the other way around.

Format

#i ncl ude tcpi p$rpc: xdr. h

bool _t xdr_u_short (XDR *xdrs, u_short *sp);
Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.
sp

Address of the integer being converted.

Description

This routine provides the same functionality as xdr_short.
Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.
See Also

xdr_short

xdr_union

xdr_union — Converts a union from the local data format to XDR format, or the other way around.
Format

#i ncl ude tcpi p$rpc: xdr. h

bool _t xdr_union (XDR *xdrs, enumt *dscnp, u_char *unp, xdr_discrim
*choi ces, xdrproc_t dfault);

221

Chapter 13. RPC RTL XDR Routines

Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.
dscmp

Integer from the choi ces array.

unp

Address of the union.

choi ces

Address of an array. This array maps integers to XDR routines.

df aul t

XDR routine that is called if the dscnp integer is not in the choi ces array.

Description

The xdr_union routine searches the array choices for the value of dscnp. If it finds the value, it calls
the corresponding XDR routine to process the remaining data. If xdr_union does not find the value, it
calls the default routine.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

xdr_vector

xdr_vector — Converts a vector (fixed length array) from the local data format to XDR format, or the
other way around.

Format
#i ncl ude tcpi p$rpc: xdr. h

bool t xdr_vector (XDR *xdrs, u_char *basep, u_long nelem u_long
el msi ze, xdrproc_t xdr_elem;

Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.
basep

Address of the array.

nel em

222

Chapter 13. RPC RTL XDR Routines

Number of elements in the array.

el msi ze

Size of each element.

xdr _el em

Converts each element from the local data format to XDR format, or the other way around.
Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

xdr_void

xdr_void — Converts nothing.

Format

#i ncl ude tcpi p$rpc: xdr. h

bool t xdr_void (XDR *xdrs, u_char *ptr);
Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.
ptr

Ignored.

Description

Use this routine as a place-holder for a program that passes no data. The server and client expect an
XDR routine to be called, even when there is no data to pass.

Diagnostics

This routine always returns TRUE.

xdr_wrapstring

xdr_wrapstring — Converts a null-terminated string from the local data format to XDR format, or
the other way around.

Format
#i ncl ude tcpi p$rpc: xdr. h

bool _t xdr_wrapstring (XDR *xdrs, char **cpp);

223

Chapter 13. RPC RTL XDR Routines

Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.

cpp

Address of the address of the first byte in the string.

Description

The xdr_wrapstring routine calls the xdr_string routine. The xdr_wrapstring routine hides the

maxsi ze argument from the programmer. Instead, the maximum size of the string is assumed to be
232 - 1.

Diagnostics
This routine returns TRUE if it succeeds and FALSE if it fails.
See Also

xdr_string

xdrmem_create

xdrmem_create — Creates a memory buffer XDR stream.
Format

#i ncl ude tcpi p$rpc: xdr.h

void xdrmem create (XDR *xdrs, u_char *addr, u_long size, enum
xdr _op op);

Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.
addr

Address of the buffer containing the encoded data.

si ze

Size of the addr buffer.

op

Operations you will perform on the buffer. Valid values are XDR_ENCCODE, XDR _DECODE, and
xdr_free. You may change this value.

224

Chapter 13. RPC RTL XDR Routines

Description

The xdrmem_create routine initializes a structure so that other XDR routines can write to a buffer.

xdrrec_create

xdrrec_create — Creates a record-oriented XDR stream.

Format
#i ncl ude tcpi p$rpc: xdr. h

void xdrrec_create (XDR *xdrs, u_long sendsize, u_long recvsi ze,
u_char *tcp_handle, int (*readit)(), int (*witeit)();

Arguments
xdrs

Address of the structure being created. The xdrrec_create routine will write XDR encoding and
decoding information to this structure.

sendsi ze

Size of the send buffer in bytes. The minimum size is 100 bytes. If you specify fewer than 100 bytes,
4000 bytes is used as the default.

recvsi ze

Size of the receive buffer in bytes. The minimum size is 100 bytes. If you specify fewer than 100
bytes, 4000 bytes is used as the default.

tcp_handl e
Address of the client or server handle.
readit

Address of a user-written routine that reads data from the stream transport. This routine must use the
following format:

int readit(tcp_handle, buffer, |en)
u_char *tcp_handl e;

u_char *buffer;

u_long |en;

*t cp_handl e is the client or server handle
*puf f er is the buffer to fill

| en is the number of bytes to read

The r eadi t routine returns either the number of bytes read, or -1 if an error occurs.

witeit

225

Chapter 13. RPC RTL XDR Routines

Address of a user-written routine that writes data to the stream transport. This routine must use the
following format:

int witeit(tcp_handle, buffer, |en)
u_char *tcp_handl e;

u_char *buffer;

u_long len;

*t cp_handl e is the client or server handle.

*puf f er is the address of the buffer being written.

| en is the number of bytes to write.

The writeit routine returns either the number of bytes written, or -1 if an error occurs.

Description
The xdrrec_create routine requires one of the following:
e The TCP transport

* A stream-oriented interface (such as file 1/0O) not supported by VSI TCP/IP. The stream consists of
data organized into records. Each record is either an RPC request or reply.

The cInttep_create and svefd_create routines call the xdrrec_create routine.

See Also

cinttcp_create, svefd_create, xdrrec_endofrecord, xdrrec_eof, xdrrec_skiprecord

xdrrec_endofrecord

xdrrec_endofrecord — Marks the end of a record.

Format
#i ncl ude tcpi p$rpc: xdr. h

bool _t xdrrec_endofrecord (XDR *xdrs, bool _t sendnow);

Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.

sendnow

Indicates when the calling program will send the record to the writeit routine (see xdrrec_create).

If sendnowis TRUE, xdrrec_endofrecord sends the record now. If sendnowis FALSE,
xdrrec_endofrecord writes the record to a buffer and sends the buffer when it runs out of buffer
space.

226

Chapter 13. RPC RTL XDR Routines

Description

A client or server program calls the xdrrec_endofrecord routine when it reaches the end of a record it
is writing. The program must call the xdrrec_create routine before calling xdrrec_endofrecord.

Diagnostics
This routine returns TRUE if it succeeds and FALSE if it fails.
See Also

xdrrec_create, xdrrec_eof, xdrrec_skiprecord

xdrrec_eof

xdrrec_eof — Goes to the end of the current record, then verifies whether any more data can be read.
Format

#i ncl ude tcpi p$rpc: xdr. h

bool _t xdrrec_eof (XDR *xdrs);

Argument

xdrs

Address of the structure containing XDR encoding and decoding information.
Description

The client or server program must call the xdrrec_create routine before calling xdrrec_eof.
Diagnostics

This routine returns TRUE if it reaches the end of the data stream, and FALSE if it finds more data to
read.

See Also

xdrrec_create, xdrrec_endofrecord, xdrrec_skiprecord

xdrrec_skiprecord

xdrrec_skiprecord — Goes to the end of the current record.
Format

#i ncl ude tcpi p$rpc: xdr. h

bool _t xdrrec_skiprecord (XDR *xdrs);

227

Chapter 13. RPC RTL XDR Routines

Argument

xdrs

Address of the structure containing XDR encoding and decoding information.
Description

A client or server program calls the xdrrec_skiprecord routine before it reads data from a stream.
This routine ensures that the program starts reading a record from the beginning.

The xdrrec_skiprecord routine is similar to the xdrrec_eof routine, except that xdrrec_skiprecord
does not verify whether any more data can be read.

The client or server program must call the xdrrec_create routine before calling xdrrec_skiprecord.
Diagnostics

This routine returns TRUE if it has skipped to the start of a record. Otherwise, it returns FALSE.
See Also

xdrrec_create, xdrrec_endofrecord, xdrrec_eof

xdrstdio_create

xdrstdio_create — Initializes a stdio XDR stream.

Format

#i ncl ude tcpi p$rpc: xdr. h

voi d xdrstdio_create (XDR *xdrs, FILE *file, enum xdr_op op);
Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.
file

File pointer FILE *, which is to be associated with the stream.

op

An XDR operation, one of: XDR_ENCCDE, XDR_DECCDE, or xdr_free.
Description

The xdrstdio_create routine initializes a studio stream for the specified file.

228

Appendix A. Socket Options

This appendix describes the socket options that you can set with the Sockets API setsockopt()
function and the $QIO system service [0$ SETMODE and 10§ SETCHAR I/O function codes. You
can query the value of these socket options using the Sockets API getstockopt() function or the $QIO
system service [0$ SENSEMODE or I0§ SENSECHAR 1/O function code.

The following tables list:
* Socket Options

* TCP Protocol Options
* [P Protocol Options

* [Pv6 Socket Options

The following table lists the socket options that are set at the SOL_SOCKET level and their Sockets
API and system service symbol names.

Table A.1. Socket Options

Sockets API Symbol

System Service Symbol

Description

SO BROADCAST

TCPIPSC_BROADCAST

Permits the sending of broadcast
messages. Takes an integer
parameter and requires a system
user identification code (UIC)
or SYSPRV, BYPASS, or
OPER privilege. Optional for a
connectionless datagram.

SO_DONTROUTE

TCPIP$C_DONTROUTE

Indicates that outgoing messages
should bypass the standard
routing facilities. Instead, the
messages are directed to the
appropriate network interface
according to the network portion
of the destination address.

SO_ERROR

TCPIPSC_ERROR

Obtains the socket error status
and clears the error on the
socket.

SO FULL DUPLEX_CLOSE

TCPIP
$C_FULL DUPLEX_ CLOSE

When set before a close
operation, the receive

and transmit sides of the
communications are closed.

SO _KEEPALIVE

TCPIP$SC_KEEPALIVE

Keeps connections active.
Enables the periodic
transmission of keepalive
probes to the remote system.

If the remote system fails

to respond to the keepalive
probes, the connection is
broken.If the SO_KEEPALIVE

229

Appendix A. Socket Options

option is enabled, the

values of TCP_ KEEPCNT,
TCP_KEEPINTVL and
TCP_KEEPIDLE affect TCP
behavior on the socket.

SO LINGER

TCPIP$C_LINGER

Lingers on a close() function

if data is present. Controls

the action taken when unsent
messages queue on a socket and
a close() function is performed.
Uses a lingerstructure parameter
defined in SOCKET.H to specify
the state of the option and the
linger interval.

If SO _LINGER is specified, the
system blocks the process during
the close() function until it can
transmit the data or until the
time expires. If the option is not
specified and aclose() function
is issued, the system allows the
process to resume as soon as
possible.

SO_OOBINLINE

TCPIP$SC_OOBINLINE

When this option is set,
out-of-band data is placed

in the normal input queue.
WhenSO_OOBINLINE is set,
the MSG_OOB flag to the
receive functions cannot be used
to read the out-of-band data. A
value of 0 disables the option,
and a nonzero value enables the
option.

SO RCVBUF

TCPIP$SC_RCVBUF

Sets the receive buffer size,

in bytes. Takes an integer
parameter and requires a system
UIC or SYSPRYV, BYPASS, or
OPER privilege.

SO_RCVTIMEO

TCPIP$SC_RCVTIMEO

For Compaq use only. Sets
the timeout value for a recv()
operation. The argument to
the two sockopt functions is a
pointer to a timeval structure
containing an integer value
specified in seconds.

SO REUSEADDR

TCPIP$C REUSEADDR

Specifies that the rules used in
validating addresses supplied by
a bind() function should allow
reuse of local addresses. A value
of 0 disables the option, and

230

Appendix A. Socket Options

a non-zero value enables the
option. The SO REUSEPORT
option is automatically set
when an application sets
SO_REUSEADDR

SO REUSEPORT

TCPIP$SC_REUSEPORT

Allows more than one process to
receive UDP datagrams destined
for the same port. Thebind()

call that binds a process to the
port must be preceded by a
setsockopt() call specifying

this option. SO_ REUSEPORT
is automatically set when

an application sets the
SO_REUSEADDR option.

SO_SHARE TCPIP$C _SHARE Allows multiple processes to
share the socket.
SO _SNDBUF TCPIP$C _SNDBUF Sets the send buffer size

in bytes. Takes an integer
parameter and requires a system
UIC or SYSPRYV, BYPASS, or
OPER privilege. Optional for a
connectionless datagram.

SO SNDLOWAT

TCPIP$SC_SNDLOWAT

Sets the low-water mark for

a send() operation. The send
low-water mark is the amount
of space that must exist in the
socket send buffer for select()
to return writeable. Takes an
integer value specified in bytes.

SO _SNDTIMEO

TCPIP$SC_SNDTIMEO

For Compaq use only. Sets

the timeout value for a send()
operation. The argument to the
two sockopt() functions is a
pointer to a timeval structure
containing an integer value
specified in seconds.

SO TYPE

TCPIP$SC_TYPE

Obtains the socket type.

SO USELOOPBACK

TCPIP$C USELOOPBACK

For Compaq use only.

This option applies only to
sockets in the routing domain
(AF_ROUTE), When you
enable this option, the socket
receives a copy of everything
sent on the socket.

The following table lists the TCP protocol options that are set at the [PPROTO_TCP level and their
Sockets API and system service symbol names.

231

Appendix A. Socket Options

Table A.2. TCP Protocol Options

ts API Symbol System Service Symbol Description

TCP_KEEPCNT TCPIPSC TCP_KEEPCNT When the SO KEEPALIVE
option is enabled, TCP sends a
keepalive probe to the remote
system of a connection that has
been idle for a period of time.
If the remote system does not
respond to the keepalive probe,
TCP retransmits a keepalive
probe for a certain number

of times before a connection

is considered to be broken.
The TCP_KEEPCNT option
specifies the maximum number
of keepalive probes to be sent.
The value of TCP_ KEEPCNT
is an integer value between 1
and n, where # is the value of
the systemwide tcp_keepcent
parameter. The default value
for for the systemwide
parameter,tcp keepent , is 8

To display the values of the
systemwide parameters, enter
the following command at the
system prompt:

$ sysconfig -q inet

The default value for
TCP_KEEPCNT is 8.

TCP_KEEPIDLE TCPIP$C TCP_KEEPIDLE When the SO KEEPALIVE
option is enabled, TCP sends a
keepalive probe to the remote
system of a connection that has
been idle for a period of time.
If the remote system does not
respond to the keepalive probe,
TCP retransmits a keepalive
probe for a certain number

of times before a connection

is considered to be broken.
TCP_KEEPIDLE specifies the
number of seconds before TCP
will send the initial keepalive
probe. The default value for
TCP_KEEPIDLE is an integer
value between 1 and n, where n
is the value for the systemwide
parameter tcp_keepidle . The

232

Appendix A. Socket Options

default value for tcp keepidle ,
specified in half-second units, is
150 (75 seconds).

To display the values of the
systemwide parameters, enter
the following command at the
system prompt:

$ sysconfig -q inet

The default value for
TCP_KEEPIDLE is 75 seconds.

TCP_KEEPINIT

TCPIP$C TCP_KEEPINIT

If a TCP connection cannot

be established within a period
of time, TCP will time out the
connection attempt. The default
timeout value for this initial
connection establishment is 75
seconds. The TCP_KEEPINIT
option specifies the number

of seconds to wait before

the connection attempt times
out. For passive connections,
the TCP_KEEPINIT option
value is inherited from the
listening socket. The value of
TCP_KEEPINIT is an integer
between 1 and n, where n is

the value for the systemwide
parameter tcp_keepinit . The
default value of the systemwide
parameter tcp_keepinit ,
specified in half-second units, is
150 (75 seconds).

To display the values of the
systemwide parameters, enter
the following command at the
system prompt:

$ sysconfig -q inet

The TCP_KEEPINIT

option does not require the
SO_KEEPALIVE option to be
enabled.

TCP_KEEPINTVL

TCPIP$C_TCP_KEEPINTVL

When the SO KEEPALIVE
option is enabled, TCP sends a
keepalive probe to the remote
system on a connection that has
been idle for a period of time.
If the remote system does not

233

Appendix A. Socket Options

respond to a keepalive probe,
TCP retransmits the keepalive
probe after a period of time. The
default value for this retransmit
interval is 75 seconds. The
TCP_KEEPINTVL option
specifies the number of seconds
to wait before retransmitting

a keepalive probe. The value

of the TCP_KEEPINTVL
option is an integer between

1 andn, where n is the value

of the systemwide parameter
tep_keepintvl which is specified
in half-second units. The default
value for the systemwide
parameter tcp_keepintvl is 150
(75 seconds).

To display the values of the
systemwide parameters, enter
the following command at the
system prompt:

$ sysconfig -q inet

TCP_NODELAY

TCPIP$C TCP_NODELAY

Specifies that the send()
operation not be delayed to
merge packets.

Under most circumstances, TCP
sends data when it is presented.
When outstanding data has

not yet been acknowledged,
TCP gathers small amounts

of the data into a single

packet and sends it when an
acknowledgment is received.
This functionality can cause
significant delays for some
clients that do not expect replies
(such as windowing systems that
send a stream of events from the
mouse). The TCP_ NODELAY
disables the Nagle algorithm,
which reduces the number of
small packets on a wide area
network.

TCP_MAXSEG

TCPIP$C_TCP MAXSEG

Sets the maximum transmission
unit (MTU) of a TCP segment
to a specified integer value
from 1 to 65535. The default

is 576 bytes. Can only be set

234

Appendix A. Socket Options

before a listen() or connect()
operation on the socket. For
passive connections, the value
is obtained from the listening
socket.

Note that TCP does not use an
MTU value that is less than
32 or greater than the local
network's MTU. Setting the
option to zero results in the
default behavior.

TCP_NODELACK

TCPIP$C_TCP_NODELACK

When specified, disables

the algorithm that gathers
outstanding data that has not
been acknowledged and sends
it in a single packet when
acknowledgment is received.
Takes an integer value.

The following TCP protocol options are obsolete but provided for backward compatibility:

TCP_DROP IDLE

TCPIP$C_TCP DROP_IDLE

When the TCP_KEEPALIVE
option is enabled, the
TCP_DROP_IDLE option
specifies the time interval after
which a connection is dropped.
The value of TCP_ DROP_IDLE
is an integer specified in
seconds. The default value is
600 seconds.

When the TCP_ DROP_IDLE
option is set, the value of

the TCP_KEEPCNT option

is calculated as the value of
TCP_DROP_IDLE divided by
the value of TCP_KEEPINTVL.

A call to getsockopt()

function specifying the
TCP_DROP_IDLE option
returns the result of multiplying
the values of TCP_KEEPCNT
and TCP_KEEPINTVL.

TCP_PROBE_IDLE

TCPIP$C_TCP_PROBE_IDLE

When the TCP_ KEEPALIVE
option is enabled, the
TCP_PROBE IDLE option
specifies the time interval
between the keepalive probes
and for the connections
establishing the timeout.

The default value for
TCP_PROBE_IDLE is

235

Appendix A. Socket Options

75 seconds. The value of
TCP_PROBE IDLE is an
integer specified in seconds.

When this option is set,
TCP_KEEPINTVL,
TCP_KEEPIDLE and
TCP_KEEPINIT are set
to the value specified for
TCP_PROBE_IDLE.

A call to the getsockopt()
function specifying the
TCP_PROBE_IDLE
option returns the value of
TCP_KEEPINTVL.

The following table lists options that are set at the IPPROTO_IP level and their Sockets API and

system service symbol names.

Table A.3. Protocol Options

Sockets API Symbol

System Service Symbol

Description

IP. ADD MEMBERSHIP

TCPIP
$C_IP._ ADD _MEMBERSHIP

Adds the host to the membership
of a multicast group.

A host must become a member
of a multicast group before it
can receive datagrams sent to the

group.

Membership is associated with
a single interface; programs
running on multihomed hosts
may need to join the same group
on more than one interface. Up
to [IP. MAX MEMBERSHIPS
(currently 20) memberships may
be added on a single socket.

IP. DROP_MEMBERSHIP

TCPIP
$C IP. DROP_MEMBERSHIP

Removes the host from the
membership of a multicast

group.

IP HDRINCL

TCPIP$SC_IP_HDRINCL

If specified for a raw IP socket,
you must build the IP header for
all datagrams sent on the raw
socket.

IP. MULTICAST IF

TCPIP$C IP MULTICAST IF

Specifies the interface for
outgoing multicast datagrams
sent on this socket. The interface
is specified as an in_addr
structure.

236

Appendix A. Socket Options

IP. MULTICAST LOOP

TCPIP
$C IP MULTICAST LOOP

Disables loopback of local
delivery.If a multicast datagram
is sent to a group which the
sending host is a member, a
copy of the datagram is looped
back by the IP layer for local
delivery (the default). To disable
the loopback delivery, specify a
value of 0.

IP. MULTICAST TTL

TCPIP
$C_IP. MULTICAST TTL

Specifies the time-to-live (TTL)
value for outgoing multicast
datagrams.Takes an integer
value between 0 and 255:

Value Action

0 Restricts
distribution to
applications
running on the
local host.

1 Forwards
the multicast
datagram to
hosts on the
local subnet.

2-255 With a
multicast
router attached
to the sending
host's network,
forwards
multicast
datagrams
beyond

the local
subnet.Multicas
routers forward
the datagram
to known
networks that
have hosts
belonging to
the specified
multicast
group. The
TTL value is
decremented
by each
multicast
router in the
path. When the

f

237

Appendix A. Socket Options

TTL value is
decremented
to zero, the
datagram is
no longer
forwarded.

IP_OPTIONS

TCPIP$C_IP_OPTIONS

Provides IP options to be
transmitted in the IP header of
each outgoing packet.

IP. RECVDSTADDR

TCPIPSC IP RECVDSTADDR

Enables a SOCK_DGRAM
socket to receive the destination
IP address for a UDP datagram.

IP_RECVOPTS

TCPIPSC_IP RECVOPTS

Enables a SOCK_DGRAM
socket to receive [P options.

IP TTL TCPIPSC IP TTL Time to live (TTL) for a
datagram.
IP_TOS TCPIP$C IP_TOS Type of service (1-byte value).

The following table describes the socket options supporting [IPv6. The IPv6 socket options do not

have system service symbols.

Table A.4. IPv6 Socket Options

IPV6_ RECVPKTINFO

Source and destination IPv6 address, and sending
and receiving interface.

IPV6_RECVHOPLIMIT

Hop limit.

IPV6_RECVRTHDR

Routing header.

IPV6_RECVHOPOPTS

Hop-by-hop options.

IPV6_RECVDSTOPTS

Destination options.

IPV6_CHECKSUM

For raw IPv6 sockets other than ICMPv6 raw
sockets, causes the kernel to compute and store
checksum for output and to verify the received
checksum on input. Discards the packet if the
checksum is in error.

IPV6_ICMP6 FILTER

Fetches and stores the filter associated with the
ICMPv6 raw socket using the getsockopt()
function and setsockopt() functions.

IPV6_UNICAST _HOPS

Sets the hop limit for all subsequent unicast
packets sent on a socket. You can also use
this option with the getsockopt() function to
determine the current hop limit for a socket.

IPV6 MULTICAST

packets.

IF Sets the interface to use for outgoing multicast

IPV6_MULTICAST HOPS

Sets the hop limit for outgoing multicast packets.

IPV6 MULTICAST LOOP

Controls whether to deliver outgoing multicast
packets back to the local application.

238

Appendix A. Socket Options

IPV6_JOIN_GROUP

Joins a multicast group on the specified interface

IPV6_LEAVE GROUP

Leaves a multicast group on the specified
interface.

239

Appendix B. Trademark and
Copyright Notifications

This appendix contains a complete listing of trademarks and copyright notification contained in this
manual.

The material in this document is for informational purposes only and is subject to change without
notice. It should not be construed as a commitment by VMS Software, inc. VMS Software, inc.
assumes no responsibility for any errors that may appear in this document.

Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013.

The following third-party software may be included with your product and will be subject to the
software license agreement.

Network Time Protocol (NTP). Copyright © 1992-2004 by David L. Mills. The University of
Delaware makes no representations about the suitability of this software for any purpose.

Point-to-Point Protocol. Copyright © 1989 by Carnegie-Mellon University. All rights reserved. The
name of the University may not be used to endorse or promote products derived from this software
without specific prior written permission. Redistribution and use in source and binary forms are
permitted provided that the above copyright notice and this paragraph are duplicated in all such forms
and that any documentation, advertising materials, and other materials related to such distribution
and use acknowledge that the software was developed by Carnegie Mellon University. The name of
the University may not be used to endorse or promote products derived from this software without
specific prior written permission. THIS SOFTWARE IS PROVIDED "AS IS" AND WITHOUT
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE
IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR
PURPOSE.

RES_RANDOM.C. Copyright © 1997 by Niels Provos <provos@physnet.uni-hamburg.de> All
rights reserved. Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

3. All advertising materials mentioning features or use of this software must display the following
acknowledgement: This product includes software developed by Niels Provos.

4. The name of the author may not be used to endorse or promote products derived from this software
without specific prior written permission.

Copyright © 1990 by John Robert LoVerso. All rights reserved. Redistribution and use in source and
binary forms are permitted provided that the above copyright notice and this paragraph are duplicated
in all such forms and that any documentation, advertising materials, and other materials related to
such distribution and use acknowledge that the software was developed by John Robert LoVerso.

240

Appendix B. Trademark and Copyright Notifications

Kerberos. Copyright © 1989, DES.C and PCBC_ENCRYPT.C Copyright © 1985, 1986, 1987,
1988 by Massachusetts Institute of Technology. Export of this software from the United States

of America is assumed to require a specific license from the United States Government. It is the
responsibility of any person or organization contemplating export to obtain such a license before
exporting. WITHIN THAT CONSTRAINT, permission to use, copy, modify, and distribute this
software and its documentation for any purpose and without fee is hereby granted, provided that the
above copyright notice appear in all copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of M.L.T. not be used in advertising or
publicity pertaining to distribution of the software without specific, written prior permission. M.L.T.
makes no representations about the suitability of this software for any purpose. It is provided "as is"
without express or implied warranty.

DNSSIGNER (from BIND distribution) Portions Copyright (c) 1995-1998 by Trusted Information
Systems, Inc.

Appendix E. Trademark and Copyright Notifications
E-160
Portions Copyright (c) 1998-1999 Network Associates, Inc.

Permission to use, copy, modify, and distribute this software for any purpose with or without fee is
hereby granted, provided that the above copyright notice and this permission notice appear in all
copies. THE SOFTWARE IS PROVIDED "AS IS" AND TRUSTED INFORMATION SYSTEMS
DISCLAIMS

ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
WARRANTIES

OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL TRUSTED INFORMATION
SYSTEMS BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,

DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

ERRWARN.C. Copyright © 1995 by RadioMail Corporation. All rights reserved. Redistribution
and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

3. Neither the name of RadioMail Corporation, the Internet Software Consortium nor the names of its
contributors may be used to endorse or promote products derived from this software without specific
prior written permission. THIS SOFTWARE IS PROVIDED BY RADIOMAIL CORPORATION,
THE INTERNET SOFTWARE CONSORTIUM AND CONTRIBUTORS ""AS IS AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL RADIOMAIL CORPORATION OR CONTRIBUTORS

241

Appendix B. Trademark and Copyright Notifications

BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE. This software was written for RadioMail Corporation by Ted
Lemon under a contract with Vixie Enterprises. Further modifications have been made for the Internet
Software Consortium under a contract with Vixie Laboratories.

IMAP4R1.C, MISC.C, RFC822.C, SMTP.C Original version Copyright © 1988 by The Leland
Stanford Junior University

ACCPORNAM technology Copyright (c) 1999 by Brian Schenkenberger - TMESIS SOFTWARE
NS _PARSER.C Copyright © 1984, 1989, 1990 by Bob Corbett and Richard Stallman

This program is free software. You can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation, either version 1, or (at your
option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY:; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have
received a copy of the GNU General Public License along with this program; if not, write to the Free
Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139 USA

IF_ACP.C Copyright © 1985 and IF_ DDA.C Copyright © 1986 by Advanced Computer
Communications

IF_PPP.C Copyright © 1993 by Drew D. Perkins
ASCII_ADDR.C Copyright © 1994 Bell Communications Research, Inc. (Bellcore)
DEBUG.C Copyright © 1998 by Lou Bergandi. All Rights Reserved.

NTP_FILEGEN.C Copyright © 1992 by Rainer Pruy Friedrich-Alexander Universitaet Erlangen-
Nuernberg

RANNY.C Copyright © 1988 by Rayan S. Zachariassen. All Rights Reserved.

MD5.C Copyright © 1990 by RSA Data Security, Inc. All Rights Reserved.

Portions Copyright © 1981, 1982, 1983, 1984, 1985, 1986, 1987, 1988, 1989 by SRI International
Portions Copyright © 1984, 1989 by Free Software Foundation

Portions Copyright © 1993, 1994, 1995, 1996, 1997, 1998 by the University of Washington.
Permission to use, copy, modify, and distribute this software and its documentation for any purpose
and without fee is hereby granted, provided that the above copyright notices appear in all copies and
that both the above copyright notices and this permission notice appear in supporting documentation,
and that the name of the University of Washington or The Leland Stanford Junior University

not be used in advertising or publicity pertaining to distribution of the software without specific,
written prior permission. This software is made available "as is", and THE UNIVERSITY OF
WASHINGTON AND THE LELAND STANFORD JUNIOR UNIVERSITY DISCLAIM ALL
WARRANTIES, EXPRESS OR IMPLIED, WITH REGARD TO THIS

242

Appendix B. Trademark and Copyright Notifications

Appendix E. Trademark and Copyright Notifications
E-161

SOFTWARE, INCLUDING WITHOUT LIMITATION ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, AND IN NO EVENT
SHALL THE UNIVERSITY OF WASHINGTON OR THE LELAND STANFORD JUNIOR
UNIVERSITY BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES
OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, TORT (INCLUDING NEGLIGENCE) OR STRICT
LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
THIS SOFTWARE.

Portions Copyright © 1980, 1982, 1985, 1986, 1988, 1989, 1990, 1993 by The Regents of the
University of California. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

3. All advertising materials mentioning features or use of this software must display the following
acknowledgement:

This product includes software developed by the University of California, Berkeley and its
contributors.

4. Neither the name of the University nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

Portions Copyright © 1993 by Hewlett-Packard Corporation.

Permission to use, copy, modify, and distribute this software for any purpose with or without fee
is hereby granted, provided that the above copyright notice and this permission notice appear

in all copies, and that the name of Hewlett-Packard Corporation not be used in advertising or
publicity pertaining to distribution of the document or software without specific, written prior
permission. THE SOFTWARE IS PROVIDED "AS IS" AND HEWLETT-PACKARD CORP.
DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL

243

Appendix B. Trademark and Copyright Notifications

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL
HEWLETT-PACKARD CORPORATION BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT,
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING

FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION
WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Portions Copyright © 1995 by International Business Machines, Inc.

International Business Machines, Inc. (hereinafter called IBM) grants permission under its copyrights
to use, copy, modify, and distribute this Software with or without fee, provided that the above
copyright notice and all paragraphs of this notice appear in all copies, and that the name of IBM not
be used in connection with the marketing of any product incorporating the Software or modifications
thereof, without specific, written prior

permission. To the extent it has a right to do so, IBM grants an immunity from suit under its patents,
if any, for the use, sale or manufacture of products to the extent that such products are used for
performing Domain Name System dynamic updates in TCP/IP networks by means of the Software.
No immunity is granted for any product per se or for any other function of any product. THE
SOFTWARE IS PROVIDED "AS IS", AND IBM DISCLAIMS ALL WARRANTIES, INCLUDING
ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. IN NO EVENT SHALL IBM BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT,
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE, EVEN IF
IBM IS APPRISED OF THE POSSIBILITY OF SUCH DAMAGES.

Portions Copyright © 1995, 1996, 1997, 1998, 1999, 2000 by Internet Software Consortium. All
Rights Reserved. Permission to use, copy, modify, and distribute this software for any purpose with
or without fee is hereby granted, provided that the above copyright notice and this permission notice
appear in all copies. THE SOFTWARE IS PROVIDED "AS IS" AND INTERNET SOFTWARE
CONSORTIUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO
EVENT SHALL INTERNET SOFTWARE CONSORTIUM BE LIABLE FOR ANY SPECIAL,
DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER
RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Copyright (c) 1996-2000 Internet Software Consortium.

Use is subject to license terms which appear in the file named ISC-LICENSE that should have
accompanied this file when you received it. If a file named ISC-LICENSE did not accompany this
file, or you are not sure the one you have is correct, you may obtain an applicable copy of the license
at: http://www.isc.org/isc-license-1.0.html.

This file is part of the ISC DHCP distribution. The documentation associated with this file is listed in
the file

Appendix E. Trademark and Copyright Notifications
E-162

DOCUMENTATION, included in the top-level directory of this release. Support and other services
are available for ISC products - see http://www.isc.org for more information.

244

Appendix B. Trademark and Copyright Notifications

ISC LICENSE, Version 1.0

1. This license covers any file containing a statement following its copyright message indicating that it
is covered by this license. It also covers any text or binary file, executable, electronic or printed image
that is derived from a file that is covered by this license, or is a modified version of a file covered by
this license, whether such works exist now or in the future. Hereafter, such works will be referred to
as "works covered by this license," or "covered works."

2. Each source file covered by this license contains a sequence of text starting with the copyright
message and ending with "Support and other services are available for ISC products - see http://
www.isc.org for more information." This will hereafter be referred to as the file's Bootstrap License.

3. If you take significant portions of any source file covered by this license and include those portions
in some other file, then you must also copy the Bootstrap License into that other file, and that file
becomes a covered file. You may make a good-faith judgement as to where in this file the bootstrap
license should appear.

4. The acronym "ISC", when used in this license or generally in the context of works covered by this
license, is an abbreviation for the words "Internet Software Consortium."

5. A distribution, as referred to hereafter, is any file, collection of printed text, CD ROM, boxed set, or
other collection, physical or electronic, which can be distributed as a single object and which contains
one or more works covered by this license.

6. You may make distributions containing covered files and provide copies of such distributions to
whomever you choose, with or without charge, as long as you obey the other terms of this license.
Except as stated in (9), you may include as many or as few covered files as you choose in such
distributions.

7. When making copies of covered works to distribute to others, you must not remove or alter the
Bootstrap License. You may not place your own copyright message, license, or similar statements in
the file prior to the original copyright message or anywhere within the Bootstrap License. Object files
and executable files are exempt from the restrictions specified in this clause.

8. If the version of a covered source file as you received it, when compiled, would normally produce
executable code that would print a copyright message followed by a message referring to an ISC web
page or other ISC documentation, you may not modify the file in such a way that, when compiled, it
no longer produces executable code to print such a message.

9. Any source file covered by this license will specify within the Bootstrap License the name of the
ISC distribution from which it came, as well as a list of associated documentation files. The associated
documentation for a binary file is the same as the associated documentation for the source file or files
from which it was derived. Associated documentation files contain human-readable documentation
which the ISC intends to accompany any distribution.

If you produce a distribution, then for every covered file in that distribution, you must include all
of the associated documentation files for that file. You need only include one copy of each such
documentation file in such distributions.

Absence of required documentation files from a distribution you receive or absence of the list

of documentation files from a source file covered by this license does not excuse you from this
requirement. If the distribution you receive does not contain these files, you must obtain them from
the ISC and include them in any redistribution of any work covered by this license. For information
on how to obtain required documentation not included with your distribution, see: http://www.isc.org/
getting-documentation.html.

245

Appendix B. Trademark and Copyright Notifications

If the list of documentation files was removed from your copy of a covered work, you must obtain
such a list from the ISC. The web page at http://www.isc.org/getting-documentation.html contains
pointers to lists of files for each ISC distribution covered by this license.

It is permissible in a source or binary distribution containing covered works to include reformatted
versions of the documentation files. It is also permissible to add to or modify the documentation files,
as long as the formatting is similar in legibility, readability, font, and font size to other documentation
in the derived product, as long as any sections labeled CONTRIBUTIONS in these files are
unchanged except with respect to formatting, as long as the order in which the CONTRIBUTIONS
section appears in these files is not changed, and as long as the manual page which describes how

to contribute to the Internet Software Consortium (hereafter referred to as the Contributions Manual
Page) is unchanged except with respect to formatting.

Documentation that has been translated into another natural language may be included in place
of or in addition to the required documentation, so long as the CONTRIBUTIONS section and
the Contributions Manual Page are either left in their original language or translated into the new
language with such care and diligence as is required to preserve the original meaning.

10. You must include this license with any distribution that you make, in such a way that it is clearly
associated with such covered works as are present in that distribution. In any electronic distribution,
the license must be in a file called "ISC-LICENSE".

If you make a distribution that contains works from more than one ISC distribution, you may either
include a copy of the ISC-LICENSE file that accompanied each such ISC distribution in such a way
that works covered by each license are all clearly grouped with that license, or you may include

the single copy of the ISC-LICENSE that has the highest version number of all the ISC-LICENSE
files included with such distributions, in which case all covered works will be covered by that single
license file. The version number of a license appears at the top of the file containing the text of that
license, or if in printed form, at the top of the first page of that license.

Appendix E. Trademark and Copyright Notifications
E-163

11. If the list of associated documentation is in a separated file, you must include that file with any
distribution you make, in such a way that the relationship between that file and the files that refer to
it is clear. It is not permissible to merge such files in the event that you make a distribution including
files from more than one ISC distribution, unless all the Bootstrap Licenses refer to files for their lists
of associated documentation, and those references all list the same filename.

12. If a distribution that includes covered works includes a mechanism for automatically installing
covered works, following that installation process must not cause the person following that process
to violate this license, knowingly or unknowingly. In the event that the producer of a distribution
containing covered files accidentally or wilfully violates this clause, persons other than the producer
of such a distribution shall not be held liable for such violations, but are not otherwise excused from
any requirement of this license.

13. COVERED WORKS ARE PROVIDED "AS IS". ISC DISCLAIMS ALL WARRANTIES
WITH REGARD TO COVERED WORKS INCLUDING THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

14. IN NO EVENT SHALL ISC BE LIABLE FOR ANY SPECIAL, INDIRECT, OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING
FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,

246

Appendix B. Trademark and Copyright Notifications

NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION
WITH THE USE OF COVERED WORKS.

Use of covered works under different terms is prohibited unless you have first obtained a license from
ISC granting use pursuant to different terms. Such terms may be negotiated by contacting ISC as
follows:

Internet Software Consortium

950 Charter Street

Redwood City, CA 94063

Tel: 1-888-868-1001 (toll free in U.S.)
Tel: 1-650-779-7091

Fax: 1-650-779-7055

Email: info@jisc.org

Email: licensing@isc.org

DNSSAFE LICENSE TERMS

This BIND software includes the DNSsafe software from RSA Data Security, Inc., which is
copyrighted software that can only be distributed under the terms of this license agreement.

The DNSsafe software cannot be used or distributed separately from the BIND software. You only
have the right to use it or distribute it as a bundled, integrated product.

The DNSsafe software can ONLY be used to provide authentication for resource records in the
Domain Name System, as specified in RFC 2065 and successors. You cannot modify the BIND
software to use the

DNSsafe software for other purposes, or to make its cryptographic functions available to end-users for
other uses.

If you modify the DNSsafe software itself, you cannot modify its documented API, and you must
grant RSA Data Security the right to use, modify, and distribute your modifications, including the
right to use

any patents or other intellectual property that your modifications depend upon.

You must not remove, alter, or destroy any of RSA's copyright notices or license information. When
distributing the software to the Federal Government, it must be licensed to them as "commercial
computer software" protected under 48 CFR 12.212 of the FAR, or 48 CFR 227.7202.1 of the
DFARS.

You must not violate United States export control laws by distributing the DNSsafe software or
information about it, when such distribution is prohibited by law.

THE DNSSAFE SOFTWARE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY

WHATSOEVER. RSA HAS NO OBLIGATION TO SUPPORT, CORRECT, UPDATE OR
MAINTAIN THE RSA SOFTWARE. RSA DISCLAIMS ALL WARRANTIES, EXPRESS,
IMPLIED OR STATUTORY, AS TO ANY MATTER WHATSOEVER, INCLUDING ALL

247

Appendix B. Trademark and Copyright Notifications

IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.

If you desire to use DNSsafe in ways that these terms do not permit, please contact:
RSA Data Security, Inc.
100 Marine Parkway

Redwood City, California 94065, USA

248

	VSI TCP/IP Programmer's Reference
	Table of Contents
	Preface
	1. About VSI
	2. Intended Audience
	3. Typographical Conventions
	4. VSI TCP/IP Support
	5. VSI Encourages Your Comments
	6. How to Order Additional Documentation

	Chapter 1. VSI TCP/IP Programming Tutorial
	1.1. Sockets
	1.2. TCP Client
	1.3. TCP Server
	1.4. UDP
	1.5. BSD-Specific Tips
	1.5.1. BSD Sockets Porting Note
	1.5.2. BSD 4.4 TCP/IP Future Compatibility Considerations
	1.5.3. TCP/IP Services (UCX) Compatibility

	Chapter 2. Socket Library Functions
	2.1. Debugging and Tracing
	2.2. AST Reentrancy
	accept()/accept_44()
	bcmp()
	bcopy()
	bind()/bind_44()
	bzero()
	connect()/connect_44()

	2.3. Domain Name Resolver Routines
	endhostent()
	endnetent()
	endprotoent()
	endservent()
	getdtablesize()
	gethostbyaddr()/gethostbyaddr_44()
	getaddrinfo()
	getnameinfo()
	gethostbyname()/gethostbyname_44()
	gethostbysockaddr()/gethostbysockaddr_44()
	gethostname()
	getnetbyaddr()
	getnetbyname()
	getpeername()/getpeername_44()
	getprotobyname()
	getprotobynumber()
	getprotoent()
	getservbyname()
	getservbyport()
	getservent()
	getsockname()/getsockname_44()
	getsockopt()
	gettimeofday()
	hostalias()
	htonl()
	htons()
	inet_addr()
	inet_lnaof()
	inet_makeaddr()
	inet_netof()
	inet_network()
	inet_ntoa()
	klread()
	klseek()
	klwrite()
	listen()
	ip_kernel_nlist
	nlist()
	ntohl()
	ntohs()
	recv()/recv_44()
	recvfrom()recvfrom_44()
	recvmsg()/recvmsg_44()
	select()
	select_wake()
	send()/send_44()
	sendmsg()/sendmsg_44()
	sendto()/sendto_44
	sethostent()
	setnetent()
	setprotoent()
	setservent()
	setsockopt()
	shutdown()
	socket()
	socket_close()
	socket_ioctl()
	socket ioctl FIONBIO
	socket ioctl FIONREAD
	socket ioctl SIOCADDRT
	socket ioctl SIOCDELRT
	socket ioctl SIOCATMARK
	socket ioctl SIOCDARP
	socket ioctl SIOCGARP
	socket ioctl SIOCSARP
	socket ioctl SIOCGIFADDR
	socket ioctl SIOCSIFADDR
	socket ioctl SIOCGIFBRDADDR
	socket ioctl SIOCSIFBRDADDR
	socket ioctl SIOCGIFCONF
	socket ioctl SIOCGIFDSTADDR
	socket ioctl SIOCSIFDSTADDR
	socket ioctl SIOCGIFFLAGS
	socket ioctl SIOCSIFFLAGS
	socket ioctl SIOCGIFMETRIC
	socket ioctl SIOCSIFMETRIC
	socket ioctl SIOCGIFNETMASK
	socket ioctl SIOCSIFNETMASK
	socket option SO_BROADCAST
	socket option SO_DEBUG
	socket option SO_DONTROUTE
	socket option SO_ERROR
	socket option SO_KEEPALIVE
	socket option SO_LINGER
	socket option SO_OOBINLINE
	socket option SO_RCVBUF
	socket option SO_RCVLOWAT
	socket option SO_RCVTIMEO
	socket option SO_REUSEADDR
	socket option SO_SNDBUF
	socket option SO_SNDLOWAT
	socket option SO_SNDTIMEO
	socket option SO_TYPE
	socket option TCP_KEEPALIVE
	socket option TCP_NODELAY
	socket_perror()
	socket_read()
	socket_write()
	vms_errno_string()

	2.4. SCTP
	int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, int flags)
	int sctp_getpaddrs(int sd, sctp_assoc_t id, struct sockaddr **addrs)
	sctp_freepaddrs (struct sockaddr *addrs)
	sctp_getladdrs (int sd, sctp_assoc_t id, struct sockaddr **addrs)
	sctp_freeladdrs (struct sockaddr *addrs)
	int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt)
	sctp_assoc_t sctp_getassocid(int sd, struct sockaddr *addr)
	int sctp_getaddrlen (int family)

	Chapter 3. Using the $QIO System Service
	3.1. $QIO System Service Variations
	3.2. $QIO Format
	3.2.1. Symbol Definition Files

	3.3. $QIO Functions
	3.4. $QIO Arguments
	3.4.1. $QIO Function-Independent Arguments
	3.4.2. I/O Status Block
	3.4.3. $QIO Function-Dependent Arguments

	3.5. Passing Arguments by Descriptor
	3.5.1. Specifying an Input Parameter List
	3.5.2. Specifying an Output Parameter List
	3.5.3. Specifying a Socket Name
	3.5.4. Specifying a Buffer List

	Chapter 4. $QIO Interface
	IO$_ACCEPT
	IO$_ACCEPT_WAIT
	IO$_BIND
	IO$_CONNECT
	IO$_GETPEERNAME
	IO$_GETSOCKNAME
	IO$_GETSOCKOPT
	IO$_IOCTL
	IO$_LISTEN
	IO$_RECEIVE (IO$_READVBLK)
	IO$_SELECT
	IO$_SEND
	IO$_SENSEMODE
	IO$_SENSEMODE | IO$M_CTRL
	IO$_SETCHAR
	IO$_SETMODE|IO$M_ATTNAST
	IO$_SETSOCKOPT
	IO$_SHUTDOWN
	IO$_SOCKET
	SYS$CANCEL
	SYS$DASSGN

	Chapter 5. SNMP Extensible Agent API Routines
	5.1. Requirements
	5.2. Linking the Extension Agent Image
	5.3. Installing the Extension Agent Image
	5.4. Debugging Code
	5.5. Subroutine Reference
	SnmpExtensionInit
	SnmpExtensionInitEx
	SnmpExtensionQuery
	SnmpExtensionTrap

	Chapter 6. RPC Fundamentals
	6.1. Introduction
	6.2. What Are RPC Services?
	6.2.1. VSI TCP/IP Implementation
	6.2.2. Distributed Applications

	6.3. Components of RPC Services
	6.3.1. Run-Time Libraries (RTLs)
	6.3.2. RPCGEN Compiler
	6.3.3. Port Mapper
	6.3.4. RPC Information

	6.4. Client-Server Relationship
	6.5. External Data Representation (XDR)
	6.6. RPC Processing Flow
	6.7. Local Calls versus Remote Calls
	6.7.1. Handling System Crashes
	6.7.2. Handling Errors
	6.7.3. Call Semantics

	6.8. Programming Interface
	6.8.1. High-Level Routines
	6.8.2. Mid-Level Routines
	6.8.3. Low-Level Routines

	6.9. Transport Protocols
	6.10. XID Cache
	6.10.1. Cache Entries
	6.10.2. Cache Size
	6.10.3. Execution Guarantees
	6.10.4. Enabling XID Cache

	6.11. Broadcast RPC
	6.12. Identifying Remote Programs and Procedures
	6.12.1. Remote Program Numbers
	6.12.2. Remote Version Numbers
	6.12.3. Remote Procedure Numbers

	6.13. Additional Terms

	Chapter 7. Building Distributed Applications with RPC
	7.1. Introduction
	7.2. Distributed Application Components
	7.3. What You Need to Do
	7.4. Obtaining RPC Information
	7.4.1. Requesting a Program Listing

	Chapter 8. RPCGEN Compiler
	8.1. Introduction
	8.2. What Is RPCGEN?
	8.3. Software Requirements
	8.4. Input Files
	8.5. Output Files
	8.6. Preprocessor Directives
	8.7. Invoking RPCGEN
	8.7.1. Creating All Output Files at Once
	8.7.2. Creating Specific Output Files
	8.7.3. Examples:
	8.7.4. Creating Server Stubs for TCP or UDP Transports

	8.8. Error Handling
	8.9. Restrictions

	Chapter 9. RPC RTL Management Routines
	9.1. Introduction
	9.2. Management Routines
	9.3. Routine Name Conventions
	9.4. Header Files
	9.5. Management Routines
	get_myaddress
	getrpcbynumber
	getrpcport

	Chapter 10. RPC RTL Client Routines
	10.1. Introduction
	10.2. Common Arguments
	10.3. Client Routines
	auth_destroy
	authnone_create
	authunix_create
	authunix_create_default
	callrpc
	clnt_broadcast
	clnt_call
	clnt_control
	clnt_create
	clnt_destroy
	clnt_geterr
	clnt_pcreateerror / clnt_spcreateerror
	clnt_perrno / clnt_sperrno
	clnt_perror / clnt_sperror
	clntraw_create
	clnttcp_create
	clntudp_create / clntudp_bufcreate

	Chapter 11. RPC RTL Port Mapper Routines
	11.1. Introduction
	11.2. Port Mapper Routines
	11.3. Port Mapper Arguments
	pmap_getmaps
	pmap_getport
	pmap_rmtcall
	pmap_set
	pmap_unset

	Chapter 12. RPC RTL Server Routines
	12.1. Introduction
	12.2. Server Routines
	registerrpc
	svc_destroy
	svc_freeargs
	svc_getargs
	svc_getreqset
	svc_register
	svc_run
	svc_sendreply
	svc_unregister
	svcerr_auth / svcerr_decode / svcerr_noproc / svcerr_noprog / svcerr_progvers / svcerr_systemerr / svcerr_weakauth
	svcfd_create
	svcraw_create
	svctcp_create
	svcudp_create / svcudp_bufcreate
	svcudp_enablecache
	xprt_register
	xprt_unregister

	Chapter 13. RPC RTL XDR Routines
	13.1. Introduction
	13.2. XDR Routines
	13.2.1. What XDR Routines Do
	13.2.2. When to Call XDR Routines

	13.3. Quick Reference
	xdr_accepted_reply
	xdr_array
	xdr_authunix_parms
	xdr_bool
	xdr_bytes
	xdr_callhdr
	xdr_callmsg
	xdr_char
	xdr_double
	xdr_enum
	xdr_float
	xdr_free
	xdr_hyper
	xdr_int
	xdr_long
	xdr_netobj
	xdr_opaque
	xdr_opaque_auth
	xdr_pmap
	xdr_pmaplist
	xdr_pointer
	xdr_reference
	xdr_rejected_reply
	xdr_replymsg
	xdr_short
	xdr_string
	xdr_u_char
	xdr_u_hyper
	xdr_u_int
	xdr_u_long
	xdr_u_short
	xdr_union
	xdr_vector
	xdr_void
	xdr_wrapstring
	xdrmem_create
	xdrrec_create
	xdrrec_endofrecord
	xdrrec_eof
	xdrrec_skiprecord
	xdrstdio_create

	Appendix A. Socket Options
	Appendix B. Trademark and Copyright Notifications

